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Preface 

Convexity has been increasingly important in recent years in the study 
of extremum problems in many areas of applied mathematics. The purpose 
of this book is to provide an exposition of the theory of convex sets and 
functions in which applications to extremum problems play the central 
role. 

Systems of inequalities, the minimum or maximum of a convex function 
over a convex set, Lagrange multipliers, and minimax theorems are among 
the topics treated, as well as basic results about the structure of convex 
sets and the continuity and differentiability of convex functions and saddle
functions. Duality is emphasized throughout, particularly in the form of 
Fenchel's conjugacy correspondence for convex functions. 

Much new material is presented. For example, a generalization of linear 
algebra is developed in which "convex bifunctions" are the analogues of 
linear transformations, and "inner products" of convex sets and functions 
are defined in terms of the extremal values in Fenchel's Duality Theorem. 
Each convex bifunction is associated with a generalized convex program, 
and an adjoint operation for bifunctions that leads to a theory of dual 
programs is introduced. The classical correspondence between linear 
transformations and bilinear functionals is extended to a correspondence 
between convex bifunctions and saddle-functions, and this is used as the 
main tool in the analysis of saddle-functions and minimax problems. 

Certain topics which might properly be regarded as part of "convex 
analysis," such as fixed-point theorems, have been omitted, not because 
they lack charm or applications, but because they would have required 
technical developments somewhat outside the mainstream of the rest of 
the book. 

In view of the fact that economists, engineers, and others besides pure 
mathematicians have become interested in convex analysis, an attempt has 
been made to keep the exposition on a relatively elementary technical 
level, and details have been supplied which, in a work aimed only at a 
mathematical in-group, might merely have been alluded to as "exercises." 
Everything has been limited to Rn, the space of all n-tuples of real numbers, 
even though many of the results can easily be formulated in a broader 
setting of functional analysis. References to generalizations and extensions 
are collected along with historical and bibliographical comments in a 
special section at the end of the book, preceding the bibliography itself. 

As far as technical prerequisites are concerned, the reader should be 
able to get by, for the most part, with a sound knowledge of linear algebra 
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and elementary real analysis (convergent sequences, continuous functions, 
open and closed sets, compactness, etc.) as pertains to the space Rn. 
Nevertheless, while no actual familiarity with any deeper branch of abstract 
mathematics is required, the style does presuppose a certain "mathematical 
maturity" on the part of the reader. 

A section of remarks at the beginning of the book describes the con
tents of each part and outlines a selection of material which would be 
appropriate for an introduction to the subject. 

This book grew out of lecture notes from a course I gave at Princeton 
University in the spring of 1966. In a larger sense, however, it grew out of 
lecture notes from a similar course given at Princeton fifteen years earlier 
by Professor Werner Fenchel of the University of Copenhagen. Fenchel's 
notes were never published, but they were distributed in mimeographed 
form, and they have served many researchers long and well as the main, 
and virtually the only, reference for much of the theory of convex functions. 
They have profoundly influenced my own thinking, as evidenced, to cite 
just one aspect, by the way conjugate convex functions dominate much of 
this book. It is highly fitting, therefore, that this book be dedicated to 
Fenchel, as honorary co-author. 

I would like to express my deep thanks to Professor A. W. Tucker of 
Princeton University, whose encouragement and support has been a 
mainstay since student days. It was Tucker in fact who suggested the title 
of this book. Further thanks are due to Dr. Torrence D. Parsons, Dr. 
Norman Z. Shapiro, and Mr. Lynn McLinden, who looked over the man
uscript and gave some very helpful suggestions. I am also grateful to my 
students at Princeton and the University of Washington, whose comments 
on the material as it was taught led to many improvements of the pres
entation, and to Mrs. Janet Parker for her patient and very competent 
secretarial assistance. 

Preparation of the 1966 Princeton lecture notes which preceded this 
book was supported by the Office of Naval Research under grant NONR 
1858(21), project NR-047-002. The Air Force Office of Scientific Research 
subsequently provided welcome aid at the University of Washington in 
the form of grant AF-AFOSR-1202-67, without which the job of writing 
the book itself might have dragged on a long time, beset by interruptions. 

R. T. R. 
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Introductory Remarks: A Guide 

for the Reader 

This book is not really meant to be read from cover to cover, even if 
there were anyone ambitious enough to do so. Instead, the material is 
organized as far as possible by subject matter; for example, all the pertinent 
facts about relative interiors of convex sets, whether of major or minor 
importance, are collected in one place (§6) rather than derived here and there 
in the course of other developments. This type of organization may make it 
easier to refer to basic results, at least after one has some acquaintance with 
the subject, yet it can get in the way of a beginner using the text as an intro
duction. Logical development is maintained as the book proceeds, but in 
many of the earlier sections there is a mass of lesser details toward the 
end in which one could get bogged down. 

Nevertheless, this book can very well be used as an introduction if one 
makes an appropriate selection of material. The guidelines are given below, 
where it is described just which results in each section are really essential 
and which can safely be skipped over, at least temporarily, without causing 
a gap in proof or understanding. 

Part I: Basic Concepts 

Convex sets and convex functions are defined here, and relationships 
between the two concepts are discussed. The emphasis is on establishing 
criteria for convexity. Various useful examples are given, and it is shown 
how further examples can be generated from these by means of operations 
such as addition or taking convex hulls. 

The fundamental idea to be understood is that the convex functions on 
Rn can be identified with certain convex subsets of Rn+i (their epigraphs), 
while the convex sets in Rn can be identified with certain convex functions 
on Rn (their indicators). These identifications make it easy to pass back 
and forth between a geometric approach and an analytic approach. 
Ordinarily, in dealing with functions one thinks geometrically in terms of 
the graphs of the functions, but in the case of convex functions pictures 
of epigraphs should be kept in mind instead. 

Most of the material, though elementary, is basic to the rest of the book, 
but some parts should be left out by a reader who is encountering the 
subject for the first time. Although only linear algebra is involved in §1 
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(Affine Sets), the concepts may not be entirely familiar; §1 should therefore 
be perused up through the definition of barycentric coordinate systems 
(preceding Theorem 1.6) as background for the introduction of convexity. 
The remainder of§!, concerning affine transformations, is not crucial to a 
beginner's understanding. All of §2 (Convex Sets and Cones) is essential 
and the first half of §3, but the second half of §3, starting with Theorem 3.5, 
deals with operations of minor significance. Very little should be skipped 
in §4 (Convex Functions) except some of the examples. However, the end 
of §5 (Functional Operations), following Theorem 5.7, is not needed in any 
later section. 

Part II: Topological Properties 

The properties of convexity considered in Part I are primarily algebraic: 
it is shown that convex sets and functions form classes of objects which 
are preserved under numerous operations of combination and generation. 
In Part II, convexity is considered instead in relation to the topological 
notions of interior, closure, and continuity. 

The remarkably uncomplicated topological nature of convex sets and 
functions can be traced to one intuitive fact: if a line segment in a convex 
set C has one endpoint in the interior of C and the other endpoint on the 
boundary of C, then all the intermediate points of the line segment lie in 
the interior of C. A concept of "relative" interior can be introduced, so 
that this fact can be used as a basic tool even in situations where one has to 
deal with configurations of convex sets whose interiors are empty. This is 
discussed in §6 (Relative Interiors of Convex Sets). The principal results 
which every student of convexity should know are embodied in the first 
four theorems of §6. The rest of §6, starting with Theorem 6.5, is devoted 
mainly to formulas for the relative interiors of convex sets constructed 
from other convex sets in various ways. A number of useful results are 
established (particularly Corollaries 6.5.1 and 6.5.2, which are cited often 
in the text, and Corollary 6.6.2, which is employed in the proof of an 
important separation theorem in §11), but these can all be neglected 
temporarily and referred to as the need arises. 

In §7 (Closures of Convex Functions) the main topic is lower semi
continuity. This property is in many ways more important than continuity 
in the case of convex functions, because it relates directly to epigraphs: 
a function is lower semi-continuous if and only if its epigraph is closed. 
A convex function which is not already lower semi-continuous can be made 
so simply by redefining its values (in a uniquely determined manner) at 
certain boundary points of its effective domain. This leads to the notion 
of the closure operation for convex functions, which corresponds to the 
closure operation for epigraphs (as subsets of Rn+l) when the functions are 
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proper. All of §7, with the exception of Theorem 7.6, is essential if one is to 
understand what follows. 

All of §8 (Recession Cones and Unboundedness) is also needed in the 
long run, although the need is not as ubiquitous as in the case of §6 and 
§7. The first half of §8 elucidates the idea that unbounded convex sets are 
just like bounded convex sets, except that they have certain "points at 
infinity." The second half of §8 applies this idea to epigraphs to obtain 
results about the growth properties of convex functions. Such properties 
are important in formulating a number of basic existence theorems 
scattered throughout the book, the first ones occurring in §9 (Some 
Closedness Criteria). 

The question which §9 attempts to answer is this: when is the image of a 
closed convex set under a linear transformation closed? It turns out that 
this question is fundamental in investigations of the existence of solutions 
to various extremum problems. The principal results of §9 are given in 
Theorems 9.1 and 9.2 (and their corollaries). The reader would do well, 
however, to skip §9 entirely on the first encounter and return to it later, if 
desired, in connection with applications in §16. 

Only the first theorem of §10 (Continuity of Convex Functions) is basic 
to convex analysis as a whole. The fancier continuity and convergence 
theorems are a culmination in themselves. They are used only in §24 and 
§25 to derive continuity and convergence theorems for subdifferentials 
and gradient mappings of convex functions, and in §35 to derive similar 
results in the case of saddle-functions. 

Part III: Duality Correspondences 

Duality between points and hyperplanes has an important role to play 
in much of analysis, but nowhere perhaps is the role more remarkable 
than in convex analysis. The basis of duality in the theory of convexity is, 
from a geometric point of view, the fact that a closed convex set is the 
intersection of all the closed half-spaces which contain it. From the point 
of view of functions, however, it is the fact that a closed convex function 
is the pointwise supremum of all the affine functions which minorize it. 
These two facts are equivalent when regarded in terms of epigraphs, and a 
geometric formulation is usually preferable for the sake of intuition, but 
in this case both formulations are important. The second formulation of 
the basis of duality has the advantage that it leads directly to a symmetric 
one-to-one duality correspondence among closed convex functions, the 
conjugacy correpsondence of Fenchel. 

Conjugacy contains, as a special case in a certain sense, a symmetric 
one-to-one correspondence among closed convex cones (polarity), but 
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it has no symmetric counterpart in the class of general closed convex sets. 
The analogous correspondence in the latter context is between convex 
sets on the one hand and positively homogeneous convex functions (their 
support functions) on the other. For this reason it is often better in applica
tions, as far as duality is concerned, to express a given situation in terms of 
convex functions, rather than convex sets. Once this is done, geometric 
reasoning can still be applied, of course, to epigraphs. 

The foundations for the theory of duality are laid in §11 (Separation 
Theorems). All of the material in this section, except Theorem 11.7, is 
essential. In §12 (Conjugates of Convex Functions), the conjugacy corre
spondence is defined, and a number of examples of corresponding func
tions are given. Theorems 12.1 and 12.2 are the fundamental results which 
should be known; the rest of §12 is dispensible. 

Conjugacy is applied in §13 (Support Functions) to produce results 
about the duality between convex sets and positively homogeneous convex 
functions. The support functions of the effective domain and level sets of a 
convex function f are calculated in terms of the conjugate function f * 
and its recession function. The main facts are stated in Theorems 13.2, 
13.3, and 13.5, the last two presupposing familiarity with §8. The other 
theorems, as well as all the corollaries, can be skipped over and referred to 
if and when they are needed. 

In §14 (Polars of Convex Sets), the conjugacy correspondence for con
vex functions is specialized to the polarity correspondence for convex 
cones, whereupon the latter is generalized to the polarity correspondence 
for arbitrary closed convex sets containing the origin. Polarity of convex 
cones has several applications elsewhere in this book, but the more general 
polarity is not mentioned subsequently, except in § 15 (Polars of Convex 
Functions), where its relationship with the theory of norms is discussed. 
The purpose of §15, besides the development of Minkowski's duality 
correspondence for norms and certain of its generalizations, is to provide 
(in Theorem 15.3 and Corollary 15.3. l) further examples of conjugate con
vex functions. However, of all of§ 14 and § 15, it would suffice, as long as 
one was not specifically interested in approximation problems, to read 
merely Theorem 14.1. 

The theorems of §16 (Dual Operations) show that the various functional 
operations in §5 fall into dual pairs with respect to the conjugacy corre
spondence. The most significant result is Theorem 16.4, which describes 
the duality between addition and intimal convolution of convex functions. 
This result has important consequences for systems of inequalities (§21) 
and the calculus of subgradients (§23), and therefore for the theory of 
extremum problems in Part VI. The second halves of Theorems 16.3, 
16.4, and 16.5 (which give conditions under which the respective minima 



INTRODUCTORY REMARKS xv 

are attained and the closure operation is not needed in the duality formulas) 
depend on §9. This much of the material could be omitted on a first reading 
of §16, along with Lemma 16.2 and all corollaries. 

Part IV: Representation and Inequalities 

The objective here is to obtain results about the representation of convex 
sets as convex hulls of sets of points and directions, and to apply these 
results to the study of systems of linear and nonlinear inequalities. Most 
of the material concerns refinements of convexity theory which take special 
advantage of dimensionality or the presence of some degree of linearity. 
The reader could skip Part IV entirely without jeopardizing his under
standing of the remainder of this book. Or, as a compromise, only the more 
fundamental material in Part IV, as indicated below, could be covered. 

The role of dimensionality in the generation of convex hulls is explored in 
§17 (Carathfodory's Theorem), the principal facts being given in Theorems 
17.1 and 17.2. Problems of representing a given convex set in terms 
of extreme points, exposed points, extreme directions, exposed directions, 
and tangent hyperplanes are taken up in § 18 (Extreme Points and Faces 
of Convex Sets). All of §18 is put to use in §19 (Polyhedral Convexity); 
applications also occur in the study of gradients (§25) and in the maximiza
tion of convex functions (§32). The most important results in § 19 are 
Theorems 19.1, 19.2, 19.3, and their corollaries. 

In §20 (Some Applications of Polyhedral Convexity), it is shown how 
certain general theorems of convex analysis can be strengthened in the 
case where some, but not necessarily all, of the convex sets or functions 
involved are polyhedral. Theorems 20.1 and 20.2 are used in §21 to establish 
relatively difficult refinements of Helly's Theorem and certain other 
results which are applicable in §27 and §28 to the existence of Lagrange 
multipliers and optimal solutions to convex programs. Theorem 20.1 
depends on §9, although Theorem 20.2 does not. However, it is possible 
to understand the fundamental results of §21 (Helly's Theorem and Systems 
of Inequalities) and their proofs without knowledge of §20, or even of §18 
or §19. In this case one should simply omit Theorems 21.2, 21.4, and 
21.5. 

Finite systems of equations and linear inequalities, weak or strict, are 
the topic in §22 (Linear Inequalities). The results are special, and they are 
not invoked anywhere else in the book. At the beginning, various facts are 
stated as corollaries of fancy theorems in §21, but then it is demonstrated 
that the same special facts can be derived, along with some improvements, 
by an elementary and completely independent method which uses only 
linear algebra and no convexity theory. 
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Part V: Differential Theory 
Supporting hyperplanes to convex sets can be employed in situations 

where tangent hyperplanes, in the sense of the classical theory of smooth 
surfaces, do not exist. Similarly, subgradients of convex functions, which 
correspond to supporting hyperplanes to epigraphs rather than tangent 
hyperplanes to graphs, are often useful where ordinary gradients do not 
exist. 

The theory of subdifferentiation of convex functions, expounded in §23 
(Directional Derivatives and Subgradients), is a fundamental tool in the 
analysis of extremum problems, and it should be mastered before proceed
ing. Theorems 23.6, 23.7, 23.9, and 23.10 may be omitted, but one should 
definitely be aware of Theorem 23.8, at least in the non-polyhedral case 
for which an alternative and more elementary proof is given. Most of §23 is 
independent of Part IV. 

The main result about the relationship between subgradients and ordi
nary gradients of convex functions is established in Theorem 25.1, which 
can be read immediately following §23. No other result from §24, §25, 
or §26 is specifically required elsewhere in the book, except in §35, where 
analogous theorems are proved for saddle-functions. The remainder of 
Part V thus serves its own purpose. 

In §24 (Differential Continuity and Monotonicity), the elementary theory 
of left and right derivatives of closed proper convex functions of a single 
variable is developed. It is shown that the graphs of the subdifferentials of 
such functions may be characterized as "complete non-decreasing curves." 
Continuity and monoticity properties in the one-dimensional case are then 
generalized to the n-dimensional case. 

Aside from the theorem already referred to above, §25 (Differentiability 
of Convex Functions) is devoted mainly to proving that, for a finite 
convex function on an open set, the ordinary gradient mapping exists 
almost everywhere and is continuous. The question of when the gradient 
mapping comprises the entire subdifferential mapping, and when it is 
actually one-to-one, is taken up in §26 (The Legendre Transformation). 
The central purpose of §26 is to explain the extent to which conjugate 
convex functions can, in principle, be calculated in a classical manner by 
inverting a gradient mapping. The duality between smoothness and strict 
convexity is also discussed. The development in §25 and §26 depends to 
some extent on § 18, but not on any sections of Part IV following § 18. 

Part VI: Constrained Extremum Problems 
The theory of extremum problems is, of course, the source of motivation 

for many of the results in this book. It is in §27 (The Minimum of a Convex 
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Function) that applications to this theory are begun in a systematic way. 
The stage is set by Theorem 27.1, which summarizes some pertinent facts 
proved in earlier sections. All the theorems of §27 concern the manner in 
which a convex function attains its minimum relative to a given convex 
set, and all should be included in a first reading, except perhaps for refine
ments which take advantage of polyhedral convexity. 

Problems in which a convex function is minimized subject to a finite 
system of convex inequalities are studied in §28 (Ordinary Convex Pro
grams and Lagrange Multipliers). The emphasis is on the existence, inter
pretation, and characterization of certain vectors of Lagrange multipliers, 
called Kuhn-Tucker vectors. The text may be simplified somewhat by 
deleting the provisions for linear equation constraints, and Theorem 28.2 
may be replaced by its special case Corollary 28.2.1 (which has a much 
easier proof), but beyond this nothing other than examples ought to be 
omitted. 

The theory of Lagrange multipliers is broadened and in some ways 
sharpened in §29 (Bifunctions and Generalized Convex Programs). The 
concept of a convex bifunction, which can be regarded as an extension of 
that of a linear transformation, is used to construct a theory of perturba
tions of minimization problems. Generalized Kuhn-Tucker vectors measure 
the effects of the perturbations. Theorems 29.1, 29.3, and their corollaries 
contain all the facts needed in the sequel. 

In §30 (Adjoint Bifunctions and Dual Programs) the duality theory of 
extremum problems is set forth. Practically everything up through Theorem 
30.5 is fundamental, but the remainder of §30 consists of examples and 
may be truncated as desired. Duality theory is continued in §31 (Fenchel's 
Duality Theorem). The primary purpose of §31 is to furnish additional 
examples interesting for their applications. Later sections do not depend on 
the material in §31, except for §38. 

Results of a rather different character are described in §32 (The Maximum 
of a Convex Function). The proofs of these results involve none of the 
preceding sections of Part VI, but familiarity with § 18 and § 19 is required. 
No subsequent reference is made to §32. 

Part VII: Saddle-functions and Minimax Theory 

Saddle-functions are functions which are convex in some variables and 
concave in others, and the extremum problems naturally associated with 
them involve "minimaximization," rather than simple minimization or 
maximization. The theory of such minimax problems can be developed by 
much the same approach as in the case of minimization of convex functions. 
It turns out that the general minimax problems for (suitably regularized) 
saddle-functions are precisely the Lagrangian saddle-point problems 
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associated with generalized (closed) convex programs. Understandably, 
therefore, convex bifunctions are central to the discussion of saddle
functions, and the reader should not proceed without already being 
familiar with the basic ideas in §29 and §30. 

Saddle-functions on Rm x R" correspond to convex bifunctions from 
Rm to R" in much the same way that bilinear functions on Rm x R" cor
respond to linear transformations from Rm to R". This is the substance of 
§33 (Saddle-functions). In §34 (Closures and Equivalence Classes), certain 
closure operations for saddle-functions similar to the one for convex 
functions are studied. It is shown that each finite saddle-function defined on 
a product of convex sets in Rm x R" determines a unique equivalence 
class of closed saddle-functions defined on all of R"' x R", but one does 
not actually have to read up on the latter fact (embodied in Theorems 
34.4 and 34.5) before passing to minimax theory itself. 

The results about saddle-functions proved in §35 (Continuity and Differ
entiability) are mainly analogues or extensions of results about convex 
functions in §10, §24, and §25, and they are not a prerequisite for what 
follows. 

Saddle-points and saddle-values are discussed in §36 (Minimax 
Problems). It is then explained how the study of these can be reduced to the 
study of convex and concave programs dual to each other. Existence theo
rems for saddle-points and saddle-values are then derived in §37 (Conjugate 
Saddle-functions and Minimax Theorems) in terms of a conjugacy corre
spondence for saddle-functions and the "inverse" operation for bifunctions. 

Part VIII: Convex Algebra 

The analogy between convex bifunctions and linear transformations, 
which features so prominently in Parts VI and Vil, is -pursued further in 
§38 (The Algebra of Bifunctions). "Addition" and "multiplication" of 
bifunctions are studied in terms of a generalized notion of inner product 
based on Fenchers Duality Theorem. It is a remarkable and non-trivial 
fact that such natural operations for bifunctions are preserved, as in linear 
algebra, when adjoints are taken. 

The results about bifunctions in §38 are specialized in §39 (Convex 
Processes) to a class of convex-set-valued mappings which are even more 
analogous to linear transformations. 
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SECTION I 

Affine Sets 

Throughout this book, R denotes the real number system, and Rn is the 
usual vector space of real n-tuples x = ( ~i. ••• , ~n). Everything takes 
place in Rn unless otherwise specified. The inner product of two vectors 
x and x* in Rn is expressed by 

(x, x*) = ~1~~ + · · · + ~n~~ 
The same symbol A is used to denote an m x n real matrix A and the 
corresponding linear transformation x ~Ax from Rn to Rm. The transpose 
matrix and the corresponding adjoint linear transformation from Rm 
to Rn are denoted by A*, so that one has the identity 

(Ax, y*) = (x, A *y*). 

(In a symbol denoting a vector, * has no operational significance; all 
vectors are to be regarded as column vectors for purposes of matrix 
multiplication. Vector symbols involving * are used from time to time 
merely to bring out the familiar duality between vectors considered as 
points and vectors considered as the coefficient n-tuples oflinear functions.) 
The end of a proof is signalled by II. 

If x and y are different points in R", the set of points of the form 

(I - .1)x + .1y = x + .1(y - x), A ER, 

is called the line through x and y. A subset M of Rn is called an affine set 
if (I - .1)x + .1y EM for every x EM, y EM and A ER. (Synonyms for 
"affine set" used by other authors are "affine manifold," "affine variety,'' 
"linear variety" or "flat.") 

The empty set 0 and the space Rn itself are extreme examples of affine 
sets. Also covered by the definition is the case where M consists of a 
solitary point. In general, an affine set has to contain, along with any 
two different points, the entire line through those points. The intuitive 
picture is that of an endless uncurved structure, like a line or a plane in 
space. 

The formal geometry of affine sets may be developed from the theorems 
oflinear algebra about subspaces of Rn. The exact correspondence between 
affine sets and subspaces is described in the two theorems which follow. 

3 



4 I: BASIC CONCEPTS 

THEOREM 1.1. The subspaces of Rn are the affine sets which contain the 
origin. 

PROOF. Every subspace contains 0 and, being closed under addition and 
scalar multiplication, is in particular an affine set. 

Conversely, suppose M is an affine set containing 0. For any x EM 
and A E R, we have 

AX = (I - A)O + AXE M, 

so M is closed under scalar multiplication. Now, if x EM and y EM, we 
have 

Hx + y) = lx + (I - !)y EM, 
and hence 

x + y = 2(Hx + y)) EM. 

Thus M is also closed under addition and is a subspace. 
For M c Rn and a E R", the translate of M by a is defined to be the set 

M + a = {x + a I x E M}. 

A translate of an affine set is another affine set, as is easily verified. 
An affine set Mis said to be parallel to an affine set L if M = L + a for 

some a. Evidently "Mis parallel to L" is an equivalence relation on the 
collection of affine subsets of Rn. Note that this definition of parallelism 
is more restrictive than the everyday one, in that it does not include the 
idea of a line being parallel to a plane. One has to speak of a line which is 
parallel to another line within a given plane, and so forth. 

THEOREM 1.2. Each non-empty affine set M is parallel to a unique 
subspace L. This L is given by 

L = M - M = {x - y Ix E M,y EM}. 

PROOF. Let us show first that M cannot be parallel to two different 
subspaces. Subspaces L 1 and L 2 parallel to M would be parallel to each 
other, so that L 2 = L1 +a for some a. Since 0 E L 2, we would then have 
-a E L1 , and hence a E L1 • But then L1 :::> L1 + a = L2• By a similar 
argument L2 :::> L1 , so L1 = L2• This establishes the uniqueness. Now 
observe that, for any y E M, M - y = M + (-y) is a translate of M 
containing 0. By Theorem 1.1 and what we have just proved, this affine 
set must be the uniqui subspace L parallel to M. Since L = M - y no 
matter which y E M is chosen, we actually have L = M - M. II 

The dimension of a non-empty affine set is defined as the dimension of 
the subspace parallel to it. (The dimension of 0 is - I by convention.) 
Naturally, affine sets of dimension 0, I and 2 are called points, lines and 
planes, respectively. An (n - !)-dimensional affine set in R" is called a 
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hyperplane. Hyperplanes are very important, because they play a role dual 
to the role of points in n-dimensional geometry. 

Hyperplanes and other affine sets may be represented by linear functions 
and linear equations. It is easy to deduce this from the theory of orthog
onality in Rn. Recall that, by definition, x ..Ly means (x, y) = 0. Given a 
subspace L of R", the set of vectors x such that x ..LL, i.e. x ..Ly for 
every y EL, is called the orthogonal complement of L, denoted L-1 • It is 
another subspace, of course, and 

dim L + dim L.i = n. 

The orthogonal complement (L.l).l of L.l is in turn L. If b1 , ••• , bm is a 
basis for L, then x ..L L is equivalent to the condition that x ..L bu ... , 
x ..L bm. In particular, the (n - !)-dimensional subspaces of Rn are the 
orthogonal complements of the one-dimensional subspaces, which are the 
subspaces L having a basis consisting of a single non-zero vector b (unique 
up to a non-zero scalar multiple). Thus the (n - !)-dimensional subspaces 
are the sets of the form {x Ix ..Lb}, where b ¥- 0. The hyperplanes are the 
translates of these. But 

{x Ix ..L b} +a = {x +a I <x, b) = O} 

= {y I (y - a, b) = O} = {y I (y, b) = fJ}, 

where fJ = (a, b). This leads to the following characterization of hyper
planes. 

THEOREM 1.3. Given fJ ER and a non-zero b ER", the set 

H = {x I (x, bi = fJ} 

is a hyperplane in R". Moreover, every hyperplane may be represented in 
this way, with band fJ unique up to a common non-zero multiple. 

In Theorem 1.3, the vector b is called a normal to the hyperplane H. 
Every other normal to His either a positive or a negative scalar multiple of 
b. A good interpretation of this is that every hyperplane has "two sides," 
like one's picture of a line in R2 or a plane in R3• Note that a plane in R4 

would not have "two sides," any more than a line in R3 has. 
The next theorem characterizes the affine subsets of Rn as the solution 

sets to systems of simultaneous linear equations in n variables. 

THEOREM 1.4. Given b E Rm and an m x n real matrix B, the set 

M = {x E Rn I Bx= b} 

is an affine set in R". Moreover, every affine set may be represented in this 
way. 
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PROOF. If x EM, y EM and A ER, then for z = (1 - .1)x + .1y one 
has 

Bz = (1 - ).)Bx + .1By = (1 - .1)b + }.b = b, 

so z EM. Thus the given M is affine. 
On the other hand, starting with an arbitrary non-empty affine set M 

other than Rn itself, let L be the subspace parallel to M. Let bu ... , bm 
be a basis for L J_. Then 

L = (L1l = {x IX ..L bu ... , X ..L bm} 

= {x I (x, b;> = 0, i = 1, ... , m} = {x I Bx= O}, 

where B is the m x n matrix whose rows are bi. ... , bm. Since M is 
parallel to L, there exists an a E Rn such that 

M = L +a= {x I B(x - a)= O} = {x I Bx= b}, 

where b = Ba. (The affine sets Rn and 0 can be represented in the form in 
the theorem by taking B to be the m x n zero matrix, say, with b = 0 
in the case of Rn and b ¥- 0 in the case of 0.) II 

Observe that in Theorem 1.4 one has 

M = {x I (x, b;) = {J;, i = 1, ... ,m} = n!1H;, 
where b; is the ith row of B, {J; is the ith component of b, and 

H; = {x I (x, b;) ={Ji}. 

Each Hi is a hyperplane (b; ¥- 0), or the empty set (bi = 0, {Ji ¥- 0), or 
Rn (bi = 0, {J; = 0). The empty set may itself be regarded as the inter
section of two different parallel hyperplanes, while Rn may be regarded 
as the intersection of the empty collection of hyperplanes of Rn. Thus: 

COROLLARY 1.4.1. Every affine subset of Rn is an intersection of a 
finite collection of hyperplanes. 

The affine set Min Theorem 1.4 can be expressed in terms of the vectors 
b~, ... , b~ which form the columns of B by 

M = {x = (~1' ... , ~n) I ~lb~+''·+ ~nb~ = b}. 

Obviously, the intersection of an arbitrary collection of affine sets is 
again affine. Therefore, given any S c Rn there exists a unique smallest 
affine set containing S (namely, the intersection of the collection of affine 
sets M such that M :::> S). This set is called the affine hull of S and is 
denoted by aff S. It can be proved, as an exercise, that aff S consists of all 
the vectors of the form A1x1 + · · · + AmXm, such that xi ES and 
-11 + ... + ;.m = I. 

A set of m + 1 points b0 , bi. ... , bm is said to be affinely independent 
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if aff {b0 , bi, . .. , bm} ism-dimensional. Of course 

where 

By Theorem 1.1, L is the same as the smallest subspace containing b1 -

b0 , ••• , bm - b0• Its dimension ism if and only if these vectors are linearly 
independent. Thus b0 , b1 , ••• , bm are affinely independent if and only if 
b1 - b0 , ••• , bm - b0 are linearly independent. 

All the facts about linear independence can be applied to affine 
independence in the obvious way. For instance, any affinely independent 
set of m + I points in Rn can be enlarged to an affinely independent set 
of n + I points. An m-dimensional affine set M can be expressed as the 
affine hull of m + I points (translate the points which correspond to a 
basis of the subspace parallel to M). 

Note that, if M = aff {b0 , bu . .. , bm}, the vectors in the subspace L 
parallel to Mare the linear combinations of b1 - b0 , ••• , bm - b0• The 
vectors in Mare therefore those expressible in the form 

i.e. in the form 

The coefficients in such an expression of x are unique if and only if b0 , 

bu ... , bm are affinely independent. In that event, A0 , Au ... , Am, as 
parameters, define what is called a barycentric coordinate system for M. 

A single-valued mapping T: x ~ Tx from Rn to Rm is called an affine 
transformation if 

T((I - A)x + ).y) = (1 - A)Tx + lTy 

for every x and y in Rn and A E R. 

THEOREM 1.5. The affine transformations from R" to Rm are the mappings 
T of the form Tx = Ax + a, where A is a linear transformation and a E Rm. 

PROOF. If T is affine, let a= TO and Ax= Tx - a. Then A is an 
affine transformation with AO = 0. A simple argument resembling the 
one in Theorem 1.1 shows that A is actually linear. 

Conversely, if Tx =Ax+ a where A is linear, one has 

T((I - A)x + AY) = (I - A)Ax + AAy + a = (I - A)Tx + }.Ty. 

Thus Tis affine. II 
The inverse of an affine transformation, if it exists, is affine. 



8 I: BASIC CONCEPTS 

As an elementary exercise, one can demonstrate that if a mapping T 
from Rn to Rm is an affine transformation the image set TM= {Tx Ix EM}. 
is affine in Rm for every affine set M in Rn. In particular, then, affine 
transformations preserve affine hulls: 

aff (TS) = T(aff S). 

THEOREM 1.6. Let {b0 , b1 , •.. , bm} and {b~, b~, . .. , b:,,} be affinely 
independent sets in Rn. Then there exists a one-to-one affine transformation 
T of R" onto itself, such that Tb; = b; for i = 0, ... , m. If m = n, Tis 
unique. 

PROOF. Enlarging the given affinely independent sets if necessary, we 
can reduce the question to the case where m = n. Then, as is well known in 
linear algebra, there exists a unique one-to-one linear transformation A 
of Rn onto itself carrying the basis b1 - b0 , ••• , bn - b0 of Rn onto the 
basis b~ - b~, ... , b;, - b~. The desired affine transformation is then 
given by Tx = Ax + a, where a = b~ - Ab0 • II 

COROLLARY 1.6.1. Let M 1 and M 2 be any two affine sets in R" of the 
same dimension. Then there exists a one-to-one affine transformation T of 
Rn onto itself such that TM1 = M2. 

PROOF. Any m-dimensional affine set can be expressed as the affine 
hull of an affinely independent set of m + I points, and affine hulls are 
preserved by affine transformations. II 

The graph of an affine transformation T from R" to R"' is an affine 
subset of Rn+m. This follows from Theorem 1.4, for if Tx = Ax+ a the 
graph of T consists of the vectors z = (x, y), x ER" and y E Rm, such 
that Bz = b, where b = -a and B is the linear transformation (x, y)-+ 
Ax - y from Rn+m to Rn'. 

In particular, the graph of a linear transformation x-+ Ax from Rn to 
Rm is an affine set containing the origin of R"+m, and hence it is a certain 
subspace L of Rn+m (Theorem 1.1 ). The orthogonal complement of L is 
then given by 

L J. = {(x*, y*) Ix* ER", y* ER'", x* = -A*y*}, 

i.e. L J. is the graph of -A*. Indeed, z* = (x*, y*) belongs to L J_ if and 
only if 

0 = (z, z*) = (x, x*) + (y, y*) 

for every:::= (x,y) with y =Ax. [n other words, (x*,y*) E LJ_ if and 
only if 

0 = (x, x*) + (Ax,y*) = (x, x*) + (x, A*y*) = (x, x* + A*y*) 

for every x ER". That means x* + A*y* = 0, i.e. x* = -A*y*. 
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Any non-trivial affine set can be represented in various ways as the graph 
of an affine transformation. Let M be an n-dimensional affine set in RN 
with 0 < n < N. First of all, one can express M as the set of vectors 
x = ai .... ' ;s) whose coordinates satisfy a certain linear system of 
equations, 

i =I, ... , k. 

This is always possible, according to Theorem 1.4. Then-dimensionality 
of M means that the coefficient matrix B = ({J;i) has nullity n and rank 
m = N - n. One can therefore solve the system of equations for 
;n+l' ... , ;Nin terms of;/, ... , ;;;, where I, ... , N is some permutation 
of the indices I, ... , N. One obtains then a system of the special form 

i = 1, ... ,m, 

which again gives a necessary and sufficient condition for a vector x = 

( ; 1 , ... , (,)to belong to M. This system is called a Tucker representation 
of the given affine set. ft expresses M as the graph of a certain affine 
transformation from R" to Rm. There are only finitely many Tucker 
representations of M (at most N!, corresponding to the various ways m 
of the coordinate variables ;; of vectors in M can be expressed in terms of 
the other n coordinate variables in some particular order). 

Often a theorem involving an affine set can be interpreted as a theorem 
about "linear systems of variables," in the sense that the affine set may be 
given a Tucker representation. This is important, for example, in certain 
results in the theory of linear inequalities (Theorems 22.6 and 22. 7) and in 
certain applications of Fenchel's Duality Theorem (Corollary 31.4.2). 

The Tucker representations of a subspace Lare, of course, of the homo
geneous form 

i =I, ... , m. 

Given such a representation of L as the graph of a linear transformation, 
we know, as pointed out above, that LJ_ corresponds to the graph of the 
negative of the adjoint transformation. Thus x* = a:, ... , (t·) belongs 
to LJ_ if and only if 

j =I, ... , n. 

This furnishes a Tucker representation of L J_. Thus there is a simple and 
useful one-to-one correspondence between the Tucker representations of 
a given subspace and those of its orthogonal complement. 



SECTION 2 

Convex Sets and Cones 

A subset C of Rn is said to be convex if (I - A)x + A.y EC whenever 
x EC, y EC and 0 < A < I. All affine sets (including 0 and Rn itself) are 
convex. What makes convex sets more general than affine sets is that they 
only have to contain, along with any two distinct points x and y, a certain 
portion of the line through x and y, namely 

{ (I - A )x + A y I 0 ~ A. ~ 1}. 

This portion is called the (closed) line segment between x and y. Solid 
ellipsoids and cubes in R3 , for instance, are convex but not affine. 

Half-spaces are important examples of convex sets. For any non-zero 
b E Rn and any fJ E R, the sets 

{x I (x, b) ~ fJ}, 

are called closed half-spaces. The sets 

{x I (x, b) < fJ}, 

{x I (x, b/ ~ fJ}, 

{x I (x, b) > fJ}, 

are called open half spaces. All four sets are plainly non-empty and convex. 
Notice that the same quartet of half-spaces would appear if b and fJ were 
replaced by Ab and ,1fJ for some A ¥- 0. Thus these half-spaces depend only 
on the hyperplane H = {x I (x, b) = fJ} (Theorem 1.3). One may speak 
unambiguously, therefore, of the open and closed half-spaces correspond
ing to a given hyperplane. 

THEOREM 2.1. The intersection of an arbitrary collection of convex sets 
is convex. 

PROOF. Elementary. 
COROLLARY 2.1.1. Let b; E Rn and {J; ER for i EI, where I is an 

arbitrary index set. Then the set 

C = {x E Rn I (x, b;) ~ {J;, Vi EI} 

is convex. 
PROOF. Let C; = {x I (x, b;) ~ {J;}. Then C; is a closed half-space or 

Rn or 0 and c = niel C;. II 

10 
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The conclusion of the corollary would still be valid, of course, if some 
of the inequalities~ were replaced by~,>,< or=. Thus, given any 
system of simultaneous linear inequalities and equations inn variables, the 
set C of solutions is a convex set in R". This is a significant fact both in 
theory and in applications. 

Corollary 2.1.1 will be generalized by Corollary 4.6.1. 
A set which can be expressed as the intersection of finitely many closed 

half spaces of Rn is called a polyhedral convex set. Such sets are con
siderably better behaved than general convex sets, mostly because of their 
lack of "curvature." The special theory of polyhedral convex sets will be 
treated briefly in §19. It is applicable, of course, to the study of finite 
systems of simultaneous linear equations and weak linear inequalities. 

A vector sum 

is called a convex combination of Xi, ... , xm if the coefficients A; are all 
non-negative and Ai + · · · + Am = I. In many situations where convex 
combinations occur in applied mathematics, Ai, ... , Am can be interpreted 
as probabilities or proportions. For instance, if m particles with masses 
ai, ... , am are located at points Xi, •• . , xm of R3 , the center of 
gravity of the system is the point AiXi + · · · + AmXm, where A; = 
a;/(ai + · · · + am)· [n this convex combination, A; is the proportion of 
the total weight which is at X;. 

THEOREM 2.2. A subset of R" is convex if and only if it contains all the 
convex combinations of its elements. 

PROOF. Actually, by definition, a set C is convex if and only if AiXi + 
A2x2 EC whenever Xi EC, x2 EC, Ai~ 0, A2 ~ 0 and Ai+ A2 =..I. In 
other words, the convexity of C means that C is closed under taking convex 
combinations with m = 2. We must show that this implies C is also closed 
under taking convex combinations with m > 2. Take any m > 2, and make 
the induction hypothesis that C is closed under taking all convex com
binations of fewer than m vectors. Given a convex combination x = 
Ai Xi + · · · + Amx m of elements of C, at least one of the scalars A; differs 
from 1 (since otherwise Ai + · · · + Am = m -¥- 1); let it be Ai for con
venience. Let 

y = i.~x2 + · · · + A~,x m• A'. = i.;f(I - Ai). 

Then A; ~ 0 for i = 2, ... , m, and 

Thus y is a convex combination of m - 1 elements of C, and y EC by 
induction. Since x = (1 - Ai)Y + }.iXi, it now follows that x EC. II 
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The intersection of all the convex sets containing a given subset S of R" 
is called the convex hull of Sand is denoted by conv S. ft is a convex set by 
Theorem 2.1, the unique smallest one containing S. 

THEOREM 2.3. For any S c Rn, conv S consists of all the convex 
combinations of the elements of S. 

PROOF. The elements of S belong to conv S, so all their convex 
combinations belong to conv S by Theorem 2.2. On the other hand, given 
two convex combinations x = },1x1 + · · · + AmX m and y = µ 1y1 + · · · + 
µ,y,, where X; ES and Y; ES. The vector 

(1 - A)x +A)' 

= (I - A)).1X1 + ... + (1 - A)AmXm + AiµtY1 + ... + A,µ,y,, 

where 0 ~ A ~ 1, is another convex combination of elements of S. Thus 
the set of convex combinations of elements of S is itself a convex set. It 
contains S, so it must coincide with the smallest such convex set, conv S. 

Actually, it suffices in Theorem 2.3 to consider convex combinations 
involving n + 1 or fewer elements at a time. This important refinement, 
known as Caratheodory's Theorem, will be proved in §17. Another 
refinement of Theorem 2.3 will be given in Theorem 3.3. 

CoROLLAR Y 2.3.1. The convex hull of a finite subset { b0 , ••• , b m} of 
Rn consists of all the vectors of the form A0b0 + · · · + Ambm, il"ith 
Ao ~ 0, ... , Am ~ 0, A0 + · · · + A,,, = I. 

PROOF. Every convex combination of elements selected from 
{b0 , ••• , bm} can be expressed as a convex combination of b0 , ••• , bm by 
including the unneeded vectors b; with zero coefficients. II 

A set which is the convex hull offinitely many points is called apolytope. 
If {b0 , b1 , ... , bm} is affinely independent, its convex hull is called an 
m-dimensional simplex, and b0 , ••• , bm are called the vertices of the 
simplex. [n terms of barycentric coordinates on aff {b0 , bi. ... , bm}, each 
point of the simplex is unique~y expressible as a convex combination of the 
vertices. The point ).0b0 + · · · + Ambm with A0 = · · · = Am = 1/(1 + m) 
is called the midpoint or barycenter of the simplex. When m = 0, 1, 2 or 3, 
the simplex is a point, (closed) line segment, triangle or tetrahedron, 
respectively. 

In general, by the dimension of a convex set Cone means the dimension 
of the affine hull of C. Thus a convex disk is two-dimensional, no matter 
what the dimension of the space in which it is embedded. (The dimension 
of an affine set or simplex as already defined agrees with its dimension as a 
convex set.) The following fact will be used in §6 in proving that a non
empty convex set has a non-empty relative interior. 
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THEOREM 2.4. The dimension of a convex set C is the maximum of the 
dimensions of the various simp/ices included in C. 

PROOF. The convex hull of any subset of C is included in C. The 
maximum dimension of the various simplices included in C is thus the 
largest m such that C contains an affinely independent set of m + I 
elements. Let {b0 , b1 , ... , bm} be such a set with m maximal, and let M 
be its affine hull. Then dim M = m and M c aff C. Furthermore C c M, 
for if C \ M contained an element b, the set of m + 2 elements b0 , ••• , bm, 
b in C would be affinely independent, contrary to the maximality of m. 
(Namely, aff {b0 , ••• , bm, b} would include M properly and hence 
would be more than m-dimensional.) Since aff C is the smallest affine set 
which includes C, it follows that aff C = Mand hence that dim C = m. II 

A subset K of Rn is called a cone if it is closed under positive scalar 
multiplication, i.e. AXE K when x EK and A > 0. Such a set is a union of 
half-lines emanating from the origin. The origin itself may or may not be 
included. A convex cone is a cone which is a convex set. (Note: many 
authors do not call K a convex cone unless, in addition, K contains the 
origin. Thus for these authors a convex cone is a non-empty convex set 
which is closed under non-negative scalar multiplication.) 

One should not necessarily think of a convex cone as being "pointed." 
Subspaces of Rn are in particular convex cones. So are the open and closed 
half-spaces corresponding to a hyperplane through the origin. 

Two of the most important convex cones are the non-negative orthant 
of R", 

{x = (~1 •. · ·, ~n) I ~1 ~ 0, · · ·, ~n ~ O}, 

and the positive orthant 

{x = (~1. · · ·, ~n) I ~1 > 0, · · ·, ~n > O}. 

These cones are useful in the theory of inequalities. It is customary to 
write x ~ x' if x - x' belongs to the non-negative orthant, i.e. if 

~i ~ ~j for j = 1, ... , n. 

In this notation, the non-negative orthant consists of the vectors x such 
that x ~ 0. 

THEOREM 2.5. The intersection of an arbitrary collection of convex cones 
is a convex cone. 

PROOF. Elementary. 
COROLLARY 2.5.1. Let b; ER" for i E /, where I is an arbitrary index set. 

Then 
K = {x E Rn I (x, b;) ~ 0, i EI} 

is a convex cone. 
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PROOF. As in Corollary 2.1.1. II 
Of course, ~ 0 may be replaced by ~, >, < or = in Corollary 2.5.1. 

Thus the set of solutions to a system of linear inequalities is a convex cone, 
rather than merely a convex set, if the inequalities are homogeneous. 

The following characterization of convex cones highlights an analogy 
between convex cones and subspaces. 

THEOREM 2.6. A subset of R" is a convex cone if and only if it is closed 
under addition and positive scalar multiplication. 

PROOF. Let K be a cone. Let x EK and y EK. ff K is convex, the 
vector z = (1/2)(x + y) belongs to K, and hence x + y = 2z EK. On the 
other hand, if K is closed under addition, and if 0 < A < I, the vectors 
(I - .1)x and .1y belong to K, and hence (I - .1)x + .1y EK. Thus K is 
convex if and only if it is closed under addition. II 

COROLLARY 2.6.1. A subset of Rn is a convex cone if and only if it 
contains all the positive linear combinations of its elements (i.e. linear 
combinations -11x1 + · · · + Amxm in which the coefficients are all positive). 

COROLLARY 2.6.2. Let S be an arbitrary subset of Rn, and let K be the 
set of all positive linear combinations of S. Then K is the smallest convex 
cone which includes S. 

PROOF. Clearly K is closed under addition and positive scalar multipli
cation, and K :::i S. Every convex cone including S must, on the other 
hand, include K. II 

A simpler description is possible when Sis convex, as follows. 
COROLLARY 2.6.3. Let C be a convex set, and let 

K = {h I A > 0, x E C}. 

Then K is the smallest convex cone which includes C. 
PROOF. This follows from the preceding corollary. Namely, every 

positive linear combination of elements of C is a positive scalar multiple 
of a convex combination of elements of C and hence is an element of 
K. 

The convex cone obtained by adjoining the origin to the cone in Corollary 
2.6.2 (or Corollary 2.6.3) is known as the convex cone generated by S 
(or C) and is denoted by cone S. (Thus the convex cone generated by S 
is not, under our terminology, the same as the smallest convex cone 
containing S, unless the latter cone happens to contain the origin.) ff 
S ¥- 0, cone S consists of all non-negative (rather than positive) linear 
combinations of elements of S. Clearly 

cone S = conv (ray S), 
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where ray Sis the union of the origin and the various rays (half-lines of the 
form P.y I A ~ O}) generated by the non-zero vectors y ES. 

Just as an elliptical disk can be regarded as a certain cross-section of a 
solid circular cone, so can every convex set C in Rn be regarded as a 
cross-section of some convex cone Kin R"+l. Indeed, let K be the convex 
cone generated by the set of pairs (I, x) in Rn+i such that x EC. Then K 
consists of the origin of R"+1 and the pairs (.1, Ax) such that A > 0, x EC. 
The intersection of K with the hyperplane {(-1, y) I A = l} can be regarded 
as C. This fact makes it possible, if one so chooses, to deduce many 
general theorems about convex sets from the corresponding (usually 
simpler) theorems about convex cones. 

A vector x * is said to be normal to a convex set C at a point a, where 
a E C, if x* does not make an acute angle with any line segment in C with a 
as endpoint, i.e. if (x - a, x*) ~ 0 for every x EC. For instance, if C 
is a half-space {x I (x, b) ~ fJ} and a satisfies (a, b) = fJ, then bis normal 
to Cat a. [ n general, the set of all vectors x * normal to Cat a is called the 
normal cone to Cat a. The reader can verify easily that this cone is always 
convex. 

Another easily verified example of a convex cone is the barrier cone of a 
convex set C. This is defined as the set of all vectors x* such that, for some 
fJ ER, (x, x*) ~ fJ for every x EC. 

Each convex cone containing 0 is associated with a pair of subspaces as 
follows. 

THEOREM 2.7. Let K be a convex cone containing 0. Then there is a 
smallest subspace containing K, namely 

K - K = {x - y Ix E K,y EK}= aff K, 

and there is a largest subspace contained within K, namely ( - K) n K. 

PROOF. By Theorem 2.6, K is closed under addition and positive scalar 
multiplication. To be a subspace, a set must further contain 0 and be 
closed under multiplication by -1. Clearly K - K is the smallest such set 
containing K, and ( - K) n K is the largest such set contained within K. 
The former must coincide with aff K, since the affine hull of a set contain
ing 0 is a subspace by Theorem I. I. II 



SECTION 3 

The Algebra ef Convex Sets 

The class of convex sets is preserved by a rich variety of algebraic 
operations. 

