Alex Reznik
Problem 3.41

a. We note that such an R matrix can be written in the form
R=(1-pI+pl

where 1 is a matrix with all of its entries equal to 1. Then for any K-vector

x
K K 2
xTRx = (1 —p)Zm? +p (Z%)
i=1 i=1

Thus, xTRx is a weighted sum of squares and is therefore guaranteed
to be positive if the weights on all the squares are positive. Thus, R is
positive definite for 0 < p < 1. R is not positive definite for p = 1 (and for
p > 1, although this is not possible in the context of CDMA). This can be
seen by observing that Zfil x; can always be made 0 by an appropriate
choice of the vector z, making x TRx negative or 0 because the weight on
the other squares becomes negative or 0.

To extend this result to non-positive p, we note that Gershgorin’s disc
theorem guarantees that the eigenvalues of R lie in the interval [1 — p(K —
1),14 p(K —1)]. Thus, as long as |p| < 1/(K —1), all the eigenvalues are
guaranteed to be positive by this theorem and therefore R is guaranteed
to be positive definite.

Lastly, consider x = [1,1,...,1]7. Then xTRx = K (1 + (K —1)p), which
is less then or equal to 0 for p < —1/(K —1) and therefore R is not positive
definite for such p.

Putting it all together, we get that R is positive definite for

<p<i1
K—1°"

b. The desired expression is simply a special case of the general expression
derived in (3.90). Consider the summation

4,

e

J#k
which appears inside the Q-function in (3.90). Since A; = A Vj and
pik = p Y3,k : j # k, this summation takes on values in the set
{—(K—-1),—~(K-1)+2,...,(K —1) — 2,(K — 1)}. There are (")
distinct combinations of bits j # k that makes the summation take on the
value (K — 1) — 2n.
Thus, the argument inside the Q-function in (3.90) collapses to

A A
—4+—p(K-1-2n) n=0,...,K—1
c 0o



For each n, there are (Kgl) such Q-functions in the complete summation
and since each one is independent of the values of eq,...,ex, the K — 1
summations of (3.90) collapse to a single summation over n, reducing
(3.90) to the desired result.

. Substituting for A; = A Vj and pjr, = p Vj, k : j # k into (3.93) we get:

o A _ 1
Pi(o)=@Q <\/g2+(K—1)p2A2> _Q<\/o2/A2+(K—1)P2>

. First,

im P° = lim 1 — ;
A%Pk(a)_‘}HOQ<\/02/A2+(K—1)p2> Q( (K—l)p2>

Next we note that we can pick p large enough so that the probability of
error is exactly one-half. In fact a value of p = 1 will do for all K. To see
this, we first note that

" 0 forz>0
limQ(—): % forz =0
70 g 1 forx<O
Then, for p =1 and as ¢ — o0,
A 0 when n < %
Q ((1 +p(K—-1- 2n))> =¢ 3 whenn=% (occurs IFF K is even)
g 1 when n > %

and the expression for probability of error given in part b then becomes
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n=0

However, because -1 strictly positive for p = 1, lim, o P¢(0) <
K- 1)

1/2, which proves the desired result.

. We recall from part d. that for p = 1 lim,_ P¢(c) = 1/2. Clearly, we
also have lim,_,o, Pf(0) = 1/2. It is also fairly easy to convince oneself
that there are values of o for which Pf(c) < 1/2. Therefore, for p =1
P{ (o) must be non-monotic for all K.

The explanation for this phenomenon is the same as the explantion given
for the two user case (Section 3.4.1). The multiuser interference is so
high, that, in the absence of noise, the sign of the output of any user’s
mathched filter is completely determined by the sign of the summation of



all the signals sent by all the users - which is positive or negative with
equal probability. If the result of the summation is exactly 0, an error is
made with probability 1/2.

When some noise is present, those values that wind up close to 0, but in
error from the point of view of user k, may sometimes get pushed across
the boundary by the additive noise - thus eliminating the error. This
explains how a moderate amount of additive noise can reduce the error
probability in this anomalous scenario.