For instance, if C is a convex set in R" then so is every translate C + a 
and every scalar multiple AC, where 

).C = {).x I x EC}. 

In geometric terms, if A > 0, AC is the image of C under the transformation 
which expands (or contracts) R" by the factor ). with the origin fixed. 

The symmetric reflection of C across the origin is - C = ( -1 )C. A 
convex set is said to be symmetric if -C = C. Such a set (if non-empty) 
must contain the origin, since it must contain along with each vector x, 
not only -x, but the entire line segment between x and -x. The non
empty convex cones which are symmetric are the subspaces (Theorem 2.7). 

THEOREM 3.1. If C1 and C2 are convex sets in R", then so is their sum 

C1 + C2 = {x1 + x 2 \ x 1 E C1 , x 2 E C2}. 

PROOF. Let x and y be points in C1 + C2. There exist vectors x1 and y 1 

in C1 and x2 and y2 in C2, such that 

For 0 < ). < I, one has 

(I - A)x +A)'= [(I - A)x1 + AyiJ + [(I - A)x2 + Ay2], 

and by the convexity of C1 and C2 

Hence (1 - A)x + AY belongs to C1 + C2• 

To illustrate, if C1 is any convex set and C2 is the non-negative orthant, 
then 

C1 + C2 = {x1 + x2 \ x1 E C1 , x2 ~ O} 

= {x \ 3x1 E Ci. x 1 ~ x}. 

16 
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The latter set is th us con vex by Theorem 3 .1 when C 1 is con vex. 
The convexity of a set C means by definition that 

(I - A)C + AC c C, 0<A<I. 

We shall see in a moment that equality actually holds for convex sets. 
A set K is a convex cone if and only if AK c K for every A> 0, and 
K + K c K (Theorem 2.6). 

If C1 , ... , Cm are convex sets, then so is the linear combination 

C = }.1C1 + · · · + }. 111 C 111 • 

Naturally, this C is called a com·ex co111hi11atio11 of C1, ... , C,,, when 
A1 ~ 0, ... , Am~ 0 and A1 + · · · + }. 111 = I. In that case, it is appropri
ate to think of C geometrically as a sort of mixture of C1 , ... , C 111 • For 
instance, let C1 and C2 be a triangle and a circular disk in R2

• As }. pro
gresses from 0 to I, 

C = (I - }.)C1 + }.C2 

changes from a triangle to a triangle with rounded corners. The roundness 
dominates more and more, until ultimately there is just a circular disk. 

For the sake of geometric intuition, it is sometimes helpful to regard 
C1 + C2 as the union of all the translates x1 + C2 as x1 varies over C1. 

What algebraic laws are valid for the addition and scalar multiplication 
of sets? Trivially, even without convexity being involved, one has 

C1 + C2 = C2 + Ci. 

(C1 + C2) +Ca= C1 + (C2 +Ca), 

l.1(}.2C) = (A1A2)C, 

i.(C1 + C2) = /.C1 + i.C2. 

The convex set consisting of 0 alone is the identity element for the 
addition operation. Additive inverses do not exist for sets cootaining more 
then one point; the best one can say in general is that 0 E [C + (-C)] 
when C-¥- 0. 

There is at least one important law of set algebra which does depend on 
convexity, as is shown in the next theorem. The satisfaction of this dis
tributive law is in fact equimlent to the convexity of the set C, since the 
law implies that }.C + (I - }.)C is included in C when 0 :::;: A :::;: I. 

THEOREM 3.2. If C is a convex set and }.1 ~ 0, }.2 ~ 0, then 

U·1 + ;,2)C = ;,1c + 1.2c. 

PROOF. The inclusion c would be true whether C were convex or not. 
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The reverse inclusion follows from the convexity relation 

c :::> U-1/U-1 + A2))C + CA2/(A1 + A2))C 

upon multiplying through by -11 + -12, provided -11 + -1 2 > 0. If -11 or }.2 
is 0, the assertion of the theorem is trivial. II 

It follows from this theorem, for instance, that C + C = 2C, C + C + 
C = 3C, and so forth, when C is convex. 

Given any two convex sets C1 and C2 in Rn, there is a unique largest 
convex set included in both C1 and C2, namely C1 n C2, and a unique 
smallest convex set including both C1 and C2, namely conv (C1 u C2). 
The same is true starting, not just with a pair, but with an arbitrary family 
{C;, i EI}. In other words, the collection of all convex subsets of Rn is a 
complete lattice under the natural partial ordering corresponding to 
inclusion. 

THEOREM 3.3. Let { C; I i EI} be an arbitrary collection of non-empty 
convex sets in R", and let C be the convex hull of the union of the collection. 
Then 

where the union is taken over all finite convex combinations (i.e. over all 
non-negative choices of the coefficients A; such that only finitely many are 
non-zero and these add up to I). 

PROOF. By Theorem 2.3, C is the set of all convex combinations 
x = µ1y1 + · · · + µmym, where the vectors y1, ... , Ym belong to the 
union of the sets C;. Actually, we can get C just by taking those com
binations in which the coefficients are non-zero and vectors are taken from 
different sets Ci. Indeed, vectors with zero coefficients can be omitted from 
the combination, and if two of the vectors with positive coefficients belong 
to the same C;, say y1 and y2, then the term µ1y1 + µ 2J2 can be replaced by 
µy, where µ = µ 1 + µ 2 and 

y = (µ1/ µ)y1 + (µ2/ µ)y2 E C;. 

Thus C is the union of the finite convex combinations of the form 

µiC;, + • •. + f-lmCim' 

where the indices i1 , ... , i,,, are all different. Except for notation, this is 
the same as the union described in the theorem. II 

Given any linear transformation A from Rn to Rm, we define 

AC= {Ax Ix EC} for Cc Rn, 

A-1D = {x I Ax ED} for D c Rm, 
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as is customary. We call AC the image of C under A and A- 1 D the inverse 
image of D under A. It turns out that convexity is preserved when such 
images are taken. (The notation A-1 D here is not meant to imply, of 
course, that the inverse linear transformation exists as a single-valued 
mapping.) 

THEOREM 3.4. Let A be a linear transformation from Rn to Rm. Then 
AC is a convex set in Rm for every convex set C in R", and A-1 Dis a convex 
set in R" for every convex set D in Rrn. 

PROOF. An elementary exercise. 
COROLLARY 3.4.1. The orthogonal projection of a convex set C on a 

subspace L is another convex set. 
PROOF. The orthogonal projection mapping onto L is a linear trans

formation, the one which assigns to each point x the unique y EL such 
that (x - y) J_ L. II 

One interpretation of the convexity of A-1 D in Theorem 3.4 is that, as y 
ranges over a convex set, the solutions x to the system of simultaneous 
linear equations expressed by Ax = y will range over a convex set too. 
If D = K + a, where K is the non-negative orthant of Rm and a E Rm, 
then A-1 D is the set of vectors x such that Ax ;;:::: a, i.e. the solution set to a 
certain linear inequality system in Rn. If C is the non-negative orthant of 
Rn, then AC is the set of vectors y E Rm such that the equation Ax = y 
has a solution x ;;:::: 0. 

THEOREM 3.5. Let C and D be convex sets in Rm and RP, respectively. 
Then 

C EB D = {x = (y, z) I y EC, z ED} 

is a convex set in Rm+P. 

PROOF. Trivial. 
The set C EB D in Theorem 3.5 is called the direct sum of C and D. 

The same name is also applied to an ordinary sum C + D, Cc R", 
D c R", if each vector x EC+ D can be expressed !!!]J!/.!!_e_!f in the form 
x = y + z, y EC, z ED. This happens if and only if the symmetric 
convex sets C - C and D - D have only the zero vector of Rn in common. 
(It can be shown that then R" may be expressed as a direct sum of two 
subspaces, one containing C and the other containing D.) 

THEOREM 3.6. Let C1 and C2 be convex sets in Rm+P, and let C be the 
set of vectors x = (y, z) (where y E Rm and z ERP) such that there exist 
vectors z1 and z2 with (y, z1) E C1 , (y, z2) E C2 and z1 + z2 = z. Then C is a 
convex set in Rm+P. 
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PROOF. Let (y, z) EC, with z1 and z2 as indicated. Likewise (y', z'), z~ 
and z~. Then, for 0 ~A~ 1, y" =(I - .1)y + }.y' and z" =(I - }.)z + 
.1z', we have 

(y", (I - A)z1 + i.z;) =(I - A)(y, z1) + i.(y', z;) E Ci. 

(y", (I - }.)z2 + bz~) =(I - A)(y, z2) + A(y', z~) E: C2 , 

z" =(I - A)(z1 + z2) + }.(z; + z~) 
= ((I - }.)z1 + },z;) + ((I - -1)z2 + AZ 2). 

Thus the vector 
(1 - A)(y, z) + ,1(y', z') = (y", z") 

belongs to C. 
Observe that Theorem 3.6 describes a certain commutative and associative 

operation for convex sets in Rm+i•. Now there are infinitely many ways of 
introducing a linear coordinate system on R" and then representing every 
vector as a pair of components y E Rm and z ERP relative to the co
ordinates. Each of these ways yields an operation of the type in Theorem 
3.6. (The operations are different if the corresponding decompositions of 
R" into a direct sum of two subspaces are different.) An operation of this 
type will be called a partial addition. Ordinary addition (i.e. the operation 
of forming C 1 + C2) can be regarded as the extreme case corresponding to 
111 = 0 in Theorem 3.6, while intersection (i.e. the operation of forming 
C1 n C2 ) corresponds similarly to p = 0. Between these extremes are 
infinitely many partial additions for the collection of all convex sets in 
R", and each is a commutative, associative binary operation. 

The infinitely many operations just mentioned seem rather arbitrary 
in character. But, by more special considerations, we can single out four 
of these operations as the "natural" ones. Recall that, corresponding to 
each convex set C in R", there is a certain convex cone Kin R"+l containing 
the origin and having a cross-section identifiable with C, namely the convex 
cone generated by {(I, x) I x E CJ. The correspondence is one-to-one. 
The class of cones K forming the range of the correspondence consists 
precisely of the convex cones which have only (0, 0) in common with the 
half-space {(-1, x) I A~ 0). An operation which preserves this class of 
cones in R"+l corresponds to an operation for convex sets in R". The 
decomposition of R"+l into pairs (.1, x) focuses our attention on four 
partial additions in R"+l. These are the operation of adding in the x 
argument alone, the operation of adding in the A argument alone, and the 
two extreme cases of partial addition, namely the operations of adding 
in both A and x, and of adding in neither. All four operations clearly do 
preserve the special class of convex cones Kin question. 
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Let us see what four operations for convex sets these partial additions 
amount to. Suppose Ki and K2 correspond to the convex sets Ci and C2 

respectively. If we perform partial addition in the x argument alone on Ki 
and K2 , (I, x) will belong to the resulting K if and only if x = Xi + x 2 

for some (I, Xi) E Ki and (I, x2) E K2. Thus the convex set corresponding 
to K will be C = Ci + C2• ff we perform partial addition in both argu
ments, (I, x) will belong to Kif and only if x = Xi + x 2 and I = }.i + -1 2 

for some (Ai, xi) E Ki and (}.2 , x 2) E K 2 • Thus C will be the union of 
the sets AiCi + }.2C2 over }.i ~ 0, -12 ~ 0, Ai+ -12 = I, and this is 
conv (Ci U C2) by Theorem 3.3. Adding in neither A nor xis the same 
as intersecting Ki and K2, which obviously corresponds to forming Ci n C2. 
The remaining operation is addition in). alone. Here (I, x) EK if and only 
if (Ai, x) E Ki and (-12, x) E K2 for some Ai ~ 0 and -12 ~ 0 with Ai + -12 = 

I. Thus 
c = u PiCi ("\ A2C2 I A;~ 0, Ai+ },2 = I} 

= U {(I - }.)Ci n .1C2 I 0 ~ }. ~ I}. 

We shall denote this set by Ci # C2. The operation # will be called inverse 
addition. 

THEOREM 3. 7. If Ci and C2 are convex sets in R", then so is their inverse 
sum Ci# C2. 

PROOF. By the preceding remarks. 
fnverse addition is a commutative, associative binary operation for the 

collection of all convex sets in R". It resembles ordinary addition in that it 
can be expressed in terms of a pointwise operation. To show this, we note 
first that Ci # C2 consists of all the vectors x which can be expressed in 
the form 

x = ).xi = (I - .1)x2, 0 ~ A ~ I, Xi E Ci, X2 E C2• 

Such an expression requires that Xi, x 2 and x lie along some common ray 
{ae I a~ O}, e-¥- 0. Then, in fact, for some cxi ~ 0 and a 2 ~ 0, one has 
Xi = cxie, x 2 = a2e and 

x = [xicx2/(cxi + a 2)]e = (a!i + a:;-irie. 

(The last coefficient may be interpreted as 0 if cxi = 0 or a 2 = 0.) Here x 
actually depends only on xi and x 2, not on the choice of e. We might call 
it the inverse sum of Xi and x 2 and denote it by Xi # x2• Inverse addition 
of vectors is commutative and associative to the extent that it is defined, 
which is only for vectors on a common ray. We have 

Ci # C2 = {xi # x2 I Xi E Ci, x2 E C2} 

in parallel with the formula for Ci + C2. 
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All the operations we have been discussing clearly preserve the class of 
all convex cones in R", except for the operation of translation. Thus the 
sets Ki+ K2 , Ki# K2 , conv (Ki U K2), Ki n K2 , Ki EB K2 , AK, A-iK 
and AK are convex cones when Ki, K 2 and K are convex cones. Positive 
scalar multiplication is a trivial operation for cones: one has AK= K for 
every }. > 0. For this reason, addition and inverse addition reduce 
essentially to the lattice operations in the case of cones. 

THEOREM 3.8. If Ki and K2 are convex cones containing the origin, then 

Ki + K2 = conv (Ki u K2), 

Ki # K2 = Ki n K2 • 

PROOF. By Theorem 3.3, conv (Ki U K2) is the union over A E [O, I] 
of (I - A)Ki + AK2 • The latter set is Ki+ K2 when 0 < A < 1, Ki when 
A = 0, and K2 when A = I. Since 0 E Ki and 0 E K2 , Ki + K2 includes both 
Ki and K2 • Thus conv (Ki U K2) coincides with Ki+ K2 • Similarly, 
Ki # K2 is the union over A E [O, I] of (AKi) n (I - A)K2 • The latter set 
is Ki n K2 when 0 < }. < I, and it is {O} c Ki n K2 when A = 0 or 
A= I. Thus Ki# K2 = Kin K2. II 

There is one other interesting construction which we would like to 
mention here. Given two different points x and y in R", the half-line 
{(I - A)x + AY I A ~ I} might be thought of as the "shadow of y cast by a 
light source at x." The union of these half-lines as y ranges over a set C 
would be the "shadow of C." This suggests that we define the umbra of C 
with respect to S, for any disjoint subsets C and S of R", as 

nxES u). i {(I - A)x + i.C} 

and the penumbra of C with respect to Sas 

UxeS LJl i {(! - A)X +AC}. 

We leave it to the reader to show, as an exercise, that the umbra is convex 
if C is convex, and that the penumbra is convex if both S and C are 
convex. 



SECTION 4 

Convex Functions 

Let/be a function whose values are real or± oo and whose domain is a 
subset S of Rn. The set 

{(x, µ)Ix ES,µ ER,µ ~f(x)} 

is called the epigraph off and is denoted by epif We define/to be a convex 
function on S if epi/is convex as a subset of Rn+i. A concave function on S 
is a function whose negative is convex. An affine function on Sis a function 
which is finite, convex and concave. 

The effective domain of a convex function f on S, which we denote by 
dom f, is the projection on Rn of the epigraph off: 

domf = {x I 3µ, (x, µ) E epif} = {x l/(x) < + oo}. 

This is a convex set in Rn, since it is the image of the convex set epif 
under a linear transformation (Theorem 3.4). Its dimension is called the 
dimension off Trivially, the convexity off is equivalent to that of the 
restriction off to domf All the interest really centers on this restriction, 
and S itself has little role of its own. 

There are weighty reasons, soon apparent, why one does not want to 
consider merely the class of all convex functions having a certain fixed C 
as their common effective domain. Two good technical approaches remain. 
One could limit attention to functions which are nowhere + oo, so that S 
would always coincide with domf (but would vary with/). Or one could 
limit attention to functions given on all of Rn, since a convex function f 
on Scan always be extended to a convex function on all of R" by setting 
f(x) = +oo for x tf- S. 

The second approach will be taken in this book. Thus by a "convex 
function" we shall henceforth always mean a "convex function with possibly 
infinite values which is defined throughout the space R"," unless otherll'ise 
specified. This approach has the advantage that technical nuisances about 
effective domains can be suppressed almost entirely. For example, when a 
convex function f is constructed according to certain formulas, the same 
formulas specify the effective domain off implicitly, because they specify 
where f(x) is or is not + oo. [n the other approach, one would always 

23 
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have to describe the effective domain off explicitly before the values off 
on that domain could be given. 

The approach taken here does, however, lead to arithmetic calculations 
involving + oo and - oo. The rules we adopt are the obvious ones: 

a+ oo = oo +a= oo for - oo < a~ oo, 

a - oo = - oo +a= - oo for -oo ~ a< oo, 

'Y.OO = OO'Y. = oo, a(-oo) = (-oo)'Y. = -oo for 0 <a~ oo, 

aoo=OO'Y.=-oo, a(-oo)=(-oo)'Y.=OO for -oo~a<O, 

Ooo = ooO = 0 = 0(-oo) = (-oo)O, -(-oo) = oo, 

inf0 = +oo, sup 0 = -oo. 

The combinations oo - oo and - oo + oo are undefined and are avoided. 
Under these rules, the familiar laws of arithmetic: 

'Y.1 + IY.2 = 'Y.2 + 'Y.i. (7.1 + 'Y.2) + 'Y.3 = 'Y.1 + (7.2 + 0'.3), 

7.(0'.1 + aa) = IY.IY.1 + IY.IY.2, 

are still valid, provided that none of the indicated binary sums a + fJ is 
the forbidden oo -oo (or -oo +oo). This can be verified directly by 
testing all possible combinations of finite versus infinite values for the a's. 

Avoiding oo - oo naturally requires some cautious attention, like 
avoiding division by zero. In practice, one or the other of the infinities is 
usually excluded automatically from a given calculation by the hypothesis, 
so no complications arise. 

A convex function f is said to be proper if its epigraph is non-empty and 
contains no vertical lines, i.e. if/(x) < +oo for at least one x andf(x) > 
-oo for every x. Thus/ is proper if and only ifthe convex set C = domf 
is non-empty and the restriction off to C is finite. Put another way, a 
proper convex function on Rn is a function obtained by taking a finite 
convex function f on a non-empty convex set C and .then extending it to 
all of R" by setting/(x) = + oo for x ti- C. 

A convex function which is not proper is improper. Proper convex 
functions are the real object of study, but improper functions do arise 
from proper ones in many natural situations, and it is more convenient to 
admit them than to exclude them laboriously from consideration. An 
example of an improper convex function which is not simply identically 
+ oo or - oo is the function f on R defined by 

{

-oo if lxl <I, 

f(x) = 0 if lxl = 1, 

+oo if lxl >I. 
Convex functions have an important interpolation property. By 
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definition, f is convex on S if and only if 

(I - A)(x, µ) + A(y, v) = ((! - A)x + Ay, (I - A)µ+ }.v) 

belongs to epifwhenever (x, µ)and (y, v) belong to epif and 0 ~A~ I. 
Jn other words, one is to have (I - A)x +AYES and 

f((I - A)X + Ay) ~ (I - A)µ + AV, 

whenever x ES, y ES, f(x) ~ µER, f(y) ~ v ER and 0 ~ A ~ I. This 
condition can be expressed in several different ways. The following two 
variants are especially useful. 

THEOREM 4.1. Let f be a function from C to ( - oo, + oo], irhere C is 
a convex set (for example C = R"). Then f is convex on C if and only if 

f((I - A)x + A,V) ~ (I - }.)f(x) + Af(y), 0 < A < I, 

for every x and y in C. 

THEOREM 4.2. Let f be a function from R" to [- oo, + oo ]. Tllen f is 
convex 1f and on~}' if 

f((I - A)x + AJ) <(I - A):z + }.fJ, 0 <}.<I, 

whenever f(x) < 'Y. and f(y) < fJ. 
Another useful variant can be deduced by applying Theorem 2.2 to 

epigraphs. 

THEOREM 4.3 (Jensen's Inequality). Let f be a function from R" to 
( - oo, + oo ]. Then f is convex 1f and only 1f 

f(A1X1 + · · · + Amxn,) ~ Aif(x1) + · · · + A,,,f(xm) 

irhenever A1 ~ 0, ... , },,,, ~ 0, }.1 + · · · +Am= I. 

PROOF. An elementary exercise. 
Concave functions, of course, satisfy the opposite inequalities under 

similar hypotheses. Affine functions satisfy the inequalities as equations. 
Thus the affine functions on R" are the affine transformations from Rn 
to R. 

The inequality in Theorem 4.1 is often taken as the definition of the 
convexity of a function f from a convex set C to ( - oo, + oo ]. This 
approach causes difficulties, however, when f can have both + oo and - oo 
among its values, since the expression oo - oo could arise. Of course, the 
condition in Theorem 4.2 could be used as the definition of convexity in 
the general case, but the definition given at the beginning of this section 
seems preferable because it emphasizes the geometry which is fundamental 
to the theory of convex functions. 
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Some classical examples of convex functions on the real line are obtained 
from the following theorem. 

THEOREM 4.4. Let f be a tH'ice continuously differentiable real-valued 
function on an open interval ( (/., fJ). Then f is convex 1f and only if its second 
derivative f" is non-negative throughout ( (/., {J). 

PROOF. Suppose first that/" is non-negative on ((/., fJ). Thenf' is non
decreasing on((/_, fJ). For(/_ < x < y < fJ, 0 < A < I and z = (I - }.)x + 
A)', we have 

f(z) - f(x) = Lf'(t) dt ~ f'(z)(z - x), 

f(y) - f(z) =fret) dt ~ f'(z)(y - z). 

Since z - x = A.(y - x) and y - z = (1 - A)(y - x), we have 

f(z) ~ f(x) + }f'(z)(y - x), 

f(z) ~f(y) - (1 - .1).f'(z)(y - x). 

Multiplying the two inequalities by (I - .1) and A respectively and adding 
·them together, we get 

(I - A.)f(z) + -1/(z) ~ (1 - }.)f(x) + A.j(y). 

The left side is just/(z) = /((! - .1)x + }.y), so this proves the convexity 
off on((/., fJ) by Theorem 4.1. As for the converse assertion of the theorem, 
suppose that/" were not non-negative on((/., /3). Then/" would be negative 
on a certain subinterval ((/.', fJ') by continuity. By the obvious argument, 
exactly parallel to the one just given, on ( (/_', {J') we would have 

and hence 

f(z) - f(x) > f'(z)(z - x), 

f(y) - f(z) <f'(z)(y - z), 

/((! - A)x + .1y) > (I - .1)f(x) + lf(y). 

Thus f would not be convex on ( (/., fJ). II 
Theorem 4.4 will be generalized in Theorems 24.1 and 24.2. 
Here are some functions on R whose convexity is a consequence of 

Theorem 4.4. 

I. f(x) = eax, where - 00 < (/_ < oo; 

2. f(x) = xP if x ~ 0, f(x) = oo if x < 0, where I ~ p < oo. 

3. f(x) = -xP if x ~ 0, f(x) = oo if x < 0, where 0 ~ p ~ I; 

4. f(x) = xP if x > O,f(x) = oo if x ~ 0, where -oo < p ~ 0; 

5. f(x) = ((/_ 2 
- x2

)-112 if lxl < (/_,f(x) = oo if lxl ~ (/., where(/_ > O; 

6. f(x) = -log x if x > O,f(x) = oo if x ~ 0. 
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[n the multidimensional case, it is trivial from Theorem 4.1 that every 

function of the form 

f(x) = (x,a) + <:J., a ER", <:1.E R 

is convex on R", in fact affine. Every affine function on R" is actually of 
this form (Theorem 1.5). A quadratic function 

f(x) = l(x, Qx) + (x, a)+ <:1., 

where Q is a symmetric n X n matrix, is convex on R" if and only if Q is 
positive semi-definite, i.e. 

(z, Qz) ~ 0 for every z E R". 

That is immediate from the following multidimensional version of 
Theorem 4.4. 

THEOREM 4.5. Let f be a t11·ice continuously differentiable real-valued 
function on an open convex set C in R". Then f is convex on C 1f and only 1f 
its Hessian matrix 

is positive semi-definite for every x E C. 

PROOF. The convexity off on C is equivalent to the convexity of the 
restriction of/to each line segment in C. This is the same as the convexity 
of the function g(A) = f(y + AZ) on the open real interval P. I y + 
AZ E C} for each y EC and z E R". A straightforward calculation shows 
that 

x = y +AZ. 

Thus, by Theorem 4.4, g is convex for each y EC and z ER" if and only if 
(z, Qxz) ~ 0 for every z ER" and x EC. II 

An interesting function on R" whose convexity may be verified by 
Theorem 4.5 is the negative of the geometric mean: 

(
-($1$2 • • • $n)lfn 

f(x) = f($1, ... , $n) = if $1 ~ 0, ... , $" ~ 0, 
+ oo otherwise. 

Direct computation shows that 

(z, Qxz) = n-
2f(x)[(1;'=1 ~i/$;)2 - n 1~=1 (~;/$;)2] 

for z=a1····•~n), x=($1, ... ,$n), $1 >0, ... ,$n>O. This 
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quantity is non-negative, becausef(x) < 0 and 

('.X1 + - - - + '.X,,)2 ~ n(IXi + .. - +IX;) 

(inasmuch as 2'.Xi'.Xx- ~ IX~ + '.X~) for any real numbers IX;. 
One of the most important convex functions on R" is the Euclidean norm 

lxl = <x, x/11 ~ = (~i + · · · + ~~)112 . 

This is, of course, just the absolute value function when n = I. The 
convexity of the Euclidean norm follows from the familiar laws 

Ix + yl ~ lxl + lyl, l-1xl = }. lxl for A ~ 0. 

There are several useful correspondences between convex sets and 
convex functions. The simplest associates with each set C in R" the 
indicator function b(- I C) of C, where 

{
o if 

b(x IC)= 
+cc 

x EC, 

if x rf: c. 
The epigraph of the indicator function is a "half-cylinder with cross
section C." Clearly C is a convex set if and only if a(· I C) is a convex 
function on R". fndicator functions play a fundamental role in convex 
analysis similar to the role of characteristic functions of sets in other 
branches of analysis. 

The support function r)*(· I C) of a convex set C in R" is defined by 

()*(xi C) = sup{<x,y)l_vEC}. 

The gauge y(· I C) is defined by 

y(x I C) = inf{}.~ 0 Ix E .1C}, c ~ 0. 
/ The (Euclidean) distance function d(-, C) is defined by 

d(x, C) = inf{lx -yl IYE C}. 

The convexity of these functions on R" could be verified now directly, 
but we shall wait until the next section, where the convexity can be shown 
to follow from general principles. 

Convex functions give rise to convex sets in an important way. 

THEOREM 4.6. For any convex function f and any '.XE [- oo, + oo], the 
level sets {x I f(x) < '.X} and {x I f(x) ~ IX} are convex. 

PROOF. [n the case of strict inequality the result is immediate from 
Theorem 4.2, with fJ = '.X. The convexity of {x lf(x) ~ IX} then follows 
from the fact that it is the intersection of the convex sets {x I f(x) < µ} for 
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µ > x. A more geometric way of seeing this convexity is to observe 
that {x lf(x) ::;; a) is the projection on R" of the intersection of epi f and 
the horizontal hyperplane {(x, µ) \ ,u = a} in R"+1, so that {x lf(x) ~ 7.} 
can be regarded as a horizontal cross-section of epif II 

COROLLARY 4.6.1. Let/;, be a convex function on R" and x; be a real 
numher for each i EI, where I is an arbitrary index set. Then 

C = {x \/;,(x) ~ 'Y.;, Vi EI} 
is a convex set. 

PROOF. Like Corollary 2.1.1. 
Taking f to be a quadratic convex function in Theorem 4.6, we can 

conclude that the set of points satisfying a quadratic inequality 

l(x, Qx) + (x, a) + a ~ 0 

is convex when Q is positive semi-definite (Theorem 4.5). Sets of this form 
include all "solid'' ellipsoids and paraboloids, and in particular spherical 
balls like {x I 1x, x) ~ I}. 

Theorem 4.6 and Corollary 4.6.1 have a clear significance for the theory 
of systems of nonlinear inequalities. But convexity enters into the analysis 
of other aspects of the theory of inequalities too, because various classical 
inequalities can be regarded as special cases of Theorem 4.3. For example, 
take/ on R to be the negative of the logarithm, as in example 6 above. For 
a convex combination of positive numbers x 1, ••• , xm, we have 

-log (J. 1x 1 + · · · + AmXm) ~ -A1 log x 1 - • • • - Am log x,,, 

by Theorem 4.3. Multiplying by -1 and taking the exponential of both 
sides, we have 

In particular, for }. 1 = · · · = }."' = l/m, 

(X1 + · ·. + Xm)fm 2_ (x, ... Xm) 11"'. 

This is the famous inequality between the arithmetic mean and geometric 
mean of a family of positive numbers. 

Sometimes a non-convex function can be transformed into a convex 
one by a nonlinear change of variables. An outstanding example is the 
class of (positive) algebraic functions on the positive orthant of R" which 
are sums of terms of the form 

g(x) = ga,, ... , ~n) = {J~~' ... ~~"" 

where fJ > 0 and the exponents a; are arbitrary real numbers. (Such 
functions occur in an important application at the end of §30.) A particular 
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function in this class would be 

The substitution 'i = log ~i converts the general term g into 

h(z) = h(,1, •.• , '1,) = fJeai(i. · · e'"'" = /3e<o,z>, 

where a= (a1, ••• , an). ft will be seen in the next section that h, and any 
sum of functions of the form of h, is convex. Notice that the same change 
of variables transforms the set {x I g(x) = a} into a hyperplane 

{z I h(z) =a}= {z I (a, z) =log (a/fl)}. 

A function f on R" is said to be positively homogeneous (of degree I) if 
for every x one has 

[(Ax)= }f(x), 0 <). < oo. 

Obviously, positive homogeneity is equivalent to the epigraph being a 
cone in R"H. An example of a positively homogeneous convex function 
which is not simply a linear function is/(x) = lxl. 

THEOREM 4. 7. A positively homogeneous function f from R" to ( - oo, 
+ oo] is convex if and only if 

f(x + y) ~ f(x) + f(y) 

for every x E Rn, y E Rn. 

PROOF. This is implied by Theorem 2.6, because the subadditivity 
condition on f is equivalent to epi f being closed under addition. 

COROLLARY 4. 7.1. If f is a positively homogeneous proper convex 
function, then 

whenever A1 > 0, ... , ).,,, > 0. 
COROLLARY 4. 7.2. If f is a positively homogeneous proper convex 

function, thenf(-x) 2: -f(x)for every x. 
PROOF. f(x) + f(-x) 2: f(x - x) = /(0) 2: 0. 

THEOREM 4.8. A positively homogeneous proper convex function f is 
linear on a subspace L if and only if f ( - x) = -f ( x) for every x E L. This 
is true if merely [(-bi) = -f(bi)for all the vectors in some basis b" ... , bm 
for L. 
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PROOF. Assume the latter. Then f(}.ib;) = l.J(bi) for every i.; ER, 
not just for Ai > 0. For any x = }.1b1 + · · · + Arnbm EL we have 

j(A1b1) + · · · + j(Ambm) 2. j(x) 2. -/(-x) 

2. -(f(-A.,b,) + · · · + j(-},mbnJ) = j(J.,b,) + · · · + j(Arnbm) 

(Theorem 4.7 and Corollary 4.7.2), and hence 

j(x) = [(A1b1) + · · · + [(Ambm) = AJ(b,) + · · · + Amf(bm). 

Thus/ is linear on L, and in particular /(-x) = -f(x) for x EL. II 
Certain positively homogeneous convex functions will be characterized 

in §13 as support functions of convex sets and in § 15 as gauge functions of 
convex sets (including norms). Convex functions which are "positively 
homogeneous of degree p > 1" will be considered in Corollaries 15.3.1 
and 15.3.2. 



SECTION 5 

Functional Operations 

How can new convex functions be obtained from functions already 
known to be convex? There are many operations which preserve convexity, 
as it turns out. Some of the operations, like pointwise addition of functions, 
are familiar from ordinary analysis. Others, like taking the convex hull of 
a collection of functions, are geometrically motivated. Often the con
structed function is expressed as a constrained infimum, thereby suggesting 
applications to the theory of extremum problems. 

Familiarity with !he operations below is helpful, especially, when one 
has to prove that a given function with a complicated formula is a convex 
function. 

THEOREM 5.1. Let f he a convex function from R" to ( - oo, + oo], and 
let <p be a convex function from R to ( - oo, + oo] 1r/1ich is non-decreasing. 
Then h(x) = cp(f(x)) is convex on R" ( irhere one sets <p( + oo) = + oo ). 

PROOF. For x and yin R" and 0 < A < I, we have 

f((I - }.) x + .1y) ~ (I - A)f(x) + Aj(y) 

(Theorem 4.1). Applying <p to both sides of this inequality, we get 

h((l - }.)x + }.y) ~ cp((I - }.)f(x) + -1f(y)) ~ (I - }.)h(x) + }.h(y). 

Thus lz is convex (Theorem 4.1 ). II 
It follows from Theorem 5.1 that h(x) = et<r> is a proper convex 

function on R" if f is. Also, h(x) = f(x)1' is convex for p > I when f is 
convex and non-negative. This is proved by taking 

{
~/I if ~ 2 0, 

<p(~) = 
0 if ~ < 0. 

In particular, h(x) = \x\ 1
' is convex on R" for p 2 I (\xi being the 

Euclidean norm). ff g is a concave function, then h(x) = l/g(x) is convex 
on C = {x I g(x) > O}. To see this, apply to the convex function f = -g 
the function <p defined by 

{ -!/~ if ~ < 0, 
<pa>= + 00 if ~ 2 0. 

32 



§5. FUNCTIONAL OPERATIONS 33 

Taking <p to be an affine function on R with positive slope A, we get the 
important fact that A[+ a is a proper convex function when f is a proper 
convex function and A and a are real numbers, A 2 0. Further examples 
based on Theorem 5.1 will be found in Theorem 15.3. 

THEOREM 5.2. If [ 1 and [ 2 are proper convex fu11ctions on R", then 
[ 1 + / 2 is convex. 

PROOF. Evident from Theorem 4.1. II 
Notice that u; + /2)(x) < 00 if and only if/, (x) < 00 and /2(X) < 00. 

Thus the effective domain of / 1 + / 2 is the intersection of the effective 
domains of/1 and/2 , which might be empty, in which case/1 + / 2 would 
be improper. The properness in the hypothesis of Theorem 5.2 is for the 
sake of avoiding oo - oo when / 1 + / 2 is formed. 

A linear combination Ai/1 + · · · + }.mf,,, of proper convex functions 
with non-negative coefficients is convex. 

If[ is a finite convex function, say, and C is a non-empty convex set, then 

{

/(x) if x E C, 
f(x) + b(x I C) = . 

+ 00 If x tf- C, 

where a(· I C) is the indicator function of c. Thus adding an indicator 
function to f amounts to restricting the effective domain off. 

A common device for constructing convex functions on R" is to con
struct a convex set Fin R"+I and then take the function whose graph is the 
"lower boundary" of Fin the sense of the following theorem. 

THEOREM 5.3. Let F be any convex set in R"i1, and let 

f(x) = inf{µ I (x, ,u) E F}. 

Then f is a convex function on R". 

PROOF. Evident from Theorem 4.2. (Notice the usefulness here of the 
convention that an infimum over the empty set of real numbers is+ oo.) II 

As the first application of the device in Theorem 5.3, we introduce the 
functional operation which corresponds to the addition of epigraphs as 
sets in Rn+i. 

THEOREM 5.4. Let / 1, ••• , [,,, be proper convex functions on R", and let 

f(x) =inf {f1(x1) + · · · + f,,,(x,,,) IX; ER", x 1 + · · · + Xm = x}. 

Then[ is a convexfzmction on R". 

PROOF. Let F; = epifi and F = F1 + · · · +Fm. Then Fis a convex 
set in Rn+1• By definition, (x, µ) E F if and only if there exist xt E Rn, 
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µ;ER, such that µ; 2 f(x;), µ = p 1 + · · · + µ,,, and x = x 1 + · · · + 
Xm- Thus the f defined in the theorem is the convex function obtained 
from F by the construction in Theorem 5.3. II 

The function fin Theorem 5.4 will be denoted by / 1 IJ h D · · · D fm· 
The operation LJ is called infima/ convolution. This terminology arises 
from the fact that, when only two functions are involved, D can be 
expressed by 

(f n g)(x) = inf11 {f(x - y) + g(y)}, 

and this is analogous to the classical formula for integral convolution. 
Intimal convolution is dual to the operation of addition of convex 
functions in a sense to be explained in § 16. 

ff g = r)(· I a) for a certain point a E R" (where r)(x i a) = oo if x ¥- a 
and o(a I a) = 0), then (f D g)(x) = j(x - a). Thus f LJ o(' I a) is the 
function whose graph is obtained by translating the graph of/horizontally 
by a. For an arbitrary g and for h(y) = f( -y), the intimal convolute f D g 
expresses the infimum over R" of g plus the translate lz D o(' I x), as a 
function of the translation x. The effective domain off D g is the sum of 
dom f and <lorn g. 

Taking/ to be the Euclidean norm and g to be the indicator function of 
a convex set C, we get 

(f D g)(x) = inf {Ix - YI + o(y I C)} = inf Ix - YI = d(x, C). 
ii UEC 

This establishes the convexity of the distance function d(', C). 
Other examples of intimal convolution will be found following 

Corollary 9.2.2. 
Properness of convex functions is not always preserved by intimal 

convolution, since the infimum in the formula in Theorem 5.4 may be - oo. 
Nor is intimal convolution of improper functions defined by this formula, 
because of the rule of avoiding oo - oo. However, / 1 D / 2 can be defined 
for any functions / 1 and / 2 from Rn to [- oo, + oo] directly in terms of 
addition of epigraphs: 

(.f1 D/2)(x) =inf{µ I (x, µ) E (epi/1 + epi/2)}. 

As an operation on the collection of all functions from R" to [- oo, + oo ], 
intimal convolution is commutative, associative and convexity-preserving. 
The function o(' I 0) acts as the identity element for this operation. 

It has already been pointed out that the operation of non-negative left 
scalar multiplication preserves convexity, where 

(Jc/)(x) = Jc(f (x)). 

There is also a useful operation of right scalar multiplication, which 
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corresponds to scalar multiplication of epigraphs. For any convex 
function f on Rn and any A, 0 ~ }, < oo, we define [A to be the convex 
function obtained from Theorem 5.3 with F = }.(epi/). Thus 

(jA)(x) = }j(A-1x), 

while for A = 0 we have 

(JO)(x) = o(x I 0), 

}, > 0, 

/¢.+oo. 

(Trivially JO= f if f = + oo). A function f is positively homogeneous if 
and only if [A = f for every A > 0. 

Let h be any convex function in Rn, and let F be the convex cone in 
R n+i generated by epi h. The function obtained by applying Theorem 5.3 
to F has as its epigraph a convex cone in R"+l containing the origin. It is 
the greatest of the positively homogeneous convex functions f such that 
/(0) ~ 0 and f ~ h. Naturally, we shall call this f the positively homo
geneous convex function generated by h. Since F consists of the origin and 
the union of the sets A(epi h) for A > 0, we have 

f(x) =inf {(hA)(x) I A 2 O} 

when h ¢. + oo. Of course, A = 0 can be omitted from the infimum if 
x -¥- 0 or if h(O) < + oo. 

For any proper convex function f on Rn, the function g on Rn+i 
defined by 

{

(JA)(x) if A 2 0, 
g(A, x) = 

+ oo if A< 0, 

is a positively homogeneous proper convex function, the positively homo
geneous convex function generated by 

h(A, x) = {f(x) 
+oo 

if }. =I, 

if A -¥- I. 

In particular, then, <p(A) = (jA)(x) is a proper convex function of A 2 0 
for any x E domf 

The gauge of a non-empty convex set C in Rn is the positively homo
geneous convex function generated by o(' I C) + I. fndeed, for h(x) = 
o(x I C) + I we have (hA)(x) = o(x I AC) + }., so that 

inf {(hA)(x) I A 2 O} =inf {A 2 0 Ix E AC} = y(x I C). 

THEOREM 5.5. The pointivise supremum of an arbitrary collection of 
convex functions is convex. 
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PROOF. This follows from the fact that the intersection of a collection 
of convex sets is convex. fndeed, if 

f(x) = sup {/;(x) I i EI}, 

the epigraph off is the intersection of those of the functions;;. II 
The convexity of the support function a*(· IC) ofa set Cin Rn is implied 

by Theorem 5.5, because this function is by definition the pointwise 
supremum of a certain collection of linear functions, namely the functions 
(-, y) as y ranges over C. 

As a further illustration, consider the function f which assigns to each 
x = a1 , •.• , ~n) the greatest of the components ~1 of x. This f is convex 
by Theorem 5.5, because it is the pointwise supremum of the linear 
functions <x, e1), j = 1, ... , n, where e1 is the vector forming the jth 
row of the n x n identity matrix. Observe that f is also positively homo
geneous; in fact f is the support function of the simplex 

C = {y = ('1] 1, ••• , rJn) I 'IJi 2 0, '/]1 + · · · + 'IJn = 1}. 

The convexity of the function 

k(x) =max {1~1 1lj=1, ... , n}, 

which is called the Tchebychejf norm on R", can be seen similarly from 
Theorem 5.5. The latter function is the support function of the convex set 

and at the same time the gauge of the n-dimensional cube 

E = {x = ( ~1 , ... , ~n) I -1 ~ ~i ~ 1,j = 1, ... , n}. 

(Any non-negative support function is the gauge of some closed convex 
set containing the origin, and conversely, as will be explained in §14.) 

The convex hull of a non-convex function g is the function f = conv g 
obtained from Theorem 5.3 with 

F = conv (epi g). 

It is the greatest convex function majorized by g. By Theorem 2.3, a point 
(x, µ) belongs to F if and only if it can be expressed as a convex com
bination 

(x, µ) = },1(Xi. µ1) + · · · + Am(x,,,, µm) 

= (A1X1 + · · · + AmXm, }.1µ1 + · · · + Amµm), 

where (x;, µ;) E epi g (i.e. g(x;) ~µ;ER). Thus 

f(x) = inf P.1g(x1) + · · · + Amg(x nJ I }.1X1 + · · · + }.mX m = x), 
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where the infimum is taken over all expressions of x as a convex combin
ation of points of Rn (provided g does not take on the value - oo, so that 
the summation is unambiguous). 

The convex hull of an arbitrary collection of functions {f; I i EI} on Rn 
is denoted by 

conv {.f; I i EI}. 

It is the convex hull of the pointwise infimum of the collection, i.e. it is 
the function f obtained via Theorem 5.3 from the convex hull F of the 
union of the epigraphs of the functionsfi· 1 tis the greatest convex function 
f (not necessarily proper) on Rn such that f(x) ~ f;(x) for every x E Rn 
and every i EI. 

THEOREM 5.6. Let {f; I i EI} be a collection of proper convex functions 
on Rn, where I is an arbitrary index set, and let f be the convex hull of the 
collection. Then 

where the injimum is taken over all representations of x as a convex com
bination of elements X;, such that only finitely many coefficieius A; are non
zero. (The formula is also valid if one actually restricts x; to lie in dom f;·) 

PROOF. By definition f(x) is the infimum of the values ofµ such that 
(x, µ) E F, where Fis the convex hull of the union of non-empty convex 
sets C; = epif;. By Theorem 3.3, (x, µ) E F if and only if (x, µ)can be 
expressed as a finite convex combination of the form 

(x, µ) = IiEl A;(X;, µi) = CiiEI A;X;, IiEI A;µ;), 

where (x;, µ;) E Ci (only finitely many of the coefficients being non-zero). 
Thus f(x) is the infimum of IiEl Aiµi over all expressions of x as a finite 
convex combination IiEl Aixi withµ; 2 j;(x;) for every i. This is the same 
as the infimum in the theorem. II 

A useful case of Theorem 5.6 occurs when all the functions f; are of the 
form 

J;(x) = a(x 1 a;)+ Cl.;= ' 
{ 

Cl.· 

+oo 

if x = ai, 

if x-¥- a;, 

a; and a; being fixed elements of Rn and R, respectively.Then f is the greatest 
convex function satisfying 

Vi EI, 
and we have 
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where the infimum is taken over all representations of x as a convex 
combination of the ai (with only finitely many non-zero coefficients). 

A somewhat stronger version of Theorem 5.6 will be given in §17 as a 
consequence of Caratheodory's Theorem. 

The formula in Theorem 5.6 can also be expressed by intimal convolution. 
For simplicity of notation, let us assume I= {I, ... , m}. Then f is 
obtained via Theorem 5.3 from the set 

F = conv {C1, ... , Cm}= U P,1C1 + · · · + AmC,,,}, 

where the union is taken over all convex combinations of the sets Ci = 
epi [; (Theorem 3.3). But j~-1 1 D · · · D fn)m is the function obtained via 
Theorem 5.3 from the convex set l 1C1 + · · · + AmCm in R"+I. Taking a 
union of epigraphs in Rn+i amounts to taking the pointwise infimum of the 
corresponding functions. Therefore f = conv {f" ... , f m} is also given by 

/(x) = inf{(f1A1 D · · · Dfmicm)(x) I Ai 2 0, A1 + · · · + }.,,, = l} 

when/1, ••. ,fm are proper convex functions. 
The collection of all convex functions on R", regarded as a partially 

ordered set relative to the pointwise ordering (where f ~ g if and only if 
f(x) ~ g(x) for every x), is a complete lattice. The greatest lower bound 
of a family of convex functions[; is conv u; I i EI} (relative to this par
ticular partially ordered set!), while the least upper bound is sup {Ji I i EI}. 

Constructions involving a linear transformation are considered in the 
next theorem. 

THEOREM 5.7. Let A be a linear transformation from R" to Rm. Then, 
for each convex function g on Rm, the function g A defined by 

(gA)(x) = g(Ax) 

is convex on R". For each convex function hon R", the function Ah defined by 

(Ah)(y) = inf {h(x) I Ax = y} 
is convex on Rm. 

PROOF. Direct verification is elementary using the criterion in Theorem 
4.2. The convexity off= Ah also follows from applying Theorem 5.3 
to the image F of the epigraph of h under the linear transformation 
(x, µ)->-(Ax,µ) from R"+1 to Rm+1• 11 

The function Ah in Theorem 5. 7 is called the image of h under A, while 
gA is called the inverse image of g under A. This terminology is suggested 
by the case where g and h are indicators of convex sets. 

As an important example of the operation h ~Ah, we mention the case 
where A is a projection. For 

A :x = a-i. • • •, ~m• ~m-t-1> · · •, ~n)->- (~1, • • •' ~m), 
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say, we have 

(Ah)(~ 1 , •.• , ~m) = inf h(~ 1 , ••• , ~"'' ~"'"' •.• , ~,,). . . 
.:m t-1• • ·•~n 

This is convex in y = ( ~1 , ... , ~ n,), when h is convex, according to the 
theorem. 

When A is non-singular, Ah = hA-1• 

Partial addition of epigraphs can be used to define infinitely many 
commutative, associative binary operations for the collection of all 
convex functions on R". An example is the partial infimal convolution 

h(y, z) = inf" {f(y, z - u) + g(y, u)}, 

where x = (y, z) withy E Rni, z ERP, m + p = n. 
In the case of convex sets, there is a "natural" set of four commutative 

associative binary operations, and these reduce to only two operations 
when the sets are cones containing the origin. These operations are 
obtained from partial additions of convex cones of the form 

K = W., x) I A 2: 0, x E ,1C} c Rn+I 

corresponding to convex sets C in R"; see the discussion following 
Theorem 3.6. One is led similarly to eight "natural" commutative associ
ative binary operations in the collection of all convex functions on Rn, 
when the sets Care replaced by epigraphs. Specifically, we associate with 
each convex function f the convex cone K which is the epigraph of the 
positively homogeneous convex function on R"+I generated by h, where 
h(A, x) = f(x) + o(A I I). ff/is not identically+ oo, 

K = {(}., x, µ)I A 2: 0, x ER", fl 2: (/A)(x)} c R"+2
• 

(ff f = + oo, K is the non-negative µ-axis.) There are eight partial additions 
which arise from adding sets in R""2 in various combinations of the three 
arguments A, x andµ. In each case, we take the partial sum K of the cones 
K1 and K2 corresponding to two convex functions / 1 and / 2 on R". We then 
apply Theorem 5.3 to 

F= {(x, µ)I (1, x,µ) EK} 

to get/ The resulting operation (f1,fi) ~ f is evidently commutative and 
associative. Four of the operations defined in this manner turn out to be 
among those previously defined. Namely, adding inµ alone forms/1 + k 
Adding in x andµ formsf1 D/2• Adding in A, x andµ forms conv {f1,h}. 
Adding in none of the arguments forms the pointwise maximum of / 1 

and h· The remaining four operations are described in the theorem below. 
(Here max { a 1, ••• , am} denotes, of course, the greatest of the m real 
numbers a" . .. , a,,..) 



40 I: BASIC CONCEPTS 

THEOREM 5.8. Let f 1 , ••• ,fm be proper convex functions on R". Then 
the following are convex functions also: 

f(x) =inf {max {f1(x 1), ••• ,/mCxm)} I x 1 + · · · + Xm = x), 

g(x) = inf {(f/1)(x) + · · · + Cf m}•m)(x) I Ai 2. 0, },, + ·' ' + Am = !}, 

h(x) =inf {max {(j1A1)(x), ... , CfmAm)(x)} I A; 2. 0, }.1 + ···+Am= I}, 

k(x) =inf {max {AJ1(x1), ••• , Amf;n(x,,,)}}, 

where the last infimum is taken over all representations of x as a convex 
combination x = A1x 1 + · · · + Amx,,.. 

PROOF. Jn the sense of the preceding discussion, adding in x alone 
yields/ Adding in A andµ yields g. Adding in A alone yields h. Adding in 
A and x yields k. II 

The first operation in Theorem 5.8 can be expressed in "convolution" 
form when m = 2: 

f(x) = infy max u;cx - y),j;(y)}. 

Observe that, with this operation, 

{x lf(x) < rx} = {x lf1(x) < rx} + {x lf2(x) < rx}, 

for any rx. The third operation amounts to inverse addition of epigraphs. 
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SECTION 6 

Relative Interiors ef Convex Sets 

The Euclidean distance between two points x and y in R" is by definition 

d(x,y) =Ix - yl = (x - y, x - y)1;2 

The function d, the Euclidean metric, is convex as a function on R2
". (This 

follows from the fact that dis obtained by composing the Euclidean norm 
f(z) = lzl with the linear transformation (x, y) ~ x - y from R2

" to R".) 
The familiar topological concepts of closed set, open set, closure, and 
interior in R" are usually introduced in terms of convergence of vectors 
with respect to the Euclidean metric. But such convergence is, of course, 
equivalent to the convergence of a sequence of vectors in R" component 
by component. 

The topological properties of convex sets in R" are notably simpler 
than those of arbitrary sets, as we shall see below. 

Convex functions are one important source of open and closed convex 
sets. Any continuous real-valued function f on R" gives rise to a family 
of open level sets {x lf(x) < O'..} and closed level sets {x l/(x) ~ O'..}, and 
these sets are convex if f is convex (Theorem 4.6). 

Throughout this section, we shall denote by B the Euclidean unit ball 
in R": 

B = {x I lxl ~ l} = {x I d(x, 0) ~ l}. 

This is a closed convex set (a level set of the Euclidean norm, which is 
continuous and convex). For any a ER", the ball with radius s > 0 and 
center a is given by 

{x I d(x, a) ~ s} = {a+ y I lyl ~ s} = a+ sB. 

For any set C in R", the set of points x whose distance from C does not 
exceed sis 

{x I 3y EC, d(x, y) ~ s} = U {y + sB I y EC}= C + sB. 

The closure cl C and interior int C of C can therefore be expressed by the 
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formulas 
cl c = n {C + cB I c >OJ, 

int C = {x I 3s > 0, x + sB c CJ. 
In the case of convex sets, the concept of interior can be absorbed into 

a more convenient concept of relative interior. This concept is motivated 
by the fact that a line segment or triangle embedded in R 3 does have a 
natural interior of sorts which is not truly an interior in the sense of the 
whole metric space R 3 • The relative interior of a convex set C in Rn, which 
we denote by ri C, is defined as the interior which results when C is 
regarded as a subset of its affine hull aff C. Thus ri C consists of the points 
x E aff C for which there exists an s > 0, such that y E C whenever 
y E aff C and d(x, y) ~ s. fn other words, 

ri C = {x E aff CI 3s > 0, (x + sB) n (aff C) c CJ. 

Needless to say, 
ri Cc Cc cl C. 

The set difference (cl C) \ (ri C) is called the relative boundary of C. 
Naturally, C is said to be relatively open if ri C = C. 

For an n-dimensional convex set, aff C = R" by definition, so 
ri C =int C. 

A pitfall to be noted is that, while the inclusion C1 :::> C2 implies 
cl C1 :::> cl C2 and int C1 :::> int C2 , it does not in general imply ri C1 :::> 

ri C2• For example, if C1 is a cube in R 3 and C2 is one of the faces of C1 , 

ri C1 and ri C2 are both non-empty but disjoint. 
An affine set is relatively open by definition. Every affine set is at the 

same time closed. This is clear from the fact that an affine set is an inter
section of hyperplanes (Corollary 1.4.1), and every hyperplane H can be 
expressed as a level set of a continuous function (Theorem 1.3); 

H = {x = (~,, · · ·, ~n) I fJ1~1 + · · · + fln~n = fJ}. 

Observe that 
cl C c cl (aff C) = aff C 

for any C. Thus any line through two different points of cl C lies entirely 
in aff C. 

Closures and relative interiors are preserved under translations and more 
generally under any one-to-one affine transformation of R" onto itself. 
Indeed, such a transformation preserves affine hulls and is continuous in 
both directions (since the components of the image of a vector x under an 
affine transformation are linear or affine functions of the components ~; 
of x). One should keep this in mind as a useful device for simplifying 
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proofs. For example, if C is an m-dimensional convex set in Rn, there exists 
by Corollary 1.6.1 a one-to-one affine transformation T of Rn onto itself 
which carries aff C onto the subspace 

L = {x = (~,, • • • , ~m• ~m+I• • • • , ~,,)I ~me I= 0, • • •, ~" = O}. 

This L can be regarded as a copy of Rm. ft is often possible in this manner 
to reduce a question about general convex sets to the case where the 
convex set is of full dimension, i.e. has the whole space as its affine hull. 

The following property of closures and relative interiors of convex sets 
is fundamental. 

THEOREM 6.1. Let C be a convex set in R". Let x E ri C and y E cl C. 
Then (1 - A)x + .1y belongs to ri C (and hence in particular to C) for 
0~-1<1. 

PROOF. fn view of the preceding remark, we can limit attention to the 
case where C is n-dimensional, so that ri C =int C. Let }. E [O, 1). We 
must show that (I - .1)x + }.y + sB is contained in C for some s > 0. 
We have y EC + sB for every s > 0, because y E cl C. Hence for every 

s>O 

(1 - }.)x + }.y + sB c (1 - }.)x + .1(C + sB) + sB 

= (1 - .1)[x + s(l + }.)(1 - }.)-1B] + }.C. 

The latter set is contained in (1 - }.)C + AC= C when s is sufficiently 
small, since x E int C by hypothesis. II 

The next two theorems describe the most important properties of the 
operations "cl" and "ri" on the collection of all convex sets in R". 

THEOREM 6.2. Let C be any convex set in R". Then cl C and ri C are 
convex sets in R" having the same affine hull, and hence the same dimension, 
as C. (In particular, ri C-¥- 0 if C-¥- 0.) 

PROOF. The set C + sB is convex for any s, because it is a linear 
combination of convex sets. The intersection of the collection of these sets 
for s > 0 is cl C. Hence cl C is convex. The affine hull of cl C is at least as 
large as that of C, and since cl C c aff Cit must actually coincide with 
aff C. The convexity of ri C is a corollary of the preceding theorem (take 
y to be in ri C). To complete the proof, it is enough now to show that, in 
the case where C is n-dimensional with n > 0, the interior of C is not 
empty. An n-dimensional convex set contains an n-dimensional simplex 
(Theorem 2.4). We shall show that such a simplex S has a non-empty 
interior. Applying an affine transformation if necessary, we can assume 
that the vertices of S are the vectors (0, 0, ... , 0), (1, 0, ... , 0), ... , 



46 II: TOPOLOGICAL PROPERTIES 

(0, ... , 0, I): 

S = {(~,, ... ,~,JI ~i 2_ 0, ~I + · · · + ~n ~ I}. 

But this simplex does have a non-empty interior, namely 

int S = {(~ 1 , ••• , ~,JI ~i > 0, ~I + · · · + ~n < I}. 

Hence int C -¥- 0 as claimed. 
For any set C in R", convex or not, the laws 

cl (cl C) =cl C, ri (ri C) = ri C, 

are valid. The following complementary laws are valid in the presence of 
convexity. 

THEOREM 6.3. For any conz•ex set C in R", cl (ri C) =cl C and 
ri (cl C) = ri C. 

PROOF. Trivially, cl (ri C) is contained in cl C, since ri Cc C. On the 
other hand, given any y E cl C and any x E ri C (such an x exists by the 
last theorem when C-¥- 0), the line segment between x and y lies entirely 
in ri C except perhaps for y (Theorem 6.1). Thus y E cl (ri C). This proves 
cl (ri C) =cl C. The inclusion ri (cl C) =:i ri C holds, since cl C =:i C and 
the affine hulls of cl C and C coincide. 

Now let z E ri (cl C). We shall show z E ri C. Let x be any point of ri C. 
(We can suppose x-¥- z, for otherwise z E ri C trivially.) Consider the line 
through x and z. For valuesµ > I withµ - I sufficiently small, the point 

y = (1 - µ)x + µz = z - (µ - l)(x - z) 

on this line still belongs to ri (cl C) and hence to cl C. For such a y, we 
can express z in the form (I - A)x + .1y with 0 < }. < I (specifically with 
;. = µ- 1). By Theorem 6.1, z E ri C. II 

COROLLARY 6.3.1. Let C1 and C2 be convex sets in R". Then cl C1 = 
cl C2 if and only if ri C1 = ri C2 • These conditions are equivalent to the 
condition that ri C1 c C2 c cl C1• 

COROLLARY 6.3.2. If C is a convex set in Rn, then every open set ll'liich 
meets cl C also meets ri C. 

COROLLARY 6.3.3. If C 1 is a convex subset of the relative boundary of a 
non-empty convex set C2 in Rn, then dim C1 < dim C2 • 

PROOF. If C1 had the same dimension as C2 , it would have interior 
points relative to aff C2. But such points could not be in cl (ri C2), since 
ri C2 is disjoint from C1 , and hence they could not be in cl C2 . II 

The following characterization of relative interiors is frequently helpful. 
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THEOREM 6.4. Let C be a non-empty convex set in R". Then z E ri C if 
and only if,for every x E C, there exists a µ > 1 such that (I - µ)x + µz 
belongs to C. 

PROOF. The condition means that every line segment in C having z 
as one endpoint can be prolonged beyond z without leaving C. This is 
certainly true if z E ri C. Conversely, suppose z satisfies the condition. 
Since ri C -¥- 0 by Theorem 6.2, there exists a point x E ri C. Let y be the 
corresponding point (1 - µ)x + µz in C, µ > 1, whose existence is 
hypothesized. Then z = (I - A)x + }.y, where 0 < }. = µ- 1 < I. Hence 
z E ri C by Theorem 6.1. II 

COROLLARY 6.4.1. Let C be a convex set in Rn. Then z E int C if and 
only if, for every y ER", there exists some c > 0 such that z + sy EC. 

We turn now to the question of how relative interiors behave under the 
common operations performed on convex sets. 

THEOREM 6.5. Let C; be a convex set in Rn for i EI (an index set). 
Suppose that the sets ri C; have at least one point in common. Then 

cl n {ci 1 i En = n {cl ci 1 i En. 
If I is.finite, then also 

ri n {C;I iEI} = n {ri C;I iEI}. 

PROOF. Fix any x in the intersection of the sets ri C;. Given any y in 
the intersection of the sets cl Ci, the vector (1 - },)x + .1y belongs to every 
ri C; for 0 ~ A < 1 by Theorem 6.1, and y is the limit of this vector as 
}. i I. It follows that 

n; cl C; c cl n; ri Ci c cl n; C; c n; cl C;. 

This establishes the closure formula in the theorem, and it proves at the 
same time that n; ri C; and ni Ci have the same closure. By Corollary 
6.3.1, these last two sets must also have the same relative interior. 
Therefore 

ri n; C; c n; ri C;. 

Assuming I is finite, we now demonstrate the opposite inclusion. Take 
any z E ni ri C;. By Theorem 6.4, any line segment in ni C; with z as 
endpoint can be prolonged slightly beyond z in each of the sets Ci. The 
intersection of these prolonged segments, since there are only finitely 
many of them, is a prolongation in n; C; of the original segment. Thus 
z E ri ni Ci by the criterion of Theorem 6.4. II 

The formulas in Theorem 6.5 can fail when the sets ri C; do not have a 
point in common, as is shown by the case where I= { 1, 2}, C1 is the 
positive orthant in R 2 with the origin adjoined, and C2 is the "horizontal 
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axis" of R2 • The finiteness of I in the second formula is also necessary: 
the intersection of the real intervals [O, I +a] for a> 0 is [O, I], but the 
intersection of the intervals ri [O, I+ a] for a> 0 is not ri [O, I]. 

COROLLARY 6.5.1. Let C be a convex set, and let M be an affine set 
(such as a line or a hyperplane) irhich contains a point of ri C. Then 

ri ( M n C) = M n ri C, cl ( M n C) = M n cl C. 

PROOF. ri M = M = cl M for an affine set. 
COROLLARY 6.5.2. Let C1 be a convex set. Let C2 be a convex set 

contained in cl C1 but not entirely contained in the relative boundary of C1• 

Then ri C2 c ri C1• 

PROOF. The hypothesis implies ri C2 has a point in common with 
ri (cl C1) = ri C1, for otherwise the relative boundary cl C1 \ ri C1, which 
is a closed set, would contain ri C2 and its closure cl C2 • Hence 

i.e. ri C2 c ri C1. 

THEOREM 6.6. Let C be a convex set in R", and let A be a linear trans
formation from R" to Rm. Then 

ri (AC)= A(ri C), cl (AC) ::i A(cl C). 

PROOF. The closure inclusion merely reflects the fact that a linear 
transformation is continuous; it does not depend on C being convex. To 
prove the formula for relative interiors, we argµe first that 

cl A ( ri C) :::> A (cl ( ri C)) = A (cl C) ::i A C ::i A ( ri C). 

This implies that AC has the same closure as A (ri C), and hence also the 
same relative interior by Corollary 6.3.1. Therefore ri (AC) c A (ri C). 
Suppose now that z EA (ri C). We shall use Theorem 6.4 to show that 
z E ri (AC). Let x be any point of AC. Choose any elements z' E ri C and 
x' EC, such that Az' = z and Ax' = x. There exists some µ > I such 
that the vector (1 - µ)x' + tu' belongs to C. The image of this vector 
under A is (1 - /l)x + µz. Thus, for the same µ > I, (I - µ)x + µz 
belongs to AC. Therefore z E ri (AC). II 

The possible discrepancy in Theorem 6.6 between cl (AC) and A(cl C), 
and how to ensure against it, will be discussed in §9. 

COROLLARY 6.6.1. For any convex set C and any real number A, 
ri (.1C) = A ri C. 

PROOF. Take A :x ~ }.x. 
It is elementary that, for the direct sum C1 8:' C2 in R"'-t 11 of convex sets 
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C
1 

c Rm and C2 c RP, one has 

ri (C1 ® C2) = ri C1 ® ri C2 , 

cl (C1 ® C2) =cl C1 ®cl C2 • 

When this is combined with Theorem 6.6, we get the following fact. 
COROLLARY 6.6.2. For any convex sets C1 and C2 in Rn, 

ri ( C1 + C2) = ri C1 + ri C2 , 

cl (C1 + C2) ::i cl C1 +cl C2 • 
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PROOF. C1 + C2 = A(C1 ® C2), where A is the addition linear trans-
formation from R 2n to Rn, i.e. A: (x 1, x2) ~ x 1 + x2• II 

Corollary 6.6.2 will be sharpened in Corollaries 9.1.1 and 9.1.2. 

THEOREM 6.7. Let A be a linear transformation from Rn to Rm. Let C 
be a convex set in Rm such that A-1(ri C) -¥- 0. Then 

PROOF. Let D =Rn® C, and let M be the graph of A. Then Mis an 
affine set (in fact a subspace as explained in §1), and M contains a point of 
ri D. Let P be the projection (x, y) ~ x from Rn+m to Rn. Then A-1c = 
P(M n D). Calculating with the rules in Theorem 6.6 and Corollary 
6.5.1, we get 

ri (A-1C) = P(ri (Mn D)) = P(M n ri D) = A-1(ri C), 

cl (A-IC) :::> P(cl (M n D)) = P(M n cl D) = A-1(cl C). 

The remaining inclusion cl (A-1C) c A-1(cl C) is implied by the continuity 

of A. 11 

A counterexample for Theorem 6.7, in the case where the relative interior 
condition is violated, is obtained when m = n = 2, C is the positive 
orthant of R 2 with the origin adjoined, and A maps a1, ~2) onto (~ 1 , 0). 

The class of relatively open convex sets is preserved under finite inter
sections, scalar multiplication, addition, and taking images or inverse 
images under linear (or affine) transformations, according to the results 
above. 

THEOREM 6.8. Let C be a convex set in Rm+P. For each y E Rm, let Cy 
be the set of vectors z ERP such that (y, z) EC. Let D = {y I Cy -¥- 0}. Then 
(y, z) E ri C if and only if y E ri D and z E ri Cu. 

PROOF. The projection (y, z) ~ y carries C onto D, and hence ri C 
onto ri D by Theorem 6.6. For a given y E ri D and the affine set M = 
{(y, z) I z ERP}, the points of ri C projecting onto y are the points of 

Mn ri C = ri (Mn C) = {(y, z) I z E ri Cy}. 
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The first inequality in the latter formula is justified by Corollary 6.5.1. 
Thus, for any given y E ri D, we have (y, z) E ri C if and only if z E ri Cy, 
and this proves the result. II 

COROLLARY 6.8.1. Let C be a non-empty convex set in Rn, and let K 
be the convex cone in Rn+i generated by { ( 1, x) I x E C}. Then ri K consists 
of the pairs (}., x) such that A > 0 and x E }. ri C. 

PROOF. Apply the theorem with Rm = R, RP = Rn. 
The reader can show as a simple exercise that, more generally, the 

relative interior of the convex cone in Rn generated by a non-empty 
convex set C consists of the vectors of the form AX with A > 0 and x E ri C. 
A formula for the closure of this cone will be given in Theorem 9.8. 

Observe that the relative interior and the closure of a convex cone are 
always convex cones too. This is immediate from Corollary 6.6.1, because 
a convex set C is a convex cone if and only if AC = C for every A > 0. 

THEOREM 6.9. Let c,, ... ' cm be non-empty convex sets in Rn, and 
let C0 = conv (C1 U · · · U Cm). Then 

ri Co= u {A, ri c, + ... +Am ri cm I A;> 0, A, + ... +Am= 1}. 

PROOF. Let K; be the convex cone in Rn+i generated by { ( 1, x;) I x; E C;}, 
i = 0, l, ... , m. Then 

K0 = conv (K1 U · · · U Km) = K1 + · · · + Km 

(Theorem 3.8), and hence by Corollary 6.6.2 

ri K0 = ri K1 + · · · + ri Km. 

By Corollary 6.8.1, ri K; consists of the pairs (A;, x;) such that A; > 0, 
X; EA; ri C;. Thus x0 E ri C0 is equivalent to ( 1, x0) E ri K0 , and that is 
equivalent in turn to 

x0 E (A 1 ri C1 + · · · + Am ri Cm) 

some choice of A1 > 0, ... , Am > 0 with A1 + · · · + Am = 1. 
The closure of the C0 in Theorem 6.9 will be considered in Theorem 9.8. 



SECTION 7 

Closures ef Convex Functions 

The continuity of a linear function is a consequence of an algebraic 
property, linearity. With convex functions, things are not quite so simple, 
but still a great many topological properties are implied by convexity 
alone. These can be deduced by applying the theory of closures and 
relative interiors of convex sets to the epigraphs or level sets of convex 
functions. One of the principal conclusions which can be reached is that 
lower semi-continuity is a "constructive" property for convex functions. 
It will by demonstrated below, namely, that there is a simple closure 
operation which makes any proper convex function lower semi-continuous 
merely by redefining it at certain relative boundary points of its effective 
domain. 

Recall that, by definition, an extended-real-valued function/ given on a 
set S c R" is said to be fairer semi-continuous at a point x of S if 

f(x) ~ limf(x,) 

for every sequence x 1, x 2 , ••• , in S such that X; converges to x and the 
limit of /(x 1),f(x2), ••• , exists in [-oo, + oo]. This condition may be 
expressed as: 

f(x) = lim inf/(y) = lim (inf {f(y) I IY - xi ~ s}). 
v~x do 

Similarly,/ is said to be upper semi-continuous at x if 

f(x) = lim supf(y) = lim (sup {f(y) I IY - xi~ s}). 
y-+x tdo 

The combination of lower and upper semi-continuity ii.t x is ordinary 
continuity at x. 

The natural importance of lower semi-continuity in the study of convex 
functions is apparent from the following result. 

THEOREM 7.1. Let f be an arbitrary function from R" to [ - oo, + oo ]. 
Then the following conditions are equivalent: 

(a) f is lower semi-continuous throughout R"; 
(b) {x lf(x) ~a} is closed for every a ER; 
(c) The epigraph off is a closed set in R"H. 

51 



52 11: TOPOLOGICAL PROPERTIES 

PROOF. Lower semi-continuity at x can be reexpressed as the con
dition thatµ 2.f(x) wheneverµ= lim µ;and x = lim X; for sequences 
µ 1, µ 2 , ••• , and x1 , x2 , ••• , such that µ; 2.f(x;) for every i. But 
this condition is the same as (c). It also implies (b) (take a = µ = µ 1 = 
µ 2 = · · · ). On the other hand, suppose (b) holds. Suppose X; converges 
to x and/(x;) converges toµ. For every real a> µ,f(x;) must ultimately 
be less than a, and hence 

x Eel {y lf(y) ~a}= {y lf(y) ~a]. 

Hence/(x) ~µ.This proves (b) implies (a). II 
Given any function f on Rn, there exists a greatest lower semi-continuous 

function (not necessarily finite) majorized by f, namely the function 
whose epigraph is the closure in R"+ 1 of the epigraph off. In general, this 
function is called the lower semi-continuous hull off. 

The closure of a convex function f is defined to be the lower semi
continuous hull off if f nowhere has the value - oo, whereas the closure 
of/is defined to be the constant function -oo if/is an improper convex 
function such that/(x) = -oo for some x. Either way, the closure off is 
another convex function; it is denoted by cl f. (The purpose of the excep
tion in the definition of elf is to make the formula/** =elfin Theorem 
12.2 valid even when f is improper, as is often convenient, especially in 
the theory of saddle-functions.) 

A convex function is said to be closed if cl f = f For a proper convex 
function, closedness is thus the same as lower semi-continuity. But the only 
closed improper convex functions are the constant functions + oo and 
-oo. 

If f is a proper convex function such that dom f is closed and f is con
tinuous relative to domf, then/ is closed by criterion (b) of Theorem 7.1. 
However, a convex function can be closed without its effective domain 
being closed, for example the function on R given by f(x) = 1/x when 
x > O,f(x) = oo when x ~ 0. 

Suppose f is a proper convex function. Then 

epi (cl/)= cl (epi/) 

by definition. ft is clear from this and the proof of Theorem 7.1 that elf 
can be expressed by the formula 

(clf)(x) = lim infj(y). 

Alternatively, (clf)(x) can be regarded as the infimum of values of /l 
such that x belongs to cl {x lf(x) ~µ}.Thus 

{x 1 cc11>cx) ~a}= nµ>~ c1 {x IJCx) ~ µ}. 
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In any case elf~ f, and Ji~ h. implies cl.fi ~ cl_h. The functions/and 
elf plainly have the same infimum on R". 

To get a good idea of what the closure operation is like, consider the 
convex function/ on R defined by f(x) = 0 for x > O,f(x) = oo for x ~ 0. 
Here cl/agrees with/ everywhere except at the origin, where its value is 0 
instead of+ oo. For another example, take any circular disk C in R2

• Let 
f(x) be 0 in the interior of C and + oo outside of C, and assign arbitrary 
values in [O, oo] to f on the boundary of C. Then f is a proper convex 
function on R". The closure off is obtained by redefining/(x) to be 0 on 
the boundary of C. · 

These examples suggest that the closure operation is a reasonable 
normalization which makes convex functions more regular by redefining 
their values at certain points where there are unnatural discontinuities. 
This is the secret of the great usefulness of the operation in theory and in 
applications. ft usually enables one to reduce a given situation, without 
significant loss of generality, to the case where the convex functions in the 
situation are closed. The functions then have the three important properties 
in Theorem 7.1. 

We proceed now with the detailed comparison of cl/and/in the general 
case. ft is expedient to treat improper convex functions first. For this we 
need the following fact, which is really the chief theorem that can be proved 
about improper convex functions. 

THEOREM 7.2. If f is an improper convex function, then f(x) = -oo for 
every x E ri (dom/). Thus an improper convex function is necessarily 
infinite except perhaps at relative boundary points of its effective domain. 

PROOF. ff the effective domain off contains any points at all, it con
tains (by the definition of "improper") points where /has the value - oo. 
Let u be such a point, and let x E ri (domf). By Theorem 6.4, there exists 
a µ > I such that y E domf, where y = (1 - µ)u + µx. We have 
x = (I - A)u + }.y, where 0 < ;, = µ-1 < I. Hence by Theorem 4.2 

f(x) =/((I - A)u + AY) < (I - A)rx + A{J 

for any rx > f(u) and fJ > f(y). Since f(u) = - oo and f(y) < + oo, f(x) 
must be - oo. II 

COROLLARY 7.2.1. A lower semi-continuous improper convex function 
can have no finite values. 

PROOF. The set of points x where f(x) = - oo must include 
cl (ri (dom/)) by lower semi-continuity, and 

cl (ri (dom/)) =cl (dom/) :::> domf 

by Theorem 6.3. 
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COROLLARY 7.2.2. Let f be an improper convex function. Then elf 
is a closed improper convex function which agrees with f on ri (dom/). 

According to these results, the closure of a convex function/which has 
the value - oo somewhere is not so drastically different from the lower 
semi-continuous hull f off as might have been gathered from the seeming 
arbitrariness of the definition. fndeed,/(x) is -oo on cl (dom/) and +oo 
outside cl (dom/), whereas (cl/)(x) is -oo everywhere, for such a 
function/ 

We would like to point out another consequence of Theorem 7.2 in 
passing, even though it has nothing to do with the main topic of this 
section, lower semi-continuity. 

COROLLARY 7.2.3. If f is a convex function whose effective domain is 
relatively open (for instance 1f domf = Rn), then either f(x) > - oo for 
every x or f(x) is infinite for every x. 

As a typical application of this corollary (and therefore of the theory 
of improper convex functions), consider any finite convex function f on 
R2

• The function 

is convex (see the comment after Theorem 5.7), and its effective domain 
is R. We may conclude that the infimum is finite for every ~1 or it is - oo 
for every ~1 . Thus, if f is bounded below along just one of the lines 
parallel to the ~2-axis, it is bounded below along every such line. 

The most important topological property of convex sets in Rn is the 
intimate relationship between their closures and relative interiors. Since 
closing a proper convex function f amounts to closing epif, the relative 
interior of epi/ will understandably be important in the analysis of cl f 

LEMMA 7.3. For any convex function f, ri (epi/) consists of the pairs 
(x, µ)such that x E ri (<lorn/) andf(x) < µ < oo. 

PROOF. This result is the special case of Theorem 6.8 where m = n, 
p = I and C = epif, and it can easily be deduced directly from Theorems 
6.4 and 6.1. However, we shall also furnish an alternative proof. ft suffices 
actually to show that 

int (epi/) = {(x, µ)Ix E int (dom/),f(x) < µ < oo}. 

The inclusion c is obvious, so only :::> needs verification. Let x E 

int (dom/), and let p, be a real number such that p, > f(i). Let a1 , ... , a, 
be points of domf such that x E int P, where 

P = conv {ai. ... , a,}, 
and let 

a= max {f(a;) Ii= I, ... , r}. 
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Given any x E P, we can express x as a convex combination 

x = A.1a1 + · · · + A.,a,, 

and therefore 

A.1 +···+A.,= l, 

f(x) ~ A.tf1(a1) + · · · + A.rJ,.(ar) ~ (A.1 + · · · + Ar)a = a. 

Hence the open set 
{(x, µ)Ix E int P, a < µ < oo} 

is included in epif fn particular, for everyµ > a we have 

(x, µ) E int (epi/), 
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and it follows that (x, p,) can be viewed as a relative interior point of a 
"vertical" line segment in epi/which meets int (epif). This implies 

(x, p,) E int (epi/) 
by Theorem 6.1. 

COROLLARY 7.3.1. Let a be a real number, and let f be a convex function 
such that, for some x, f(x) < a. Then actually f(x) < a for some 
x E ri (<lorn/). 

PROOF. ff the open half-space {(x, µ)Ix ER",µ <a} in W+l meets 
epif, then it also must meet ri (epi/) (Corollary 6.3.2). II 

COROLLARY 7.3.2. Let f be a convex function, and let C be a convex 
set such that ri C c domf Let a be a real number such that f(x) < a for 
some x E cl C. Then actually f ( x) < a for some x E ri C. 

PROOF. Let g(x) = f(x) for x E cl C, g(x) = + oo for x f/'- cl C. Then 

ri C c dom g c cl C, 

and hence ri (dom g) = ri C. By hypothesis, there is an x such that 
g(x) < a. Then g(x) < a for some x E ri (dom g) by the preceding 
corollary. In other words, f(x) < a for some x E ri C. II 

COROLLARY 7.3.3. Let f be a convex function on Rn, and let C be a 
convex set on which f is finite. If f(x) ~ a for every x EC, then also 
f(x) ~ a for every x E cl C. 

PROOF. This is obvious from the preceding corollary. 
Another easy consequence of Lemma 7.3 is the fact that the closure of a 

convex function f is completely determined by the restriction off to 
ri (<lorn/): 

COROLLARY 7.3.4. If f and g are convex functions on Rn such that 

ri (dom/) = ri (dom g), 

and f and g agree on the latter set, then cl f = cl g. 
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PROOF. The hypothesis implies that 

ri (epi/) = ri (epi g) 

and hence by Theorem 6.3 that 

cl (epi/) =cl (epi g). 

This relation says precisely that elf= clg, at least if/and g are proper. 
In the case of improper functions, the conclusion follows trivially from 
Theorem 7.2. II 

The most important theorem about elf is the following. 

THEOREM 7.4. Let f be a proper convex function on Rn. Then elf is a 
closed proper convex function. Moreover, elf agrees with f except perhaps 
at relative boundary points of dom f 

PROOF. Since epi (cl/)= cl (epi/), and epi/ is convex, epi (elf) is 
a closed convex set in Rn+i and cl f is a lower semi-continuous convex 
function. The properness of elf, and hence also its closedness, will follow 
from the last assertion of the theorem in view of Corollary 7.2.1, because 
f is finite on domf Given any x E ri (dom/), consider the vertical line 
M = {(x, µ)Iµ ER}. This M meets ri (epi/) by Lemma 7.3. Hence 

Mn cl (epi/) =cl (Mn epi/) =Mn epi/ 

by Corollary 6.5.1 (or by an argument directly based on Theorem 6.1). 
This says (cl /)(x) = f(x). Now suppose on the other hand that 
x rf- cl (<lorn/). From the "Jim inf" formula for elf we have 

cl (dom/) :::> <lorn (cl/):::> domf, 

and hence (cl/)(x) = oo = f(x). 
COROLLARY 7.4.1. If f is a proper convex function, then dom (elf) 

differs from domf at most by including some additional relative boundary 
points of dom f In particular, dom (cl/) and dom f have the same closure 
and relative interior, as well as the same dimension. 

COROLLARY 7.4.2. If f is a proper convex function such that domf is an 
affine set (which is true in particular if f is finite throughout Rn), then f is 
closed. 

PROOF. Here dom/ has no relative boundary points, so elf agrees 
with f everywhere. II 

Theorems 7.2 and 7.4 imply that a convex function f is always lower 
semi-continuous except perhaps at relative boundary points of dom f 
We shall see in §JO that/is actually continuous relative tori (dom /). 

Various formulas for the closures of convex functions constructed 
by the operations in §5 will be derived in §9. 
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The closure operation for convex functions has been described in terms 
of a "Jim inf". We can now show that much simpler limits really suffice for 
calculating cl/from/ 

THEOREM 7.5. Let/ be a proper convex function, and let x E ri (dom/). 
Then 

(clf)(y) = lim/((1 - i.)x + .1y) 
). ti 

for every y. (The formula is a/so valid when/is improperandy E cl (dom/ ).) 

PROOF. Since cl/is lower semi-continuous and cl/~/, we have 

(clf)(y) ~Jim inff((l - .1)x +icy). 
;, lt 

We only need to show that 

(clf)(y) ~Jim sup/((1 - A)x + .1y) 
.d1 

as well. Assume fJ is any real number such that fJ ~ (cl/)(y). Take any 
real number a > f(x). Then 

(y, fJ) E epi (cl/) =cl (epif), 

while (x, a) E ri (epi/) by Lemma 7.3. Therefore 

(I - .1)(x, a)+ }.(y, {J) E ri (epi/), 

(Theorem 6.1 ), so that 

/((! - },)x + }.y) < (I - A)a + fJ, 
Con seq uen ti y 

0~-1<1. 

Jim supf((l - A)x + /.11) ~Jim sup [(1 - A)a + i.fJ] = fJ, 
;, i 1 . ;.11 

which is the desired conclusion. The formula also holds when/is improper 
and y E cl (dom/), because then/((! - .1)x + .1y) = -oo for 0 ~ A < I 
by Theorem 6.1 and Theorem 7.2. II 

COROLLARY 7.5.1. For a closed proper convex function f, one has 

f(y) = limf((l - .1)x + i.y) 
). i 1 

for every x E domf and every y. 
PROOF. Let cp(-1) = /((! - .1)x + .1y). Then <p is a proper convex 

function on R with cp(O) = f(x) < oo and cp(l) = f(y). Moreover, <p is 
lower semi-continuous by Theorem 7.1, since {A I <p(-1) ~a} is the inverse 
image of the closed set {z lf(z) ~a} under the continuous transformation 
A~ (I - A)x + }.y = z. The effective domain of <pis a certain interval. 
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If interior points of the interval lie between 0 and 1, then the limit of 970.) 
as;. i 1 is (cl 97)(1) = 97(1) by the theorem. Otherwise the limit and cp(l) 
are both trivially + oo. II 

Theorem 7.5 and Corollary 7.5.1 will be extended in Theorems 10.2 and 
10.3. 

Sometimes Theorem 7.5 is useful in showing that a given function is 
convex. For instance, let/(x) = -(1 - lxl 2

)
112 for lxl::;; l,/(x) = +oo 

for lxl > l(x E Rn). The effective domain off is the unit ball B = 
{x I lxl ::;; 1 }. On the interior of B, the convexity off can be proved from 
the second partial derivative condition (Theorem 4.5). Since the values of/ 
on the boundary of Bare the limits of its values along radii, Theorem 7.5 
then implies/is a closed proper convex function. 

In the theory of inequalities and elsewhere, level sets of the form 
{x lf(x)::;; a} are naturally important. The advantage of being able to 
arrange, by means of the closure operation for convex functions, that such 
sets are closed, is clear enough. The relative interiors of such sets, likewise, 
are conveniently obtained from the function/itself, as we now show. 

THEOREM 7.6. Let f be any proper convex f~nction, and let a ER, 
a> inf/ The convex level sets {x lf(x)::;; a} and {x lf(x) < a} then have 
the same closure and the same relative interior, namely 

{ x 1 c cl JH x) ::;; a}, {x E ri (<lorn/) lf(x) <a}, 

respectively. Furthermore, they have the same dimension as domf (and f). 

PROOF. Let M be the horizontal hyperplane {(x, a) Ix ER"} in Rn+i. · 
By Corollary 7.3.1 and Lemma 7.3, M meets ri (epi/). We are concerned 
with the closure and relative interior of 

Mn epi/ = {(x, a) lf(x)::;; a}. 

By Corollary 6.5.1, these are Mn cl (epi/) and Mn ri (epi/), respec
tively. Of course, cl (epi/) = epi (cl/). Therefore 

cl {x lf(x)::;; a} = {x I (cl/)(x)::;; a}, 

ri {x lf(x)::;; a}= {x E ri (dom/) lf(x) <a}. 

The latter formula implies that 

ri {x lf(x)::;; a} c {x lf(x) <a} c {x lf(x)::;; a}, 

and hence that {x lf(x) < a} has the same closure and relative interior as 
{x lf(x)::;; a} (Corollary 6.3.1). The dimensions of these sets are equal by 
Theorem 6.2. They coincide in fact with the dimension of M n ri (epi/), 
which is obviously one less than the dimension of ri (epi/). The latter 
dimension is one more than the dimension of domf II 
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COROLLARY 7 .6.1. If f is a closed proper convex function whose effective 
domain is relatively open (in particular if dom f is an affine set), then for 
inf f < a < + oo one has 

ri {x lf(x) ~a}= {x lf(x) <a}, 

cl {x lf(x) < a}= {x lf(x) ~a}. 

PROOF. Here elf= /and ri (dom/) = domf II 
The relationship in the corollary depends on the convexity off, not just 

on the convexity of the level sets. For example, consider the non-convex 
function f on R defined by 

{
0 if lxl ~ 1, 

f(x) = 
1 if lxl > I. 

All the level sets {x lf(x) ~a} and {x lf(x) < a} of this function are 
convex. Moreover, /is lower semi-continuous (by condition (b) of Theorem 
7.1), and its "effective domain" is relatively open, being all of R. But 
{x lf(x) < l} is not the relative interior of {x IJC'() ~ l}, nor is 
{x lf(x) ~ l} the closure of {x lf(x) < l}. 

All the closure and relative interior formulas in Theorem 7.6 and 
Corollary 7.6.1 are trivially valid also when a< inf/, because all the sets 
in question are empty in that case. The formulas can fail when a = inf/ 
since then {x lf(x) <a} is empty but {x lf(x) ~a} might not be empty. 



SECTION 8 ) 

Recession Cones and Unboundedness 

Closed bounded subsets of R" are usually easier to work with than 
unbounded ones. When the sets are convex, however, the difficulties with 
unboundedness are very much less, and that is fortunate, since so many 
of the sets we need to consider, like epigraphs, are unbounded by their 
nature. 

Unbounded closed convex sets have a simple behavior "at infinity," 
according to one's intuition. Suppose that C is such a set and x is a point 
of C. It seems that C must actually contain some entire half-line starting 
at x, or the unboundedness would be contradicted. The directions of such 
half-lines seem not to depend on x: the half-lines in C starting at a different 
pointy are apparently just the translates of those starting at x. These 
directions in which C recedes indefinitely might possibly be thought of as 
ideal points of C lying at infinity, "horizon points," after the fashion of 
projective geometry. The half-lines in C starting at x could then be inter
preted as the segments joining x with such ideal points of C. 

The objective below is to put these intuitive notions on a sound mathe!. 
matical foundation and to apply them to the study of convex functions. 

Let us first see how the concept of "direction" can be formalized. Each 
closed half-line in Rn should have a "direction," and two should have the 
same "direction" if and only if they are translates of each other. We 
therefore define a direction of Rn simply to be an equivalence class of the 
collection of all closed half-lines of R" under the equivalence relation 
"half-line L1 is a translate of half-line L2." The direction of the half-line 
{x + .1y I A ~ O}, where y -¥- 0, is then by definition the set of all translates 
of the half-line, and that is independent of x. We shall also call this the 
direction of y. Two vectors in Rn have the same direction if and only if 
they are positive scalar multiples of each other. The zero vector has no 
direction. It is clear what one would mean by the opposite of a given 
direction. 

Under the natural correspondence between points of Rn and points of the 
hyperplane M = {(I, x) I x E Rn} in Rn+i, a point x E Rn can be repre
sented by the ray {A(!, x)I;. ~ O}. The directions of Rn can then be represented 
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by the rays P,(O,y) I A~ O}, y ¥- 0, lying in the hyperplane parallel to M 
through the origin of R"+l. This suggests referring to the directions of Rn 
alternatively as points of R" at infinity. (This usage differs from that of 
projective geometry, where a point at infinity is an equivalence class of 
parallel lines; each such point of projective geometry would correspond 
to a pair of opposite points at infinity in our sense.) Forming the convex 
hull of two rays in R"+l which intersect M corresponds to forming the 
line segment between the points of R" they represent. ff one of the rays 
represents a point at infinity, one gets, instead of a line segment, a half
line with a certain endpoint and direction. 

Let C be a non-empty convex set in Rn. We shall say that C recedes in the 
direction D if C includes all the half-lines in the direction D which start at 
points of C. fn other words, C recedes in the direction of y, where y ¥- 0, 
if and only if x + icy E C for every A ~ 0 and x E C. The set of all vectors 
y ER" satisfying the latter condition, including y = 0, will be called the 
recession cone of C. The recession cone of C will be denoted by o+c, for 
reasons to be explained shortly. Directions in which C recedes will also be 
referred to as directions of recession of C. 

The recession cone of cl C has elsewhere been called the asymptotic cone 
of C. We shall not adopt that terminology here, since it does not really 
agree with other uses of "asymptote" and "asymptotic" and might be 
misleading. 

THEOREM 8.1. Let C be a non-empty convex set. The recession cone 
O+C is then a convex cone containing the origin. It is the same as the set 
of vectors y such that C + y c C. 

PROOF. Each y E o+c has the property that x + y E c for every 
x E C, i.e. C + y c C. On the other hand, if C + y c C then 

C + 2y = (C + y) + y c C + y c C 

and so forth, implying x + my E C for every x E C and positive integer m. 
The line segments joining the points x EC, x + y, x + 2y, . .. , are then 
all contained in C by convexity, so that x + AYE C for every A ~ 0. Thus 
y E o+c. Since positive scalar multiplication does not change directions, 
O+c is truly a cone. ft remains to be shown that o+c is convex. ff y1 and y2 

are vectors in o+c and 0 ~ }. ~ 1, we have 

(I - },)_vi + Ah + C = (I - A)(y1 + C) + }.(y2 + C) 

c (I - A)C +AC= C 

(using the distributive law in Theorem 3.2). Hence (I - A)y1 + AY2 is in 
o+c. 11 
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As examples of recession cones of convex sets in R2
, for 

one has 

C1 = {(~b ~2) I ~1 > 0, ~2 ~ l/~1}, 

C2 = {(~1, ~2) I ~2 ~ ~i}, 
C3 = {(~1, ~2) I ~i + ~~ ~ I}, 
C4 = {( ~1, ~2) I ~1 > 0, ~2 > O} u {(O, O)}, 

o+c1 = {ab ~2) I ~1 ~ o, ~2 ~ O}, 

o+c2 = {a1, ~2) I ~1 = o, ~2 ~ o}, 

o+c3 = {(~b ~2) I ~1 = o = ~2} = {(O, O)}. 

o+c4 = {(~1, ~2) I ~1 > o, ~2 > O} u {(O, O)} = C4. 

The recession cone of a non-empty affine set M is, of course, the subspace 
L parallel to M. ff C is the set of solutions to a system of weak linear 
inequalities on Rn, 

C = {x I (x, b;) ~ {J;, Vi EI} ¥- 0, 

the recession cone of C is given by the corresponding system of homo
geneous inequalities, as is easily verified: 

o+c = {x I (x, b;) ~ 0, Vi EI}. 

When points of Rn are represented by rays in Rn+l in the manner 
described above, a non-empty convex set C is represented as the union of 
the rays representing its points. This union is the convex cone 

K = W., x) I A ~ 0, x E },C}, 

which, except for the origin, lies entirely in the open half-space {(A, x) I A > 
0}. Let us consider how K might be enlarged to a convex cone of the form 
KU K0, where K0 is a cone lying in the hyperplane {(O, x) I x E Rn}. 
Since K is already a convex cone, for KU K0 to be a convex cone it is 
necessary and sufficient that K0 be convex and K + K0 c K U K0 

(Theorem 2.6). We will have K + K0 c KU K0 ifand only if each (0, x) E 

K0 has the property that (I, x') + (0, x) belongs to K for every (1, x') EK. 
This property means that x' + x E C for every x' E C, and hence by 
Theorem 8.1 that x E o+c. It follows that there exists a unique largest 
convex cone K' in the half-space {(A, x) I A ~ O} whose intersection with 
the half-space {(A, x) I A> O} is K\ {(O, O)}, namely 

K' = {(A, x) I A > 0, x E AC} u {(O, x) Ix E o+q. 

In this sense, O+C can be regarded as what happens to AC as A~ O+, 
whence the notation. 
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THEOREM 8.2. Let C be a non-empty closed convex set in Rn. Then O+C 
is closed, and it consists of all possible limits of sequences of the form 
,11x1 , A2x 2 , ••• , where X; E C and A;! 0. In fact, for the convex cone K 
in Rn+l generated by {(I, x) Ix EC} one has 

cl K =KU {(O, x)I x EO+C}. 

PROOF. The hyperplane M = {(I, x) Ix ER"} must intersect ri K 
(e.g. by Corollary 6.8.1), so 

Mn cl K =cl (Mn K) = Mn K ={(I, x) Ix EC} 

by the closure rule in Corollary 6.5.1. The cone K' defined just prior to the 
theorem must therefore contain cl K, because of its maximality property. 
On the other hand, since K' is contained in the half-space H = 
{(-1, x) I}.~ O} and meets int H, ri K' must be entirely contained in int H 
(Corollary 6.5.2). Hence ri K' c K, and we have 

cl K c K' c cl (ri K') c cl K. 

This proves the formula cl K = K' asserted in the theorem. The set 
{(O, x) Ix E o+q is the intersection of cl K with {(O, x) Ix E Rn}, so it is 
closed and consists of the limits of sequences of the form -11(1, x1), 

-12(1, x 2), ••• , where X; EC and A;! 0. II 
The fact that O+C can fail to be closed when C is not closed is shown 

by the set C4 above. 
Suppose that C is a closed convex set and z is a point such that, for 

some x E C, the relative interior of the line segment between x and z 

lies in C. Then z EC, so that the same property holds for every x E C. The 
next theorem may be interpreted as a generalization of this fact to the case 
where z is a point at infinity. 

THEOREM 8.3. Let C be a non-empty closed convex set, and let y ¥- 0. 
If there exists even one x such that the half line {x + .1y I A ~ O} is contained 
in C, then the same thing is true for every x E C, i.e. one has y E o+c. 
Moreover, then {x + .1y I A ~ O} is actually contained in ri C for each 
x E ri C, so that y E O+(ri C). 

PROOF. Let {x + .1y I A ~ O} be contained in C. Then y is the limit of 
the sequence -11x1, .12x2, ••• , where Ak = 1/k and xk = x + ky EC. 
Hence y E o+c by Theorem 8.2. The last assertion of the theorem is 
immediate from the fact that any line segment in C which meets ri C must 
have its relative interior in ri C (Theorem 6.1). II 

COROLLARY 8.3.1. For any non-empty convex set C, one has O+(ri C) = 
o+(cl C). In fact, given any x E ri C, one has y E O+(cl C) if and only if 
x + .1y E C for every A > 0. 
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COROLLARY 8.3.2. If C is a closed convex set containing the origin, then 

o+c = {y I c 1y EC, v c > O} = noo cC. 

COROLLARY 8.3.3. If {Ci I i EI} is an arbitrary collection of closed 
convex sets in R" whose intersection is not empty, then 

o+cniEl Ci) = niEI o+ci. 

PROOF. Let x be any point in the closed convex set c = niEI Ci. The 
direction of a given vector y is a direction in which C recedes, if and only 
if the half-line {x + .1y I A~ O} is contained in every Ci. But the latter 
means that every C; recedes in the direction of y. II 

COROLLARY 8.3.4. Let A be a linear transformation from R" to Rm, 
and let C be a closed convex set in Rm such that A-1c ¥- 0. Then 
o+cA-1C) = A-1co+c). 

PROOF. Since A is continuous and C is closed, A-1c is closed. Take 
any x E A-1 C. We have y E O+(A-1C) if and only if, for every }. ~ 0, C 
contains A(x + .1y) = Ax + .1Ay. The latter means Ay E o+c, i.e. 
y E A-1co+C). II 

The first assertion of Theorem 8.3 is not valid when C is not closed: 
the C4 above contains the half-line consisting of all points of the form 
(1, 1) + -1(1, 0), but (1, 0) does not belong to O+C4• Observe also, in 
connection with Corollary 8.3.1, that O+(ri C4) is properly larger than O+C4• 

An unbounded closed convex set contains at least one point at infinity, 
i.e. recedes in at least one direction, according to the next theorem. fts 
unboundedness, therefore, is really of the simplest sort that can be hoped 
for. 

THEOREM 8.4. A non-empty closed convex set C in R" is bounded if and 
only if its recession cone O+C consists of the zero vector alone. 

PROOF. If C is bounded, it certainly contains no half-lines, so that 
O+C = {O}. If C is unbounded, on the other hand, it contains a sequence 
of non-zero vectors x1 , x2 , ••• , whose Euclidean norms lxil increase 
without bound. The vectors A;Xi, where }.i = l/lx;I, all belong to the unit 
sphere S = {x lxl = I}. Since Sis a closed bounded subset of Rn, some 
subsequence of -11x1 , .12x2, ••• , will converge to a certain y ES. This y 
is a non-zero vector of o+c by Theorem 8.2. 11 

COROLLARY 8.4.1. Let C be a closed convex set, and let M be an affine 
set such that M n C is non-empty and bounded. Then M' n C is bounded 
for every affine set M' parallel to M. 

PROOF. We have O+M' = O+M by definition of "parallel." Assuming 
M' n C is not actually empty, we have 

O+(M' n C) = O+M' n o+c = O+M n o+c = O+(M n C) 
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by the intersection rule in Corollary 8.3.3. Since M n C is bounded, this 
implies O+(M' n C) = 0, and hence M' n C is bounded. II 

If C is a non-empty convex set, the set (-O+C) n o+c is called the 
/ineality space of C. ft consists of the zero vector and all the non-zero 
vectors y such that, for every x E C, the line through x in the direction of y 
is contained in C. The directions of the vectors yin the lineality space are 
called directions in which C is linear. Of course, if C is closed and contains 
a certain line M, then all the lines parallel to M through points of Care 
contained in C. (This is a special case of Theorem 8.3.) The lineality space 
is the same as the set of vectors y such that C + y = C; this may be 
proved as an elementary exercise. 

The lineality space of C is a subspace, the largest subspace contained in 
the convex cone O+C (Theorem 2.7). fts dimension is called the lineality 
of C. 

Consider, for example, the cylinder 

c = {(~1. ~2• ~3) I ~i + ~~ ~ I} c R 3
. 

The lineality space of C is the ~raxis, so that Chas lineality I. Here C is 
the direct sum of a line and a circular disk. 

fn general, if C is a non-empty convex set with a non-trivial lineality 
space L, one can obviously express C as the direct sum 

C=L+(CnLJ_), 

where LL is the orthogonal complement of L. The lineality of the set 
C n L 1- in this expression is 0. The dimension of C n L 1-, which is the 
dimension of C minus the lineality of C, is called the rank of C. ft is a 
measure of the nonlinearity of C. 

The convex sets of rank 0 are the affine sets. The rank of a closed convex 
set coincides with its dimension if and only if the set contains no lines. 

[ n the case where 
C= {xi (x,b;)~{J;,'ViEI}, 

the lineality space L of C is given by a system of equations: 

L = {x I \x, b,) = 0, Vi EI}. 

We turn now to the application of the above results to convex functions. 
Let/be a convex function on R" not identically +oo. The epigraph off, 
as a non-empty convex set in R"+l, has a recession cone O+(epif). By 
definition, (y, v) E O+(epi/) if and only if 

(x, µ) + A(y, v) = (x + Ay, µ +Av) E epi/ 

for every (x, µ) Eepi/and A~ 0. This means that 

f(x + AY) ~ f(x) + Av 
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for every x and every A ~ 0. Actually, by Theorem 8.1, the latter inequality 
holds for every x and every A ~ 0 if it merely holds for every x with A = I. 
At all events, for a given y, the values of v for which (y, v) E O+(epi f) will 
form a closed interval of R unbounded above, or the empty interval. 
Thus O+(epi/) is the epigraph of a certain function. We call this function 
the recession function off, and we denote it by JO+. By definition, then, 

epi (JO+) = O+( epi /). 

Thus the JO+ notation is in line with our previous notation of right scalar 
multiplication in §5. 

THEOREM 8.5. Let f be a proper convex function. The recession function 
JO+ off is then a positively homogeneous proper convex function. For every 
vector y, one has 

(fO+)(y) = sup {f(x + y) - f(x) Ix Edom/}. 

If f is closed, fO+ is closed too, and for any x E dom f, JO+ is given by the 
formula 

(Jo '~)( ) f(x +icy) - f(x) 1. f(x + -1v) - f(x) 
' y =sup = 1m· · . 

'->O A ;.~oo A 

PROOF. The first formula is a consequence of the observations just 
made. The condition v ~ (JO+)(y) also means that 

v ~sup {[.f(x + .1y) - /(x)]/-1}, Vx E domf. 
l>O 

(Note from this that c.fO+)(y) cannot be - oo.) For any fixed x E domf, 
the supremum gives the smallest real v (if any) such that epi/ contains the 
half-line in the direction of (y, v) with endpoint (x,/(x)). ff f is closed, 
epi/is closed, and by Theorem 8.3 this vis independent of x. This proves 
the second supremum formula in the theorem. The supremum is the 
same as the limit as A~ oo, because the difference quotient [/(x + .1y) -
/(x)]/,1 is a non-decreasing function of A by the convexity ofj(see Theorem 
23.1). The epigraph O+(epi/) is a non-empty convex cone, closed if f is 
closed; therefore JO+ is a positively homogeneous proper convex function, 
closed if f is closed. II 

COROLLARY 8.5.1. Let f be a proper convex function. Then JO+ is the 
least of the functions h such that 

f(z) ~ f(x) + h(z - x), V z, V x. 

The recession function off can be viewed in terms of a closure con
struction, when /is a closed proper convex function. Let g be the positively 
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homogeneous convex function generated by h, where 

In other words, 
h()., x) = f(x) + 0().11). 

{

(f).)(x) if ). ~ 0, 
g()., x) = 

+ 00 if ). < 0. 

[t is immediate from Theorem 8.2 and the definition of JO+ that 

{

(f).)(x) if ). > 0, 

(clg)()., x) = (JO+)(x) if ). = 0, 

+oo if ).<0. 

COROLLARY 8.5.2. Iffis any closed proper convex function, one has 

uo+)(y) = Jim (fi.)(y) 
;.lo 
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for every y E dom f If 0 E dom f, this formula actually holds for every 
y E Rn. 

PROOF. If 0 Edom f, the last formula in Theorem 8.5 yields 

(JO+)(y) =Jim [J(i.y) - f(O)]/). =Jim ).j().-1y). 
;. too ;.lo 

Even if 0 rf- domf, we have (for gas above) 

(cl g)(O, y) =Jim (cl g)()., y) 
;.Jo 

by Corollary 7.5.1 when ().,y) belongs to dom (clg) for some).> 0. The 
latter co.ndition is certainly met when y E domf II 

To illustrate, consider 

/1(x) = (1 + (x, Qx))1f2, 

where Q is a symmetric n x n positive semi-definite matrix. (The convexity 
of Ji may be deduced from Theorem 5.1 and the convexity of fo(x) = 
(x, Qx)1'2, which follows easily by diagonalizing Q.) By Corollary 8.5.2, 

Cf10+)(y) = lim i.f1().-1y) 
;.lo 

On the other hand, for 

=Jim ().2 + (y, Qy))112 = (y, Qy)112. 
;.lo 

j;(x) = (x, Qx) + (a, x) + a 
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one has by the same formula 

(f20+)(y) = Jim [i.-1(y, Qy) + <a, y) + h] 
;, lo 

= {(a, y) if Qy = 0, 

+ 00 if Qy "¥- 0. 

In particular, in the case where Q is positive definite (i.e. also non-singular) 
one has J;.O+ = O(· I 0). The latter formula would also hold, of course, 
for any proper convex function whose effective domain was bounded. 

An especially interesting example is 

Ux) = log (e-' 1 + · · · + e<"), x = (~i. ... , ~ 11), n >I. 
(The convexity of f 3 follows from Theorem 4.5 by a classical argument, 
but a separate derivation will also be given following Theorem 16.4.) 
The reader may calculate as an exercise that 

(/30+ )(y) = max { 17 i I j = 1, ... , n}, 

Thusj;O+ is not differentiable, even thoughf30+ is finite everywhere andf3 

itself is analytic. 
The recession function of a closed proper convex function f will be 

characterized in Theorem 13.3 as the support function of the effective 
domain of the convex function conjugate to f 

THEOREM 8.6. Let f be a proper convex function, and let y be a vector. 
If one has 

Jim inf f (x + Ay) < + oo, 
A-+-t-oo 

for a given x, then x actually has the property that f(x + Ay) is a non
increasing function of A, - oo < A < + oo. This property holds for every x 
if and only 1f (JO+)(y) ~ 0. When f is closed, this property holds for every x 
if it holds for even one x E dom f 

PROOF. By definition, (JD+)(y) ~ 0 if and only if the recession cone 
of epif contains the vector (y, 0), which means that f(z + AY) ~f(z) 
for every z and every AL 0. Thus (fO+)(y) ~ 0 if and only iff(x + AY) is 
a non-increasing function of A, - oo < A < + oo, for every x. If f is 
closed, we have (JO+)(y) ~ 0 by the last formula in Theorem 8.5 if there 
exists even one x E domf such that f(x + AY) is non-increasing in A. 
Suppose now that x is a point such that 

Jim infj(x + Ay) <a, 
). -++oo 

where a E R, and let h be the proper convex function on R defined by 
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h().) = f(x + ).y). The epigraph of h contains a sequence of points of the 
form ().k> a), k = I, 2, ... , such that ).k ~ + oo. The convex hull of this 
sequence is a half-line in the direction of the vector (I, 0), and this half-line 
is contained in the closed convex set epi (cl h). Hence (I, 0) belongs to the 
recession cone of epi (cl h), i.e. cl h is a non-increasing function on R. 
The effective domain of cl h must be an interval unbounded above. 
The closure operation at most lowers the value of h at the boundary of 
its effective domain (Theorem 7.4), so h itself must be a non-increasing 
function on R. Thus f(x + ).y) is a non-increasing function of}.. II 

COROLLARY 8.6.1. Let f be a proper convex function and let y be a 
vector. In order that f(x + }.y) be a constant function of)., - oo < ). < oo, 
for every x, it is necessaryandsufficientthat (JO+)(y) ~ Oand(JO+)(-y) ~ 0. 
When f is closed, this condition is satisfied if there exists one x such that, 
for some real number a, 

f(x + ).y) ~ a, 'V). ER. 

COROLLARY 8.6.2. A convex function f is constant on any affine set M 
where it is finite and bounded above. 

PROOF. Redefining/to be + oo outside M if necessary, we can assume 
that M = domf Then f is closed (Corollary 7.4.2). By the preceding 
corollary, f is constant along every line in M. Since M contains the line 
through any two of its (different) points,fmust have the same value at all 
points of M. II 

The set of all vectors y such that (JD+)(y) ~ 0 will be called the recession 
cone off (not to be confused, of course, with the recession cone of epi f). 
This is a convex cone containing 0, closed if /is closed. (It corresponds to 
the intersection ofO+(epi/) with the horizontal hyperplane {(y, 0) I y ER"} 
in Rn+l.) As suggested by Theorem 8.6, the directions of the vectors in 
the recession cone off will be called directions in which f recedes, or direc
tions of recession off 

The set of vectors y such that (/O+)(y) ~ 0 and (JO+)(-y) ~ 0 is the 
largest subspace contained in the recession cone off (Theorem 2.7). We 
shall call it the constancy space off, in view of Corollary 8.6.1. The 
directions of the vectors in the constancy space of/will be called directions 
in which f is constant. 

In the examples preceding Theorem 8.6, the recession cone and 
constancy space of Ji are both equal to {y I Qy = O}, whereas the recession 
cone and constancy space of h are 

{y I Qy = 0, (a,y) ~ O} and {y I Qy = 0, (a,y) = O}, 

respectively. The recession cone of / 3 is the non-positive orthant of R", 
but the constancy space of / 3 consists of the zero vector alone. 
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THEOREM 8. 7. Let f be a closed proper convex function. Then all the 
non-emp~Y level sets of the form {x lf(x) ~ 'l.}, 'l. ER, have the same 
recession cone and the same lineality space, name~y the recession cone and 
the constancy space off, respective~}'. 

PROOF. This follows from Theorem 8.6: y belongs to the recession 
cone of {x lf(x) ~ ::t.} if and only if f(x +icy)~ 'l. whenever f(x) ~ 'l. 

and A~ 0. 11 

COROLLARY 8. 7.1. Let f be a closed proper convex function. If the level 
set {x I f(x) ~ a} is non-empty and bounded for one a, it is bounded for 
every a. 

PROOF. Apply Theorem 8.4. 

THEOREM 8. 8. For any proper convex function f, the follo1ring conditions 
on a vector y and a real number v are equivalent: 

(a) f(x + AY) = f(x) + Av for every vector x and}. ER; 
(b) (y, v) belongs to the lineality space ofepif,· 
(c) -(JO+)(-y) = CfO+)(y) = v. 

When f is closed, y satisfies these conditions with v = (fO+)(y) if there is 
even one x Edom f such that f(x + J.y) is an affine function of} .. 

PROOF. Under (a), f(x + y) - f(x) = v for every x E <lorn f, so 
that v = (/O+)(y) and -v = (fO+)(-y) by the first formula in Theorem 
8.5. Thus (a) implies (c). Now (c) says that (y, v) and (-y, -v) both belong 
to epi (JO+), i.e. (y, v) and -(y, v) both belong to O+(epif). This is the 
same as condition (b ). Finally, (b) implies 

(epif) - A(y, v) = epif, 'VA ER. 

For any }., the set on the left is epi g, where g is the function defined by 

g(x) = f(x + }.y) - AV, 

so (a) must hold. Thus (a), (b) and (c) are equivalent. The last assertion 
in the theorem follows from the last formula in Theorem 8.5. II 

The set of vectors y such that (JO+)(-y) = -(JO+)(y) will be called the 
lineality space of the proper convex function f ft is a subspace of Rn, the 
image of the lineality space of the convex set epifunder the projection (y, 
v) ~ y, and on itfO+ is linear (Theorem 4.8). The directions of the vectors 
in the lineality space off will be called directions in which f is affine. The 
dimension of the lineality space is the lineality off The rank off is defined 
to be the di mens ion off minus the lineality off 

The proper convex functions of rank 0 are the partial affine functions, 
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i.e. the functions which agree with an affine function along a certain affine 
set and are + oo elsewhere. A closed proper convex function f has 

rank/= dim/ 

if and only if it is not affine along any line in domf 
The rank of a convex set plainly coincides with the rank of its 

indicator function. 



SECTION 9 

Some Closedness Criteria 

There are many operations for convex sets which preserve relative 
interiors but have a more complicated behavior with respect to closures. 
For example, given a convex set C and a linear transformation A, one has 
ri (AC)= A(ri C), but in general only cl (AC):::> A(cl C) (Theorem 6.6). 
When is cl (AC) actually equal to A(cl C)? When is the image of a closed 
convex set closed? 

Such questions are worth careful attention. One reason is that they are 
connected with the preservation of lower semi-continuity. The epigraph 
of the image Ah of a proper convex function h under a linear transfor
mation A is of the form FU F0 , where Fis the image of epi h under the 
linear transformation B: (x, µ)~(Ax,µ) and F0 is the "lower boundary" 
of F (in the sense of Theorem 5.3). If F is closed, one actually has F = 
epi (Ah), so that Ah is lower semi-continuous (Theorem 7.1). One is thus 
led to study conditions under which the image of epi h under B is closed. 
The condition that epi h itself be closed, i.e. that h be lower semi-con
ti nuous, is generally not sufficient: if his the closed proper convex function 
on R2 given by 

and A is the projection c;1 , ~2) ~ ~1 , then the image of epi h is not 
closed and in fact 

if ~1 > 0, 

if ~1 = 0, 

if ~1 < 0, 

so that Ah is not lower semi-continuous at 0. 
A second reason for interest in closedness criteria is the bearing they 

have on the existence of solutions to extremum problems. For instance, 
(Ah)(y) is the infimum of hon the affine set {x I Ax= y}. The infimum is 
attained if and only if the vertical line {(y, µ)Iµ ER} intersects the above 
set Fin a closed half-line (or the empty set), which would be true if Fwere 

72 
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closed and did not have the "downward" direction as a direction of 
recession. Again we need conditions under which the image F of epi h is 
sure to be closed. 

Simple conditions for the preservation of closedness under various 
operations will be deduced below from the theory of recession cones. 
Several of these conditions will be dualized in §16 and sharpened in §19 
and §20 to take advantage of polyhedral convexity. 

The theorem we are about to prove will be at the root of all the other 
results in this section. For motivation, it is good to think about a case 
where the image of a closed convex set C under a projection A is not 
closed, as when 

c = {C~1, ~2> I ~1 > o, ~2 ~ ;;-1}, 

A:(~1, ~2)-,. ~1· 

The source of difficulty here is that the hyperbolic convex set C is 
"asymptotic" to a line which A carries onto a point. ft seems clear that, if 
C were instead some closed convex set in R2 whose intersection with each 
of the lines parallel to the ~raxis was bounded, then the image would be 
closed as desired. This condition could be expressed in terms of recession 
cones: O+C should not contain any vector in the direction of (0, 1) or 
(0, -1). 

THEOREM 9.1. Let C be a non-empty convex set in R", and let A be a 
linear transformation from R" to Rm. Assume that every non-zero vector 
z E O+(cl C) satisfying Az = 0 actually belongs to tlze lineality space of 
cl C. Then cl (AC)= A(cl C), and O+A(cl C) = A(O+(cl C)). In particular, 
if c is closed, and z = 0 is the onZv z E o+c such that Az = 0, then Ac is 
closed. 

PROOF. We already know that cl (AC):::> A(cl C). Let y be any point 
of cl (AC). We shall show that y = Ax for some x E cl C. Let L be the 
intersection of the lineality space of cl C and the null space of A, i.e. 

L = (-O+(cl C)) n O+(cl C) n {z I Az = O}. 

This Lis a subspace of R", and by the hypothesis on O+(cl C) we also have 

L = O+(cl C) n {z I Az = O}. 

The set L1- n cl Chas the same image under A as cl C, inasmuch as 

cl C = (Li_ n cl C) + L. 

Furthermore, y is in the closure of this image. Hence, for every s > 0, 
the intersection 

c, = LJ_ n (cl C) n D,, D, = {x I IY - Axl ~ s}, 
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is non-empty. Clearly C, is a closed convex set in Rn. Furthermore, C, 
is bounded. We prove this via Theorem 8.4 by showing that O+c, contains 
only the zero vector: by Corollary 8.3.3, 

o+c, = o+L_j_ n o+(cl C) n o+n, 

= U n o+(cl C) n {z I Az = O} = L_j_ n L = {O}. 

Now, since the sets C, for s > 0 form a nest of closed bounded subsets of 
Rn, the intersection of these sets is not empty. For any x in this inter
section, we have x E cl Candy - Ax = 0. 

All that remains to be proved is that A(O+C) = O+(AC) if C is closed. 
Consider the convex cone 

K = {(A, x) I}, > 0, x E AC} c R"+l 

and the linear transformation 

B: (A, x) ~(A, Ax). 

Assuming that C is closed, we have 

cl K = O+(cl K) = KU {(O, z) I z E O+C} 

(Theorem 8.2). The vectors (A, z) whose image under B is the origin are 
those such that A = 0 and Az = 0. Therefore the part of the theorem 
which has already been proved can be applied to Kand B. Th us cl (BK) = 
B(cl K), where 

B(cl K) = {(A, Ax) I A> 0, x E AC} u {(O, Az) I z E o+q. 

Since AC is closed, we also have 

cl (BK)= cl {(A, y) I A > 0, y E A(AC) = AAC} 

= {(A, y) I A> 0, y E AAC} u {(O, y) I y E O+(AC)} 

(Theorem 8.2). The equality of cl (BK) and B(cl K) implies that the set 
{Az I z E o+C} is the same as O+(AC). II 

It should be noted that O+(AC) can differ from A(O+C) sometimes, even 
if C and AC are closed, for example if 

COROLLARY 9.1.1. Let Ci, ... ' cm be non-empty convex sets in Rn 
satisfying the following condition: if z1 , ... , zm are vectors such that 
Z; E O+(cl C;) and z1 + · · · + zm = 0, then actually Z; belongs to the 
lineality space of cl C,for i = I, ... , m. Then 

cl (C1 + ... + Cm)= cl C1 + ... +cl Cm, 

O+(cl (C1 + ... + Cm))= O+(cl C1) + ... + O+(cl Cm). 
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In particular, C1 + · · · + Cm is closed under this hypothesis 1f the sets 
C1 , ... , Cm are all closed. 

PROOF. Let c be the direct sum C1 ® ... ®cm in Rmn, and let A be 
the linear transformation 

X; ER". 

Then AC= C1 + · · · + Cm. Since 

cl C = cl C1 ® · · · ® cl Cm, 

we have (as an elementary consequence of the definition of "recession 
cone") 

o+(cl C) = O+(cl C1) ® · · · ® O+(cl C,,,). 

Apply the theorem. 
COROLLARY 9.1.2. Let C1 and C2 be non-empty closed convex sets in Rn. 

Assume there is no direction of recession of C1 whose opposite is a direction 
of recession of C2. (This is true in particular 1f either C1 or C2 is bounded.) 
Then C1 + C2 is closed, and 

o+c c1 + C2) = o+c1 + o+c2. 

PROOF. Specialize the preceding corollary tom = 2. 
Refinements of Corollary 9.1.2 will be given in Corollary 19.3.2 and 

Theorem 20.3. 
COROLLARY 9.1.3. Let Ki. ... , Km be non-empty convex cones in Rn 

satisfying the following condition: 1f Z; E cl K; for i = I, ... , m and 
z1 + · · · + zm = 0, then Z; belongs to the lineality space of cl K; for i = 
I, ... , m. Then 

cl (K1 + ... + Km) = cl Kl + ... + cl Km. 

PROOF. Take C; = K; in Corollary 9.1.1. 
These results will now be applied to convex functions. 

THEOREM 9.2. Leth be a closed proper convex function on R", and let A 
be a linear transformation from R" to R"'. Assume that Az ¥- 0 for every z 
such that (ho+)(z) ~ 0 and (hO+)(-z) > 0. Then the function Ah, where 

(Ah)(y) = inf {h(x) I Ax = y}, 

is a closed proper convex function, and (Ah)O+ = A(hO+). Moreover, for 
each y such that (Ah)(y) ¥- + oo, the infimum in the definition of (Ah)(y) is 
attained for some x. 

PROOF. Consider the non-empty closed convex set epi h and the linear 
transformation B: (x, µ)~(Ax,µ). The recession cone of epi h is 
epi (hO+), and the lineality space of epi lz consists of the vectors (z, µ)such 



76 II: TOPOLOGICAL PROPERTIES 

that (ho+)(z) ~ µ and (hO+)(-z) ~ -µ. Thus epi h and B satisfy the 
hypothesis of Theorem 9.1, and we may conclude that B(epi h) is a non
empty closed convex set whose recession cone is B(epi (hO+)). Moreover 

B(epi h) = epi (Ah), 

B(epi (ho+))= epi (A(hO+)). 

The conclusions of the theorem will follow if we can establish that epi (Ah) 
contains no vertical lines. The presence of vertical lines would imply that 
the recession cone B(epi (hO+)) contained a vector of the form (0, µ)with 
µ < 0. Then epi (hO+) would contain some (z, µ)with Az = 0 andµ < 0. 
For this z we have(hO+)(z) < 0 and 

(hO+)(-z) ~ -(hO+)(z) > 0 

(Corollary 4.7.2), contrary to the hypothesis of the theorem. 
The hypothesis of Theorem 9.2 concerning hO+ is trivially satisfied, of 

course, if h has no directions of recession and in particular if <lorn h is 
bounded. Observe that this hypothesis is violated in the example given at 
the beginning of this section. 

COROLLARY 9.2.1. Let f 1, ... ,fm be closed proper convex functions on 
Rn. Assume that z1 + · · · + zm ¥- 0 for all choices of vectors z1 , ... , zm 
such that 

Cf10+)(z1) + · · · + Cf mO+)(zm) ~ 0, 

(.f~O+)(-z1) + · · · + CfmO+)(-zm) > 0. 

Then the infimal convolute Ji D · · · D f m is a closed proper convex function 
on R", and the infimum in the definition of (.f~ D · · · D fm)(x) is attained for 
each x. Moreover, 

(.f~ D · · · Dfm)Oc = fiO+ D · · · DfmO+. 

PROOF. Let A be the "addition" linear transformation from R"'n to 
R": 

X; ER", 

and let h be the closed proper convex function on Rm" defined by 

The result is obtained by applying Theorem 9.2 to this h and A. The 
details are left to the reader as an exercise. II 

Other forms ofCorollary9.2.l will appear in Corollaries 19.3.4and 20.1.1. 
COROLLARY 9.2.2. Let f 1 and h be closed proper conve:x"functions on Rn 

such that 

(ft.O+)(z) + (_hO+)(-z) > 0, Vz ¥- 0. 
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Then / 1 D h. is a closed proper convex function, and the infimum in the 
formula 

(/1 Df;.)(x) = infy {f1(x - y) + _h(y)} 

is attained for each x by some y. 
PROOF. Take m = 2 in the preceding corollary. II 
As an illustration of Corollary 9.2.2, let f = h. be an arbitrary closed 

proper convex function, and let / 1 be the indicator function of - C, where 
C is a non-empty closed convex set. Then 

(/1 Df;.)(x) = inf{O(x - y 1-C) + f(y) IYER"} 

= inf{.f(y) IY E (C + x)}. 

The recession condition in the corollary is satisfied if f and C have no 
common direction of recession. fn that case, the infimum off over the 
translate C + x is attained for each x, and it is a lower semi-continuous 
(convex) function of x. 

Taking C to be the non-negative orthant of R", for instance, we have 

c + x = {y 1 y ~ x} 

for each x. ff f is a closed proper convex function on R" whose recession 
cone contains no non-negative non-zero vectors, we may conclude that 
the infimum in the formula 

g(x) = inf{f(y)IY ~ x} 

is attained for each x, and that g is a closed proper convex function on Rn. 
Note that g is the greatest function such that g ~ f and g( ~1 , ... , ~n) is a 
non-decreasing function of the real variable ~i for j = I, ... , n. 

The closure properties of other operations for convex sets and functions 
are as follows. 

THEOREM 9.3. Let fi. ... ,fm be proper convex functions on R". If 
every j; is closed and / 1 + · · · + fm is not identically + oo, then / 1 + · · · + 
fm is a closed proper convex function and 

If the j; are not all closed, but there exists a point common to every 
ri (domj;), then 

cl Cf1 + · · · + /m) = cl/1 + · · · + clfm· 

PROOF. Let f = / 1 + · · · fm and let 

XE ri (domf) = ri cn:-:.1 dom_f;). 
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For every y, we have 

(clf)(y) = limf((l - .1)x + .1y) = 1:~1 limf;((l - .1)x + .1y) 
lll lll 

(Theorem 7.5). If each/; is closed, the latter sum is/1(y) + · · · + fm(y), 
so that cl f = f On the other hand, if the sets ri (<lorn/;) have a point in 
common, then 

n:~1ri(domf;) = ri(domf) 

by Theorem 6.5. In this case x E ri ( dom /;) for i = 1, ... , m and the f; 
limit in the above sum is (clf;)(y); thus elf= cl/1 + · · · + clfm· The 
formula for fO+ follows from the limit formula in Theorem 8.5. II 

THEOREM 9.4. Let f; be a proper convex function on Rn for i EI (an 
arbitrary index set), and let 

f = sup {f; Ii EI}. 

If f is finite somewhere and every f; is closed, then f is closed and proper, and 

JO+= sup u;o+ Ii EI}. 

If the f; are not all closed, but there exists a point x common to every 
ri (domf;) such thatf(x) is.finite, then 

elf= sup {elf; Ii EI}. 

PROOF. Since epi/is the intersection of the sets epif;, it is closed when 
every f; is closed. The formula for fO+ follows from Corollary 8.3.3. The 
closure formula follows from Theorem 6.5 and Lemma 7.3: the intersec
tion of the sets ri (epif;) will contain the point (x,f(x) + I). II 

THEOREM 9.5. Let A be a linear transformation from Rn to Rm, and let g 
be a proper convex function on Rm such that gA is not identically + oo. If g 
is closed, then gA is closed and (gA)O+ = (gO+)A. If g is not closed, but 
Ax E ri (dom g)for some x, then cl (gA) = (cl g)A. 

PROOF. We already know gA is a proper convex function (Theorem 
5. 7). The epigraph of g A is the inverse image of epi g under the (continuous) 
linear transformation B:(x, µ)~(Ax,µ), so gA is closed if g is closed. 
The formula for (gA)O+ is then immediate from Corollary 8.3.4. The 
closure formula follows from Theorem 6.7 and Lemma 7.3. II 

THEOREM 9.6. Let C be a non-empty closed convex set not containing the 
origin, and let K be the convex cone generated by C. Then 

cl K =Ku o+c = u {AC I;,> 0 or A= O+}. 
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PROOF. Let K' be the convex cone in Rn+i generated by {(l, x) I x EC}. 
Then 

cl K' = w., x) I A > 0, x E AC} u {(O, x) I x E o+C} 

(Theorem 8.2). Under the linear transformation A: (A, x) ~ x, the image of 
cl K' is Ku O+C. There is no non-zero (J., x) in cl K' = O+(cl K') having 0 
as its image under A, so 

A(cl K') =cl (AK')= cl K 
by Theorem 9.1. 

COROLLARY 9.6.1. If C is a non-empty closed bounded convex set not 
containing the origin, then the convex cone K generated by C is closed. 

PROOF. Here o+c = {O}. II (This result is also easy to prove by a 
direct argument using compactness.) 

The need for the condition 0 tf- C in Theorem 9.6 and Corollary 9.6.1 
is shown by the case where C is a closed ball with the origin on its boundary. 
The need for the boundedness assumption in Corollary 9.6.1 is shown by 
the case where C is a line not passing through the origin. 

THEOREM 9.7. Let f be a closed proper convex function on Rn with 
f(O) > 0, and let k be the positively homogeneous convex function 
generated by f. Then k is proper and 

(cl k)(x) =inf {(jA)(x) I A> 0 or A= O+}, 

the infimum being attained for each x. If 0 Edom f, k is itself closed, and 
)_ = o+ can be omitted from the infimum (but the infimum then might not 
be attained). 

PROOF. Here epif is a non-empty closed convex set in Rn+i not con
taining the origin. The closed convex cone it generates, which is cl (epi k), 
is then the union of the setd ( epif) = epi (jA) fod 2: O+ by the preceding 
theorem. This union does not contain any vectors (0, µ) withµ < 0, so it 
is actually epi (cl k) and k is proper. The formula follows at once. If 
0 E domf, we have 

(JO+)(x) =Jim [f(rxx) - f(O)]/rx =Jim (fi..)(x) 
al+oo ;.lo 

by the last formula in Theorem 8.5, so it is enough to take the infimum of 
(/A)(x) over A > 0. This infimum gives k itself, by definition. II 

COROLLARY 9. 7.1. Let C be a closed convex set in Rn containing 0. The 
gauge function y(· I C) of C is then closed. One has 

{x I y(x I C) ~A} =AC 
for any). > 0, and 

{x I y(x IC) = O} = O+C. 
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PROOF. Apply the theorem to f(x) = o(x I C) + I. One has k = 
y(-1 C) by definition, 

(.f,1)(x) = o(x I ).C) +A, V). > 0, 

and /O+ = a(· I O+C). 11 

THEOREM 9.8. Let Ci, ... , Cm be non-empty closed convex sets in Rn 
satisfying the following condition: if Zi, •.• , zm are vectors such that 
Z; E Q+Ci and Zi + · · · + Zm = 0, then Z; belongs to the finea/ity space of 
Cifor i = I, ... , m. Let C = conv (Ci U · · · U Cm). Then 

cl c = u PiCi + ... + ).mCm I A; 2: o+, ).i + ... +Am= I} 

(where the notation A; 2: O+ means that ).;C; is taken to be 0-t-C; rather 
than {O} when A; = 0). Moreover 

O+(cl C) = o+ci + · · · + o+cm. 
PROOF. Let Ki be the convex cone in R"+i generated by {(I, x;) IX; E 

C;}, i = 1, ... , m. We have 

cl K; = {(}.;. X;) I A;> 0, X; E ).i C;} u {(O, X;) IX; E O+C;} 

(Theorem 8.2). Corollary 9.1.3 is applicable to the cones K; by virtue of 
the condition on the cones O+C;. Thus 

cl (Ki + · · · + K,,J = cl Ki + · · · + cl Km. 

The intersection of cl (Ki + · · · + Km) with Hi= {(I, x) Ix ER"} is the 
closure of the intersection of Ki + · · · + Km with Hi. and that consists 
of the vectors (I, x) such that x belongs to some convex combination 
AiCi + · · · + ).mCm. The union of all such convex combinations is C 
(Theorem 3.3). Therefore 

cl (Ki + · · · + Km) n Hi= {(I, x) Ix E cl C}. 

This same set coincides on the other hand with the intersection of 
cl Ki + · · · + cl Km and Hi, and that consists of the pairs (I, x) such that 
x belongs to the union described in the theorem. This establishes the 
formula for cl C. From what we have shown, cl (Ki+ · · · + Km) must 
actually be the closure of the convex cone in R"+i generated by {(I, x) Ix E 

cl C}, so the vectors it contains of the form (0, x) are those with x E 

O+(cl C) (Theorem 8.2). The vectors of the form (0, x) contained in 
cl Ki + ... + cl Km are those with x E o+ci + ... + O+C m· Thus 
O+( cl C) is the same as O+Ci + · · · + O+C m· II 

COROLLARY 9. 8.1. If Ci, ... , Cm are non-empty closed convex sets 
in Rn all having the same recession cone K, then the convex set C = 
conv (Ci U · · · U Cm) is closed and has K as its recession cone. 
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PROOF. Suppose Zi. •.• , zm are vectors such that zi EK and 
z1 + · · · + Zm = 0. Then 

-Z1 = Z2 + ... + zm E (-K) n K, 

and similarly for z2 , ••• , zm- Thus Z; belongs to the lineality space of C; 
for i = 1, ... , m, and the theorem is applicable. ft is unnecessary to 
substitute 0-'-C; for {O} = OC, in the union in the theorem, because 

0-'-C; + ).iCi = ).j(K + Ci) = }.ici = OC; + ).iCi 

for any index j with ).i > 0. Thus cl C = C (Theorem 3.3). 
COROLLARY 9.8.2. If C1 , .•. , C,,, are closed bounded convex sets in R", 

then conv (C1 U · · · U Cm) is likewise closed and bounded. 
PROOF. Any C; which is empty can be omitted without changing 

the convex hull, and every other C; has O+C; = {O}. II 
A stronger result than Corollary 9.8.2 will be given in Theorem 17.2. 
A result analogous to Theorem 9.8 can obviously be stated for convex 

functions. We shall only treat the analogue of Corollary 9.8.1, however. 
COROLLARY 9.8.3. Let / 1 , •.• ,f"' be closed proper convex functions on 

R" all having the same recession function k. Then f = conv {/i. ... ,f,,J is 
closed and proper and likewise has k as its recession function. In the formula 
for f(x) in Theorem 5.6, the infimum is attained for each x by some convex 
combination. 

PROOF. Here we invoke Corollary 9.8.1 with C; = epif;, K ~ epi k. 
The convex hull C of the sets C; is a non-empty closed convex set in Rn+i, 
and by the nature of its recession cone K it must be the epigraph of a 
closed proper convex function. This function can be none other than/, 
and JO+ must therefore be k. The numbers µ expressible as one of the 
combinations over which the infimum is taken in Theorem 5.6 are just 
those such that (x, µ) belongs to C, as explained in the proof of Theorem 
5.6. Here C = epif, so µ = f(.'C) itself is so expressible, i.e. the infimum 
is attained. II 



SECTION 10 

Continuity ef Convex Functions 

The closure operation for convex functions alters a function "slightly" 
to make it lower semi-continuous. We shall now describe some common 
situations where a convex function/ is automatically upper semi-continuous, 
so that cl f (or f itself to the extent that it agrees with cl/) is actually 
continuous. Uniform continuity and equicontinuity will also be con
sidered. In every case, a strong conclusion about continuity follows from 
an elementary hypothesis, because of convexity. 

A function/ on Rn is said to be continuous relative to a subset S of Rn if 
the restriction off to S is a continuous function. Continuity relative to S 
means, in other words, that, for x ES, f(y) has to approach /(x) as y 
approaches x along S, but not necessarily as y approaches x from the 
outside of S. 

The following continuity theorem is the most important, although 
stronger results will be stated in Theorems 10.2 and 10.4. 

THEOREM 10.1. A convex function f on Rn is continuous relative to any 
relatively open convex set C in its effective domain, in particular relative to 
ri (dom/). 

PROOF. The function g which agrees with f on C but is + oo everywhere 
else has C as its effective domain. Replacing f by g if necessary, we can 
reduce the theorem to the case where C = domf We can also assume 
without loss of generality that C is n-dimensional (and hence open, 
rather than merely relatively open). If f is improper, it is identically -oo 
on C (Theorem 7.2), and continuity is trivial. Assume therefore that f is 
proper, i.e. finite on C. We have (cl/)(x) = f(x) for x EC (Theorem 7.4), 
so f is lower semi-continuous on C. To prove continuity, it suffices to 
prove that the level sets {x lf(x) 2 a} are all closed, since that will imply 
f is upper semi-continuous everywhere (Theorem 7.1). Since C = domf 
is open, we have by Lemma 7.3 that 

int (epi/) = {(x, µ)Iµ > /(x)}. 

Therefore, for any a ER, {x lf(x) < a} is the projection on Rn of the (open 
convex) intersection of int (epi/) and the half-space {(x, µ)Iµ <a} in 

82 
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Rn+i, implying that {x lf(x) < O'.} is open and its complement 
{x lf(x) 2 O'.} is closed. II 

COROLLARY 10.1.1. A convex function finite on all of Rn is necessarily 
continuous. 

One source of usefulness of this continuity result is the fact that con
vexity is preserved by certain operations that could not usually be expected 
to preserve continuity. 

For example, let f be a real-valued function on Rn x T (where Tis an 
arbitrary set), such that/(x, t) is convex as a function of x for each t and 
bounded above as a function oft for each x. (This situation would arise, 
say, if one had a finite convex function on Rn continuously dependent on 
the time t over a certain closed interval T.) Then 

h(x) =sup {f(x, t) It ET} 

depends continuously on x. To deduce this from Corollary 10.1.1, one 
only has to observe that h is finite everywhere by hypothesis and, being a 
pointwise supremum of a collection of convex functions, h is convex. 

As another interesting example, consider any convex function f finite 
on all of Rn and any non-empty convex set C in Rn. For each x E Rn, let 
h(x) be the infimum of/ over the translate C + x. We claim h(x) depends 
continuously on x. In the first place, 

h(x) = infz {f(x - z) + o(z I -C)} = (! D g)(x) 

where g is the indicator function of -C. Thus his a convex function on Rn. 
Since/ is finite everywhere, dom h =Rn. Therefore, either his identically 
- oo or it is finite everywhere (Theorem 7.2). At all events, h is 
continuous. 

What can be said about continuity at relative boundary points of 
effective domains? Here is an instructive example of what can go wrong. 
On R2 , let 

{
~~/U1 if ~1 > 0, 

f(~i. ~2) = 0 if ~1 = 0, ~2 = 0, 

+ oo otherwise. 

As a matter of fact, f is the support function of the parabolic convex set 

c = {(~1' ~2) I ~1 + (~~/2) ~ O}, 

whence its convexity. Observe that f is continuous everywhere, except at 
(0, 0), where it is only lower semi-continuous. The limit of/( ~i. ~2) is O'. 
as ( ~i. ~2 ) approaches (0, 0) along the parabolic path with ~1 = ~~/20'.; here 
O'. can be any positive real number. However, the limit is 0 along any line 
segment joining the origin to a point x in the open right half-plane; this 



84 II: TOPOLOGICAL PROPERTIES 

can be seen directly, but it also follows from Theorem 7.5. Trouble only 
arises, it seems, when the origin is approached along a path "tangent" 
to the boundary of domf When the path stays within a fixed simplex in 
domf having the origin as one vertex, the limit is 0 = f(O, 0). 

The example leads one to conjecture that a closed convex function is 
necessarily continuous on any simplex in its effective domain. The con
jecture is valid in the case where the simplex is a line segment, by Corollary 
7.5.1. We shall show that an even stronger conjecture is actually valid in 
general. 

Let us agree to agree to call a subset S of Rn locally simplicial if for 
each x ES there exists a finite collection of simplices Si, ... , Sm con
tained in S such that, for some neighborhood U of x, 

U n (Si U · · · U Sm) = U n S. 

A locally simplicial set need not be convex or closed. The class of locally 
simplicial sets includes, besides line segments and other simplices, all 
polytopes and polyhedral convex sets. This will be verified later, in 
Theorem 20.5. It also includes all relatively open convex sets. 

In the proof below, we shall make use of the following intuitively obvious 
fact. Let C be a simplex with vertices x0, Xi, ... , xm, and let x E C. Then 
C can be triangulated into simplices having x as a vertex, i.e. each y EC 
belongs to a simplex whose vertices are x and m of them + 1 vertices of C. 
(The argument can obviously be reduced to the case where x cannot be 
expressed as a convex combination of fewer than m + 1 of the vertices of 
C, i.e. the case where x E ri C. Each y EC lies on some line segment 
joining x with a relative boundary point z of C. This z can be expressed as a 
convex combination of m vertices of C, say Xi, ••. , xm. The points 
x, Xi, ••• , Xm are affinely independent, and the simplex they generate 
contains y.) 

THEOREM 10.2. Let f be a convex function on Rn, and let S be any 
locally simplicial subset of dom f Then f is upper semi-continuous relative 
to S, so that if f is closed f is actually continuous relative to S. 

PROOF. Let x ES, and let Si, ... , Sm be simplices in S such that some 
neighborhood of x has the same intersection with Si U · · · U Sm as it 
has with S. Each of the simplices S; which contains x can be triangulated 
into finitely many other simplices, each having x as one vertex, as explained 
above. Let the simplices obtained this way be Ti. . .. , Tk. Thus each Ti 
has x as one of its vertices, and some neighborhood of x has the same 
intersection with Ti U · · · U Tk as it has with S. If we can show that f 
is upper semi-continuous at x relative to each of the sets Ti, it will 
follow that f is upper semi-continuous at x relative to Ti u · · · u Tk, 
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and hence that f is upper semi-continuous at x relative to S. Thus the 
argument is reduced to showing that, if Tis a simplex contained in <lorn/ 
and xis a vertex of T, then/ is upper semi-continuous at x relative to T. 
There is no loss of generality in supposing that T is n-dimensional. In 
fact, applying an affine transformation if necessary, we can suppose that 
x = 0 and that the vertices of T other than 0 are e1 = (1, 0, ... , 0), 
... , e,. = (0, ... , 0, 1). Then for any z = ai. ... , 'n) in T we have 

by the convexity off (This holds even though f might be improper; the 
expression oo - oo cannot arise here because f nowhere has the value 
+ oo on T.) The "Jim sup" of the left side of this inequality as z goes to 
0 in T cannot exceed the "Jim sup" of the right side, which is f (0). Thus 
f is upper semi-continuous at 0 relative to T. II 

The uses of Theorem 10.2 are well demonstrated by the following 
application to the problem of extensions. 

THEOREM 10.3. Let C be a locally simplicial convex set, and let f be a 
finite convex function on ri C which is bounded above on every bounded 
subset ofri C. Then/ can be extended in one and only one way to a continuous 
finite convex function on the whole of C. 

PROOF. Set/(x) = + oo for x tf- ri C, and form elf The function elf 
is convex, closed and proper, and it agrees with/ on ri C (Theorem 7.4), 
moreover, elf is finite on the relative boundary of C by the boundedness 
condition on f By Theorem 10.2, cl f is continuous on C. Thus the 
restriction of cl/to C is a continuous finite convex extension of/. There can 
be only one such extension, since C c cl (ri C). II 

The extension in Theorem 10.3 can be effected, of course, by setting/(x) 
(for a relative boundary point x of C) equal to the limit of f(y) as y 
approaches x along any line segment joining x with a point of ri C. 

As an example, consider the case where C is the non-negative orthant 
of Rn (which is locally simplicial according to Theorem 20.5). The 
interior of C is the positive orthant. Let/ be any finite convex function on 
the positive orthant which is non-decreasing, in the sense that/ai. ... , ~n) 
is a non-decreasing function of ~1 for j = I, ... , n. For each positive real 
number A., we have 

for all the vectors x = ( ~1 , •.. , ~n) such that 0 < ~1 ~ A. for all j. 
Therefore f is bounded above on every bounded subset of the positive 
orthant. [ t follows from Theorem 10.3 that f can be extended uniquely to 
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a finite continuous (non-decreasing) convex function on the whole non
negative orthant. 

A real-valued function f on a set S c R" will be called Lipschitzian 
relative to S if there exists a real number a 2: 0 such that 

lf(y) - /(x)I ~ 'l. ly - xi, 'VyE S, 'VxE S. 

This condition implies in particular that/is uniformly continuous relative 
to S. 

The following theorem gives a significant refinement of Theorem IO.I. 

THEOREM 10.4. Let f be a proper coni-ex function, and let S be any 
closed bounded subset ofri (dom/). Then/ is Lipschitzian relative to S. 

PROOF. There is no loss of generality if we suppose that domf is 
n-dimensional in Rn, so that S is actually in the interior of dom f Let B 
be the Euclidean unit ball. For each s > 0, S + sB is a closed bounded set 
(the image of the compact set S x B under the continuous transformation 
(x, u) ~ x + cu). The nest of sets 

(S + sB) n (R" \int (dom/)), c > 0, 

has an empty intersection, and hence one of the sets in the nest is empty. 
Hence, for a certain s > 0, 

S + sB c int (dom/). 

By Theorem 10.1, f is continuous on S + sB. Since S + sB is a closed 
bounded set, it follows that f is bounded on S + sB. Let a1 and a 2 be 
lower and upper bounds, respectively. Let x and y be any two distinct 
points in S, and let 

z = y + (s/ly - xl)(y - x). 

Then z E S + sB and 

y =(I - A)X +AZ, A = ly - xl/(c + ly - xi). 

From the convexity off, we have 

f(y) ~ (I - A)f(x) + }j(z) = /(x) + -1(/(z) - f(x)) 

and consequently 

This inequality is valid for any x and yin S, so f is Lipschitzian relative to 
s. 11 

A finite convex function f on Rn is uniformly continuous, even Lip
schitzian, relative to every bounded set by Theorem 10.4, but/ need not be 
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uniformly continuous or Lipschitzian relative to R" as a whole. The 
circumstances under which f has these additional properties will now be 
described. 

THEOREM 10.5. Letf be afinite convex function on Rn. In order that/ 
be uniformly continuous relative to Rn, it is necessary and sufficient that the 
recession function JO+ off be finite everywhere. In this etient, f is actually 
Lipschitzian relative to Rn. 

PROOF. Suppose that f is uniformly continuous. Choose any s > 0. 
There exists a o > 0 such that lzl ~ o implies 

f(x + z) - j(x) ~ s, Vx. 

For this o, one has (jO+)(z) ~ s when lzl ~ o, by the first formula in 
Theorem 8.5. Since JO+ is a positively homogeneous proper convex 
function, this implies JO+ is finite everywhere. 

Conversely, suppose JO+ is finite everywhere. Then JO+ is continuous 
everywhere, according to Corollary 10.1.1, and hence 

oo >a= sup {(JO+)(z) I lzl =I} 

=sup {lz1-1(fO+)(z) I z-¥- O}. 
It follows that 

a ly - xi 2. (JO+)(y - x) 2.f(y) - f(x), Vx, Vy 

(Corollary 8.5.1). Thus f is Lipschitzian and in particular uniformly 
continuous relative to R". II 

COROLLARY I 0.5.1. A finite convex function f is Lipschitzian relative to 
R" if 

Jim inf f ().y)/). < oo, Vy. 
;.~oo 

PROOF. The limit equals (JO+)(y) by Theorem 8.5. 
COROLLARY I 0.5.2. Let g be any finite convex function Lipschitzian 

relative to Rn (for instance, g(x) = a lxl + fJ, a > 0). Then every finite 
convex function f such that f ~ g is likewise Lipschitzian relative to Rn. 

PROOF. One has JO+ ~ gO+ when f ~ g. II 
Theorem 10.5 will be dualized in Corollary 13.3.3. 
We turn now to the continuity properties of collections of convex 

functions and closely related properties of convergence. 
Let u; I i EI} be a collection of real-valued functions on a subset s of 

Rn. We shall say that {f; Ii EI} is equi-Lipschitzian relative to S if there 
exists a real number a 2_ 0 such that 

lf;(y) - /;(x)I ~ a ly - xi, Vy ES, Vx ES, ViE I. 
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When this condition is satisfied, the collection is in particular uniformly 
equicontinuous relative to S, i.e. for every s > 0 there exists a b > 0 such 
that 

IJ;(y) - /;(x)I ~ s, 'ViE l, 

whenever y ES, x ES and ly - xi ~ b. The collection {f; I i EI} is said 
to be pointwise bounded on S, of course, if the set of real numbers /;(x), 
i EI, is bounded for each x E S. It is said to be uniformly bounded on S 
if there exist real numbers a1 and a 2 such that 

Vx ES, 'ViE [. 

THEOREM 10.6. Let C be a relath-ely open convex set, and let {f; I i EI} 
be an arbitrary collection of convex functions finite and pointwise bounded 
on C. Let S be any closed bounded subset of C. Then {f; I i E I} is uniformly 
bounded on Sand equi-Lipschitzian relative to S. 

The conclusion remains valid if the pointwise boundedness assumption is 
weakened to the following pair of assumptions: 

(a) There exists a subset C' of C such that conv (cl C') :::::> C and 
sup {f;( x) I i EI} is finite for every x E C'; 

(b) There exists at least one x EC such that inf {f;(x) Ii EI} is finite. 

PROOF. There is no loss of generality if we suppose that C is actually 
open. Assuming (a) and (b), we shall show that {f; I i EI} is uniformly 
bounded on every closed bounded subset of C. The equi-Lipschitzian 
property will then follow by the proof of Theorem 10.4, since the Lip
schitz constant a constructed in that proof depended only on the given 
lower and upper bounds a 1 and a 2• Let 

f(x) =sup {f;(x) Ii EI}. 

This f is a convex function, and by (a) we have, since cl dom/ contains 
cl C' and hence conv cl C' and C, 

domf :::::> int (cl (dom/)) :::::> int C = C. 

(The first inclusion holds by Theorem 6.3, since domf is convex.) There
fore /is continuous relative to C (Theorem IO. I). [n particular ,fis bounded 
above on every closed bounded subset of C, i.e. {f; Ii EI} is uniformly 
bounded from above on every closed bounded subset of C. To prove that 
{f, I i EI} is also uniformly bounded from below on every closed bounded 
subset of C, it is enough to construct a continuous real-valued function g 
such that 

f;(x) 2 g(x), 'VxEC, Vi E [. 
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Making use of (b), select any point x EC such that 

- oo < {J1 = inf {f;(i) I i E /}. 
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Choose s > 0 so small that i + sB c C, where B is the Euclidean unit 
ball, and let {J2 be a positive upper bound to the values off on x + sB. 
Given any x EC, x -¥- .\', we have i = (I - ,1).:: + AX for 

z = x + (s/I.\' - xl)(i - x), 

A = s/(s + Ii - xi). 

Since 0 <A< 1 and I= - ii= s, we have (for any iE /) 

{J1 ~f;(i) ~ (I - .1)f;(z) + .1f;(x) 

~ (I - -1){J2 + -1f,(x) ~ {J2 + Af;(x) 
and consequently 

The quantity on the right depends continuously on x. The inequality is 
valid for every x E C and every i EI, so the theorem is proved. II 

THEOREM 10.7. Let C be a relath'ely open com·ex set in R", and let T 
be any locally compact topological space (for instance, any open or closed 
subset of Rm). Letf be a real-valued function on C X T such thatf(x, t) is 
convex in x for each t E T and continuous in t for each x EC. Then f is 
continuous on C X T, i.e.f(x, t) is jointly continuous in x and t. 

The conclusion remains rnlid 1f the assumption about continuity in t is 
weakened to the following: there exists a subset C' of C such that cl C' :::::> C 
and f( x, ·) is a continuous function on T for each x E C'. 

PROOF. Let (x0 , t0) be any point of C x T. Let T0 be any compact 
neighborhood of t0 in T. For each x EC', the function f(x, ·) is con
tinuous on T0 and hence bounded on T0 • Thus{!(·, t) I t E T0} is a collection 
of finite convex functions on C which is pointwise bounded on C'. It 
follows from Theorem 10.6 that the collection·{!(·, t) It E T0} is equi
Lipschitzian on closed bounded subsets of C and in particular equi
continuous at x0 • Given any s > 0, we can therefore find a o > 0 such that 

l/(x, t) - f(x 0 , t)I ~ s/4, 

whenever Ix - x0 1 ~ o. Let x1 be a point of C' such that lx1 - x0 1 ~ o. 
Sincef(xi. ·)is continuous at t0 , we can find a neighborhood V of t0 in T0 

such that 
Vt Ev. 
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For any (x, t) such that Ix - x0 1 ~ o and t EV, we have 

lf(x, t) - f(x 0 , t0)1 ~ lf(x, t) - f(x 0 , t)I + lf(x0 , t) - /(xi. t)I 

+ lf(xi. t) - /(x1, to)I + lf(x1, to) - f(xo, to)I 

~ (s/4) + (s/4) + (s/4) + (s/4) = s. 

This shows that/ is continuous at (x0 , t0). II 

THEOREM 10.8. Let C be a relatively open convex set, and letf1,f2 , • •• • 

be a sequence of finite convex functions on C. Suppose that the sequence 
converges pointwise on a dense subset of C, i.e. that there exists a subset 
C' of C such that cl C' :::::> C and, for each x EC', the limit of f 1(x), 

/ 2(x), ... , exists and is finite. The limit then exists for every x EC, and the 
function f, where 

f(x) = limf;(x), 
i-+oo 

is finite and convex on C. Moreover the sequence / 1,/2 , ••• , converges to f 
uniformly on each closed bounded subset of C. 

PROOF. There is no loss of generality if we assume C to be open. The 
collection {f; I i = 1, 2, ... } is pointwise bounded on C', and hence by 
Theorem 10.6 it is equi-Lipschitzian on each closed bounded subset of C. 
Let S be any closed bounded subset of C. Let S' be a closed bounded 
subset of C such that int S' :::::> S. (The argument which establishes the 
existence of S' is given at the beginning of the proof of Theorem 10.4.) 
There exists a real number a > 0 such that 

lf;(y) - /;(x)I ~ a ly - xi, Vy ES', Vx ES', Vi. 

Given any s > 0, there exists a finite subset C~ of C' n S' such that each 
point of S lies within the distance s/3a of at least one point of C~. Since 
C~ is finite and the functions/; converge pointwise on C~, there exists an 
integer i0 such that 

lf;(z) - /i(z)I ~ s/3, V:: EC~. 

Given any x ES, let z be one of the points of C~ such that I:: - xi ~ s/3a. 
Then, for every i 2 i0 and j 2 i0 , we have 

lf;(x) - / 1(x)I ~ lf;(x) - /;(z)I + If;(::) - Ji(::)I + I~(::) - Ji(x)I 

~a Ix - zl + (s/3) + 'Y. I:: - xi ~ s. 

This proves that, given any s > 0, there exists an integer i 0 such that 

lf;(x) - /i(x)I ~ s, Vx ES. 

It follows that, for each x ES, the real numbers/1(x),f2(x), ... , form a 
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Cauchy sequence, so that the limit f(x) exists and is finite. Moreover, 
given any s > 0, there exists an integer i 0 such that 

lf,(x) - f(x)I = Jim lf;(x) - jj(x)I ~ s, Vx ES, 
j-oo 

Thus the functions f; converge to f uniformly on S. Since S was any closed 
bounded subset of C, we may conclude in particular that f exists through
out C. Of course, the convexity inequality 

/;((! - Jc)x + Jcy) ~ (I - Jc)f;(x) + Jcf;(y) 

is preserved for each x EC, y EC and A E [O, l] as i ~ oo, so f is 
convex. II 

COROLLARY 10.8.1. Let f be a finite convex function on a relatively open 
convex set C. Let fi.f2 , ••• , be a sequence of finite convex functions on C 
such that 

Jim sup J;(x) ~ f (x), 
i-oo 

Vx EC. 

Then, for each closed bounded subset S of C and each c > 0, there exists 
an index i0 such that 

f;(x) ~f(x) + s, Vx ES. 

PROOF. Let g;(x) = max {j~(x),f(x)}. The sequence of finite convex 
functions g; converges pointwise to f on C, and hence it converges uni
formly to f on S. II 

THEOREM 10.9. Let C be a relativeZv open convex set, and letf1 ,j;_, ... , 
be a sequence of finite convex functions on C. Suppose that the real number 
sequence f 1(x),f;.(x), ... , is bounded for each x EC (or merely for each 
x EC', where C' is a dense subset of C). It is then possible to select a 
subsequence of f 1,f2 , ••• , which converges uniformly on closed bounded 
subsets of C to some finite convex function f 

PROOF. A basic fact is needed: if C' is any subset of Rn, there exists a 
countable subset C" of C' such that cl C" :::::> C'. (Outline of proof: let Q1 

be the collection of all closed (Euclidean) balls in Rn whose centers have 
rational coordinates and whose radii are rational. Let Q be the sub
collection consisting of the balls in Q1 which have a non-empty intersec
tion with C'. Form C" by selecting a point of D n C' for each DE Q.) 

WeapplythisfacttoasubsetC'ofCsuch thatclC' :::::> Cand{f;(x) Ii= 
1, 2, ... ,} is bounded for every x EC'. The C" we obtain has these same 
properties, and it is countable as well. fn view of Theorem 10.8, all we 
need to show is that there is a subsequence of fi.h., ... , converging 
pointwise on C". Let x1 , x2 , ••• , be the elements of C" arranged in a 
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sequence. The real number sequence {f;(xi) I i = I, 2, ... } is bounded, 
and consequently it has at least one convergent subsequence. Thus we can 
find a real number cxi and an infinite subset Ii of {I, 2, ... } , such that the 
values of the functions/; in the subsequence corresponding to Ii converge 
at Xi to cxi. Next, since {f;(x2) I i E Ii} is bounded, we can find a real number 
a 2 and an infinite subset I2 of Ii, not containing the first (i.e. least) integer 
in Ii such that the values of the functions f; in the subsequence correspond
ing to I 2 converge at x2 to a 2 (as well as converge at Xi to cxi). Then we can 
find a real number a3 and an infinite subset I 3 of I2 , not containing the 
first integer in I2 , such thatf;(x3) for i E I 3 converges to a 3 , etc. Continuing 
in this way, we get an Ii and a; for each xi. Let I be the infinite set consisting 
of the first integer in Ii. the first integer in I2 , etc. The sequence of real 
numbers f;(xi), i EI, converges to a1 for each j. Thus the sequence of 
functions f;, i EI, converges pointwise on C". II 
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SECTION 11 

Separation Theorems 

The notion of separation has proved to be one of the most fertile notions 
in convexity theory and its applications. ft is based on the fact that a 
hyperplane in Rn divides Rn evenly in two, in the sense that the complement 
of the hyperplane is the union of two disjoint open convex sets, the open 
half-spaces associated with the hyperplane. 

Let C1 and C2 be non-empty sets in Rn. A hyperplane H is said to 
separate C1 and C2 if C1 is contained in one of the closed half-spaces 
associated with Hand C2 lies in the opposite closed half-space. ft is said to 
separate C1 and C2 properly if C1 and C2 are not both actually contained in 
H itself. [ t is said to separate C1 and C2 strongly if there exists some s > 0 
such that C1 + sB is contained in one of the open half-spaces associated 
with Hand C2 + sB is contained in the opposite open half-space, where 
Bis the unit Euclidean ball {x I lxl ~ I}. (Of course, C; + sB consists of 
the points x such that Ix - yl ~ s for at least one y E C;.) 

Other kinds of separation are sometimes considered, for instance 
strict separation, where C1 and C2 must simply belong to opposing open 
half-spaces. Proper separation and strong separation seem the most 
useful by far, however, perhaps because they correspond in a natural 
way to extrema of linear functions. 

THEOREM I I. I. Let C1 and C2 be non-empty sets in Rn. There exists a 
hyperplane separating C1 and C2 properZv if and only if there exists a i-ector b 
such that 

(a) inf {(x, b) Ix E C1} 2. sup {(x, b) Ix E C2}, 

(b) sup {(x, b) Ix E C1} > inf {(x, b) Ix E C2}. 

There exists a hyperplane separating C1 and C2 strongly if and only if there 
exists a vector b such that 

(c) inf {(x, b) Ix E C1} > sup {(x, b) Ix E C2}. 

PROOF. Suppose that b satisfies condition (a) and (b), and choose any 
fJ between the infimum over C1 and the supremum over C2• We have b -¥- 0 
and fJ ER, so that H = {x I (x, b) = fJ} is a hyperplane (Theorem 1.3). 

95 
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The half-space {x I (x, b) 2 fJ} contains C1 , while {x I (x, b) ~ fJ} 
contains C2• Condition (b) implies C1 and C2 are not both contained in H. 
Thus H separates C1 and C2 properly. 

Conversely, when C1 and C2 can be separated properly, the separating 
hyperplane and associated closed half-spaces containing C1 and C2 can be 
expressed in the manner just described for some b and fJ. One has 
(x, b) 2 fJ for every x E C1 and (x, b) ~ fJ for every x E C2 , with strict 
inequality for at least one x E C1 or x E C2• Thus b satisfies conditions 
(a) and (b). 

If b satisfies the stronger condition (c), we can actually choose fJ ER 
and b > 0 such that (x, b) 2 fJ + b for every x E C1 , and (x, b) ~ fJ - b 
for every x E C2• Since the unit ball Bis bounded, s > 0 can be chosen 
so small that l(y, b)I < b for every yin sB. Then 

C1 + sB c {x I (x, b) > fJ}, 

C2 + sB c {x I (x, b) < fJ}, 

so that H = {x I (x, b) = fJ} separates C1 and C2 strongly. Conversely, if 
C1 and C2 can be separated strongly, the inclusions just described hold 
for a certain b, fJ and s > 0. Then 

fJ ~inf {(x, b) + s(y, b) Ix E C1,y EB}< inf {(x, b) Ix E C1}, 

fJ 2 sup {(x, b) + s(y, b) Ix E C2 ,y EB}> sup {(x, b) Ix E C2}, 

so that condition (c) holds. II 
Whether or not two sets can be separated is an existence question, so it 

is not surprising that the most celebrated applications of separation theory 
occur in the proofs of various existence theorems. Typically, what happens 
is that one needs vectors b with certain properties, and one is able to 
construct a pair of convex sets C1 and C2 such that the vectors bin question 
correspond to the hyperplanes separating C1 and C2 (if any). One then 
invokes a theorem which says that C1 and C2 can indeed be separated in 
the required sense. 

As it happens, the existence of separating hyperplanes in Rn is a 
relatively elementary matter, not involving the axiom of choice. The 
fundamental construction is given in the proof of the following theorem. 

THEOREM 11.2. Let C be a non-empty relatively open convex set in R\ 
and let M be a non-empty affine set in Rn not meeting C. Then there exists 
a hyperplane H containing M, such that one of the open half-spaces 
associated with H contains C. 

PROOF. ff M itself is a hyperplane, one of the associated open half
spaces must contain C, for otherwise M would meet C contrary to the 
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hypothesis. (If C contained points x and y in the two opposing open 
half-spaces, some point of the line segment between x and y would lie in the 
mutual boundary M of the half-spaces.) Suppose therefore that Mis not a 
hyperplane. We shall show how to construct an affine set M' of one higher 
dimension than M which again does not meet C. This construction will 
furnish a hyperplane H with the desired properties after n steps or less, 
and hence will prove the theorem. 

Translating if necessary, we can suppose that 0 EM, so that M is a 
subspace. The convex set C - M includes C but not 0. Since Mis not a 
hyperplane, the subspace MJ_ contains a two-dimensional subspace P. 
Let C' = P n (C - M). This is a relatively open convex set in P 
(Corollary 6.5.1 and Corollary 6.6.2), and it does not contain 0. All we 
have to do is find a line L through 0 in P not meeting C', for then M' = 
M + L will be a subspace of one higher dimension than M not meeting C. 
(Indeed, (M + L) n C ¥- 0 would imply L n (C - M) ¥- 0, contrary 
to L n C' = 0.) For simplicity, we can identify the plane P with R2 • The 
existence of the line L is trivial if C' is empty or zero-dimensional. ff aff C' 
is a line not containing 0, we can take L to be the parallel line through 0. 
If aff C' is a line containing 0, we can take L to be the perpendicular line 
through 0. In the only remaining case, C' is two-dimensional and hence 
open. The set K = U {AC' I }, > O} is the smallest convex cone containing 
C' (Corollary 2.6.3), and it is open because it is a union of open sets. It 
does not contain 0. Therefore K is an open sector of R2 corresponding to 
an angle no greater than 7T. We can take L to be the line extending one of 
the two boundary rays of the sector. II 

The main separation theorem follows. 

THEOREM 11.3. Let C1 and C2 be non-empty convex sets in R". In order 
that there exist a hyperplane separating C1 and C2 properly, it is necessary 
and sufficient that ri C1 and ri C2 hatie no point in common. 

PROOF. Consider the convex set C = C1 - C2• Its relative interior is 
ri C1 - ri C2 by Corollary 6.6.2, so 0 tf- ri C if and only if ri C1 and ri C2 

have no point in common. Now if 0 tf- ri C there exists by the preceding 
theorem a hyperplane containing M = {O} such ri C is contained in one 
of the associated open half-spaces; the closure of that half-space then 
contains C, since Cc cl (ri C). Thus ifO tf- ri C there exists some vector b 
such that 

0 ~ inf (x, b) = inf (xi, b) - sup (x2, b), 

0 < sup (x, b) =sup (x1 , b) - inf (x2, b). 
XEC 
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But this means Ci and C2 can be separated properly, according to Theorem 
11.1. These conditions imply in turn that 0 tf- ri C, for they assert the 
existence of a half-space D = {x I (x, b) 2 O} containing C whose 
interior ri D = {x I (x, b) > O} meets C. fn that situation ri Cc ri D 
(Corollary 6.5.2). II 

Proper separation allows that one (but not both) of the sets be contained 
in the separating hyperplane itself. That this provision is needed in 
Theorem 11.3 is shown by the sets 

Ci= {(~i, ~2) I ~i > 0, ~2 2 ~J.-i}, 

C2 = {(~i, 0) I ~i 2 O} 

in R2• These convex sets are disjoint. The only separating hyperplane is the 
~i-axis, which contains all of C2• This example also shows that not every 
pair of disjoint closed convex sets can be separated strongly. 

THEOREM 11.4. Let Ci and C2 be non-empty com·ex sets in R". In order 
that there exist a hyperplane separating Ci and C2 strongly, it is necessary 
and sufficient that 

inf {lxi - x2 1 I Xi E Ci, x2 E C2} > 0, 

in other words that 0 tf- cl (Ci - C2). 

PROOF. If Ci and C2 can be separated strongly, then, for some s > 0, 
Ci + sB does not meet C2 + sB. On the other hand, if the latter holds the 
convex sets Ci+ sB and C2 + sB can separated properly, according to 
the preceding theorem. Since sB = s' B + s' B for s' = s/2, the sets 
(Ci + s' B) + <' B and ( C2 + s' B) + s' B then belong to opposite closed 
half-spaces, so that Ci + s' B and C2 + s' B are in opposite open half
spaces. Thus Ci and C2 can be separated strongly if and only if, for some 
s > 0, the origin does not belong to the set 

This condition means that 

for some s > 0, in other words 0 tf- cl (Ci - C2). 

COROLLARY 11.4.1. Let Ci and C2 be non-empty disjoint closed convex 
sets in R" haring no common directions of recession. Then there exists a 
hyperplane separating Ci and C2 strongly. 

PROOF. We have 0 tf- (Ci - C2) since Ci and C2 are disjoint. But 
cl (Ci - C2) = Ci - C2 under the recession condition by Corollary 
9.1.2. II 
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COROLLARY 11.4.2. Let Ci and C2 be non-empty convex sets in Rn 
whose closures are disjoint. If either set is bounded, there exists a hyperplane 
separating Ci and C2 strongly. 

PROOF. Apply the first corollary to cl Ci and cl C2 , one of which has no 
directions of recession at all. II 

Special separation results which take advantage of polyhedral convexity 
will be presented in Corollary 19.3.3, Theorem 20.2, Corollary 20.3.1 and 
Theorem 22.6. 

The set of solutions x to a system of weak linear inequalities (x, b;) ~ 
{J;, i EI, is a closed convex set, since it is an intersection of closed half
spaces. We shall now show that every closed convex set in Rn can be 
represented as some such solution set. 

THEOREM 11.5. A closed convex set C is the intersection of the closed 
half-spaces which contain it. 

PROOF. We can assume 0 ¥- C ¥- Rn, since the theorem is trivial 
otherwise. Given any a tf- C, the sets Ci = {a} and C2 = C satisfy the 
condition in Theorem 11.4. Hence there exists a hyperplane separating 
{a} and C strongly. One of the closed half-spaces associated with this 
hyperplane contains C but does not contain a. Thus the intersection of the 
closed half-spaces containing C contains no points other than those in 
C. II 

COROLLARY 11.5.1. Let S be any subset of Rn. Then cl (conv S) is the 
intersection of all the closed half-spaces containing S. 

PROOF. A closed half-space contains C =cl (conv S) if and only if it 
contains S. II 

COROLLARY 11.5.2. Let C be a convex subset of Rn other than Rn itself. 
Then there exists a closed half-space containing C. In other words, there 
exists some b E Rn such that the linear function (', b) is bounded above on C. 

PROOF. The hypothesis implies that cl C ¥- Rn (for otherwise Rn = 
ri (cl C) c C). By the theorem, a point belongs to cl C if and only if it 
belongs to every closed half-space containing cl C, so the collection of 
closed half-spaces containing cl C cannot be empty. II 

A sharper version of Theorem 11.5 will be given in Theorem 18.8. 
The geometric concept of tangency is one of the most important tools 

in analysis. Tangent lines to curves and tangent planes to surfaces are 
defined classically in terms of differentiation. In convex analysis, the 
opposite approach is exploited. A generalized tangency is defined geo
metrically in terms of separation. This notion is subsequently used to 
develop a generalized theory of differentiation. 

The generalized tangency is expressed by "supporting" hyperplanes and 
half-spaces. Let C be a convex set in Rn. A supporting half-space to C is a 
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closed half-space which contains C and has a point of C in its boundary. A 
supporting hyperplane to C, is a hyperplane which is the boundary of a 
supporting half-space to C. The supporting hyperplanes to C, in other 
words, are the hyperplanes which can be represented in the form 
H = {x I (x, b) = fJ}, b ¥- 0, where (x, b) ~ fJ for every x EC and 
(x, b) = fJ for at least one x EC. Thus a supporting hyperplane to C is 
associated with a linear function which achieves its maximum on C. 
The supporting hyperplanes passing through a given point a EC 
correspond to vectors b normal to Cat a, as defined earlier. 

If C is not n-dimensional, so that aff C ¥- Rn, we can always extend 
aff C to a hyperplane containing all of C. Such supporting hyperplanes 
are hardly of interest, so we usually speak only of non-trivial supporting 
hyperplanes to C, i.e. ones which do not contain C itself. 

THEOREM 11.6. Let C be a convex set, and let D be a non-empty convex 
subset of C (for instance, a subset consisting of a single point). In order that 
there exist a non-trivial supporting hyperplane to C containing D, it is 
necessary and sufficient that D be disjoint from ri C. 

PROOF. Since D c C, the non-trivial supporting hyperplanes to C 
which contain D are the same as the hyperplanes which separate D and C 
properly. By Theorem 11.3, such a hyperplane exists if and only if ri Dis 
disjoint from ri C. This condition is equivalent to D being disjoint from 
ri C (Corollary 6.5.2). II 

COROLLARY 11.6.1. A convex set has a non-zero normal at each of its 
boundary points. 

COROLLARY 11.6.2. Let C be a convex set. An x E C is a relative 
boundary point of C if and only if there exists a linear function h not constant 
on C such that h achieves its maximum over Cat x. 

The preceding results can be refined slight! y in the case of convex cones. 

THEOREM 11.7. Let Ci and C2 be non-empty subsets of Rn, at least one 
of which is a cone. If there exists a hyperplane which separates Ci and C2 

properly, then there exists a hyperplane which separates Ci and C2 properly 
and passes through the origin. 

PROOF. Assume that C2 , say, is a cone. If Ci and C2 can be separated 
properly, there exists a vector b satisfying the first two conditions in 
Theorem 11.1. Let 

fJ =sup {(x, b) Ix E C2}. 

Then, as shown in the proof of Theorem 11.1, the set 

H = {x I (x, b) = fJ} 
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is a hyperplane which separates C1 and C2 properly. Since C2 is a cone, 
we have 

.1(x, b) = (h, b) ~ {J < ro, V.1 > 0. 

This implies that {J ;;::: 0 and (x, b) ~ 0 for every x in C2• Hence {J = 0 
and 0 EH. II 

COROLLARY 11. 7.1. A non-empty closed convex cone in R" is the 
intersection of the homogeneous closed half-spaces which contain it (a 
homogeneous half-space being one with the origin on its boundary). 

PROOF. Use the theorem to refine the proof of Theorem 11.5. 
COROLLARY 11. 7.2. Let S be any subset of R", and let K be the closure 

of the convex cone generated by S. Then K is the intersection of all the 
homogeneous closed half-spaces containing S. 

PROOF. A homogeneous closed half-space is in particular a closed 
convex cone containing the origin, and such a cone includes S if and only 
if it includes K. Apply the preceding corollary. II 

COROLLARY 11.7.3. Let K be a convex cone in R" other than R" itself. 
Then K is contained in some homogeneous closed half-space of R". In 
other words, there exists some vector b ~ 0 such that (x, b) ~ Ofor every 
XE K. 

PROOF. Like Corollary 11.5.2. 



SECTION 12 

Conjugates ef Convex Functions 

There are two ways of viewing a classical curve or surface like a conic, 
either as a locus of points or as an envelope of tangents. This fundamental 
duality enters the theory of convexity in a slightly different form: a closed 
convex set in R" is the intersection of the closed half-spaces which contain 
it (Theorem 11.5). Many intriguing duality correspondences exist as 
embodiments of this fact, among them conjugacy of convex functions, 
polarity of convex cones or of other classes of convex sets or functions, and 
the correspondence between convex sets and their support functions. The 
basic theory of conjugacy will be developed here. rt will be used 
subsequently to deduce the theorems about the other correspondences. 

The definition of the conjugate of a function grows naturally out of the 
fact that the epigraph of a closed proper convex function on R" is the 
intersection of the closed half-spaces in R"+I which contain it. The first 
step is to translate this geometric result into the language of functions. 

The hyperplanes in R 11+I can be represented by means of the linear 
functions on R"+1

, and these can in turn be represented in the form 

(x, µ)--+ (x, b) + µfJo, b ER", {J0 ER. 

Since non-zero linear functions which are scalar multiples of each other 
give the same hyperplanes, only the cases where {J0 = 0 or {J0 = -1 need 
concern us. The hyperplanes for {J0 = 0 are of the form 

{(x,µ)j(x,b)={J}, O~bER", {JER. 

These we call vertical. The hyperplanes for {J0 = -1 are of the form 

{(x, µ) J (x, b) - µ = {J}, b ER", {J ER. 

These are the graphs of the affine functions h(x) = (x, b) - {J on R". 
Every closed half-space in R"+1 is thus of one of the following types: 

I. {(x, µ) J (x, b) ~ {J} = {(x, µ) J h(x) ~ O}, b ~ 0, 

2. {(x, µ) J µ ~ (x, b) - {J} = epi h, 

3. {(x, µ) J µ ~ (x, b) - {J}. 

We shall refer to these types as vertical, upper and lower, respectively. 

THEOREM 12.1. A closed convex function f is the pointwise supremum 
of the collection of all affine functions h such that h ~ f 

PROOF. We can take f to be proper, since the theorem is trivial 
otherwise (by the definition of the closure operation for improper convex 
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functions). inasmuch as epi/is a closed convex set, epi/is the intersection 
of the closed half-spaces in R 11

-c
1 containing it, as already pointed out. Of 

course, no lower half-space can contain a set like epi/, so only vertical 
and upper closed half-spaces are involved in the intersection. The half
spaces involved cannot all be vertical, for that would imply that epi/ 
was a union of vertical lines in Rn+i, contrary to properness. The upper 
closed half-spaces containing epi f are just the epigraphs of the affine 
functions h such that h ~ f Their intersection is the epigraph of the point
wise supremum of such functions h. Thus, to prove the theorem, we must 
show that the intersection of the vertical and upper closed half-spaces 
containing epi/ is identical to the intersection of just the upper closed 
half-spaces containing epi/ Suppose that 

V = {(x, µ) J 0 ~ (x, b1 ) - {3 1 = h1 (x)} 

is a vertical half-space containing epi /, and that (x0 , µ 0) is a point not in 
V. [t is enough to demonstrate that there exists an affine function h such 
that h -::;,./and µ 0 < h(x0). We already know there exists at least one 
affine function h2 such that epi h2 :;;) epi/, i.e. h2 -::;,f For every x Edom/ 
we have h1 (x) -:::;,_ 0 and h2(x) -:::;,_ f(x), and hence 

V.1~0. 

The same inequality holds trivially when x tf. <lorn/, because then/(x) = 

+ ro. Thus if we fix any A ~ 0 and define h by 

h(x) = .1h1 (x) + h2(x) = (x, Ab1 + b2 ) - (AfJ1 + f32) 

we will have h -:::;,_ f Since h1 (x0) > 0, a sufficiently large A will ensure that 
h(x0) > µ 0 as desired. II 

COROLLARY 12.1.1. If f is any function from W to [- ro, ro], then 
cl ( conv /) is the pointwise supremum of the collection of all affine functions 
on Rn majorized by f 

PROOF. Since cl ( conv /) is the greatest closed convex function 
majorized by f, the affine functions h such that h ~cl (conv /) are the 
same as those such that h -::;,. f II 

COROLLARY 12.1.2. Given any proper convex function f on Rn, there 
exists some b ER" and {J ER such that f(x) ~ (x, b) - {J for e1·ery x. 

Notice, by the way, that Theorem 12.1 contains the corresponding 
theorem for convex sets, Theorem 11.5, as a special case. [n fact, if/is 
the indicator function of a convex set C and h(x) = (x, b) - {J, we 
have h -::;,./if and only if h(x) -:::;,_ 0 for every x EC, i.e. if and only if 
C c {x J (x, b) -:::;,_ {J}. 

Let f be any closed convex function on Rn. According to Theorem 12.1, 
there is a dual way of describing/: one can describe the set F* consisting 
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of all pairs (x*, µ*) in Rn+I such that the affine function h(x) = 
(x, x*) - µ* is majorized by f We have h(x) ~f(x) for every x if and 
only if 

µ* ~sup {(x, x*) - f(x) J x E Rn}. 

Thus F* is actually the epigraph of the function/* on Rn defined by 

f*(x*) =sup"' {(x, x*) - f(x)} = -inf"' {f(x) - (x, x*)}. 

This f * is called the conjugate off It is actually the pointwise supremum 
of the affine functions g(x*) = (x, x*) - µ such that (x, µ) belongs to the 
set F = epi/ Hence/* is another convex function, in fact a closed convex 
function. Since f is the pointwise supremum of the affine functions h(x) = 
(x, x*) - µ*such that (x*, µ*) E F* = epi/*, we have 

f(x) =sup"'. {(x, x*) - f*(x*)} = -inf"'. {f*(x*) - (x, x*)}. 

But this says that the conjugate/** of/* is/ 
The constant functions + ro and - ro are plainly conjugate to each 

other. Since these are the only improper closed convex functions, all the 
other conjugate pairs must be proper. 

The conjugate f* of an arbitrary function f from Rn to [- ro, + ro] 
can be defined by the same formula as above. Since f* simply describes 
the affine functions majorized by f,f* is then the same as the conjugate of 
cl ( conv /) (Corollary 12.1.1 ). 

The main facts are summarized as follows. 
THEOREM 12.2. Let f be a convex function. The conjugate function f* is 

then a closed convex function, proper if and only if f is proper. Moreover, 
(elf)* = f* and/** =elf 

COROLLARY 12.2.1. The conjugacy operation/-+ f* induces a symmetric 
one-to-one correspondence in the class of all closed proper convex functions 
on Rn. 

COROLLARY 12.2.2. For any convex function f on Rn, one actually has 

f*(x*) =sup {(x, x*) - f(x) J x E ri (<lorn/)}. 

PROOF. The supremum gives g*(x*), where g is the function which 
agrees with f on ri (<lorn/) but is + ro elsewhere. We have cl g = elf 
(Corollary 7.3.4), and hence g* = f* by the theorem. II 

Taking conjugates clearly reverses functional inequalities: / 1 ~ fz 
implies / 1* ~ / 2*. 

The theory of conjugacy can be regarded as the theory of the "best" 
inequalities of the type 

(x,y) ~f(x) + g(y), Vx, Vy, 

where f and g are functions from Rn to ( - ro, + ro ]. Let W denote the 
set of all function pairs (/, g) for which this inequality is valid. The "best" 
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pairs (/, g) in Ware those for which the inequality cannot be tightened, 
i.e. those such that, if (f', g') E W, f' ~ f and g' ~ g, then f' = f and 
g' = g. Clearly, one has (f, g) E W if and only if 

g(y) ~sup"' {(x,y) - /(x)} = f*(y), Vy, 

or equivalently 

f(x) ~ supy { (x, y) - g(y)} = g*(x), V x. 

Therefore, the "best" pairs in W are precisely those such that g = f* 
and f = g*. The "best" inequalities thus correspond to the pairs of 
mutually conjugate closed proper convex functions. 

rt is useful to remember, in particular, that the inequality 

(x, x*) ~f(x) + f*(x*), Vx, Vx*, 

holds for any proper convex function f and its conjugate f*. We shall 
refer to this relation as Fenchel's inequality. The pairs (x, x*) for which 
Fenchel's inequality is satisfied as an equation form the graph of a certain 
multivalued mapping af called the subdifferential of/; see Theorem 23.5. 
Many properties of this mapping are described in §23, §24, and §25. 

The conjugacy operation f--+ f* is closely related to the classical 
Legendre transformation in the case of differentiable convex functions. 
This relationship is discussed in detail in §26. 

Various examples of conjugate functions follow. 
As a start, consider the closed proper convex function/(x) = e"', x ER. 

By definition 
f*(x*) = sup"' {xx* - e,.}, Vx* ER. 

If x* < 0, xx* - e"' can be made arbitrarily large by taking x very 
negative, so the supremum is + ro. [f x* > 0, the elementary calculus can 
be used to determine the supremum, which turns out to be x* log x* - x*. 
If x* = 0, the supremum is 0 trivially. Thus the function conjugate to the 
exponential function is 

{

x* log x* - x* if x* > 0, 

f*(x*) = 0 if x* = 0, 

+ro if x* < 0. 

Notice that the value of/* at x* = 0 could also have been determined as 
the limit of x* log x* - x* as x* ! 0 (Corollary 7.5.1). The conjugate of 
f* is in turn given by 

sup"'. {xx* - f*(x*)} = sup {xx* - x* log x* + x* J x* > O}, 

and this supremum is ex by the calculus. Of course, the calculus is super-
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fluous in reaching this conclusion, for we already know from Corollary 
12.2.1 that/** = f 

Notice from this example that a function which is finite everywhere 
need not have a conjugate which is finite everywhere. Properties of the 
effective domain of the conjugate of a convex function/will be correlated 
with properties of/in §13. 

Here are some other conjugate pairs of closed proper convex functions 
on R (where (l/p) + (l/q) = 1): 

I. f(x) = (l/p) lxlv, 1 < p < + ro, 

f*(x*) = (l/q) Ix* la, 1 < q < + ro. 

t
-(1/p)xP if x ~ 0, 0 <p < 1, 

2. f(x) = . 
+ro 1f x<O, 

{
-(1/q)lx*la if x*<O,-ro<q<O, 

f*(x*) = 
+ ro if x* ~ 0. 

{

-(a2 - x2)112 if 
3. f(x) = 

+ro if lxl >a, 

f*(x*) = a(I + x*2)112. 

lxl ~a, a~ 0, 

{
-t - log x if x > 0, 

4. j(x) = 
+ OC! if x ~ 0, 

t
-i - log (-x*) if x* < 0, 

f*(x*) = 
+ ro if x* ~ 0. 

In the last example, one has f*(x*) = j(-x*). There are actually 
many convex functions which satisfy this identity. The identity f* = f is 
much more restrictive, however: it has a unique solution on Rn, namely 
f = w, where 

w(x) = (l/2)(x, x). 

Indeed, one can see by direct calculation of w* that w* = w. On the other 
hand, if/is any convex function such that/* =f, then/is proper, and 
by Fenchel's inequality 

(x, x) ~j(x) + f*(x) = 2f(x). 

Thus f ~ w. This inequality implies that f* ~ w*. Since f* = f and 
w* = w, it must be that/= w. 

For quite a different example of conjugacy, consider the case where f is 
the indicator function of a subspace L of Rn. Then 

f*(x*) = supx {(x, x*) - o(x J L)} =sup {(x, x*) J x EL}. 

The latter supremum is 0 if (x, x*) = 0 for every x EL, but otherwise it is 
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+ ro. Thus/* is the indicator function of the orthogonally complementary 
subspace L J_. The relation/** = f corresponds to the relation L J L = L. 
In this sense, the orthogonality correspondence for subspaces can be 
regarded as a special case of the conjugacy correspondence for convex 
functions. This observation will be broadened at the beginning of §14. 

We can generalize the orthogonality correspondence for subspaces 
slightly by taking the basic element to be, not a subspace, but a non-empty 
affine subset on which a certain affine function (perhaps identically 
zero) is given. Such elements can be identified, of course, with the partial 
affine functions, i.e. the proper convex functions f such that <lorn f is an 
affine set and f is affine on domf rt turns out that the conjugate of a 
partial affine function is another partial affine function. Since a partial affine 
function is necessarily closed (Corollary 7.4.2), it is the conjugate of its 
conjugate. Thus partial affine functions, like subspaces, come in dual 
pairs. It is easy to derive a formula for this duality. Any partial affine 
function can be expressed (non-uniquely) in the form 

f(x) = b(x J L +a) + (x, a*) + ex, 

where L is a subspace, a and a* are vectors, and ex is a real number. The 
conjugate partial affine function is then 

f*(x*) = b(x* / LJ. +a*)+ '.x*, a)+ ex* 

where ex* = - ex - (a, a*). This result is obtained by applying the follow
ing theorem to h = b(· j L), A = I. 

THEOREM 12.3. Let h be a conl'ex function on R", and let 

f(x) = h(A(x - a))+ ;x,a*) + x, 

where A is a one-to-one linear transformation from R" onto R", a and a* 
are vectors in R", and ex E R. Then 

f*(x*) = h*(A*-1(x* - a*))+ '.x*, a)+ ex*, 

where A* is the adjoint of A and :x * = - x - (a, a*). 

PROOF. The substitution y = A(x - a) enables us to calculate f* as 
follows: 

f*(x*) = supx {(x, x*) - h(A(x - a)) - '.x, a*) - ex} 

= supy { (A-1y + a, x*) - h(y) - (A-1_1· + a, a*) - ex} 

= supy {(A-1y, x* - a*) - h(y)} +(a, x* - a*) - ex 

= supy {(y, A*-1(x* - a*)) - h(y)} + (x*, a)+ ex* 

The supremum in the last expression is h*(A*-1(x* - a*)) by 
definition. II 
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The conjugacy correspondence for partial affine functions can be 
expressed conveniently by means of Tucker representations of affine sets. 
Let f be any n-dimensional partial affine function on Rs, 0 < n < N. 
Each Tucker representation of <lorn f (as described at the end of§ 1) yields 
an expression off of the form 

{
()(Ol~I + • •' + ()(On~ii - ()(00 if 

j(x) = ~;;:;--; = ()(il~i + •.. +()(in~;; - ()(;o for i = 1, ... 'm, 

+ ro otherwise. 

Here ~;is the jth component of x, m = N - n, and T, ... , JV is some 
permutation of the indices 1, ... , N. (The coefficients ()(;; are uniquely 
determined once the permutation has been given.) If we have such an 
expression of/, we can immediately write down a corresponding expression 
of/*, namely 

{

f301 ~=+I + · · ' + fJom ~=+m - f3oo if 

f*(x*) = ~; = f311~:.+I +' ·' + fJ;m~7.+m - fJ;o 

+ ro otherwise, 

for i = 1, ... , n, 

where {J;i = -()(;; for i = 0, 1, ... , m and j = 0, 1, ... , n. This is 
proved by direct calculation off* in terms off 

The conjugates of all the quadratic convex functions on R" can be 
obtained from the formula in Theorem 12.3 (with A = /)as soon as one 
knows the conjugates of the functions of the form 

h(x) = (l/2)(x, Qx), 

where Q is a symmetric positive semi-definite n x n matrix. [f Q is non
singular, one can show by the calculus that the supremum of (x, x*) -
h(x) in xis attained uniquely at x = Q-1x*, so that 

h*(x*) = (l/2)(x*, Q-1x* ). 

If Q is singular, Q-1 does not exist, but there nevertheless ~xists a unique 
symmetric positive semi-definite n x n matrix Q'. (easily calculated from 
Q) such that 

QQ' = Q'Q =P, 

where P is the matrix of the linear transformation which projects R" 
orthogonally onto the orthogonal complement L of the subspace 
{x J Qx = O}. For this Q' one has 

{

(l/2)(x*, Q'x*) if x* EL, 
h*(x*) = 

+ro if x* ¢'. L. 
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The verification of this is an exercise in linear algebra. 
Let us call a proper convex function fa partial quadratic convex Junction 

if f can be expressed in the form 

f(x) = q(x) + o(x I M), 

where q is a finite quadratic convex function on R" and M is an affine 
set in R". For example, the formula 

h(z) = (1/2)(/.1,i +···+le,,~;), 
defines a partial quadratic convex function with 

<lorn h = {z = (,1 , ••• , ,,,) J ' 1 = 0, V j such that A1 = + ro }. 

Such a function h may be called an elementary partial quadratic convex 
function. The conjugate of h is another function of the same type. indeed, 
by direct calculation we have 

h*(z*) = (1/2)(?.7'1*2 + · · · + ;.;,,;,2
), 0 ~ Aj ~ +ro, 

where 1.: = 1 / A1 (with 1 / ro interpreted as 0 and 1 /0 interpreted as + ro ). 
It can be seen that, in general,/ is a partial quadratic convex function on 
R" if and only if f can be expressed in the form 

f(x) = lz(A(x - a))+ (x, a*)+ ex, 

where h is an elementary partial quadratic convex function on R", A is a 
one-to-one linear transformation from R" onto itself, a and a* are vectors 
in R", and ex is a real number. Given such an expression of/, we have a 
similar expression for f* by Theorem 12.3. It follows that the conjugate of a 
partial quadratic convex function is a partial quadratic convex function. 

Let f be any closed proper convex function, so that f** = f By 
definition, 

infx/(x) = -supx {(x, 0) - j(x)} = -f*(O), 
and dually 

infx•f*(x*) = -f**(O) = -f(O). 
Therefore, the relation 

inf"' j(x) = 0 = f(O) 
holds if and only if 

inf"'. f*(x*) = 0 = f*(O). 

[n other words, the conjugacy correspondence preserves the class of non
negative closed convex functions which vanish at the origin. 

A closed convex function f is symmetric, i.e. satisfies 

f(-x)=f(x), Vx, 

if and only if its conjugate is symmetric. The direct verification of this fact 
is simple enough, but it is also a special case of a more general symmetry 
result which can be deduced from Theorem 12.3. Let G be any set of 
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orthogonal linear transformations of R" onto itself. A function f is said 
to be symmetric with respect to G if 

f(Ax) = f(x), V x, VA E G. 

Ordinary symmetry corresponds to the case where G consists of the single 
transformation A : x --+ - x. 

COROLLARY 12.3.1. A closed conl'exfunctionfis symmetric with respect 
to a given set G of orthogonal linear transformations if and only if f * is 
symmetric with respect to G. 

PROOF. Specializing Theorem 12.3 to the case where h = f, a= 0 = 
a*, rx = 0, we see that/A =/implies/* A*-1 = f*. When A is orthogonal, 
A*-1 =A by definition. Thus if/A =/for every A EG, thenf*A =f* 
for every A E G. When/ is closed, the converse implication is also valid, 
since/** = f II 

The functions on R" which are symmetric with respect to the set of all 
orthogonal transformations of Rn are, of course, those of the form 

f(x) = g(lx[), 

where I · I is the Euclidean norm and g is a function on [O, + ro ). Such an 
f is a closed proper convex function if and only if g is a non-decreasing 
lower semi-continuous convex function with g(O) finite (Theorem 5.1, 
Theorem 7.1 ). In the latter case, the conjugate function must be of the 
same type, i.e. 

f*(x*) = g+(lx* I) 
where g+ is a non-decreasing lower semi-continuous convex function on 
[O, + ro) with g+(O) finite. As a matter of fact, we have 

f*(x*) =sup,. {(x, x*> - f (x)} 

= sup sup {(x, x*) - g(O} 
~ 0 lxl=~ 

=sup g lx*i - gWJ, 
c·o 

so that g+ must be given by the formula 

g+(,*) = sup{"* - gW J ' ~ O}. 

We shall call g+ the monotone conjugate of g. Since/** = f, we have 
g++ = g, i.e. 

Monotone conjugacy thus defines a symmetric one-to-one correspondence 
in the class of all non-decreasing lower semi-continuous convex functions on 
[O, + ro) which are finite at 0. 

In the preceding paragraph, the Euclidean norm can be replaced by any 
closed gauge function in a sense to be described in Theorem 15.3. 

Monotone conjugacy can be generalized to n dimensions. Consider the 
class of functions f on R" which are symmetric in each coordinate, i.e. 
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which are symmetric with respect to G = {A1 , ••. , A,,}, where Ai is the 
(orthogonal) linear transformation which reverses the sign of the jth 
component of every vector in R". Clearly f belongs to this class if and only if 

f(x) = g(abs x), 

where g is a function on the non-negative orthant of R" and 

abs (~1'. ·., ~r,) = (l~1I, · ·., l~,,I). 
In order that f be a closed proper convex function, it is necessary and 
sufficient that g be lower semi-continuous, convex, finite at the origin and 
non-decreasing (in the sense that g(x) ~ g(x') when 0 ~ x ~ x', i.e. 
when 0 ~ ~i ~ ~; for j = I, ... , n). [n this case, by Corollary 12.3.1, 

f*(x*) = g+(abs x*), 

where g+ is a certain other non-decreasing lower semicontinuous convex 
function on the non-negative orthant of Rn such that g+(O) is finite. rt is 
easily established that 

g+(z*) =sup {(z, z*) - g(z) J z ~ O}, Vz* ~ 0. 

In view of this formula, g+ is called the monotone conjugate of g. We may 
draw the following conclusion. 

THEOREM 12.4. Let g be a non-decreasing lower semi-continuous convex 
function on the non-negative orthant of R" such that g(O) is finite. The 
monotone conjugate g+ of g is then another such function, and the monotone 
conjugate of g+ is in turn g. 

It can be shown that the formulas 

g-(z*) =inf {(z, z*) - g(z) J z ~ O}, 

g(z) = inf{(z, z*) - g-(z*) J z* ~ O}, 

similarly give a one-to-one symmetric correspondence in the class of all 
non-decreasing upper semi-continuous concave functions on the non
negative orthant of R" which have values in [- ro, + ro) and are not 
identically - ro. (The proof is obtained by associating with each g in this 
class the closed proper convex function f which agrees with - g on the 
non-negative orthant and has the value + ro everywhere else; the prop
erties off are dualized to properties off*, and f* turns out to be express
ible in terms of g- in a certain way.) This correspondence is called 
monotone conjugacy for concave functions. 

The general conjugacy correspondence for concave functions, which is 
closely related to the one for convex functions, will be considered in §30. 

Other examples of conjugate convex functions will be given in the next 
three sections, especially §16. 



SECTION 13 

Support Functions 

A common sort of extremum problem is that of maximizing a linear 
function (', x*) over a convex set C in Rn. One fruitful approach to such a 
problem is to study what happens as x* varies. This leads to the con
sideration of the function which expresses the dependence of the supremum 
on x*, namely the support function b*(· j C) of C: 

b*(x* JC)= sup {(x, x*) J x EC}. 

The appropriateness of the b* notation for the support function will be 
clear below. 

Minimization of linear functions over C, as well as maximization, can 
be studied in terms of b*(· j C), because 

inf {(x, x*) J x EC}= -b*(-x* JC). 

The support function of C describes all the closed half-spaces which 
contain C. indeed, one has 

if and only if 
Cc {x J (x, x*) ~ {J} 

{J ~ b*(x* JC). 

The effective domain of b*(· j C) is the barrier cone of C. Clearly, for any 
convex set C, one has 

b*(x* J C) = b*(x* J cl C) = b*(x* J ri C), Vx*. 

Separation theory yields the following result. 

THEOREM 13.1. Let C be a convex set. Then x E cl C if and only if 
(x, x*) ~ b*(x* J C) 

for every vector x*. On the other hand, x E ri C if and only if the same 
condition holds, but with strict inequality for each x* such that 
-6*(-x* J C) ~ b*(x* J C). One has x E int C if and only if 

(x, x*) < b*(x* J C) 

112 
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for e11ery x* ~ 0. Finally, assuming C ~ 0, one has x E aff C if and only if 

(x, x*) = o*(x* IC) 

for every x* such that -o*(-x* J C) = o*(x* J C). 

PROOF. The characterizations of cl C and ri C are immediate from 
Corollary 11.5.1 and Corollary 11.6.2, respectively. The case where ri C 
is actually int C is the case where C is not contained in any hyperplane, 
i.e. where -o* ( -x* J C) ~ o* (x* J C) for every x* ~ 0. This yields the 
characterization of int C. The characterization of aff C expresses the fact 
that the smallest affine set containing C is the same as the intersection of 
all the hyperplanes containing C (Corollary 1.4.1 ). II 

COROLLARY 13.1.1. For convex sets C 1 and C2 in R", one has cl C1 c 
cl C2 ifandonlyifo*(· j C1) ~ o*(· j C2). 

rt follows that a closed convex set C can be expressed as the set of 
solutions to a system of inequalities given by its support function: 

c = {x I (x, x*) ~ o*(x* I C), Vx*}. 

Thus C is completely determined by its support function. This fact is 
interesting, because it shows there is an important one-to-one corre
spondence between the closed convex sets in R" and objects of quite a 
different sort, certain functions on R". 

This correspondence has many remarkable properties. For example, the 
support function of the sum of two non-empty convex sets C1 and C2 is 
given by 

r)*(x* J C1 + C2) =sup {(x1 + x2 , x*) J x1 E C1 , x 2 E C2 } 

=sup {(xv x*) J x1 E C1 } +sup {(x2 , x*) J x 2 E C2} 

= o*(x* I C1) + o*(x* I C2). 

Addition of sets is therefore converted into addition of functions. Further 
properties of this sort will be encountered in §16. 

Just what class of functions is involved? Given a function on R", how 
does one recognize whether it is the support function of some set C? This 
question will be answered in a moment. 

It happens that the support function correspondence can be regarded 
as a special case of conjugacy. We need only keep in mind the trivial one-to
one correspondence between convex sets C and indicator functions 
o(· j C). The conjugate of b(· J C) is by definition given by 

sup {(x, x*) - o(x IC)}= sup (x, x*) = o*(x* IC). 
XER 11 xeu 
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The conjugate of b* (x* J C) then satisfies 

(b*(· j C))* =cl b(· j C) = b(· j cl C), 

according to the nature of the conjugacy correspondence (Theorem 12.2). 

THEOREM 13.2. The indicator function and the support function of a 
closed convex set are conjugate to each other. The functions ll'hich are the 
support functions of non-empty convex sets are the closed proper convex 
functions which are positirely homogeneous. 

PROOF. Practically everything is obvious from Theorem 12.2 and the 
remarks just made. We only have to show that a closed proper convex 
function/has no values other than 0 and +ro ifand only if its conjugate 
is positively homogeneous. The first property off is equivalent to having 
j(x) = Aj(x) for every x and A > 0. The second property is equivalent to 
having 

f*(x*) = .1/*(A-1x*) = ((* A)(x*) 

for every x* and A > 0. But 

(Aj)*(x*) =sup,, {(x, x*) - }f(x)} 

= supx {A( (x, ;.-1x*) - j(x))} = .1/*(.1-1x*). 

Th us f = Af for every A > 0 if and on! y f * = f *A for every }, > 0, when 
f is a closed convex function. II 

[n particular, Theorem 13.2 says that b*(x* JC) is a lower semi
continuous function of x*, and 

b*(x~ + xi J C) ~ b*(xi J C) + b*(xi J C), 

COROLLARY 13.2.1. Let f be any positicely homogeneous com·ex 
function which is not identically + ro. Then cl f is the support function of a 
certain closed com·ex set C, namely 

C = {x* J Vx, (x,x*) ~f(x)}. 

PROOF. Either elf is a closed proper positively homogeneous convex 
function, or cl f is the constant function - ro (the support function of 0). 
Thus elf= b*(· j C) for a certain closed convex set C. It follows that, by 
definition, f* = (elf)* = b(· j C), and C = {x* J /*(x*) ~ O}. But 
f*(x*) ~ 0 if and only if (x, x*) - j(x) ~ 0 for every x. II 

COROLLARY 13.2.2. The support functions of the non-empty bounded 
convex sets are the finite positively homogeneous convex functions. 

PROOF. A finite convex function is necessarily closed (Corollary 
7.4.2). In view of the characterization of support functions in the theorem, 
we need only observe that a convex set C is bounded if and only if 
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O* (x* J C) < + ro for every x*. Indeed, a subset C of Rn is bounded if 
and only if it is contained in some cube, and that is true if and only 
if every linear function is bounded above on C. II 

The Euclidean norm, for instance, must be the support function of 
some set, because it is a finite positively homogeneous convex function. 
What is the set? The Cauchy-Schwarz inequality 

I (x, y)I ~ /xi · lyl 

implies that (x,y) ~/xi when lyl ~ 1. Of course, (x,y) =/xi if x = 0 
or if y = /x/-1x. Thus 

/xi= sup {(x,y) J iyl ~ l} = o*(x I B), 

where B is the unit Euclidean ball. More generally, the support function 
of the ball a+ AB, A~ 0, is 

j(x) = (x, a) + }, /x/. 

As further examples, the support functions of the sets 

C1 = {x = (~1 •... , ~n) J ~i ~ 0, ~l + ''' + ~n = l}, 

C2 = {x = (~1. · · ·, ~n) J l~1I + · · · + /~,,/ ~ l}, 
C3 = {x = (~1. ~2) J ~1 < 0, ~2 ~ ~-;-1 }, 

C4 = {x = (~1> ~2) J 2~1 + ~~ ~ O}, 

are readily calculated to be 

o*(x* I C1) =max gj Jj = 1, ... 'n}, 

o*(x* I C2) =max {l~il I j = 1, ... 'n}, 

{ -2c~i~D
112 if x* = C~i. ~D ~ o, 

o*(x* I C3) = 
+ ro otherwise, 

{
~: 212~: if ~i > 0, 

o*(x* I C4) = 0 if ~i = 0 = ~:. 

+ ro otherwise. 

The support functions of convex sets are positively homogeneous 
convex functions according to Theorem 13.2, but so are the gauge 
functions of convex sets. Relationships between support functions and 
gauge functions will be explored in §14. 

A convex function f is accompanied by various convex sets, such as its 
effective domain, epigraph, and level sets. We shall show how the sup
port functions of these sets may be derived from the conjugate convex 
function/*. 
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THEOREM 13.3. Let f be a proper convex function. The support function 
of domf is then the recessionfunctionf*O+ off*. !ff is closed, the support 
function of <lorn f * is the recession function JO+ off 

PROOF. By definition, f* is the pointwise supremum of the affine 
functions h(x*) = (x, x*) - µ, (x, µ) E epif Therefore epi/* is the 
(non-empty) intersection of the corresponding closed half-spaces epi h. 
The recession cone O+(epi/*) is then the intersection of the sets O+(epi h) 
(Corollary 8.3.3). This means that f*O+ is the pointwise supremum of the 
functions hO+. Trivially, (hO+)(x*) = (x, x*) when h(x*) = (x, x*) - µ. 
Thus f*O+ is the pointwise supremum of the linear functions (x, ·) such 
that (x, µ) E epi/for someµ, i.e. 

(f*O+)(x*) =sup {(x, x*) Ix E <lorn/}= o*(x* I <lorn/). 

The second assertion of the theorem follows by duality, because f ** = f 
when/ is closed. II 

A convex function f will be called co-finite if f is closed and proper 
and epi f contains no non-vertical half-lines, i.e. 

(JO+)(y) = +ro, Vy~ 0. 

The latter condition is in particular satisfied, of course, if <lorn/ is bounded. 
COROLLARY 13.3.1. Let f be a closed convex function on Rn. In order 

that f* be finite everywhere, so that <lorn f* =Rn, it is necessary and 
sufficient that f be co-finite. 

PROOF. We have <lorn/* = Rn if and only if <lorn/* is not contained 
in any closed half-space of Rn (Corollary 11.5.2). This is equivalent to the 
condition that o*(x J <lorn/*)< +ro only for x = 0. II 

COROLLARY 13.3.2. Let f be a closed proper convex function. In order 
that domf* be an affine set, it is necessary and sufficient that (JO+)(y) = 

+ ro for every y which is not actually in the lineality space off 
PROOF. As an exercise in separation theory, it can be shown that a 

convex set C is affine if and only if every linear function which is bounded 
above on C is constant on C. This condition means that -o*(-y J C) = 

o*(y I C) whenever o*(y I C) < +ro. For c = <lorn/*' we have 
o*(y J C) = (jO+)(y), and the vectors y such that -(jO+)(-y) = (jO+)(y) 
are by definition the vectors in the lineality space off II 

COROLLARY 13.3.3. Let f be a proper convex function. In order that 
<lorn f * be bounded, it is necessary and sufficient that f be finite everywhere 
and that there exist a real number rx ~ 0 such that 

l/(z) - /(x)I ~ rx lz - xi, Vz, Vx. 

The smallest rx for which this Lipschitz condition holds is then 

rx = sup {Ix* I J x* E <lorn/*}. 
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PROOF. We can assume that f is closed, because f and elf have the 
same conjugate, and the Lipschitz condition is satisfied by f if and only 
if it is satisfied by elf The first assertion then follows from Theorem 
10.5, since <lorn/* is bounded if and only if its support function, which is 

JO+ by Theorem 13.3, is finite everywhere. Now the Lipschitz condition on 
f is equivalent to having 

j(x + y) ~f(x) + rx lyl, Vx, Vy, 

and that is in turn equivalent to 

(JO+)(y) ~ rx lyl, Vy 

(Corollary 8.5.1). But g(y) = rx lyl is the support function of rxB, where B 
is the unit Euclidean ball. Hence JO+ ~ g means cl (<lorn/*) c rxB 
(Corollary 13.1.1). This shows that the Lipschitz condition holds for a 
given rx if and only if Ix* I ~ rx for every x* E <lorn/*. II 

COROLLARY 13.3.4. Let f be a closed proper convex function. Let x* 
be a.fixed vector and let g(x) = f(x) - (x, x*). Then 

(a) x* E cl (<lorn/*) if and only if (gO+)(y) ~ 0 for every y; 
(b) x* E ri (<lorn/*) if and only if (gO+)(y) > 0 for all iwtors y except 

those satisfying -(gO+)(-y) = (gO+)(y) = O; 
(c) x* E int (<lorn/*) 1f and only zf (gO+)(y) > 0 for every y ~ O; 
(d) x* E aff (<lorn/*) 1f and only zf (gO+)(y) = 0 for every vector y 

such that -(gO+)(-y) = (gO+)(y). 
PROOF. Let C = (<lorn/*) - x*. Clearly x* E cl (<lorn/*) if and 

only if 0 E cl C, and so forth. We have g*(y*) = f *(y* + x*) (Theorem 
12.3), and hence <lorn g* = C. The support function of C is therefore 
gO+ by Theorem 13.3, and conditions (a), (b), (c)and (d) follow immediately 
from the corresponding support function conditions in Theorem 13.1. II 

THEOREM 13.4. Let f be a proper convex function on Rn. The lineality 
space off* is then the orthogonal complement of the subspace parallel to 
aff (<lorn/). Dually, if f is closed the subspace parallel to aff (<lorn/*) is 
the orthogonal complement of the lineality space off, and one has 

lineality f* = n - dimension/, 

dimension/*= n - lineality f 
PROOF. The lineality space L off* consists of the vectors x* such that 

-(.f*O+)(-x*) = (f*O+)(x*). By Theorem 13.3, (f*O+)(x*) and 
-(f*O+)(-x*) are the supremum and infimum of the linear function 
(-, x*) on <lorn/, respectively. Thus x* EL if and only if(-, x*) is constant 
on <lorn/, or equivalently constant on aff(dom/) (since the hyperplanes 
containing aff(dom/) and <lorn/are the same). A linear function(-, x*) 
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is constant on a non-empty affine set M if and only if 

This condition means that x* E (M - M)_j_. Thus L = (M - M)_j_, 
where M = aff (<lorn/). But M - M is the subspace parallel to M 
(Theorem 1.2). This establishes the first assertion of the theorem. Since 
the dimensions of orthogonally complementary subspaces in Rn add up 
to n, and affine sets parallel to each other have the same dimension, it 
follows that 

dim M + dim L = n. 

By definition, however, dim M is the dimension off and dim L is the 
lineality of f *. The second assertion of the theorem and the second 
dimensionality formula must be true, because/** =/when/is closed. II 

COROLLARY 13.4.1. Closed proper convex functions conjugate to each 
other have the same rank. 

PROOF. This is immediate from the formulas in the theorem and the 
definition of rank. II 

COROLLARY 13.4.2. Let f be a closed proper convex function. Then 
<lorn/* has a non-empty interior if and only if there are no lines along 
which f is (finite and) affine. 

PROOF. The dimension of/* is n if and only if the lineality off is 0. 
Given a convex function h, a level set of the form 

C = {x J h(x) ~ {J + (x, b*)} 

can always be expressed as {x j/(x) ~ O}, where 

f(x) = h(x) - (x, b*) - {J. 

The conjugate off is 

f*(x*) = h*(x* + b*) + {J. 

The following theorem then gives the support function of C. 

THEOREM 13.5. Let f be a closed proper convex function. The support 
function of {x J /(x) ~ O} is then cl g, where g is the positively homoge
neous convex function generated by f *. Dually, the closure of the positively 
homogeneous convex function k generated by f is the support function of 
{x* J f*(x*) ~ O}. 

PROOF. Only the second assertion needs to be proved, by virtue of the 
duality between f and f *. By Corollary 13.2.1, cl k is the support function 
of D, where Dis the set of vectors x* such that (., x*) ~ k. The linear 
functions majorized by k correspond to the upper closed half-spaces in 
Rn+i which are convex cones containing epi k. But, by the definition of k, 
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the closed convex cones containing epi k are the same as those containing 
epif Thus D consists of the vectors x* such that (x, x*) ~f(x) for every 
x, in other wordsf*(x*) ~ 0. II 

The support function of epif may be obtained by dualizing the following 
result (and reversing signs). 

COROLLARY 13.5.1. Let f be a closed proper convex function on Rn. The 
function k on Rn+i defined by 

k(A, x) = (JO+)(x) if A = 0, 
{

(/A)(x) if A > 0, 

+ro if A<O, 

is then the support function of 

C ={(A*, x*) J A*~ -f*(x*)} c Rn+1. 

PROOF. Let h(A, x) = f(x) + o(}, J 1) on Rn+1• The closure of the 
positively homogeneous convex function generated by his k, as pointed out 
after Theorem 8.5. Hence k is the support function of 

{(A*, x*) J h* (A*, x*) ~ O} 

by the present theorem. But 

h*(A*' x*) =sup {AA* + (x, x*) - f(x) - o(A J 1) JAE R, x E Rn} 

=sup"' {A*+ (x, x*) - f(x)} =A* + f*(x*). 

Thus h*(A*,x*) ~ 0 means that A*~ -f*(x*). 
More explicit formulas for the support functions in Theorem 13.5 can be 

obtained from the formulas in Theorem 9.7 for the positively homogeneous 
function generated by a given function. 

As an example, let us calculate the support function of an "elliptic" 
convex set 

C = {x J (l/2)(x, Qx) + (a, x) + rx ~ O}. 

where Q is a positive definite n x n symmetric matrix. We have C = 
{x J f(x) ~ O} for a certain finite convex function f on Rn. By Theorem 
13.5, o*(· J C) is the closure of the positively homogeneous convex 
function g generated by f*. As seen in the preceding section, 

f*(x*) = (l/2)(x* - a, Q-1(x* - a)) - rx 

= (l/2)(x*, Q-1x*) + (b, x*) + {J, 

where b = -Q-1a and {J = (l/2)(a, Q-1a) - rx. For any x* ~ 0, g(x*) 
is by definition the infimum of (f*A)(x*) = Af*(A-1x*) in A> 0. Since 
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<lorn/* =Rn, we have <lorn g =Rn. Hence g is itself closed, and 

b*(x* J C) = g(x*) = inf {(1/2A)(x*, Q-1x*) + (b, x*) + AjJ}. 
).>O 

This infimum is readily calculated. Assuming C ~ 0, we have 

0 ~sup"' {-/(x)} = f*(O) = {J. 

If {J = 0, the infimum is plainly (b, x* ). If {J > 0, we can get the infimum 
by taking the derivative with respect to A and setting that equal to 0. The 
general formula so obtained is 

b*(x* JC)= (b, x*) + [2{J(x*, Q-1x*)]1f2. 



SECTlON 14 

Polars ef Convex Sets 

The correspondence between convex sets and their support functions 
reflects a certain duality between positive homogeneity and the property 
of being an indicator function. Namely, suppose f is a proper convex 
function on Rn. If f is an indicator function, its conjugate f* is positively 
homogeneous (Theorem 13.2). [ff is positively homogeneous, f* is an 
indicator function (Corollary 13.2.1). rt follows that, if f is a positively 
homogeneous indicator function, then f * is a positively homogeneous 
indicator function. Of course, the positively homogeneous indicator 
functions are simply the indicator functions of cones. Thus, if /(x) = 
o(x J K) for a non-empty convex cone K, thenf*(x*) = o(x* J K 0

) for a 
certain other non-empty convex cone K 0

, which must be closed since f * 
is closed. This K 0 is called the polar of K. By Corollary 13.2.1, we have 

K 0 = {x* I Vx, (x, x*) ~ o(x I K)} 

= {x* J Vx EK, (x, x*) ~ O}. 

The polar K 00 of K 0 is cl K, since the conjugate off* = o(· j K 0
) is in 

turn elf= o(· j cl K). Also, (cl K)° = K 0 (inasmuch as (elf)* = f*). The 
conjugacy correspondence among convex functions thus includes a special 
symmetric one-to-one correspondence among convex cones, as follows. 

THEOREM 14.1. Let K be a non-empty closed convex cone. The polar K 0 

of K is then another non-empty closed convex cone, and K 00 = K. The 
indicator functions of Kand K 0 are conjugate to each other. 

The first assertion of Theorem 14.1 could also be derived directly from 
the fact that a non-empty closed convex cone is the intersection of the 
homogeneous closed half-spaces which contain it (Corollary 11.7.1). 

The second assertion of Theorem 14.1 is noteworthy because the indi
cators of convex cones appear frequently in extremum problems, and their 
conjugates are needed in determining the corresponding dual problems. 

Observe that, if K is a subspace of Rn, then K 0 is the orthogonally 
complementary subspace. In general, for any non-empty closed convex 
cone K, K 0 consists of all the vectors normal to Kat 0, while K consists 
of all the vectors normal to K 0 at 0. 

121 
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[f K is the non-negative orthant of Rn, then K 0 = -K (the non-positive 
orthant). [f K is the convex cone generated by a non-empty vector collection 
{a; J i EI}, then K consists of all non-negative linear combinations x of 
the a/s, and it follows that 

K 0 = {x* J Vx EK, (x, x*) ~ O} 

= {x* J Vi EI, (a;, x*) ~ O}. 

The polar of K 0 is in turn cl K by the above. Tlzus the polar of a convex 
cone of the form 

{y J Vi EI, (a;,y) ~ O} 

is the closure of the convex cone generated by the a;'s. [f the latter cone is 
closed (as is always the case for example when the collection {ai J i EI} is 
finite, as will be seen in Theorem 19.1), the polar consists of all non
negative linear combinations of the a/s. 

An extension of the polarity correspondence to a more general class of 
convex sets will be discussed below, but first we shall describe some 
further connections between polars of convex cones and conjugates of 
convex functions. 

THEOREM 14.2. Let f be a proper convex function. The polar of the 
conrex cone generated by <lorn f is then the recession cone off*. Dually, if f 
is closed, the polar of the recession cone off is the closure of the convex 
cone generated by domf*. 

PROOF. For any rx > inf/*, the recession cone of/* is by Theorem 8.7 
the same as the recession cone o+c of the (non-empty closed) convex set 

C = {x* J/*(x*) ~ rx} 

= {x* J (x, x*) - j(x) ~ rx, Vx} 

= {x* J (x, x*) ~ rx + j(x), Vx E <lorn/}. 

It is clear from the latter expression that a vector y* has the property that 

if and only if 

Therefore 

where 

x* + Ay* EC, Vx* EC, VA~ 0, 

(x,y*) ~ 0, vx Edomf 

o+c = {y* I (x,y*) ~ 0, Vx Edom/} 

= {y* I (y,y*) ~ 0, Vy EK}, 

K = {y J 3x Edom/, 3A ~ 0,y = h}. 
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Thus O+C = K 0
, where K is the convex cone generated by <lorn f The dual 

part of the theorem follows by the fact that f* * = f when/ is closed. II 
COROLLARY 14.2.1. The polar of the barrier cone of a non-empty closed 

convex set C is the recession cone of C. 
PROOF. Take/to be the support function of C (so that/* is the indi

cator function of C by Theorem 13.2). II 
COROLLARY 14.2.2. Let f be a closed proper convex function. In order 

that {x j/(x) ~ ()(} be a bounded set for every ()(ER, it is necessary and 
sufficient that 0 E int (<lorn/*). 

PROOF. We have 0 E int (<lorn/*) if and only if the convex cone K 
generated by <lorn/* is all of Rn (Corollary 6.4.1). On the other hand, the 
level sets {x J j(x) ~ ()(}are all bounded if and only if the recession cone of 
f, which is K 0

, consists of the zero vector alone (Theorem 8. 7 and Theorem 
8.4). We have K 0 = {O} if and only if cl K = {0}0 =Rn, and cl K =Rn 
implies that actually K = Rn. II 

THEOREM 14.3. Let f be a closed proper convex function such that 
f(O) > 0 > inf/. The closed convex cones generated by {x J j(x) ~ O} 
and by {x* J f *(x*) ~ O} are then polar to each other. 

PROOF. Since f*(O) = -inf/ and /(0) = -inf/*, the hypothesis 
implies that/*(0) > 0 >inf/*. Thus {x j/(x) ~ O} and {x* Jf*(x*) ~ 
O} are non-empty closed convex sets not containing the origin. Let k be 
the positively homogeneous convex function generated by f Since cl k 
and the indicator function of {x* J f*(x*) ~ O} are conjugate to each other 
(Theorem 13.5, Theorem 13.2), the recession cone K of cl k and the closure 
of the convex cone generated by {x* Jf*(x*) ~ O} are polar to each other 
(Theorem 14.2). We must show that K is the closure of the convex cone 
generated by {x j/(x) ~ O}. We have (cl k)O+ =cl k by positive homo-
geneity, so 

K = {x J (cl k)(x) ~ O} 
by definition. Therefore 

K = cl {x J k(x) ~ O} = cl {x J k(x) < O} 

by Theorem 7.6, provided the last set is not empty. Now k(x) is the infimum 
of (JA)(x) in A > 0 for each x :;E: 0. Moreover, (/A)(x) ~ 0 for a positive A 
if and only if ;.-1x E {y J f(y) ~ O}; likewise with ~ replaced by <. Since 
inf/< 0, the set {x J k(x) < O} is not empty. The convex cone generated 
by {x J /(x) ~ O} lies between {x J k(x) < O} and {x J k(x) ~ O}, so its 
closure must be K. II 

The polarity correspondence for convex cones has been derived from 
the conjugacy correspondence for convex functions, but the converse 
derivation is also possible. Recall that each closed proper convex function 
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f on Rn corresponds to a certain non-empty closed convex cone in Rn+2, 
namely cl K where K is the convex cone generated by the triples (1, x, µ) 
such that (x, µ) E epif. This cone completely determines f, of course. 
Actually, from the discussion of recession cones and functions, cl K 
is just the set of (2, x, µ) E Rn+2 such that 2 > 0 and µ ~ (f2)(x), or 
2 = 0 andµ ~ (JO+)(x). We shall now show that the conjugate off can 
be obtained from the polar of K with minor changes. 

THEOREM 14.4. Let f be a closed proper convex function on Rn, and let 
K be the convex cone generated by the vectors (I, x, µ) E Rn+2 such that 
µ ~ f(x). Let K* be the convex cone generated by the (I, x*, µ*) E Rn+2 

such that µ* ~ f*(x*). Then 

clK* = {(2*,x*,µ*) I (-µ*,x*, -2*)EK0
}. 

PROOF. Since f is proper, cl K contains the vector (0, 0, 1) but not 
(0, 0, -1). It follows that the polar cone (cl K) 0 

= K 0 is contained in the 
half-space 

H = {(-µ*, x*, -2*) I 2* ~ O}, 

but not in the boundary hyperplane of H. Thus K 0 is the closure of its 
intersection with the interior of H (Corollary 6.5.2). It follows that K 0 is 
the closure of the convex cone generated by the intersection of K 0 with the 
hyperplane 

{(-µ*,x*, -2*) I 2* = 1}. 

A vector belongs to K 0 if and only if it has a non-positive inner product 
with every vector of the form 2(1, x, µ) such that 2 ~ 0 and µ ~ f(x). 
Thus (-µ*, x*, -1) belongs to K 0 if and only if 

-µ* + (x, x*> - µ ~ 0 

wheneverµ ~ f(x), i.e. if and only if 

µ* ~sup"' {(x, x*) - f(x)} = f*(x*). 

This shows that the image of K 0 under the mapping 

(2*, x*, µ*)--'>- (-µ*, x*, -2*) 

is the closure of the convex cone generated by the vectors (1, x*, µ*)with 
µ* ~f*(x*), i.e. the closure of K*. II 

The polarity correspondence for convex cones can be generalized to a 
polarity correspondence for the class of all closed convex sets containing 
the origin. This can be seen by taking conjugates of the gauge functions 
of convex sets instead of the indicator functions of convex cones. The 
gauge and indicator functions of a non-empty convex set coincide, of 
course, when the set is a cone. 



§14. POLARS OF CONVEX SETS 125 

Let C be a non-empty convex set. By definition, the gauge function 
y(- I C) is the positively homogeneous convex function generated by 
f = o(- I C) + 1. The closure of y(- I C) is the support function of 
{x* I /*(x*) ~ O} (Theorem 13.5). But/* =a*(- IC) - I. Thus 

cl y(- I C) = a*(- I C0
), 

where C 0 is the closed convex set given by 

C 0 = {x* I o*(x* I C) - 1 ~ O} 

= {x* I Vx EC, (x, x*) ~ I}. 

The set C 0 is called the polar of C. Note that C 0 contains the origin. The 
polar of C 0 is 

C00 = {x I Vx* E C 0
, (x, x*) ~ I} 

= {x I o*(x I C0
) ~ l} = {x I cl y(x I C) ~ I}. 

If C itself contains the origin and is closed, the latter set is just C according 
to Corollary 9.7.1. In general C 0 = D 0

, where 

D = cl (conv (C U {O})), 

because a set of the form {x I (x, x*) ~ I} contains C if and only if it 
contains D. Since D00 = D, it follows that 

C 00 =cl (conv (CU {O})). 

In particular, we have another symmetric one-to-one correspondence. 

THEOREM 14.5. Let C be a closed convex set containing the origin. 
The polar C0 is then another closed convex set containing the origin, and 
C00 

= C. The gauge function of C is the support function of C 0
• Dually, 

the gauge function of C0 is the support function of C. 

COROLLARY 14.5.1. Let C be a closed convex set containing the origin. 
Then C 0 is bounded if and only ifO E int C. Dually, C is bounded if and only 
ifO E int C 0

• 

PROOF. We have C 0 bounded if and on! y if the support function y(- I C) 
of C 0 is finite everywhere (Corollary 13.2.2.). On the other hand, r<-1 C) is 
finite everywhere if and only if 0 E int C (Corollary 6.4.1). II 

The polar of a convex cone K, as previously defined, coincides of course 
with the polar of Kasa convex set, since the half-space {x I (x, x*) ~ I} 
contains Kif and only if {x I (x, x*) ~ O} contains K. 

Observe that polarity is order-inverting, i.e. C1 c C2 implies C~:;;) C~. 
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As examples, the polars of the closed convex sets 

C1 = {x = (~1 ••. ·, ~n) I ~j;;::: 0, ~1 + · · · + ~n ~ 1}, 

C2 = {x = (~i. · · ·, ~n) I 1~11 + · · · + l~nl ~ 1}, 

C3 = {x = (~1. ~2) I (~1 - 1)2 + ~: ~ 1}, 

C4 = {x = (~1. ~2) I ~1 ~ 1 - (1 + ~:)1 i2}, 

may be determined to be 

c~ = {x* = (~i, ... , ~~)I~; ~ 1 for j= l, ... ,n}, 

c; = {x* = <~i .... , ~~) 11~.il ~ 1 for j= l, ... ,n}, 

c; = {x* = <~i, ~:)I ~i ~ (1 - ~: 2)/2}, 

c; = conv (P U {O}), where 

P = {x* = <~i. ~i) I ~i ;;::: <1 + ~:2>12}. 
Other examples will be given following Corollary 15.3.2. 

THEOREM 14.6. Let C and C 0 be a polar pair of closed convex sets 
containing the origin. Then the recession cone of C and the closure of the 
convex cone generated by C 0 are polar to each other. The lineality space of C 
and the subspace generated by C 0 are orthogonally complementary to each 
other. Dually, also, with C and C 0 interchanged. 

PROOF. The recession cone of C is a closed convex cone, and since 
0 E C it is the largest such cone contained in C (Corollary 8.3.2). Its polar 
must be the smallest closed convex cone containing C 0

, and that is the 
closure of the convex cone generated by C 0

• Similarly, the lineality space 
of C is the largest subspace contained in C, inasmuch as 0 EC, so its 
orthogonal complement (which is the same as its polar) must be the 
smallest subspace containing C 0

• II 
COROLLARY 14.6.1. Let C be a closed convex set in Rn containing the 

origin. Then 
dimension C 0 

= n - lineality C, 

lineality C 0 = n - dimension C, 

rank C 0 = rank C. 

PROOF. When a convex set contains 0, the subspace it generates 
coincides with the affine set it generates (Theorem 1.1 ). The dimensionality 
relations between C and C 0 follow therefore from the orthogonality 
relations in the theorem. 
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Ordinarily, there is no simple polarity relation between the level sets 
of a convex function and the level sets of its conjugate. A useful inequality 
does hold, nevertheless, for an important class of functions. 

THEOREM 14.7. Let f be a non-negative closed convex function which 
vanishes at the origin. Then f * likewise is non-negative and vanishes at the 
origin, and for 0 < rx < ro one has 

{x l/(x) ~ rx} 0 
c rx-1{x* l/*(x*) ~ rx} c 2{x l/(x) ~ rx} 0

• 

PROOF. By hypothesis, inf/= /(0) = 0. Since inf/= -f*(O) and 
inf/* = -f**(O) = -/(0), we have inf/* = f*(O) = 0 too, as already 
noted in §12. Let C = {x l/(x) ~ rx}, 0 < rx < ro. This C is a closed 
convex set containing the origin. We can write C = {x I h(x) ~ O}, where 
h(x) = f(x) - rx. Then h*(x*) = f*(x*) + rx, and the closure of the 
positively homogeneous convex function generated by h* is the support 
function a*(- I C) of c (Theorem 13.5). But o*(x* I C) = y(x* I C 0

) by 
Theorem 14.5. Since 0 < h*(O) < ro, the positively homogeneous convex 
function generated by h* is itself closed (Theorem 9.7), and we have the 
formula 

y(x* I C 0
) =inf {(h*2)(x*) I 2 > O}. 

In particular, r<x* I c 0
) ~ h*(x*), so that 

{x* l/*(x*) ~ rx} = {x* I h*(x*) ~ 2rx} 

c {x* I y(x* I C 0
) ~ 2rx} = 2rxC0

• 

This establishes the second inclusion in the theorem. To establish the 
first inclusion, it is enough to show that 

{x* I y(x* I C 0
) < rx} c {x* l/*(x*) ~ rx}, 

since the first set has rxC 0 as its closure and the second set is closed (/* 
being closed). Given any vector x* such that y(x* I C 0

) < rx, there exists 
(by the formula above) some 2 > 0 such that 

rx > (h* 2)(x*) = 2/ *(2-1x*) + 2rx. 

Since f* ~ 0, 2 has to be less than 1. We have 

f*(x*) = /*((l - 2)0 + 2(2-1x*)) ~ (I - 2)/*(0) + 2f*(2-1x*) 

= 2/*(2-1x*) < (1 - 2)rx. 

Thus/*(x*) < rx. 



SECTION 15 

Polars ef Convex Functions 

A function k on Rn will be called a gauge if k is a non-negative positively 
homogeneous convex function such that k(O) = 0, i.e. if epi k is a convex 
cone in Rn+I containing the origin but not containing any vectors (x, µ) 
such thatµ < 0. Gauges are thus the functions k such that 

k(x) = y(x I C) = inf{µ ~ 0 I x E µC} 

for some non-empty convex set C. Of course, C is not uniquely determined 
by kin general, although one always has y(· 1 C) = k for 

C = {x I k(x) ~ l}. 

If k is closed, the latter C is the unique closed convex set containing the 
origin such that y(· I C) = k. 

The polar of a gauge k is the function k 0 defined by 

k 0 (x*) =inf{µ* ~ 0 I (x, x*> ~ µ*k(x), 'v'x}. 

If k is finite everywhere and positive except at the origin, this formula 
can be written as 

ko * (x, x*> 
(x) =sup -- . 

x,cO k(x) 

Note that, if k is the indicator function of a convex cone K, k 0 is the same 
as the conjugate of k, the indicator function of the polar convex cone K 0

• 

Polars of convex functions more general than gauge functions will be 
defined by a modified formula later in this section. 

THEOREM 15.1. If k is a gauge function, then the polar k 0 of k is a 
closed gauge function, and k 00 =cl k. In fact, if k = y(· IC), where C 
is a non-empty convex set, then k 0 = y(· I C0

), where C0 is the polar of C. 

PROOF. Let C be a non-empty convex set such that k = y(· I C). For 
µ* > 0, the condition 

(x, x*> ~ µ*y(x IC), 'v'x, 

128 
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in the definition of k 0 can be expressed as 

(µy, µ*-Ix*> ~ µ, Vy EC, Vµ ~ 0, 

and this is equivalent to 

(y, µ*-Ix*> ~ 1, Vy EC, 

129 

i.e. µ*-Ix* E C 0
• For µ* = 0, on the other hand, the same condition 

implies x* = 0. Thus 

k 0 (x*) = inf{µ* ~ 0 Ix* E µ*C 0
} = y(x* I C 0

). 

In particular, k 0 is closed (Corollary 9.7.1). Now let D = {x I k(x) ~ l}. 
This D is a convex set containing the origin, and y(· I D) = k. Hence it 
follows that k 0 = y(· I D0

) and k 00 = y(· I D00
). Of course, D00 = 

(cl D)00 =cl D (Theorem 14.5). Since 

{x I (cl k)(x) ~ l} = cl {x I k(x) ~ 1} 

(Theorem 7.6), we have cl k = y(· I cl D). Therefore k 00 =cl k. 

COROLLARY 15.1.1. The polarity operation k--+ k 0 induces a one-to-one 
symmetric correspondence in the class of all closed gauges on Rn. Two 
closed convex sets containing the origin are polar to each other if and only if 
their gauge functions are polar to each other. 

COROLLARY 15.1.2. !JC is a closed convex set containing the origin, the 
gauge function of C and the support function of C are gauges polar to each 
other. 

PROOF. This is immediate from Theorem 14.5. 
General norms, to be discussed below, are in particular closed gauges; 

some examples of polar gauges of this type will be given following 
Theorem 15.2 and Corollary 15.3.2. An example of a polar pair of closed 
gauges which are not norms is 

k(x) = (;i + ;~)112 + ;I, 

{
l<;:2;;n + ;:-112 if ;:- > o, 

k0 (x*) = 0 if ;i = 0 = ;: , 

+ ro otherwise, where x* = (;i, ;:). 

Observe that gauges polar to each other have the property that 

(x, x*) :=;;: k(x)k0 (x*), Vx Edomk, Vx* E <lorn k 0
• 

The theory of such inequalities is, in fact, one of the classical reasons for 
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studying polar convex sets. Just as conjugate pairs of convex functions 
correspond to the "best" inequalities of the type 

(x,y> :::;,j(x) + g(y), Vx, Vy, 

as explained in §12, polar pairs of gauges correspond to the "best" 
inequalities of the type 

(x,y):::;, h(x)j(y), VxEH, Vy EJ, 

where Hand J are subsets of Rn and h and j are non-negative real-valued 
functions on Hand J, respectively. Namely, given any inequality of the 
latter type, one can get a "better" inequality as follows. Let 

k(x) =inf{µ :2:'.: 0 I (x,y):::;, µj(y), Vy El}. 

This formula expresses the epigraph of k as the intersection of a certain 
collection of closed half-spaces in Rn+i whose boundary hyperplanes pass 
through the origin, so k is a closed gauge. We have 

(x, y) :::;, k(x)j(y), VxEdomk, Vy El, 

and this inequality 1s "better" than the given one in the sense that 
<lorn k :;;) H and 

k(x) :::;, h(x), Vx EH. 

The new inequality implies that <lorn k 0 
:;;) J and 

ko(y) :::;,}(y), Vy EJ. 

Hence there is an even "better" inequality, namely 

(x,y):::;, k(x)k 0 (y), Vx Edom k, Vy Edom k 0
• 

It follows that the "best" inequalities, i.e. the ones which cannot be 
tightened by replacing h or j by lesser functions on larger domains, are 
preciselythosesuchthat,ifonesetsh(x) = +roforxi;fHandj(y) = +ro 
for y i;E J, hand j are closed gauges polar to each other. 

In the case where k is the Euclidean norm, k is both the gauge function 
and the support function of the Euclidean unit ball, so that k 0 = k. The 
corresponding inequality is then just the Schwarz inequality: 

(x,y):::;, lxl · lyl. 

In general, a gauge k is called a norm ifit is finite everywhere, symmetric, 
and positive except at the origin. Norms are thus characterized (in view of 
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Theorem 4. 7) as the real-valued functions k such that 

(a) k(x) > 0, Vx ~ 0, 
(b) k(x1 + x2) ~ k(x1) + k(x2), Vxi. Vx2 , 

(c) k(2x) = 2k(x), Vx, V). > 0, 
(d) k(-x) = k(x), Vx. 

Properties (c) and (d) can be combined as 

k(2x) = 121 k(x), Vx, 

THEOREM 15.2. The relations 

V2. 

k(x) = y(x I C), C = {x I k(x) ~ l}, 

define a one-to-one correspondence between the norms k and the symmetric 
closed bounded convex sets C such that 0 E int C. The polar of a norm is a 
norm. 

PROOF. Norms, being finite convex functions, are continuous (Theorem 
10.1) and hence closed. We already know that the relations in the theorem 
define a one-to-one correspondence between the closed gauge functions k 
and the closed convex sets C containing the origin. Symmetry of k is 
obviously equivalent to symmetry of C. The condition that k be finite 
everywhere is equivalent to the condition that C contain a positive 
multiple of every vector, and this is satisfied if and only if 0 E int C 
(Corollary 6.4.1 ). The condition that k(x) > 0 for x ~ 0 is equivalent to 
the condition that C contain no half-line of the form {Ax I 2 ~ O}, and 
this is satisfied if and only if C is bounded (Theorem 8.4). If C is a sym
metric closed bounded convex set such that 0 E int C, the support function 
of C is finite everywhere, symmetric, and positive except at the origin. The 
support function of C is the gauge function of C 0

, the polar of y(-1 C), so 
in this case the polar of y(- I C) is a norm. II 

An example of non-Euclidean norms polar to each other is 

k(x) =max {1;11, ... , l~nl}, X = (;1,. · ·, ;n), 

k0 (x*) = l;il + · · · + 1;~1, x* = (;i, · · ·, ;~). 
More examples will be given' below. 

If k is a norm, the inequality associated with k can be expressed as 

l(x, x*)I ~ k(x)k0 (x*), Vx, Vx*, 

by virtue of the finiteness and symmetry of k and k 0
• 

The concept of a norm is natural to the study of certain metric structures 
and corresponding approximation problems. By definition, a metric on 
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R" is a real-valued function p on R." x R" such that 

(a) p(x,y) > 0 if x ~ y, p(x,y) = 0 if x = y, 
(b) p(x,y) = p(y, x), Vx, Vy, 
(c) p(x, z) ~ p(x,y) + p(y, z), Vx, Vy, Vz. 

The quantity p(x,y) is interpreted as the distance between x and y with 
respect to p. Generally speaking, a metric on R" need not have any 
relation with the algebraic structure of R": an extreme example is the 
metric defined by 

{
o if x = y, 

p(x, y) = 
1 if x ~ y. 

Two properties which may naturally be demanded of a metric p, in order 
that it be compatible with vector addition and scalar multiplication, are 

(d) p(x + z,y + z) = p(x,y), Vx, y, z, 
(e) p(x, (1 - 2)x + 2y) = 2p(x,y), Vx,y, V2 E [O, I]. 

Property (d) says that distances remain invariant under translation, and 
(e) says that distances behave linearly along line segments. A metric 
which has these two extra properties is called a Minkowski metric on R". 

There is a one-to-one correspondence between Minkowski metrics and 
norms. If k is a norm, then 

p(x, y) = k(x - y) 

defines a Minkowski metric; moreover, each Minkowski metric is defined 
in this way by a uniquely determined norm. These facts are easy to prove, 
and we leave them as an exercise for the reader. 

It follows by Theorem 15.2 that there is a one-to-one correspondence 
between Minkowski metrics and symmetric closed bounded convex sets 
C such that 0 E int C. Given any such C, there is a unique Minkowski 
metric p such that 

{yl p(x,y) ~ c} =x + cC, Vx, Ve> 0. 

Note that, since C is bounded and 0 E int C, there exist positive scalars rx 
and {J such that 

rxB c Cc {JB, 

where Bis the unit Euclidean ball. For such scalars one has 

rx-1d(x,y) 2: p(x, y) 2: {J-1d(x,y), Vx, Vy, 

where d(x, y) is the Euclidean distance. This implies that all the Minkowski 
metrics on R" are "equivalent" to the Euclidean metric, i.e. they all 
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define the same open and closed sets and Cauchy sequences in the sense of 
metric theory. 

Some important examples of convex functions conjugate to each other 
can be constructed from gauges polar to each other, namely certain gauge
like convex functions. An extended-real-valued function f on R" is said 
to be gauge-like if f(O) = inf f and the various level sets 

{x lf(x) ~ ex}, f(O) < rx < +ro, 

are all proportional, i.e. can all be expressed as positive scalar multiples 
of a single set. 

THEOREM 15.3. A function f is a gauge-like closed proper convex 
function if and only if it can be expressed in the form 

f(x) = g(k(x)), 

where k is a closed gauge and g is a non-constant non-decreasing lower 
semi-continuous convex function on [O, +ro] such g(O is finite for some 
' > 0. (g( + ro) is to be interpreted as + ro in the formula for f) If f is 
of this type, then f* is gauge-like too. In fact 

f *(x*) = g+(k0 (x*)), 

where g+, the monotone conjugate of g, satisfies the same conditions as g. 

PROOF. Suppose first that f is a function given by f(x) = g(k(x)), 
where g and k have the properties described. Let I be the interval where g 
is finite, and let C = {x I k(x) ~ l}. The conditions on g imply thatg(O--+ 
+ ro as '--+ + ro (Theorem 8.6). For any real ex > f(O) = g(O), the 
number 

is finite and positive, and one has 

{x lf(x) ~ ex}= {x I k(x) ~ 2} = 2C. 

This shows that f is gauge-like. The conjugate off may be calculated as 

f*(x*) =sup {(x, x*> - g(k(x))} =sup sup {(x, x*> - gW} 
X 'El XE'C 

=sup {S(sup (y, x*)) - g(O}. 
~El YE(' 

The inner supremum is o*(x* IC) by definition, and that is the same as 
y(x* I C 0

) (Theorem 14.5). In fact it is the same as k 0 (x*), since k = 
y(-1 C). On the other hand, for '* ~ 0, 

sup {a* - g(O} =sup {a* - g(O} = g-1(,*). 
~I ~~o 
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It follows that/*(x*) = g+(k0 (x*)). Our discussion of monotone conjugacy 
towards the end of §12 makes it clear that g+ satisfies the same conditions 
that we have imposed on g. Therefore f* is gauge-like, and by the same 
calculation used for f * we have 

f**(x) = g++(k00 (x)) = g(k(x)) = j(x). 

Inasmuch as/** = f, and/(O) is finite by the conditions on g, this shows 
that f is a closed proper convex function (Theorem 12.2). 

It remains only to show that, given any gauge-like closed proper convex 
function f, we have /(x) = g(k(x)) for some g and k as described. The 
conditions on f imp! y that the level sets 

ca= {x l/(x) ~ex}, ex> ex0 = /(0) = inf/, 

are closed convex sets containing the origin, and they are all positive 
multiples of a certain C. If they are all actually the same multiple 2C, then 
trivially 

f(x) = f(O) + b(x I 2C) = g(k(x)), 

where k is the gauge of C and 

gm= 0 {
rx if 0 ~ ' ~ 2, 

+ro if s >I .. 
We can suppose therefore that C is not a cone, and that/ is not merely 
constant on domf. In this case we define g instead by 

Clearly g is non-decreasing, non-constant and 

ex0 = g(O) = inf {gCO I ' > O} < ro. 

For every vector x, we have 

f(x) = inf {ex I ex > ex0 , x EC,} 

= inf {ex I ' > 0, x E 'Cc Ca} 

= inf {gCO I ' > 0, x E 'C} 
= inf {g( 0 I ' ;;:: y(x I C) = k(x)} = g(k(x)). 

Since C is not a cone, there exist vectors x such that k(x) = I, and for 
such a vector we have 

v';;:: o. 
The convexity and lower semi-continuity off are therefore inherited by 
g, and it follows that g has all the required properties. II 
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The main application of Theorem 15.3 is to functions/with the property 
that, for a certain exponentp, 1 <p < ro, 

j().x) = ).Pj(x), '0 > 0, Vx. 

Such a function is said to be positively homogeneous of degree p. 
COROLLARY 15.3.1. A closed proper convex function f is positively 

homogeneous of degree p, where 1 < p < ro, if and only if it is of the form 

f(x) = (l/p)k(x)P 

for a certain closed gauge k. For such an f, the conjugate off is positively 
homogeneous of degreeq, where 1 < q < ro and(l/p) + (l/q) = l; in fact 

j*(x*) = (ljq)k0 (x*)q. 

PROOF. If/ is positively homogeneous of degree p, then/ is gauge-like. 
The corollary follows from the fact that the function g(O = (1/p)'P,' ~ 0, 
satisfies the conditions of the theorem and has g+(,*) = (l/q)'*q. II 

Of course, if f = (l/p)kP as in the corollary, then (pj)11P = k. Thus: 
COROLLARY 15.3.2. Let f be a closed proper convex function positively 

homogeneous of degree p, where I < p < ro. Then (pf) 11P is a closed gauge 
whose polar is (qj*)1 fq, where 1 < q < ro and (1/p) + (l/q) = 1. Thus one 
has 

(x, x* > ~ [pf(x)]11P[qf*(x*)]1fq, Vx E <lorn/, Vx* E <lorn/*, 

and the closed convex sets 

C = {x I [pf(x)]11P ~ l} = {x l/(x) ~ l/p}, 

C* = {x* I [qf*(x*)]1fq ~ l} = {x* l/*(x*) ~ l/q}, 

are polar to each other. 
PROOF. This is immediate from the preceding corollary and the general 

properties that k = (pf) 11P has by virtue of its being a closed gauge. II 
For example, for any p, 1 < p < ro, define 

/(~1' · · ·, ~n) = (l/p)(l~1IP + ... + l~nlP). 
Then f is a closed proper convex function on Rn positively homogeneous 
of degree p, and the conjugate off is given by 

J*<~i .... , ~;,) = O/q)(l~ilq + · · · + 1~;,n 
where 1 < q < ro and (l/p) + (l/q) = 1, as is readily calculated. By 
Corollary 15.3.2, the function 



136 III: DUALITY CORRESPONDENCES 

is a closed gauge whose polar is given by 

k0(~i, · · · '~;,) = (l~ilq + · · · + l~;,1o/fq, 
and the closed convex sets 

C = {x = (~1. · · ·, ~n) I 1~11" + · · · + l~nl" ~ 1}, 
C* = {x* = (~i, ... , ~;,)I 1~il 0 + · · · + l~;,1° ~ 1}, 

are polar to each other. As a matter of fact, k and k 0 are in this case norms 
polar to each other. 

For another example, let Q be any symmetric positive definite n x n 
matrix, and let 

f(x) = (l/2)(x, Qx). 

As pointed out in §12,f is a (closed proper) convex function on Rn whose 
conjugate is given by 

f*(x*) = (l/2)(x*, Q-1x*). 

Since f is positively homogeneous of degree 2, we have by Corollary 
15.3.2 that 

k(x) = (x, Qx)112 

is a gauge-in fact a norm-with polar 

ko(x*) = (x*' Q-lx* >112. 

Moreover, the polar of the convex set 

C = {x I (x, Qx> ~ l} 
is given by 

C 0 = {x* I (x*, Q-1x* > ~ l}. 

Thus, for instance, the polar of the elliptic disk 

c = {(~1. ~2) I <~i/Cli) +<~:;Cl;)~ 1}, 
is the elliptic disk 

c = {(~i. ~DI Cli~1* 2 + Cl:~r ~ 1}. 
It follows further that, for any g satisfying the hypothesis of Theorem 15.3, 
a pair of closed proper convex functions conjugate to each other is given 
by 

f(x) = g((x, Qx)1;2), f *(x*) = g+( (x*' Q-lx* >112). 

Gauges belong in particular to the class of non-negative convex 
functions f which vanish at the origin. The polarity correspondence for 
gauges can actually be extended to this larger class by defining the polar / 0 

of/by 
f°(x*) =inf{µ* ;;::: 0 I (x, x*) ~ 1 + µ*f(x), 'v'x}. 
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If f is a gauge, this definition reduces to the definition already given, 
because of the positive homogeneity off If/is the indicator function of a 
convex set C containing the origin, then/ 0 is the indicator function of C 0

• 

THEOREM 15.4. Let f be a non-negative convex function which vanishes 
at the origin. The polar / 0 off is then a non-negative closed conuex function 
which vanishes at the origin, and / 00 = cl f 

PROOF. Certainly f° is non-negative andf°(O) = 0. The epigraph off° 
consists of the vectors (x*, µ*) in Rn+i such that 

(x, x*> - µµ* ~ 1, 

and consequently one has 

V(x,µ) Eepi/, 

epij° = (A(epi/)) 0 = A((epi/)0
), 

where A is the vertical reflection in Rn+i, i.e. the linear transformation 
(x*, µ*)--+ (x*, -µ*). Thus epif° is a closed convex set (implying that 

/
0 is a closed convex function). Moreover, 

epi (f'00
) =(A (epij°)) 0 = (AA((epif)°))° 

= (epi/)°° =cl (epi/) = epi (cl/) 

(Theorem 14.5), so thatj°0 =elf II 
COROLLARY 15.4.1. The polarity operation f--+ / 0 induces a symmetric 

one-to-one correspondence in the class of all non-negatice closed conrex 
functions which vanish at the origin. 

Note that functions polar to each other in the extended sense always 
satisfy 

(x,x*> ~ 1 +f(x)j°(x*), VxEdom/, Vx* Edomf°. 

They yield the "best" inequalities of a certain type. The details of this may 
be developed as a simple exercise. 

Let f be a non-negative closed convex function which vanishes at the 
origin. Then / 0 has these same properties, as we have just seen. But so 
does the conjugate function/*, as is apparent from its definition. What is 
the relationship between / 0 and/*? The answer to this question can be 
reached through a geometric analysis of the epigraph of the function 
g = /* 0 in comparison with the epigraph off 

First we calculate g from f*. By definition, if g(x) < ). < ro we have 
2 > 0 and 

1 > {/ *> 1J*( *)} - 1 {;j-1 *· -J*(.v*)} _ sup \x, x - /i. x - /i. sup \" x, x :' , 
x* ,.• 
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On the other hand, by the same computation, if 0 < 2 < ro and 
(j).)(x) ~ 1 we have 2 ~ g(x). Therefore 

g(x) = inf {2 > 0 I (f2)(x) ~ l}. 

We shall call this function g the obverse off. 
Notice that, if f is the indicator function of a closed convex set C 

containing the origin, then g is the gauge of C. On the other hand, if f is 
the gauge of C, then g is the indicator function of C. The indicator and 
gauge functions of C are thus the obverses of each other. 

In general, there is a simple geometric relationship between epi/ and 
epi g. Since (f2)(x) approaches (JO+)(x) in the above formula as 2 t 0 
(Corollary 8.5.2), we have 

epi g = {(x, 2) I h(2, x) ~ l}, 
where 

{

(f2)(x) if 2 > 0, 

h(2, x) = (JO+)(x) if 2 = 0, 

+ro if 2 < 0. 

As we have observed in §8, P = epi his a closed convex cone in Rn+2 , and 
it is the smallest such cone containing {(l, x, µ) I µ ~ f(x)}. The inter
section of P with the hyperplane {(2, x, µ)I 2 = l} thus corresponds to 
epif. The calculation above shows that the intersection of P with the 
hyperplane {(2, x, µ)Iµ= l} corresponds to epi g. What is more, P must 
be the smallest closed convex cone containing {(2, z, 1) I 2 ~ g(x)}, 
since P is the closure of its intersection with the open half-space 
{(2,x,µ) Iµ~ O} (inasmuch as/~ 0). Thus/ and g lead to the same 
closed convex cone P in R"+2 , except that in passing between f and g the 
roles of 2 andµ are reversed. 

THEOREM 15.5. Let f be a non-negative closed convex function which 
vanishes at the origin, and let g be the obverse off. Then g is a non-negative 
closed convex function which vanishes at the origin, and f is the obverse of g. 
One has/0 

= g* and/* = g 0
• Moreover / 0 and/* are the obverses of each 

other. 

PROOF. The fact that/ is the obverse of g is clear from the symmetry 
just explained. Thus/= g* 0

• This implies f° = g* 00 = g*. On the other 
hand, g = /* 0 impliesg0 = /* 00 = f*. The obverse of/* is/** 0 = f°. II 

COROLLARY 15.5.1. If f is any non-negative closed convex function 
vanishing at the origin, one has f *0 = / 0 *. 

PROOF. j°* = g** = g = /* 0
• II 

Ordinarily, the level sets of / 0 are not simply the polars of the level 
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sets of/, and the gauge functions k and k 0 in Theorem 15.3 cannot be 
replaced by arbitrary polar pairs of functions. For the obverse g of/, 
we have (f2)(x) ~ µ if and only if (gµ)(x) ~ 2 (assuming 2 > 0 and 
µ > 0). Consequently, for 0 < rx < ro, one does have 

{x I g(x) ~ rx} = {x I (frx)(x) ~ l} = rx{x l/(x) ~ rx-1
}. 

Since / 0 is the obverse of/*, we may conclude that 

{x* IJ°(x*) ~ rx-1} = rx-1{x* l/*(x*) ~ rx}, Vrx > 0. 

Note that this set is the middle set in the inequality in Theorem 14.7. 



SECTION 16 

Dual Operations 

Suppose we perform some operation on given convex functions 
fi. . .. .f m, such as adding them. How is the conjugate of the resulting 
function related to the conjugate functions fi*, ... ,J!? Similar questions 
can be asked about the behavior of set or functional operations under the 
polarity correspondences. In most cases, it turns out that the duality 
correspondence converts a familiar operation into another familiar 
operation (modulo some details about closures). The operations thus 
arrange themselves in dual pairs. 

We begin with some simple cases already covered by Theorem 12.3. 
Let h be any convex function on Rn. If we translate h by a, that is if we 
replace h by f(x) = h(x - a), we get f*(x*) = h*(x*) + (a, x*). On 
the other hand, if we add a linear function to h to form f(x) = h(x) + 
(x, a*), the conjugate off is given by f*(x*) = h*(x* - a*), a translate 
of h*. 

For a real constant rx, the conjugate of h + rx is h* - rx. 
For a convex set C, the support function of a translate C +a is given 

by o*(x* IC)+ (a, x*). This is easy enough to demonstrate directly, but 
one should note that it is also a special case of what we have just pointed 
out. The conjugate of the indicator function h = o( · I C) is the support 
function o* ( · I C), and translating c is the same as translating its indicator 
function. 

The operations of left and right .non-negative scalar multiplication are 
dual to each other: 

THEOREM 16.1. For any proper convex function f, one has ().f)* = f*). 
and (f).)* = )f*, 0 ~ ). < ro. 

PROOF. When ). > 0, this is elementary to verify from the definition 
of the conjugate. When). = 0, it simply expresses the fact that the constant 
function 0 is conjugate to the indicator function o(. I 0). II 

COROLLARY 16.1.1. For any non-empty convex set C, one has 
o*(x* I ).C) = ).o*(x* IC), 0 ~). < ro. 

PROOF. Take f(x) = o(x I C). II 
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The polar of a convex set C is a level set of the support function of C 
namely 

C° = {x* I o*(x* IC)~ l}. 

Any support function result like Corollary 16.1.1 can therefore be trans
lated immediately into a polarity result. 

COROLLARY 16.1.2. For any non-empty convex set Cone has (J.C)° = 

;.-1c for o < ;. < ro. 
In dealing with the duality of various other operations for convex sets 

and functions, we need to invoke the conditions of §9 to settle questions 
about closures. These conditions will first be dualized. 

LEMMA 16.2. Let L be a subspace of Rn and let f be a proper convex 
function. Then L meets ri (<lorn/) if and only if there exists no vector 
x* EL1- such that (f*O+)(x*) ~ 0 and(f*O+)(-x*) > 0. 

PROOF. Since L is relatively open, we have L n ri (<lorn/) empty if 
and only if there exists a hyperplane separating L and <lorn/ properly 
(Theorem 11.3). Proper separation corresponds to the existence of some 
x* E Rn such that 

inf {(x, x*> Ix EL}~ sup {(x, x*> Ix E <lorn/}, 

sup {(x, x*> Ix EL}> inf {(x, x*> Ix E <lorn/}. 

(See Theorem 11.1.) The supremum and infimum over <lorn/ are 

(f*O+)(x*) and -(f *O+)(-x*), 

respectively, since/*O+ is the support function ofdom/(Theorem 13.3). 
The infimum over L is 0 if x* EL 1- and - ro if x* </= L 1-. The two extremal 
conditions on x* are therefore equivalent to the conditions that x* E L1-, 
0 ~ (f*O+)(x*) and 0 > -(f*O+)(-x*). II 

COROLLARY 16.2.1. Let A be a linear transformation from Rn to Rm. 
Let g be a proper convex function on Rm. In order that there exist no vector 
y* E Rm such that 

A*y* = 0, (g*O+)(y*) ~ 0, (g*O+)(-y*) > 0, 

it is necessary and sufficient that Ax E ri (<lorn g)for at least one x E Rn. 
PROOF. For the subspace L = {Ax Ix E Rn} one has 

LJ_ = {y* I A*y* = O}. 

Apply the lemma to L and g. 
COROLLARY 16.2.2. Let / 1 , ••• Jm be proper convex functions on Rn. 
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In order that there do not exist vectors xi, ... , x!, such that 

xi + · · · + x!, = 0, 

(fiO+)(xi) + · · · + (f !O+)(x!) ~ 0, 

<no+)(-xi) + · · · + (f!O+)(-x!) > o, 

it is necessary and sufficient that 

ri (dom/1) n · · · n ri (dom/m) ~ 0. 

PROOF. Regard Rmn as the space of m-tuples x = (x1 , ••• , xm), 
X; ER", so that the inner product is expressed by 

(x, x*; = (xi. xi) + · · · + (xm, x!). 

The convex function/ on Rmn defined by 

then has as its conjugate 

f*(xi, ... , x:;;) = Ji(xt) + · · · + f~,(x:;;), 
and the recession function of/* is given by 

(f*O+)(xi, ... , x;';,) = (f iO+)(xi) + · · · + (f;;;o+)(x;';,). 

The subspace 
L = {x I x1 = x 2 = · · · = Xm} 

has as its orthogonal complement 

L.L = {x* I xi+··· + x! = O}. 

Apply the lemma to f and L. 
We shall now show that the two functional operations in §5 involving 

linear transformations are dual to each other. 

THEOREM 16.3. Let A be a linear transformation from Rn to Rm. For 
any convex function f on Rn, one has 

(Aj)* =f*A*. 

For any convex function g on Rm, o~e has 

((clg)A)* =cl (A*g*). 

If there exists an x such that Ax E ri (<lorn g), the closure operation can be 
omitted from the second formula; then 

(gA)*(x*) =inf {g*(y*) I A*y* = x*}, 

where for each x* the infimum is attained (or is + ro vacuously). 
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PROOF. Direct calculation proves the first relation: 

(Af)*(y*) =sup {(y, y*) - inff(x)} =sup sup {(y, y*) - f(x)} 
y Ax=y Y Ax=Y 
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=sup {(Ax, y*) - f(x)} =sup {(x, A*y*) - f(x)} = f*(A*y*). 
x x 

Applying this relation to A* and g*, we get 

(A*g*)* = g**A** = (clg)A, 
and consequently 

((clg)A)* = (A*g*)** =cl (A*g*). 

The rest of the theorem is trivial if g takes on - ro somewhere (since then 
g(y) = - ro throughout ri (<lorn g) according to Theorem 7.2, so that g* 
and (gA)* are identically + ro ). Assume, therefore, that g(y) > - ro 
for every y and that, for some x, Ax belongs tori (domg). Theorem 9.5 
asserts that in this case (clg)A =cl (gA). Hence ((clg)A)* = (gA)*. 
On the other hand, Corollary 16.2.l says that g* and A* satisfy the con
dition in Theorem 9.2. This condition guarantees that cl (A*g*) = A*g* 
and that the infimum in the definition of A*g* be attained. II 

COROLLARY 16.3.1. Let A be a linear transformation from Rn to Rm. 
For any convex set C in Rn, one has 

a*(y* I AC)= a*(A*y* I C), 

For any convex set Din Rm, one has 

a*<· I A-1(cl D)) =cl (A* a*<· I D)). 

If there exists some x such that Ax E ri D, the closure operation can be 
omitted in the second formula, and 

o*(x* I A-1D) =inf {o*(y* ID) I A*y* = x*}, 

where for each x* the infimum is attained (or is + ro vacuously). 
PROOF. Take f(x) = o(x I C), g(y) = o(y I D). II 
COROLLARY 16.3.2. Let A be a linear transformation from Rn to Rm. 

For any convex set C in Rn, one has 

(AC) 0 = A*-1(C0
). 

For any convex set Din Rm, one has 

(A-1( cl D)) 0 = cl (A* (D 0
)). 

If there exists some x such that Ax E ri D, the closure operation can be 
omitted from the second formula. 

PROOF. Immediate from the preceding corollary. 
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It will follow from Corollary 19.3.1 that, when g is "polyhedral" in the 
sense that the epigraph of g is a polyhedral convex set, the condition 
AxEri(domg) in Theorem 16.3 can be weakened to AxEdomg. Of 
course, the need for the relative interior condition in the general case can 
be seen via Corollary 16.2.1 from the need for the corresponding recession 
function condition in Theorem 9.2, shown by the example at the beginning 
of §9. 

As an illustration of Theorem 16.3, suppose that 

h(~1 ) = inf f( ~i' ~2), ~1 ER, 
s2 

where f is a convex function on R 2• Then h = Af, where A is the pro
jection (~1 , ~2)--+ ~1 • The adjoint A* is the transformation ~i--+ (~i, 0), 
so we have 

h*(~i) = f*(~i, 0). 

For another example, consider a convex function hon Rn of the form 

where a1 , ••• , am are elements of Rn and g1 , ••• , gm are closed proper 
convex functions of a single real variable. To determine the conjugate of h, 
we observe that h = gA, where A is the linear transformation 

x--+ ((a1 , x), ... , (am, x)) 

and g is the closed proper convex function on Rm given by 

The adjoint A* is the linear transformation 

y* = (rJi, · · ·, ri!) -+riia1 + · · · + ri!aw 

while obviously 

g*(y*) = gi(rii) + ... + g!(ri::',). 

Therefore (A*g*)(x*) is for each x* E Rn the infimum of 

gi(rii) + ... + g!(ri!) 

over all the choices of the real numbers rii, ... , ri!i such that 

riia1 + · · · + ri!am = x* · 

The conjugate of his the closure of this convex function A*g* by Theorem 
16.3. If there exists an x E Rn such that 

(a;,x)Eri(domg;) for i= 1, ... ,m, 
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then the infimum in the definition of (A*g*)(x*) is attained for each x* 
by some choice of rii, ... , 'fi!, and we have simply h* = A*g*. 

Observe in Theorem 16.3 that, in the case where the closure operation 
can be omitted, the formula (gA)* = A*g* says that (for any x* E Rn) 

sup { (x, x*) - g(Ax) Ix E Rn} = inf {g*(y*) I A*y* = x*}. 

Thus Theorem 16.3 yields a non-trivial fact about the relationship 
between two different extremum problems. Similar results are embodied 
in Theorems 16.4 and 16.5 below. The derivation and analysis of such 
"inf= sup" formulas is the subject matter of the general theory of dual 
extremum problems to be developed in §30 and §31. 

We proceed now to show that the operations of addition and infimal 
convolution of convex functions are dual to each other. This is the most 
important case of dual operations as far as applications to extremum 
problems are concerned. 

THEOREM 16.4. Let f 1, ... ,f m be proper convex functions on R". Then 

(/10 · · · Ofm)* =Ji+ ... +f:,, 

(clf1 + · · · + clfrrJ* =cl (Ji* 0 · · · Cl. f :,). 
If the sets ri (domf;), i = 1, ... , m, have a point in common, the closure 
operation can be omitted from the second formula, and 

U1 + · · · + fm)*(x*) 

= inf {fi(xi) + · · · + f!(x!) / xi + · · · + x! = x*}, 

where for each x* the in Ji mum is attained. 

PROOF. By definition, 

(f1 0 · · · Ofm)*(x*) =sup {<x,x*) - inf {Ji(x1) + · · · + fm(Xm)}} 

This implies that 

x xi+·· ·+xm =x 

=sup sup 
x xi+··· +xm=X 

sup { (x1, x*) + · · · + (xm, x*> 

- f1(X1) - · · · - fm(xm)} 

= f 1*(x*) + · · · + f !(x*). 

(Ji 0 ... of!)* =Ji**+ ... + J!* = clf1 + ... + clfm, 

and hence that 

(clf1 + · · · + clfm)* = Ui o ···of!)**= cl Ui* o ···of:,,). 
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If the sets ri (<lorn/;) have a point in common, cl/i + · · · + clfm is the 
same as cl Ui + · · · + f m) according to Theorem 9.3. The conjugate of 
the latter function is Ui + ... + f m)*. On the other hand, Corollary 
16.2.2 says that, under the same intersection condition, /i*, ... ,f~ 
satisfy the hypothesis of Corollary 9.2.1, which ensures that Ji* D · · · D /~ 
be closed and that the infimum in the definition of /i* D · · · D /~ always 
be attained. II 

COROLLARY 16.4.1. Let Ci, ... , cm be non-empty convex sets in Rn. 
Then 

a*(· I Ci + ... + Cm) =a*(· I Ci) + ... +a*(· I Cm), 

a*(· I cl Ci n ... n cl Cm)= cl (a*(· I Ci) D ... D a*(· I Cm)). 

If the sets ri C;, i = 1, ... , m, have a point in common, the closure 
operation can be omitted from the second formula, and one has 

o*(x* I Ci n ... n Cm) 

=inf {o*(xi I Ci)+ ... + o*(x! I Cm) I xi + ... + x~ = x*}· 

where for each x* the infimum is attained. 
PROOF. Take f; = a(· I C;). II 
COROLLARY 16.4.2. Let Ki, ... , Km be non-empty convex cones in Rn. 

Then 

(Ki + · · · + Km)° = K~ n · · · n K':,,, 

(cl Ki n · · · n cl Km)° =cl (K~ + · · · + K':,,). 

If the cones ri K, i = 1, ... , m, have a point in common, the closure 
operation can be omitted from the second formula. 

PROOF. Apply the theorem to f; = a(- I K;). One has f;* = o(· \ K;0
), 

as explained at the beginning of §14. II 

An important refinement of the last part of Theorem 16.4 in the case 
where some of the functions/; are "polyhedral" will be given in Theorem 
20.1. 

An example of the use of Theorem 16.4 is the calculation of the con
jugate of the distance function 

f(x) = d(x, C) =inf {Ix - yl I y EC}, 

where C is a given non-empty convex set. As remarked after Theorem 5.4, 
we have f = /i D / 2 , where 



§16. DUAL OPERATIONS 147 

Therefore 

{
o*(x*/ C) if lx*I < t, 

J*(x*) = f {(x*) + J:(x*) = -
+ ro otherwise. 

For a similar example of interest in approximation theory, consider the 
function 

where a1 , ••• , am are given elements of Rn and 

llxllco =max {1~11Ii=1, ... , n} for x = (~1 , ... , ~"). 

Here f = / 1 D / 2 , where 

L being the subspace of R" generated by ai. ... , am. Since/1 is the support 
function of the set 

D - { * - ( "* t*) 11 t*I + ... + I ''*I / 1 ~ - X - ~I'· • • '<.; n <.;1 ~ n .:::,, J' 

/ 1* is the indicator of D (Theorem 13.2). On the other hand, / 2* is the 
indicator of the orthogonally complementary subspace 

L1 = {x* I (x*, a) = 0, i = 1, ... , m }. 

Therefore/*, which is/1* + fz* by Theorem 16.4, is the indicator function 
of D n L 1-. It follows that f itself is the support function of the (poly
hedral) convex set D n L1-. 

The second part of Theorem 16.4 is illustrated by the calculation of the 
conjugate of 

{
h(x) if x ;;::: 0, 

f(x) = 
+ro if x £ 0, 

where h is a given closed proper convex function on R". We have f = 
h + a(· I K), where K is the non-negative orthant of R". The conjugate of 
a(· I K) is by Theorem 14.1 the indicator of the polar cone K 0

, which 
happens to be -K, the non-positive orthant. By Theorem 16.4,f* is the 
closure of the convex function 

g = h* o a<· I -K). 
and this g is given by 

g(x*) =inf {h*(z*) I z* ;;::: x*}. 

If ri (<lorn h) meets ri K (the positive orthant), we have the formula 

f*(x*) = min {h*(z*) I z* ;;::: x*}. 
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We shall see in Theorem 20.1 that (since K is polyhedral) the latter is 
valid even if ri (<lorn h) merely meets the non-negative orthant K itself, 
rather than ri K. 

As a final example of the way in which Theorem 16.4 can be used to 
determine conjugate functions. we calculate the conjugate of the important 
function 

j(.;u ... , .;,,) = J = I. .... /1 .ind .;1 + · · · + .;n = 1, 
{

.; 1 Iog .;1 + · · · + .;,, log.;,, if .;; ~ 0 for 

+ ro otherwise 

(where 0 log 0 = 0). Note that/ is a dosed proper convex function on Rn, 
since 

where 
j(x) = g(x) + <~(x I C) 

C = {x = (.;1 .... , .;,,) I .;1 + · · · + .;,, = l}, 

g(x) = k(.; 1) + · · · + k(.;,,), 

{

.;log .; for .; > 0, 

k(.;)= 0 for .;=O, 

+ro for .; < 0. 

The relative interiors of the effective domains of g and o(. I C) have a 
non-empty intersection, so by the last part of Theorem 16.4 we have 

f* = [g + 6(· I C)J* = g* !_]a(· IC)* = g* c1 a*<· IC), 

in other words 

f*(x*) = infy. {g*(x* - y*) + o*(y* IC)}, 

where for each x* the infimum is attained by some y*. Obviously 

g*(x*) = k*(.;i) + · · · + k*(t~), 
and by elementary calculation 

k*(.;*) = e~·-1 • 

On the other hand, 

{
i. if x* = i.(l, ... , 1) for a certain 2 ER, 

o*(x* IC)= 
+ ro otherwise. 

Therefore 

f*(x*) = min {A + L7=1 e"f-A-I}. 
i.Ell 
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This minimum can be calculated by taking the derivative with respect to 2 
and setting it equal to zero. The result is the formula 

.f*(x*) =log (e"~ + · · · + e"~). 
The fact that the conjugacy correspondence is order-inverting leads to 

the duality of the pointwise supremum operation and the convex hull 
operation for convex functions. 

THEOREM 16.5. Let f; be a proper convex function on R" for each i EI 
(an arbitrary index set). Then 

(conv {f; / i EI])*= sup ff/ Ii EI}, 

(sup {elf; Ii E /})*=cl (conv {f/ / i EI}). 

If I is finite and the sets cl (<lorn/;) are all the same set C (as is the case of 
course when every f; is finite throughout R"), then the closure operation can 
be omittedfrom the second formula. Moreover, in this case 

(sup {f; I i E /})* = inf {L;EZ A;f{(xj)}, 

where for each x* the infimum (taken over all representations of x* as a 
convex combination L;EJ 2;x:> is attained. 

PROOF. Let f = conv {/;I i EI}. The elements (x*, µ*) of epi/* 
correspond to the affine functions h = (', x*) - µ* such that h ~ f 
These functions h are the same as the ones such that h ~f; for every i. 
Thusµ* ~f*(x*) if and only ifµ* ~f/(x*) for every i, which proves the 
first formula. Applying this formula to the f;*, we get 

(conv {Ji Ii E /})*=sup Ut* Ii EI}= sup {ciJ; Ii EI}, 

and consequently 

(sup {elf; Ii E /})* = (conv {!;*Ii E !})**=cl (conv {!,*I i E !]). 

If there exists a point common to the ri (<lorn/;) at which the supremum 
of the f; is finite, we have by Theorem 9.4 

(sup {cl/; Ii E /})* = (cl (sup{/; Ii E /}))* =(sup{(; Ii E /})*. 

This is valid in particular when I is finite and cl (<lorn/;) = C for every i. 
In the latter case, the support functions of the sets domf;, which are the 
recession functions f;*O+ (Theorem 13.3), are all equal to 6*(' IC), so 
that by Corollary 9.8.3 conv Ut I i EI} is closed and is given by the 
infimum formula as described. II 

COROLLARY 16.5.1. Let C; be a non-empty convex set in R" for each 
i EI (an index set). Then the support function of the convex hull D of the 
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union of the sets Ci is given by 

b*(· ID)= sup {b*(" I Ci) Ii E /}, 

while the support function of the intersection C of the sets cl Ci is given by 

b*(· IC)= cl (conv {b*(· I Ci) Ii E /}). 

PROOF. Take/;= b(· IC;) in the theorem. II 
COROLLARY 16.5.2. Let Ci be a convex set in Rn for each i EI (an index 

set). Then 

(conv{C;I iEJ})° = n {q I iEI}, 

<n {cl Ci Ii E /})°=cl (conv {C;° I i E /}). 

PROOF. This is obvious from the preceding corollary. rt also follows 
directly from the fact that the polarity correspondence is order
inverting. II 

An illustration of Theorem 16.5 is the calculation of the conjugate of 

f(x) = max {Ix - ail Ii= 1, ... , m}, 

where a1 , .•• , am are given elements of Rn. Here f is the pointwise 
maximum of the convex functions 

/;(x) = Ix - a;I, i = 1, ... ,m, 

whose conjugates are given by 

f;*(.y*) = b(x* I B) + (a;, x*), 

where B is the Euclidean unit ball. Since the functions f; have the same 
effective domain, namely all of R", the last part of Theorem 16.5 is 
applicable and we may conclude that, for each x* ,f*(x*) is the minimum 
of 

A1 <ai. x;) + · · · + An,( a"'' x !> 
over all x7 and 2i satisfying 
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SECTION 17 

Caratheodoiy' s Theorem 

If Sis a subset of Rn, the convex hull of Scan be obtained by forming all 
convex combinations of elements of S. According to the classical theorem 
of Caratheodory, it is not really necessary to form combinations involving 
more than n + 1 elements at a time. One can limit attention to convex 
combinations 21x1 + · · · + AmXm such that m ~ n + 1 (or even to com
binations such that m = n + I, if one does not insist on the vectors X; 

being distinct). 
Caratheodory's Theorem is the fundamental dimensionality result in 

convexity theory, and it is the source of many other results in which 
dimensionality is prominent. We shall use it in §21 to prove Helly's 
Theorem, concerning intersections of convex sets, as well as various 
results about infinite systems of linear inequalities. 

In order to formulate a comprehensive version of Caratheodory's 
Theorem which covers the generation of convex cones and other unbounded 
convex sets as well as the generation of ordinary convex hulls, we consider 
the convex hulls of sets S which consist of both points and directions 
(points at infinity). 

Let S0 be a set of points of R", and let S1 be a set of directions of Rn as 
defined in §8. We define the convex hull conv S of S = S0 U S1 to be the 
smallest convex set C in R" such that C ::::i S0 and C recedes in all the 
directions in S1• Obviously, this smallest C exists. ln fact 

C = conv (S0 +ray S1) = conv S0 +cone S1 , 

where ray S1 consists of the origin and all the vectors whose directions 
belong to s1' and 

i.e. cone S1 is the convex cone generated by all the vectors whose directions 
belong to S1. Algebraically, a vector x belongs to conv S if and only if it 
can be expressed in the form 

x = 21x1 + · · · + 2kxk + 2k+IxkH + · · · + 2,,.x,., 

where x1' ... , xk are vectors from S0 and xk+1' ... , xm are arbitrary 
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vectors having directions in S 1(1 ~ k ~ m), all the coefficients A; are 
non-negative, and 21 + · · · + }ck = I. Let us call such an x a convex 
combination of m points and directions in S. Such convex combinations 
correspond to the non-negative linear combinations 

21(l,x1) + · · · + 2k(l,xk) + 2k+1(0,xk+1) + · · · + 2m(O,xm) 

in RnH which lie in the hyperplane H = {(I, x) I x E Rn}. Thus another 
way to obtain conv S is to intersect the hyperplane H with the convex 
cone in R"+1 generated by S', where S' consists of all vectors in Rn+i of the 
form (I, x) with x E S 0 or (0, x) with x Es;, s; being any subset of Rn 
such that the set of directions of the vectors in s; is S1. 

The convex cone generated by a set Tc Rn can be thought of equally 
well as the convex hull of the set S consisting of the origin and all the 
directions of vectors in T. A convex combination x of m elements of this 
S is necessarily a convex combination of 0 and m - 1 directions in S, 
and hence it is simply a non-negative linear combination of m - I vectors 
in T. 

The affine hull alf S of a mixed set of points and directions in Rn is 
defined of course to be aff ( conv S), the smallest affine set which contains 
all the points of Sand recedes in all the directions of S. Trivially, aff S = 

conv S = 0 if S contains directions only. We say S is a.ffinely independent 
if (aff S) = m - 1, where m is the total number of points and directions 
in S. For S non-empty, this condition means that S contains at least one 
point and that the vectors 

are linearly independent in R"+1, where x 1 , •.• , xk are the points in S 
and xk+i. •.. , xm are any vectors whose directions are the different 
directions in S. 

By a generalized m-dimensional simplex, we shall mean a set which is 
the convex hull of m + 1 affinely independent points and directions, the 
points being called the ordinary vertices of the simplex and the directions 
the vertices at infinity. Thus the one-dimensional generalized simplices 
are the line segments and the closed half-lines. The two-dimensional 
generalized simplices are the triangles, the closed strips (the convex hulls 
of pairs of distinct parallel closed half-lines) and the closed quadrants (the 
convex hulls of pairs of distinct closed half-lines with the same end-point). 

A generalized m-dimensional simplex with one ordinary vertex and 
m - 1 vertices at infinity will be called an m-dimensional (skew) orthant. 
Them-dimensional orthants in Rn are just the images of the non-negative 
orthant of R"' under one-to-one affine transformations from Rm into Rn. 
These orthants are all closed sets, since the non-negative orthant of Rm is 
closed. 
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More generally, every generalized m-dimensional simplex in Rn is 
closed, since such a set can be identified with the intersection of an 
(m + !)-dimensional orthant in Rn+i and the hyperplane{(!, x) Ix E Rn} 
as indicated above. 

THEOREM 17. l (Caratheodory's Theorem). Let S be any set of points 
and directions in Rn, and let C = conv S. Then x E C 1f and only if x can be 
expressed as a convex combination of n + I of the points and directions in S 
(not necessarily distinct). In fact C is the union of all the generalized d
dimensional simplices whose vertices belong to S, where d = dim C. 

PROOF. Let S0 be the set of points in Sand S1 the set of directions in S. 
Let s; be a set of vectors in Rn such that the set of directions of the vectors 
in s; is S1• Let S' be the subset of Rn+i consisting of all the vectors of the 
form (I, x) with x E S0 or of the form (0, x) with x Es;. Let K be the con
vex cone generated by S'. As pointed out above, conv Scan be identified 
with the intersection of Kand the hyperplane {(I, x) Ix E Rn}. Translating 
the statement of the theorem into this context in Rn+i, we see that it is 
only necessary to show that any non-zero vector y EK, which is in any 
case a non-negative linear combination of elements of S', can actually be 
expressed as a non-negative linear combination of d + I linearly independ
ent vectors of S', where d + I is the dimension of K ( = the dimension of 
the subspace of Rn+i generated by S'). The argument is algebraic, and it 
does not depend on the relationship between S' and S. Given y E K, let 
Ji, ... , Ym be vectors in S' such that y = 21y1 + · · · + 2mYm• where the 
coefficients 2; are all non-negative. Assuming the vectors y; are not them
selves linearly independent, we can find scalars µ 1 , ••• , µm, at least one 
of which is positive, such that µ1y1 + · · · + µmYm = 0. LetA be the greatest 
scalar such that 2µ; ~ 2; for i = I, ... , m, and let 2; = 2; - 2µ;. Then 

2;ri + ... + 2~.Ym = 21Y1 + ... + 2mYm - 2(µ1Yi + ... + flmYm) = y. 

By the choice of 2, the new coefficients 2; are non-negative, and at least 
one of them is 0. We therefore have an expression of y as a non-negative 
linear combination of fewer than m elements of S.'. [f these remaining 
elements are not linearly independent, we can repeat the argument and 
eliminate another of them. After a finite number of steps we get an 
expression ofy as a non-negative linear combination oflinearly independent 
vectors .:"i. .•. , :::, of S'. Then r ~ d + I by definition of d + I. Choosing 
additional vectors z,+1, ... , zd+I from S' if necessary to make a basis for the 
subspace generated by S', we get the desired expression of y by adding 
the term Oz,+i + · · · + Ozd+I to the expression in terms of z1 , ••• , z,. II 

COROLLARY 17.1.1. Let {C; I iE/} be an arbitrary collection of convex 
sets in Rn, and let C be the convex hull of the union of the collection. Then 
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every point of C can be expressed as a convex combination of n + I or 
fewer a.ffine~v independent points, each belonging to a different C;. 

PROOF. By the theorem, each x E C can be expressed as a convex 
combination 20x0 + · · · + 2dxd, where x0 , x1, ... , xd are affinely 
independent points in the union of the collection and d = dim C ~ n. 
Points with zero coefficients can be dropped from this expression. If two 
of the points with non-zero coefficients belong to the same C;, say x 0 

and x1, the corresponding term 20x0 + 21x1 can be coalesced to µy, 
where µ = 20 + 21 and 

Y = (i.o/µ)xo + (21/µ)x1 EC,. 

This y is affinely independent of x2, ... , xd. This shows that the expres
sion of x can be reduced to one involving points belonging to different sets 
in the collection. II 

COROLLARY 17.1.2. Let { C; I i E /} be an arbitrary collection of non
empty convex sets in R", and let K be the cont'ex cone generated by the union 
of the collection. Then every non-zero vector of K can be expressed as a 
non-negatfre linear combination of n or fewer linearly independent vectors, 
each belonging to a different C;. 

PROOF. Take S in the theorem to consist of the origin and all the 
directions of vectors in the sets C;. By the theorem, each x EK belongs to a 
d-dimensional orthant with the origin as vertex, where d = dim K. Thus 
each non-zero x EK can be expressed as a non-negative linear combination 
of d linearly independent vectors in the union of the sets C;. By the argu
ment given in the proof of the preceding corollary, this expression can be 
reduced to one in which no two vectors belong to the same C;. II 

COROLLARY 17.1.3. Let {f; I i E !} be an arbitrary collection of proper 
convex functions on R", and let f be the convex hull of the collection. Then, 
for every t'ector x, 

f(x) = inf {L;ei 2J~(x;) I L;e/ A;X; = x}, 

where the infimum is taken over all expressions of x as a convex combination 
in which at most n + I of the coefficients A; are non-zero and the vectors X; 

with non-zero coefficients are a.ffinely independent. 
PROOF. This is proved by applying Corollary 17.1.1 to the sets C; = 

epif;. The argument is the same as in Theorem 5.6, except for one feature. 
From Corollary 17. I. I, we have the fact thatµ > f(x) if and only if there 
is some rx < µ such that (x, rx) belongs to a simplex with vertices in sets 
epif; with different indices i. Now when (x, rx) belongs to a simplex in 
R"+1, there is a minimal 'Y.

1 ~ rx such that (x, rx') belongs to the same sim
plex. The vertices of the simplex needed to express (x, rx') as a convex 
combination generate a "subsimplex" which contains no "vertical" line 
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segment. These vertices (Ji. ()(1), ..• , (ym, ()(m) thus have the property 
that Ji, ... ,ym are themselves affinely independent. Therefore f(x) is 
the infimum of the values of ()( such that (x, ()() can be expressed as a 
convex combination of points (y1 , ()(1), .•• , (ym, ()(m) (belonging to sets 
epi f; with different indices i) such that Yi. ... , y mare affinely independent. 
The affine independence of Ji, ... , Ym implies of course that m ~ n + 1, 
and the desired formula follows at once. II 

We would like to point out that Corollary 17.1.3 contains Corollary 
17.1.1 as a special case. (Take f; to be the indicator function of C;.) 

COROLLARY 17.1.4. Let {f; I i E !} be an arbitrary collection of proper 
convex functions on Rn. Let f be the greatest positively homogeneous convex 
function such that f ~ f; for euery i E /, i.e. the positively homogeneous 
conuex function generated by conv {f; I i E /}. Then,for every vector x -:;t. 0, 

f(x) = inf {L;e/ 2J;(X;) I L;e/ A;X; = x}, 

where the infimum is taken over all expressions of x as a non-negative linear 
combination in which at most n of the coefficients A; are non-zero and the 
vectors X; with non-zero coefficients are linearly independent. 

PROOF. This is proved just like the last corollary, except that one 
applies Corollary 17.1.2 (instead of Corollary 17.1.1) to the sets C, = 

epif;. The convex cone K generated by the sets C; yields epif, of course, 
when its "lower boundary" is adjoined (in the sense of Theorem 5.3). II 

COROLLARY 17.1. 5. Let f be an arbitrary function from Rn to ( - ro, 
+ ro]. Then 

(conv f)(x) = inf {_I/!:'/ 2,f(x;) I .L;'.:'.} A;X; = x}, 

where the infimum is taken over all expressions of x as a convex combination 
of n + 1 points. (The formula is also valid if one takes on~v the com
binations in which then + 1 points are affinely independent.) 

PROOF. Apply Theorem 17.1 to S = epif in Rn+i, and use the argu
ment in the proof of Corollary 17.1.3 again to reduce the number of points 
needed from n + 2 ton + 1. II 

COROLLARY 17.1.6. Let f be an arbitrary function from Rn to (-ro, 
+ ro ], and let k be the positivery homogeneous conl'ex function generated by 
f (i.e. by conv f). Then, for each vector x -:;t. 0, 

k(x) = inf {_L/:1 2J(x;) I L~=l A;X; = x }, 

where the infimum is taken over all expressions of x as a non-negative linear 
combination of n vectors. (The formula is also valid if one takes only the 
convex combinations in which then vectors are linearly independent.) 

PROOF. Apply Theorem 17. l to the set S in Rn+1 consisting of the 
origin and the directions of the vectors in epif, and use the argument in 
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the proof of Corollary 17.1.3 to reduce the number of vectors needed 
from n + 1 ton. II 

One of the most important consequences of Caratheodory's Theorem 
concerns the closedness of convex hulls. Jn general, of course, the convex 
hull of a closed set of points need not be closed. For example, conv S is 
not closed when Sis the union of a line in R2 and a single point not on the 
line. 

THEOREM 17.2. If Sis a bounded set of points in Rn, then cl ( conv S) = 
conv (cl S). In particular, if Sis closed and bounded, then conv Sis closed 
and bounded. 

PROOF. Let m = ( n + 1 )2 , and let Q be the set of all vectors of the 
form 

such that the components 2; ER and X; E Rn satisfy 

Ao+···+2n=l, X; E cl S. 

The image of Q under the continuous mapping 

from Rm to Rn is conv (cl S) by Caratheodory's Theorem. If S is bounded 
in Rn, Q is closed and bounded in Rm, and hence the image of Q under(} 
is closed and bounded too. Then 

conv (cl S) =cl (conv (cl S)) ::::i cl (conv S). 

Of course, in general 

cl (conv S) = conv (cl (conv S)) ::::i conv (cl S), 

so the commutativity of "conv" and "cl" follows. 
COROLLARY 17.2.1. Let S be a non-empty closed bounded set in Rn. Let 

f be a continuous real-valued function on S, and let f(x) = + ro for x ef= S. 
Then conv f is a closed proper convex function. 

PROOF. Let Fbe the graph of/ over S, i.e. the subset of Rn+i consisting 
of the points of the form (x,f(x)), x ES. Since Sis closed and bounded and 
f is continuous, Fis closed and bounded. It follows from the theorem that 
conv Fis closed and bounded. Let K be the vertical ray {(O, µ) I µ ;;::: O} in 
Rn+1• The non-empty convex set K + conv F is closed (as can be seen 
by an elementary argument on the closedness of K and compactness of 
conv F), and it contains no "vertical" lines. It is therefore the epigraph of a 
certain closed proper convex function. This function must in facf be 
convf 
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Note that, under the hypothesis of Corollary 17.2.1, the convex func
tion h defined by 

h(z) =sup {(z, x) - j(x) Ix ES} 

is finite everywhere (and hence continuous everywhere). Corollary 17.2.1 
implies that the conjugate of h is the function conv f (Theorem 12.2). 

Caratheodory's Theorem concerns the convex hull of a given set S of 
points and directions. Results dual to Caratheodory's Theorem concern 
instead the intersection of a given set of half-spaces. 

Any closed half-space Hin Rn can, of course, be represented by a vector 
(x*, µ*) in Rn+I with x* -:;rf 0: 

H= {xERnl (x,x*) ~ µ*}. 

Suppose that S* is a given non-empty set of vectors (x*, µ*)in R"+1 , and 
consider the closed convex set C which is the intersection of the closed 
half-spaces corresponding to these vectors, i.e. 

C = {x I V(x*, µ*)ES*, (x,x*) ~ µ*}. 

In general, there will be other closed half-spaces containing C besides the 
ones corresponding to vectors of S*. How may the vectors (x*, µ*) 
representing these other half-spaces be expressed in terms of the vectors in 
S*? 

The vectors representing closed half-spaces containing C are of course 
the vectors (x*, µ*), x* -:;t. 0, in the epigraph of the support function of C, 
since the inequality (x, x*) ~ µ* holds for every x EC if and only if 

µ*;;:::sup {(x, x*) Ix EC}= b*(x* IC). 

In order that a function k be the support function of a convex set D such 
that D is contained in all the half-spaces corresponding to vectors of S*, 
it is necessary and sufficient that k be a positively homogeneous closed 
convex function on R" such that S* c epi k (Theorem 13.2). Since C is 
the largest of such sets D, its support function must be the greatest of such 
functions. It follows that b*(" I C) =elf, where f is the positively homo
geneous convex function generated by S*, i.e. the function defined by 

f(x*) = inf{µ* I (x*, µ*)EK}, 

where K is the convex cone in Rn+i generated by S* and the "vertical" 
vector (0, 1) in Rn+1. Assuming C is not empty, we have 

epi b*(· IC)= epi (cl/)= cl (epi/) =cl K. 

The most general closed half-space containing C therefore corresponds to 
a vector (x*, µ*), x* -:;t. 0, which is a limit of vectors in K. The vectors in 
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K itself, on the other hand, can be represented in terms of the vectors in S*. 
One has (x*, µ*) E K if and only if there exist vectors (x:, µ7) ES*, 
i = 1, ... , m, such that 

(.x-*,,u*) = .i.0(0, 1) + J, 1(xi,µi) + · · · + l. 111(x:"µ!) 

for certain non-negative scalars },0 , 21 , .•. , Am. This condition says that 
x* = ).1x~ + · · · + Amx: andµ* ;;::: ). 1µ~ + · · · + Amµ:. Applying Cara
theodory's Theorem to the set S consisting of the origin, the "upward'' 
direction in R 11 +1 and the directions of the vectors in S* (this S has conv S = 
K), we see that m can always be taken ~ n + I. Actually, here only the 
"bottoms" of the simplices in R11+1 are really needed, so (as in the proof 
of Corollary 17.1.3) m can always be taken ~n. It follows that, when 
cl K = K, we can represent every closed half-space containing C in terms 
of n or fewer of the given half-spaces corresponding to S*. 

Here is one example of such a representation. 

THEOREM 17.3. Let S* be a non-empty closed bounded set of uectors 
(x*, µ*) in R" 11 , and let 

C = {x I V(x*, µ*)ES*, (x, x*) ~ µ*}. 

Suppose the conrex set C is n-dimensional. Then, for a giuen uector 
(x*, µ*), x* -:;t. 0, the half-space 

H = {x I (x, x*) ~ µ*] 

contains C if and onZv 1f there exist uectors (x7, µ7) ES* and coefficients 
J.; ;;::: 0, i = I, ... , m, where m ~ n, such that 

PROOF. Let D be the union of S* and (0, I) in R"+I. Let Kbe the convex 
cone generated by D. By the preceding remarks, all we have to do is to 
show that cl K = K. Since D is closed and bounded, conv Dis also closed 
and bounded by Theorem 17.2. Furthermore, K is the same as the convex 
cone generated by conv D. If the origin of R"+I does not belong to conv D, 
then cl K = K as desired (Corollary 9.6.1 ). To show that the origin is not 
in conv D, we make use of then-dimensionality of C. Then-dimensionality 
implies the existence of a point x in int C. For such an x, we have 
(.\', x*) < µ* for every (x*, µ*) ES*. Thus the open upper half-space 

{(x*, µ*)I(.\', x*) - µ*<OJ 

in R 11+1 contains D (and hence conv D), but it does not contain the 
origin. 
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The condition in Theorem 17.3 is, of course, equivalent to the existence 
of n half-spaces of the form 

H, = {x I (x, x;*) ~ft;*}, (x;*,µ'!) ES* 

(not necessarily distinct) with the property that 

H 1 n · · · n Hn c H. 



SECTION 18 

Extreme Points and Faces ef Convex Sets 

Given a convex set C, there exist various point sets S such that C = 
conv S. For any such S, the points of C can be expressed as convex com
binations of the points S as in Caratheodory's Theorem. One may call 
this an "internal representation" of C, in distinction to an "external 
representation" of C as the intersection of some collection of half-spaces. 
Representations of the form C = conv Sor C =cl (conv S) can also be 
considered in which S contains both points and directions, as in the 
preceding section. Of course, the smaller or more special S is, the more 
significant the internal representation of C. A smallest S actually exists in 
the most important cases. We shall demonstrate this below from the general 
theory of facial structure. 

A face of a convex set C is a convex subset C' of C such that every 
(closed) line segment in C with a relative interior point in C' has both 
endpoints in C'. The empty set and C itself are faces of C. The zero
dimensional faces of C are called the extreme points of C. Thus a point 
x EC is an extreme point of C if and only if there is no way to express x 
x as a convex combination (1 - 2)y + 2z such that y EC, z EC and 
0 < 2 < 1, except by takingy = z = x. 

For convex cones, the concept of an extreme point is not of much use, 
since the origin would be the only candidate for an extreme point. One 
studies extreme rays of the cone instead, an extreme ray being a face which 
is a half-line emanating from the origin. In general, if C' is a half-line face 
of a convex set C, we shall call the direction of C' an extreme direction of C 
(extreme point of Cat infinity). The extreme rays of a convex cone are thus 
in one-to-one correspondence with the extreme directions of the cone. 

If C' is the set of points where a certain linear function h achieves its 
maximum over C, then C' is a face of C. (Namely, C' is convex because it 
is the intersection of C and {x I h(x) = ()(}, where()( is the maximum. [f the 
maximum is achieved on the relative interior of a line segment L c C, 
then h must be constant on L, so that L c C'.) A face of this type is called 
an exposed face. The exposed faces of C (aside from C itself and possibly 
the empty set) are thus precisely the sets of the form C n H, where H 
is a non-trivial supporting hyperplane to C. An exposed point of C is an 
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exposed face which is a point, i.e. a point through which there is a 
supporting hyperplane which contains no other point of C. We define the 
exposed directions (exposed points at infinity) of C to be the directions of 
the exposed half-line faces of C. An exposed ray of a convex cone is an 
exposed face which is a half-line emanating from the origin. Notice that 
an exposed point is an extreme point, an exposed direction is an extreme 
direction, and an exposed ray is an extreme ray. 

Faces are not always exposed. For example, let C be the convex hull of a 
torus, and let D be one of the two closed disks forming the sides of C. The 
relative boundary points of D are extreme points of C but not exposed 
points of C. (They are exposed points of D, however, and D is an exposed 
face of C.) 

If C" is a face of C' and C' is a face of C, then C' is a face of C. This is 
immediate from the definition of "face." In particular, an extreme point or 
extreme direction of a face of C is an extreme point or extreme direction of C 
itself The parallel statement for exposed faces is not true, as the torus 
example shows. 

If C' is a face of C and Dis a convex set such that C' c D c C, then C' 
is a fortiori a face of D. If C' is exposed in C, it is also exposed in D. 

For example, let C be a closed convex set, let C' be a half-line face of C 
with endpoint x, and let D = x + O+C. Then C' c D c C (Theorem 
8.3), so C' is a half-line face of D and C' - xis an extreme ray of the cone 
o+c. rt follows that every extreme direction of C is also an extreme direc
tion of O+C. Similarly, every exposed direction of C is an exposed direction 
of O+C. The converses do not hold: if C is a parabolic convex set in R2, say, 
O+C is the ray in the direction of the axis of C; in this case O+C has one 

. extreme (actually exposed) direction, while C itself has no half-line faces 
and hence no extreme or exposed directions at all. 

The definition of "face" implies a stronger property involving arbitrary 
convex subsets, not just line segments: 

THEOREM 18.1. Let C be a convex set, and let C' be a face of C. If D 
is a convex set in C such that ri D meets C', then D c C'. 

PROOF. Let z EC' n ri D. If x is any point of D other than z, there 
exists a y ED such that z is in the relative interior of the line segment 
between x and y. Since C' is a face, x and y must be in C'. Thus D c C'. II 

COROLLARY 18. I. l. If C' is a face of a convex set C, then C' = 
C n cl C'. In particular, C' is closed if C is closed. 

PROOF. Take D = C n cl C'. II 
COROLLARY 18.1.2. If C' and C" are faces of a convex set C such that 

ri C' and ri C" have a point in common, then actually C' = C". 
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PROOF. C" c C' because ri C" meets C', and likewise C' c C" 
because ri C' meets C". II 

COROLLARY 18.1.3. Let C be a convex set, and let C' be a face of C 
other than C itself. Then C' is entire~v contained in the relative boundary of 
C, so that dim C' < dim C. 

PROOF. If ri C met C', we would have Cc C'. The assertion about 
dimensions stems from Corollary 6.3.3. II 

Let F(C) be the collection of all faces of a given convex set C. Regarded 
as a partially ordered set under inclusion, F(C) has a greatest element and 
a least element (C and 0). The intersection of an arbitrary set of faces is 
obviously another face, so every set of elements of F(C) has a greatest 
lower bound in the partial ordering. Every set of elements then has a 
least upper bound too (since the set of all its upper bounds has a greatest 
lower bound). Thus F(C) is a complete lattice. Any strictly decreasing 
sequence of faces must be finite in length, because the dimensions of the 
faces must be strictly decreasing by Corollary 18.1.3. 

THEOREM 18.2. Let C he a non-empty conl'ex set, and let U be the 
collection of all relatil'e interiors of non-empty faces of C. Then U is a 
partition of C, i.e. the sets in U are disjoint and their union is C. Every 
relatil'ery open conuex subset of C is contained in one of the sets in U, and 
these are the maximal relatil'e~v open com·ex subsets of C. 

PROOF. The relative interiors of different faces of C are disjoint by 
Corollary 18.1.2. Given any non-empty relatively open convex subset D 
of C (for instance D may consist of a single point), let C' be the smallest 
face of C containing D (the intersection of the collection of faces which 
contain D). If D were contained in the relative boundary of C', there 
would be a supporting hyperplane H to C' containing D but not all of C' 
(Theorem 11.6). Then D would be in the exposed face c• = C' n Hof C' 
which would be a face of C properly smaller the C'. Thus D cannot be 
entirely contained in the relative boundary of C' and must meet ri C'. This 
implies that ri D c ri C' (Corollary 6.5.2). But ri D = D. Thus D is 
contained in one of the sets in U. Since none of the sets in U is contained 
in any other, we may conclude that the sets in U are the maximal relatively 
open convex subsets of C and that their union is C. II 

Note that, given two different points x and y in C, there exists a 
relatively open convex subset D of C containing both x and y if and only 
if there is a line segment in C having both x and y in its relative interior. 
If we define x ~ y to mean that either x and y satisfy this line segment 
condition or x = y, it follows from the theorem that ~ is an equivalence 
relation on C whose equivalence classes are the relative interiors of the 
non-empty faces of C. 
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If C = conv S, there is a one-to-one correspondence between the faces 
of C and certain subsets of S, according to the following theorem. 

THEOREM 18.3. Let C = conv S, where Sis a set of points and directions, 
and let C' be a non-empty face of C. Then C' = conv S', where S' consists 
of the points in S which belong to C' and the directions in S which are 
directions of recession of C'. 

PROOF. We have C' ::::i conv S' by definition. On the other hand, let x 
be any point of C'. We shall prove that x E conv S'. Since x E conv S, 
there exist points x 1, ... , xk in S and non-zero vectors xk+1, ... , Xm 

whose directions belong to S (I ~ k ~ m), such that 

X = A1X1 + · · · + AkXk + Ak+IXk+I + • • • + AmXm, 

where A; > 0 for i = I, ... , m and 21 + · · · +}ck = I. (See §17.) Let 
D = conv S", where S" consists of the points x 1 , ••• , xk and the directions 
of xk+I• ... , x,,,. Then x E ri D, inasmuch as the coefficients A; in the 
above expression are all positive (Theorem 6.4). Hence ri D meets C'. By 
Theorem 18.1, D c C'. Thus x 1 , ... , xk belong to C', and (assuming 
k < m) C' contains certain half-lines whose directions are those of xk+1 , 

... , Xm· These directions are therefore directions in which cl C' is receding. 
They are also directions of recession of C (because they belong to Sand 
C = conv S). Since C' = C n cl C' by Corollary 18.1.1, they are in fact 
directions in which C' is receding. Therefore S" c S' and x E conv S'. II 

COROLLARY 18.3.1. Suppose C = conv S, trhere S is a set of points 
and directions. Then eve':V extreme point of C is a point of S. If no half-line 
in C contains an unbounded set of points of S (which is true in particular 
if the set of all points in S is bounded), then euery extreme direction of C 
is a direction in S. 

PROOF. Take C' to be a face of C which is a single point or a half-line. 
A convex set Chas no extreme points or extreme directions whatsoever, 

of course, if its lineality is non-zero. In this case, however, we have 
C = C0 + L, where Lis the lineality subspace of C and C0 = C n Li_ is 
a convex set which has lineality zero. The faces C' of C are evidently in 
one-to-one correspondence with the faces C~ of C0 by the formulas C' = 
C~ + L, C~ = C' n L 1 • Thus in studying faces it really suffices, for the 
most part, to consider convex sets with lineality zero. 

We turn now to the que"stion of internal representations. [n the first 
place, when is a closed convex set Ctheconvex hull of its relative boundary? 
This is obviously not true when C is an affine set or a closed half of an 
affine set (the intersection of an affine set and a closed half-space which 
meets it does not contain it). But it is true in all other cases by the following 
theorem. 
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THEOREM 18.4. Let C be a closed convex set which is not an affine set 
or a closed half of an affine set. Then each relative interior point of C lies 
on some line segment joining two relative boundary points of C. 

PROOF. Let D be the relative boundary of C. Since C is not affine, D 
is not empty. We shall show first that D cannot be convex. [f D were con
vex, there would be a non-trivial supporting hyperplane H to C with H ::::i D 
(Theorem 11.6). Let A be the corresponding open half-space containing 
ri C but disjoint from D. Since C is not a closed half of aff C, there must 
exist a point x in A n aff C such that x ef= ri C. Any line segment joining x 
with some point of ri C must intersect Cina line segment having one of its 
endpoints in D. This is incompatible with A being disjoint from D. Thus 
D is not convex, and there must exist distinct points x1 and x 2 in D whose 
connecting line segment contains a point of ri C. Let M be the line through 
x 1 and x 2• The intersection of M with C must be the line segment connect
ing x1 and x 2, for if it were any larger x1 or x 2 would have to be in ri C 
by Theorem 6.1. Every line parallel to M must likewise have a (closed) 
bounded intersection with C by Corollary 8.4.1. Thus, given any y E ri C, 
the line through y parallel to M intersects C in a segment whose two end
points are in D. II 

Here is the fundamental representation theorem. 1 t is stated for closed 
convex sets with lineality zero, but there is an obvious extension to closed 
convex sets of arbitrary lineality, as seen from the remarks above. 

THEOREM 18.5. Let C be a closed convex set containing no lines, and let 
S be the set of all extreme points and extreme directions of C. Then 
C = conv S. 

PROOF. The theorem is trivial if dim C ~ 1 (in which case C is 0, or a 
single point, or a closed line segment, or a closed half-line). Let us make the 
induction hypothesis that the theorem is true for all closed convex sets of 
dimension smaller than a given m > I, and that C is itself m-dimensional. 
We have C ::::i conv S by definition, because the points in S belong to C 
and the directions in S are directions of recession of C. Since C con
tains no lines and is not itself a half-line, it is the convex hull of its 
relative boundary by Theorem 18.4. Therefore, to show C c conv S, we 
need only show that every relative boundary point of C belongs to conv S. 
By Theorem 18.2, a relative boundary point xis contained in the relative 
interior of some face C' other than C itself. This C' is closed by Corollary 
18.1.1, and it has a smaller dimension than C by Corollary 18.1.3. The 
theorem is valid for C' by induction, so x E conv S', where S' is the set of 
extreme points and extreme directions of C'. Since S' c S, we have 
x E conv S. II 
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COROLLARY 18.5.1. A closed bounded convex set is the convex hull of 
its extreme points. 

COROLLARY 18.5.2. Let K be a closed convex cone containing more than 
just the origin but containing no lines. Let T be any set of vectors in K such 
that each extreme ray of K is generated by some x E T. Then K is the convex 
cone generated by T. 

PROOF. To say that K is the convex cone generated by Tis to say that 
K = conv S, where S consists of the origin and the directions of the 
vectors in T. Here the origin is the unique extreme point of K, and the 
directions of the vectors in Tare the extreme directions of K. II 

COROLLARY 18.5.3. A non-empty closed convex set containing no lines 
has at least one extreme point. 

PROOF. If the S in the theorem contained only directions, conv S 
would be empty by definition. II 

Observe that the set Sin Theorem 18.5 is minimal in the sense that (by 
Corollary 18.3. I) if S' is any set of points and directions such that C = 
conv S' and no half-line contains an unbounded set of points of S', then 
S' ::::i S. 

The set of extreme points of a closed bounded convex set C need not be 
closed. For example, let C1 be a closed circular disk in R3 , and let C2 be a 
line segment perpendicular to C1 whose midpoint is a relative boundary 
point of C1. The convex hull C of C1 U C2 is closed. But the set of extreme 
points of C consists of the two endpoints of C2 and all the relative 
boundary points of C1 other than the midpoint of C2 , and this set is not 
closed. 

By means of the following theorem, one obtains internal representations 
of the type C = cl ( conv S). Extreme points are replaced by exposed 
points. 

THEOREM 18.6 (Straszewicz's Theorem). For any closed convex set C, 
the set of exposed points of C is a dense subset of the set of extreme points 
of C. Thus every extreme point is the limit of some sequence of exposed 
points. 

PROOF. Let B be the unit Euclidean ball. For any rx > 0, the points x 
with lxl < rx which are extreme or exposed points of C are the same as 
those which are extreme or exposed points of C n rxB. It suffices therefore 
to prove the theorem in the case where C is bounded (and non-empty). 
Let S be the set of exposed points of C. Of course, Sis contained in the set 
of extreme points of C, and cl Sc C. We must show that every extreme 
point belongs to cl S. Assume x is an extreme point of C not in cl S. 
Then x cannot be in C0 = conv (cl S) (Corollary 18.3. I). Since C0 is 
closed (Theorem 17.2), there exists a closed half-space H containing C0 
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but not x (Theorem 11.5). We shall construct an exposed point p of C 
not in H, and this contradiction will establish the theorem. Let e be an 
"outward" normal to H with lel = I. Let c be the smallest positive scalar 
such that (x - ce) EH, and let y = x - 2e for some 2 > c. Consider the 
Euclidean ball B0 of radius 2 with center y. The boundary of B0 contains x. 
However, the points of H which are not interior to B0 are at a distance of 
at least (2d)1 i 2 from x, as one can calculate from the Pythagorean 
Theorem. Assume now that 2 was chosen so large that (2d)1 i 2 > r, where 
r is the supremum of I z - xi for z E C n H. Then C contains points whose 
distance from y is at least 2 (namely x), but no point of C n H meets this 
description. Choose a p EC which maximizes Ip - YI (i.e. aJarthest point 
of C from y). Then p ef= H. Let B1 be the Euclidean ball with center y 
having p on its boundary. The supporting hyperplane to B1 at p contains 
no point of B1 other than p. Since p E C c B1 , it follows that pis an exposed 
point of C. II 

THEOREM 18.7. Let C be a closed convex set containing no lines, and 
let S be the set of all exposed points and exposed directions of C. Then 
C = cl (conv S). 

PROOF. We can assume for simplicity that C is n-dimensional in Rn, 
and that n ~ 2 (the theorem being true trivially when C is less than two
dimensional). Since the S specified here is contained in the one in Theorem 
18.5, we have C ::::i cl (conv S). Also, cl (conv S) is a closed convex set 
which contains all the extreme points of C (Theorem 18.6) and hence is 
non-empty (Corollary 18.5.3). Suppose cl (conv S) is not all of C; we 
shall argue from this to a contradiction. By Theorem 11.5, there exists a 
hyperplane H which meets C but does not meet cl ( conv S). The convex 
set C n H must have at least one extreme point (Corollary 18.5.3) and 
hence at least one exposed point x (Theorem 18.6). According to the 
definition of "exposed point," there exists in Han (n - 2)-dimensional 
affine set M which meets C n H only at x. In particular, this M does not 
meet the (non-empty) interior of C, so by Theorem 11.2 we can extend M 
to a hyperplane H' which does not meet int C. This H' is a supporting 
hyperplane to C, and C' = C n H' is a (closed) exposed face of C. The 
extreme points or exposed points of C' are extreme points of C too, and 
consequently they belong to cl (conv S) and not to H. The hyperplane H 
meets C' at x alone. Inasmuch as x cannot be an exposed point of C', we 
must have {x} = H n ri C' and consequently dim C' = I. By the 
hypothesis, C' cannot be a line. Nor can C' be the line segment between 
two points, for these points (being extreme points of C') would belong to 
S contrary to x ef= conv S. The only other possibility is that C' is a closed 
half-line with its endpoint in S. The direction of C' then belongs to S, 



§18. EXTREME POINTS AND FACES OF CONVEX SETS 169 

since it is an exposed direction of C by definition. That implies C' c 

conv S contrary to x </= conv S. II 
COROLLARY 18. 7.1. Let K be a closed cont'ex cone containing more than 

just the origin but containing no lines. Let T be any set of vectors in K such 
that each exposed ray of K is generated by some x E T. Then K is the closure 
of the conl'ex cone generated by T. 

The exposed points of a closed convex set C will be characterized in 
Corollary 25.1.3 as the gradients of the support function of C. 

The concept dual to that of "exposed point" is that of "tangent hyper
plane." A hyperplane His said to be tangent to a closed convex set Cat a 
point x if H is the unique supporting hyperplane to C at x. A tangent 
half-space to C is a supporting half-space whose boundary is tangent to C 
at some point. It will be seen later, from the discussion of the differentiabil
ity of convex functions, that tangent hyperplanes can also be defined by 
differential limits as in classical analysis. 

The following "external" representation theorem may be viewed as the 
dual of Theorem 18.7. rt is a stronger version of Theorem 11.5. 

THEOREM 18.8. An n-dimensional closed concex set C in R" is the inter
section of the closed half-spaces tangent to it. 

PROOF. Let G be the epigraph of the support function b*(" I C). This 
G is a closed convex cone in R"+1 containing more than just the origin. 
Since C is n-dimensional, Chas a non-empty interior, so that 

-r'J*(-x* I C) < b*(x* I C) 

for every x* -:;t. 0. Hence G can contain no lines through the origin. By 
Corollary 18.7.1, we have G =cl (conv S), where Sis the union of all 
exposed rays of G. rt follows that the linear functions (x, ·) majorized by 
b*( ·I C), which correspond of course to the points x of C (Theorem 13.1), 
are the same as the linear functions whose epigraphs contain every "non
vertical" exposed ray of G. Put another way, C is the intersection of all the 
half-spaces {x I ;x, x*) ~ ()(] such that the set of non-negative multiples of 
(x*, ex) is a "non-vertical" exposed ray of G. The latter condition means that 
there is some non-vertical supporting hyperplane to G (the graph of a 
certain linear function (y, ·))which intersects G only in the ray generated 
by (x*, ex). In other words, there is some y EC such that (y, x*) = 
b*(x* IC)= ex but '.y,y*) < b*(y* IC) for every y* which is not a non
negative multiple of x*. This says that the half-space {x I (x, x*) ~ex} is 
tangent to Caty. Thus C is the intersection of all such half-spaces. II 



SECTION 19 

Polyhedral Convex Sets and Functions 

A polyhedral convex set in R" is by definition a set which can be expressed 
as the intersection of some finite collection of closed half-spaces, i.e. as 
the set of solutions to some finite system of inequalities of the form 

i =I, ... , m. 

Actually, of course, the set of solutions to any finite mixed system of 
linear equations and weak linear inequalities is a polyhedral convex set, 
since an equation (x, b) = {J can always be expressed as two inequalities: 
(x, b) ~ {J and (x, -b) ~ -{J. Every affine set (including the empty set 
and Rn) is polyhedral (Corollary 1.4. l ). 

It is clear that a polyhedral convex set is a cone if and only if it can be 
expressed as the intersection of a finite collection of closed half-spaces 
whose boundary hyperplanes pass through the origin. A polyhedral convex 
cone is thus the set of solutions to some finite system of homogeneous 
({J; = 0) weak linear inequalities. 

The property of being "polyhedral" is a finiteness condition on the 
"external" representations of a convex set. There is a dual property of 
importance which is a finiteness condition on the "internal" representations 
of a convex set. A.finitely generated convex set is defined to be a set which 
is the convex hull of a finite set of points and directions (in the sense of 
§ 17). Thus C is a finitely generated convex set if and only if there exist 
vectors ai, ... , am such that, for a fixed integer k, 0 ~ k ~ m, C consists 
of all the vectors of the form 

with 
A; :2:'.: 0 for i = I , ... , m. 

The finitely generated convex sets which are cones are the sets which can 
be expressed this way with k = 0, i.e. with no requirement about certain 
coefficients adding up to I; in such an expression, {ai. ... , an,} is called a 
set of generators for the cone. A finitely generated convex cone is thus the 
convex hull of the origin and finitely many directions. 

The finitely generated convex sets which are bounded are the polytopes, 

170 
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including the simplices. The unbounded finitely generated convex sets may 
be regarded as generali::ed polytopes having certain vertices at infinity, 
like the generalized simplices in § 17. 

It turns out that the polyhedral convex sets are the same as the finitely 
generated ones. This classical result is an outstanding example of a fact 
which is completely obvious to geometric intuition, but which wields 
important algebraic content and is not trivial to prove. The proof we 
shall give is based on the theory of faces of convex sets. This approach 
stresses the intuitive reasons why the theorem is true. Self-contained 
algebraic proofs which require less elaborate machinery are also possible, 
however. 

THEOREM 19.1. The following properties of a convex set Care equil'alent: 
(a) C is polyhedral; 
(b) C is closed and has onZv jiniteZv many faces; 
(c) C is.finitely generated. 

PROOF. (a) implies (b): Let H1 , ••• , Hm be closed half-spaces whose 
intersection is C. Let C' be a non-empty face of C. For each i, ri C' must 
be contained in int H; or in the boundary hyperplane M; of H;. Let D be 
the intersection of the finite collection consisting of the relatively open 
convex sets int H; or M; containing ri C'. This Dis a convex subset of C, 
and it is relatively open (Theorem 6.5). Since ri C' is a maximal relatively 
open convex subset of C (Theorem 18.2), we must really have ri C' = D. 
There are only finitely many intersections of the form D, and different 
faces of C have disjoint relative interiors (Corollary 18.1.2), so it follows 
that C can have only finitely many faces. 

(b) implies (c): First consider the case where C contains no lines. 
According to Theorem 18.5, C is the convex hull of its extreme points 
and extreme directions. Since C has only finitely many faces, it has only 
finitely many extreme points and extreme directions. Hence C is finitely 
generated. Now suppose C does contain lines. Then C .= C0 + L, where L 
is the lineality space of C and C0 is a closed convex set containing no lines, 
namely C0 = C n V-. The faces of C0 are of the form C~ = C' n Li_ 
where C' is a face of C, so C0 has only finitely many faces. Hence C0 is 
finitely generated. Let b1, ... , bm be a basis for L. Any x EC can be 
expressed in the form 

X = Xo + µ1b1 + · · ' + /lmbm +µ;(-bi) + · · · + µ;,,(-bn,), 

where x 0 E C0 , µ; ~ 0 and µ; ~ 0 for i = I, ... , m. Hence C itself is 
finitely generated. 

(c) implies (b). Assuming that C = conv S, where Sis a finite set of 
points and directions, we can express C as the union of finitely many 
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generalized simplices by Caratheodory's Theorem (Theorem 17.1). Each 
generalized simplex is a closed set, so C is closed too. There is a one-to-one 
correspondence between the faces of C and certain subsets of S by Theorem 
18.3, so C can have only finitely many faces. 

(b) implies (a). rt suffices to treat the case where C is n-dimensional in 
Rn. In that case C is the intersection of its tangent closed half-spaces 
(Theorem 18.8). If His the boundary hyperplane of a tangent closed half
space there exists by definition some x EC such that H is the unique 
supporting hyperplane to C through x. Thus H is the unique supporting 
hyperplane to C through the exposed face C n H. Since C has only 
finitely many faces, it follows that it can have only finitely many tangent 
closed half-spaces. Hence C is polyhedral. II 

The proof of Theorem 19. I shows, incidentally, that every face of a 
polyhedral convex set is itself polyhedral. 

COROLLARY 19.1.1. A polyhedral convex set has at most a finite 
number of extreme points and extreme directions. 

PROOF. This is immediate from the fact that extreme points and 
extreme directions correspond to faces which are points and half-lines, 
respectively. II 

A polyhedral convex function is a convex function whose epigraph is 
polyhedral. Common examples of such functions are the affine (or partial 
affine) functions and the indicator functions of polyhedral convex sets 
(especially the non-negative orthant of R"). 

[n general, for f to be a polyhedral convex function on Rn, epi/ must 
be the intersection of finitely many closed half-spaces in R"+1 which are 
either "vertical" or the epigraphs of affine functions. In other words, f 
is a polyhedral convex function if and only if f can be expressed in the 
form 

/(x) = h(x) + b(x I C), 
where 

h(x) =max {(x, b1) - {31, ... , (x, bk) - {Jk}, 

C = {x I (x, bkf-1) ~ fJk+I• ... , (x, bm) ~ {J,,,}. 

A convex function/ is said to be finitely generated if there exist vectors 
a1, ... , ak, ak+1' ... , am and corresponding scalars rx; such that 

/(x) = inf {21()(1 + · · · + Ak()(k + Ak+l()(k+I + · · · + Am()(m}, 

where the infimum is taken over all choices of the coefficients A; such that 

A1a1 + · · · + 2kak + Ak+lak+I + · · · + }.mam = X 

A; :2:'.: 0 for i = I , ... , m. 
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This condition on/ means that 

/(x) = inf{µ I (x, µ) E F}, 

where Fis the convex hull of a certain finite set of points and directions in 
Rn+1, namely the points (a;,()(;), i = I, ... , k, and the directions of 
(a;, ()(;), i = k + I, ... , m, along with the direction of (O, I) ("up"). 
According to Theorem 19, I, such an Fis a closed set and hence coincides 
entirely with epif. This implies in particular that, for any x such that/(x) 
is finite, the point (x,f(x)) belongs to F, and hence the infimum defining 
f(x) is actually attained. We may draw the following conclusions. 

COROLLARY 19.1.2. A convex function is polyhedral if and only 1f it is 
finitely generated. Such a function, if proper, is necessarily closed. The 
infimum for a given x in the definition of ''finitely generated convex 
function," if finite, is attained by some choice of the coefficients A;. 

The absolute value function is a polyhedral convex function on R. 
More generally, the function f defined by 

is polyhedral convex on R", since it is the pointwise supremum of the 2n 
linear functions of the form 

c5 = + 1 or -1. 

Note that/ is actually a norm. Another commonly encountered polyhedral 
convex norm is the Tchebycheff norm f defined by 

/(x) =max {l~1I, ... , l~nl}. 

This f is the pointwise supremum of the 2n linear functions of the form 

x-+c5 ~i' ci = +l or -1, j= 1, ... ,n. 

We shall demonstrate now that the property of being "polyhedral" 
is preserved under many important operations. We begin with duality. 

THEOREM 19.2. The conjugate of a polyhedral convex function is 
polyhedral. 

PROOF. If f is polyhedral, it is finitely generated and can be expressed 
as above for certain vectors ai, ... , ak, ak+ 1 , ... ·,am and corresponding 
scalars ()(;. Substituting this formula for f into the formula which defines 
the conjugate function/*, we get 

f*(x*) = sup {<_L;:,1 2;a;, x*) - _L;:, 1 A;()(;}, 

where the supremum is taken over 
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It is easy to see that when 

(a;, x*) - rx; ~ 0 for i = k + I , ... , m 
one has 

f*(x*) =max {(a;, x*) - rx; Ii= I, ... , k}, 

but otherwise/*(x*) = +ro. Thus/* is polyhedral. 
COROLLARY 19.2.1. A closed convex set C is poZvhedral if and onry if its 

support function o* (. I C) is polyhedral. 
PROOF. The indicator function and support function of Care conjugate 

to each other, so by the theorem one is polyhedral if and only if the 
other is. II 

As an example, consider the problem of maximizing a linear function 
(a,·) over the set C which consists of all the solutions to a certain finite 
system of weak linear inequalities. The supremum is o* (a I C). Since c is 
polyhedral, it follows from Corollary 19.2.1 that the supremum is a poly
hedral convex function of a. 

If f is any polyhedral convex function, the level sets {x I /(x) ~ rx} are 
obviously polyhedral convex sets. Since the polar C 0 of a convex set C 
is the level set of the support function o* (" I C) corresponding to rx = 1, 
we have: 

COROLLARY 19.2.2. The polar of a polyhedral convex set is poryhedral. 
The intersection of finitely many polyhedral convex sets is polyhedral. 

Likewise, the pointwise supremum of finitely many polyhedral convex 
functions is polyhedral. 

THEOREM 19.3. Let A be a linear transformation from Rn to Rm. Then 
AC is a polyhedral convex set in Rm for each polyhedral convex set C in Rn, 
and A-1 D is a polyhedral convex set in Rn for each polyhedral convex set D 
in Rm. 

PROOF. Let C be polyhedral in Rn. By Theorem 19. I, C is finitely 
generated, so there exist vectors ai. ... , ak, ak+i. ... , a, such that 

C = {L~=I A;a; j A1 + · · · + Ak = 1, A; ;;::: 0 for i = 1, ... , r}. 

Let b; be the image of a; under A. Then 

AC= {_L;=1 2;b; I 21 + · · · +}ck= 1, A; ;;::: 0 for i = 1, ... , r}. 

Thus AC is finitely generated, and hence polyhedral by Theorem 19.1. 
Now let D be a polyhedral convex set in Rm. Express D as the set of 
solutions y to a certain system 

i = 1, ... 's. 
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Then A-1 D is the set of solutions x to 

i = 1, ... , s. 

This is a finite system of weak linear inequalities on x, so A-1 D is 
polyhedral. 

COROLLARY 19.3.1. Let A be a linear transformation from Rn to Rm. 
For each polyhedral convex function f on Rn, the convex function Af is 
polyhedral on Rm, and the infimum in its definition, if finite, is attained. For 
each polyhedral convex function g on Rm, gA is polyhedral on Rn. 

PROOF. The image of epi/ under the linear transformation (x, µ)--+ 
(Ax,µ) is a polyhedral convex set, and it equals epi (Af). The inverse 
image of epi g under this same transformation is a polyhedral convex set, 
and it equals epi (gA). II 

COROLLARY 19.3.2. If C1 and C2 are polyhedral convex sets in R", then 
C1 + C2 is polyhedral. 

PROOF. Let C = {(x1 , x2) / x 1 E Ci. x 2 E C2}. rt is,clear that C can be 
expressed as the intersection of finitely many closed half-spaces in R2n. 

Hence C is polyhedral. The image of C under the linear transformation 
A: (x1 , x2)--+ x 1 + x 2 is polyhedral too, by the theorem, and this image is 

C1 + C2. II 
COROLLARY 19.3.3. If C1 and C2 are non-empty disjoint polyhedral 

convex sets, there exists a hyperplane separating C1 and C2 strongly. 
PROOF. We have 0 </=cl - Cz, and cl - C2 is closed because it is 

polyhedral by the preceding corollary. Strong separation is then possible 
according to Theorem 11.4. II 

COROLLARY 19.3.4. If / 1 and / 2 are proper polyhedral convex functions on 
Rn, then/1 D/2 is a polyhedral convex/unction too. Moreover, if/1 D/2 is 
proper, the infimum in the definition of (/1 ::Jh)(x) is attained/or eac/z x. 

PROOF. epi/1 + epi/2 is a polyhedral convex set, and it equals 

epi U1 D/2). II 
Theorem 19.3 implies in particular that the orthogonal projection of a 

polyhedral convex set C c Rn on a subspace L is another polyhedral 
convex set. 

To illustrate Theorem 19.3 further, along with Corollary 19.3.2, let A 
be a linear transformation from R" to Rm, and let 

C = {z E Rn l3x ~ z, Ax Econv {bi. ... , b,}], 

where bi. ... , b, are fixed elements of Rm. We have 

C = A-1D - K, 

where K is the non-negative orthant of Rn (a polyhedral convex cone) and 

D = conv {b1, ... , br} 
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(a finitely generated convex set), and therefore C is a polyhedral convex set. 
A good illustration of Corollary 19.3.4 is the case where 

Here 

/ 1(x) =max {l~il Ii= I. ... , n} = llxllac, 
/ 2(x) = b(x I C), 

C = {x I (a;, x) ~ rx;, i = I, ... , m}. 

U1 D /z)(y) = infx {/1 (y - x) + /2(x)} 

= inf { lly - x II "' I x E C}, 

and this quantity is of interest when y is to be approximated as closely as 
possible with respect to the Tchebycheff norm II · II 00 by some solution x 
to the system 

i =I, ... ,m. 

Since / 1 and / 2 are polyhedral convex functions, (/1 D / 2)(y) is a polyhedral 
convex function of y. 

THEOREM 19.4. If / 1 and/2 are proper polyhedral convex functions, then 
/1 + / 2 is polyhedral. 

PROOF. We have /;(x) = h;(x) + b(x I C;) for i = 1, 2, where C1 and 
C2 are polyhedral convex sets and 

h1(x) =max {(x, a;) - rx; Ii= I, ... , k}, 

h2(x) =max {(x, bi) - {Ji Ii= I, ... , r}. 

Let C = C1 n C2 , dii = a; + bi and µ; 1 = rx; + {Ji. Then C is a poly
hedral convex set, and 

Cf1 + /2)(x) = h(x) + b(x I C), 
where 

h(x) = max { (x, d;j) - µii I i = 1, ... , k and i = I, ... , r}. 

Thus/1 + / 2 is polyhedral. 
Obviously 2/is polyhedral for 2 :2:'.: 0 if/is a polyhedral convex function. 

THEOREM 19.5. Let C be a non-empty polyhedral convex set. Then 2C 
is polyhedral for every scalar ).. The recession cone o+c is also polyhedral. In 
fact, if C is represented as conv S, where S is a finite set of points and 
directions, then O+C = conv S0 , where S0 consists of the origin and the direc
tions in S. 

PROOF. Express C as the set of solutions to a finite system of inequalities: 
(x, b;) ~ {3;, i = I, ... , m. Then 2C, for }, > 0, is the set of solutions 
to: (x, b;) ~ 2{3;, i = I, ... , m. Furthermore, Q+C is the set of solutions 
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to (x, b;) ~ 0, i = I, ... , m. ThudC for 2 > 0, and o+c, are polyhedral. 
Trivially OC is polyhedral, since by definition OC = {O}. Also - C is 
polyhedral, since - C is the image of C under the linear transformation 
x--+ -x, and it follows that },C is polyhedral for 2 < 0. Now suppose 
C = conv S, where S consists of a1 , ... , ak and the directions of 
ak+ 1 , . .. , am. Let K be the polyhedral convex cone in Rn+i generated by 
the vectors (I, a1), ... , (I, ak), (0, ak+ 1), ••• , (O, am). The intersection of 
K with the hyperplane {(I, x) E w+1 j x E Rn} can be identified with C, 
and (since K is closed) the intersection of K with the hyperplane {(O, x) E 

Rn+I I x E Rn} can be identified with o+c. Thus o+c is generated by 
ak+1' ... 'am. [n other words, o+c = conv So. II 

COROLLARY 19.5.1. If f is a proper polyhedral convex function, then 
fA is polyhedral for i. :2:'.: 0 and 2 = o+. 

PROOF. Apply Theorem 19.5 to C = epif 
The convex hull of the union of two polyhedral convex sets need not be 

polyhedral, as is seen for instance in the case of a line and a point not on 
the line. The difficulty is that the ordinary convex hull operation does not 
adequately take account of directions of recession. A pair of non-empty 
polyhedral convex sets C1 and C2 in R" can be expressed as C1 = conv S1 

and C2 = conv S2 , where S1 and S2 are finite sets of points and directions, 
and one then has 

conv (C1 U C2) c conv (S1 U S 2), 

but equality need not hold. ln general, by Theorem 19 .5 one has 

conv (S1 u S2) = (C1 + o+C2) u (O+C1 + C2) u conv (C1 u C2). 

However, cl (conv ( C1 U C2)) must recede in all the directions in which 
C1 and C2 recede, since it is a closed convex set containing C1 and C2 

(Theorem 8.3). Thus cl (conv (C1 U C2)) contains C1 + O+C2 and O+C1 + 
C2 , and hence conv (S1 U S2). Since conv (S1 U S2), being finitely gener
ated, is polyhedral and hence closed, this implies 

conv (S1 U S 2) =cl (conv (C1 U C2)). 

The following conclusion may be drawn. 

THEOREM 19.6. Let Cl> ... , Cm be non-empty polyhedral convex sets in 
Rn, and let C =cl (conv (C1 U · · · U Cm)). Then C is a polyhedral 
convex set, and 

C = U P1C1 + ·' · + AmCm}, 

where the union is taken over all choices of A; :2:'.: 0, 21 + · · · + Am = I, 
with O+C; substituted for OC; when 2; = 0. 

The situation is quite similar when convex cones are generated. 
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THEOREM 19. 7. Let C be a non-empty polyhedral convex set, and let K 
be the closure of the convex cone generated by C. Then K is a polyhedral 
convex cone, and 

K = u pc I A> 0 or A= o+}. 
PROOF. Let the latter union be denoted by K'. The convex cone 

gtnerated by C is contained in K', and its closure Kin turn contains K'. 
(Since K is a closed convex set containing C and 0, K must contain the 
recession cone o+c by Theorem 8.3.) Thus cl K' = K. rt will be enough 
therefore to show that K' is polyhedral. Express C as conv S, where S 
consists of ai, .. . , ak and the directions of ak+I> . .. , am. For 2 > 0, 
2C is the convex hull of 2ai, ... , }cak and the directions of ak+i, ... , am, 
while o+c is by Theorem 19.5 the convex hull of the origin and the 
directions of ak+i, ... , am. Thus K' is simply the set of all non-negative 
linear combinations of ai, . .. , ak, ak+ 1 , • •• , am. This shows that K' is 
finitely generated and hence polyhedral. II 

COROLLARY 19.7.1. !JC is a polyhedral convex set containing the origin, 
the convex cone generated by C is polyhedral. 

PROOF. If 0 EC, o+c is contained in the sets 2C for A > 0 and 
consequently may be omitted from the union in the theorem. The union is 
then just the convex cone generated by C, and the theorem says that this 
union is polyhedral. II 

As a miscellaneous exercise in polyhedral convexity, it may be shown 
that, if C is a convex polytope in Rn and S is an arbitrary non-empty 
subset of C, then 

D = {y I s + y c C} 

is a convex polytope. Also, under what circumstances are the "umbra" 
and "penumbra" defined at the end of §3 polyhedral convex sets? 



SECTION 20 

Some Applications ef Polyhedral 

Convexi07 

[n this section, we shall show how certain separation theorems, closure 
conditions and other results which were proved earlier for general convex 
sets and functions may be refined when some of the convexity is polyhedral. 

We begin with the general formula for the conjugate of a sum of proper 
convex functions (Theorem 16.4): 

(cl/1 + ... + clfm)* =cl (Ji :J ... o/:,). 

Suppose that every f; is polyhedral, and that 

dom/1 n · · · n domfm ~ 0. 

Then elf; = f;, and/1 + · · · + f mis a proper polyhedral convex function 
(Theorem 19.4). The conjugate of / 1 + · · · + f m must be proper too, so 
f 7 :J · · · :J/~ must be proper. Every f"! is polyhedral (Theorem 19.2). 
Hence /7 :J · · · :J/~ is polyhedral (in particular, closed) by Corollary 
19.3.4, and it follows that 

(/1 + · · · + fm)* =Ji* CJ··· :Jj,~. 

Moreover, the infimum in the definition of <f7 D · · · LJ j~)(x*) is 
attained for each x* by Corollary 19.3.4. This result is a refinement of the 
second half of Theorem 16.4. 

We shall now show that, in the general mixed case, where some of the 
functions/; may be polyhedral and some not, the conjugation formula in 
Theorem 16.4 remains val id if ri (<lorn/;) is replaced by <lorn f; for each i 
such that f; is polyhedral. 

THEOREM 20.1. Let / 1 , .•. ,f m be proper convex functions on R" such 
that fi. ... ,fk are po~vhedral. Assume that the intersection 

dom/1 n · · · n dom/k n ri (dom/k+1) n · · · n ri (dom/m) 
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180 IV: REPRESENTATION AND INEQUALITIES 

is not empty. Then 

U1 + ... + fm)*(x*) = U1* D ... o/!,)(x*) 

= inf {fi(xi) + · · · + f ;;;ex;;;) j xi + · · · + x;:; = x*}, 

where for each x* the infimum is attained. 

PROOF. We already know the validity of this formula in the case where 
all the sets ri (<lorn/;), i = I, ... , m, actually have a point in common 
(Theorem 16.4) and in the case where k = m (as just described). Assume 
therefore that 1 ~ k < m, and set 

The formula is valid for calculating the conjugates of g1 and g2, so we have 

gi(Yi) = inf {fi(xi) + · · · + f,":(x,;) j xi + · · · + x,; = yi}, 

gi(Yi) = inf Ut+i (x:+1) + · · · + .f:,(x::,) Ix,;" 1 + · · · + x,~ = yi}, 

where for each Yi and y; the infima are attained. Hence it is enough to 
show that 

(g1 + g2)*(x*) = inf {g~(yi) + g;'(yi) I Yi + Yi = x*}, 

where for each x* the infimum is attained by some Yi and y;. The convex 
functions g1 and g2 are proper, and g1 is polyhedral (Theorem 19.4). Since 

domg1 = dom/1 n · · · n dom/k, 

<lorn g2 = dom.f~+I (') ... (') domfm, 
we have 

ri (<lorn g2) = ri (dom/k+1 n · · · n dom/m) 

= ri (dom/k+i) n · · · n ri (dom/m) 

(Theorem 6.5), and hence 

<lorn g1 n ri (<lorn g2) ~ 0. 

This implies that, for the affine hull M of <lorn g2 , 

ri (Mn domg1) n ri (domg2) ~ 0. 

The proper convex function h = 6(· I M) + g1 has M n <lorn g1 as its 
effective domain, so 

ri (<lorn h) n ri (<lorn g2) ~ 0 

and the formula in the theorem is valid for calculating (h + g 2)*. Further
more, h + g2 = g1 + g 2. Thus 

(g1 + g2)*(x*) = (h* ~ gi)(x*) 

= inf [h*(z*) + gi(y*) I z* + y* = x*}, 
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where for each x* the infimum is attained. On the other hand, since 
b(· I M) and g1 are polyhedral, the formula in the theorem is also valid for 
calculating h*: 

h*(z*) =inf {b*(u* I M) + gj(yi) I u* +Yi = z*} 

with the infimum always attained. Therefore 

(g1 + gz)*(x*) 

= inf { b*(u* I M) + gi(yi) + gi(y*) I u* + Yi + y* = x*}, 

where for each x* the infimum is attained. Since the relative interiors of 
the effective domains of b(· I M) and g2 trivially have a point in common 
we can apply the established formula yet again to see that 

inf {b*(u* IM)+ gHy*) I u* + y* = yi} 

= (b(" I M) + g2)*(yi) = gi(yD 

with the infimum always attained. Thus we have simply 

(g1 + g2)*(x*) = inf {gi(yi) + gi(y;') I Yi + Yi = x*}, 

where for each x* the infimum is attained. This proves the theorem. 
COROLLARY 20.1.1. Let f 1, ... ,f m be closed proper convex functions on 

Rn such that f 1 , ••• ,fk are polyhedral. Assume that the intersection 

domfi* n · · · n domfk* n ri (domfk~i) n · · · n ri (domf !) 
is not empty. Then f 1 D · · · D f m is a closed proper convex function, and the 
injimum in its definition is always attained. 

PROOF. Apply the theorem to the conjugate functions ft, . .. ,f~. 
The following special separation theorem for polyhedral convex sets 

may be used to analyze the intersection condition in Theorem 20.1 and 
Corollary 20.1.1. 

THEOREM 20.2. Let C1 and C~ be non-empty convex sets in R" such that 
cl is poZvhedral. In order that there exist a hyperplane separating C1 
and C2 properly and not containing C2 , it is necessary and sufficient that 
C1 n ri C2 = 0. 

PROOF. [f H is a hyperplane separating C1 and C2 properly and not 
containing C2 , then ri C2 lies entirely in one of the open half-spaces 
associated with Hand hence does not meet C1. This shows the necessity 
of the condition. 

To prove the sufficiency, we assume that C1 n ri C2 = 0. Let D = 
C1 n aff C2. [f D = 0, we can separate the polyhedral convex sets C1 and 
aff C2 strongly by Corollary 19.3.3, and any strongly separating hyper
plane will in particular separate C1 and C2 properly without containing C2 . 
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We assume therefore that D ~ 0. Since ri D n ri C2 = 0, there exists by 
Theorem 11.3 a hyperplane H which separates D and C2 properly. This H 
cannot contain C2 , for that would imply 

contrary to what is meant by "proper" separation. Let C~ be the inter
section of aff C2 with the closed half-space containing C2 and having 
boundary H. Then c; is a closed half of aff C2 such that C~ ::::i C2 and 
ri c; ::::i ri C2• Moreover, C~ is polyhedral and 

c1 n ri c~ = D n ri c~ = 0. 

If actually C1 n C~ = 0, we can separate C1 and c; strongly (by Corollary 
19.3.3 again), and the strongly separating hyperplane will in particular 
separate C1 and C2 as required. Hence we can suppose that C1 n c; ~ 0. 
[n this case C1 n M ~ 0, where M is the affine set which is the relative 
boundary of c;, i.e. M = H naff C2• Translating all the sets if necessary, 
we can suppose that the origin belongs to C1 n M, so that Mis a subspace 
and c; is a cone. The convex cone K generated by C1 is polyhedral by 
Corollary 19. 7.1, and K n ri c; = 0. Let c; = K + M. Then c; is a 
polyhedral convex cone (Corollary 19.3.2), c; ::::i C1 and c; n c; = M. 
Express c; as the intersection of a finite collection of closed half-spaces 
H 1 , ••• , H.," where each H; has the origin on its boundary. Each H; 
must contain M. [fa given H; contains a point of ri c;, it must contain all 
of c; (because c; is a cone which is a closed half of an affine set). Since 
ri c; is not contained in c;, it follows that one of the half-spaces Hi does 
not contain any point of ri c;. The boundary hyperplane of this H; 
separates c; and c; properly and does not meet ri c;. Since C1 c c; and 
ri C2 c ri c;, this hyperplane separates C1 and C2 properly and does not 
contain C2• II 

The separation condition in Theorem 20.2 can be translated into a 
support function condition: 

COROLLARY 20.2.1. Let C1 and C2 be non-empty convex sets in R" such 
that C1 is polyhedral. In order that C1 n ri C2 be non-empty, it is necessary 
and sufficient that every vector x* which satisfies 

also satisfies 
o*(x* I C1) ~ -o*(-x* I C2) 

o*(x* I C1) = o*(x* I C2). 

PROOF. Suppose x* ~ 0. By definition, o*(x* I C1) is the supremum 
of the linear function(", x*) on C1 , while -o*(-x* I C2) is the infimum 
of (", x* > on C2. Thus the numbers (:/. between o* (x* I C1) and 
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-6*(-x* I C2) correspond to the hyperplanes {x I (x, x*) = ()(} which 
separate C1 and C2. Such a hyperplane contains all of C2 if and only if 
()( = o*(x* I C2). Thus the support function condition in the corollary 
asserts there is no hyperplane which separates C1 and C2 properly without 
containing C2• By the theorem, this is equivalent to C1 n ri C2 being 
non-empty. II 

Here is another closure condition which makes use of polyhedral 
convexity. 

THEOREM 20.3. Let C1 and C2 be non-empty convex sets in Rn such that 
C1 is polyhedral and C2 is closed. Suppose that every direction of recession 
of C1 whose opposite is a direction of recession of C2 is actually a direction 
in which C2 is linear. Then C1 + C2 is closed. 

PROOF. The idea is to apply Corollary 20.1. l to the functions / 1 = 
6(· I C1) and / 2 = o(" I C2). [f dom/7 n ri (<lorn/;) is not empty, 
Corollary 20. l. l implies that / 1 D / 2 is closed, and this is the same as 
C1 + C2 being closed. Now the sets K1 = dom/7 and K2 = domfri are 
just the barrier cones of C1 and C2 , and K1 is polyhedral since /7 is 
polyhedral (Theorem 19.2). According to Corollary 20.2.1, K1 n ri K2 is 
non-empty if every vector x* which satisfies 

also satisfies 
()*(x* I K 1) ~ -o*(-x* I K2) 

6*(x* I K1) = o*(x* I K2). 

The support functions of the barrier cones K1 and K2 are simply the in
dicator functions of the polars of these cones, which are the recession 
cones O+C1 and O+C2 (Corollary 14.2. l ). Thus the support function 
condition is just the condition that every x* in o+c1 n (-O+C2) be in 
O+C2 (and therefore in the lineality space O+C2 n ( -O+C2) of C2). This 
condition is the same as the direction condition in the theorem, and hence 
it is satisfied by hypothesis. II 

COROLLARY 20.3. l. Let C1 and C2 be non-empty convex sets in Rn such 
that C1 is polyhedral, C2 is closed and C1 n C2 = 0. Suppose that C1 and 
C2 have no common directions of recession, except for directions in which C2 

is linear. Then there exists a hyperplane separating C1 and C2 strongly. 
PROOF. According to Theorem 11.4, strong separation is possible if 

0 </=cl (C1 - C2). We have 0 </= C1 - C2, of course, since C1 and C2 are 
disjoint. The direction hypothesis implies by the present theorem that 
C1 + (-C2) is closed, i.e. that C1 - C2 =cl (C1 - C2)· II 

A useful fact in some applications of polyhedral convexity is that any 
closed bounded convex set in R" can be "approximated" as closely as one 
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pleases by a polyhedral convex set: 

THEOREM 20.4. Let C be a non-empty closed bounded convex set, and 
let D be any convex set such that C c int D. Then there exists a polyhedral 
conrex set P such that P c int D and C c int P. 

PROOF. For each x E C it is possible to choose a simplex S,, such that 
x E int S,, and S,, c int D. Since C is closed and bounded, we must have 

C c U {int S,, I x E C0} 

for a certain finite subset C0 of C. Let 

P = conv U {S,, Ix E C0}. 

Then int D ::::i P and int P ::::i C. Moreover P is a polytope and hence is 
polyhedral by Theorem 19.1. II 

The following result has already been cited in connection with the 
continuity of lower semi-continuous convex functions on locally simplicial 
sets (Theorem I 0.2). 

THEOREM 20.5. Every polyhedral convex set is locally simplicial. In 
particular, every polytope is locally simplicial. 

PROOF. Let C be a polyhedral convex set, and let x E C. Let U be a 
simplex with x in its interior. Then U n C is a polyhedral convex set. 
Since U n C is also bounded, it can be expressed as the convex hull of a 
finite set of points (Theorem 19.1 ). Then by Caratheodory's Theorem 
(Theorem 17 .1) 

U n C = S1 u · · · u Sm, 

where Si. ... , Sm are certain simplices, and it follows by definition that C 
is locally simplicial. II 



SECTION 21 

Helly 's Theorem and Systems ef 
Inequalities 

By a system of convex inequalities in Rn, we shall mean a system which 
can be expressed in the form 

/;(x) ~ rx;, 

/;(x) < rx;, 

where I= 11 U 12 is an arbitrary index set, each/; is a convex function on 
Rn, and - ro ~ rx; ~ + ro. The set of solutions x to such a system is, of 
course, a certain convex set in R", the intersection of the convex level sets 

{x IJ;(x) ~ rx;}, 

{x IJ;(x) < rx;}, 

[f every J; is closed and there are no strict inequalities (i.e. 12 = 0), the set 
of solutions is closed. The system is said to be inconsistent if the set of 
solutions is empty; otherwise it is consistent. 

If rx; is finite and g; is the convex function /; - rx;, the inequality 
/;(x) ~ rx; is the same as g;(x) ~ 0, and/;(x) < 'rx; is the same as g;(x) < 0. 
For this reason, one simply considers, for the most part, systems of in
equalities in which all the right-hand sides are 0. 

Linear equations may be incorporated into a system of convex 
inequalities by the device of writing (x, b) = {J as a pair of inequalities: 
(x, b) ~ {J and (x, -b) ~ -{J. 

The theorems proved below mostly concern the existence of solutions to 
certain finite and infinite systems of convex inequalities. The systems are 
generally nonlinear. [n the case of finite systems of purely linear inequalities 
(weak or strict), there is a special, more refined existence and representation 
theory involving so-called elementary vectors. This will be treated in the 
next section. 

The first result which we establish is a fundamental existence theorem 
expressed in the form of two mutually exclusive alternatives. 
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THEOREM 21.1. Let C be a convex set, and let f1> ... ,fm be proper 
convex functions such that domf; ::::i ri C. Then one and only one of the 
following alternatives holds: 

(a) There exists some x EC such that 

f1(x) < 0, ... Jm(x) < O; 

(b) There exist non-negative real numbers A1, ••. , Am, not all zero, such 
that 

Vx EC. 

PROOF. Assume that (a) holds. Given any x satisfying (a) and any 
multipliers A1 ~ 0, ... , Am ~ 0, each term of the expression 

is non-positive. Terms for which A; is not zero are actually negative, so 
that the whole expression must be negative if the multipliers A; are not all 
zero. Therefore (b) cannot hold. 

Assume now that (a) does not hold. We must show that in this case (b) 
holds. We can suppose C to be non-empty since otherwise (b) holds 
trivially. Let 

C1 = {z = ('i. ... , 'm) E Rm I 3x E C,/;(x) < 'i for i = 1, ... , m}. 

rt is easy to see that C1 is a non-empty convex set in Rm. Since (a) does 
not hold, C1 does not contain any z with '; ~ 0 for i = 1, ... , m. The 
non-positive orthant 

C2 = {z = ('i, ... , 'm) I 'i ~ 0 for i = 1, ... , m} 

(which is a convex set) is thus disjoint from C1 , so that C1 and C2 can be 
separated properly by some hyperplane (Theorem 11.3). Thus, for a 
certain non-zero vector z* = (A1, ... , Am) and a certain real number ()(, 
we have 

()( ~ (z*, z) = A1'1 + · · · + Am,m• 

()( ~ (z*, z) = A1 'I + · · · + Am,m• 

Since C2 is the non-positive orthant, the second of these two conditions 
implies that()( ~ 0 and A; ~ 0 for i = 1, ... , m. (ff Ai. say, were negative, 
the inequality ()( ~ (z*, z) would be violated by any z of the form 
('1> 0, ... , 0) with ' 1 sufficiently negative.) From the first condition, we 
then have that 

0 ~ A1'1 + · · · + Am'm 

whenever there exists an x EC such that '; > /;(x) for i = 1, ... , m. 
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Therefore, for each x in the set 

D = C n dom/1 n · · · n <lorn/ m• 

we have 
0 ~ 21[/1(x) + t:] + · · · + }.m[fm(x) + t:] 

for arbitrary t: > 0, implying 

0 ~ 2J1(x) + · · · + },mfm(x). 

The convex function f = 2J1 + · · · + Amf m is thus non-negative and 
finite on D. Then f is also non-negative on cl D (Corollary 7.3.3). Since 
ri Cc D by hypothesis, we have 

C c cl (ri C) c cl D, 

and consequently /(x) ~ 0 for every x EC. Thus (b) holds. 
Some condition like the condition ri Cc <lorn/; in Theorem 21.1 is 

necessary, as is shown by the following example. Let / 1 be the convex 
function on R defined by / 1(x) = -x112 if x ~ 0,/1(x) = + ro if x < 0. 
Let/2(x) = x and C = R. Then there is no x EC such that/1(x) < 0 and 

/ 2(x) < 0 (i.e. (a) does not hold), and yet the only non-negative multipliers 
21 and 22 such that 2J1(x) + 22f~(x) ~ 0 for every x EC are 21 = 0, 
22 = 0 (i.e. (b) does not hold either). The condition ri Cc dom/1 is 
violated in this example. 

The next result is a modification of Theorem 21.1 to take special account 
of affine functions. (Note that Theorem 21.1 can be regarded as the case 
where k = m.) 

THEOREM 21.2. Let C be a convex set, and let / 1 , ••• ,fk be proper 
convex functions such that domf; ::::i ri C. Let fk+ 1, . .. ,f m be affine 
functions such that the system 

/k+1(x) ~ 0, ... ,J m(x) ~ 0, 

has at least one solution x in ri C. Then one and only one of the following 
alternatives holds: 

(a) There exists some x EC such that 

fk+1(x) ~ 0, ... .fm(x) ~ O; 

(b) There exist non-negative real numbers 21> ... , }.m such that at least 
one of the numbers 21> ... , }ck is not zero, and 

Vx EC. 

PROOF. The proof is like that of Theorem 21.1, except that a more 
careful separation argument is needed. rt is evident, as in the previous 
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proof, that if (a) holds (b) cannot hold. Assume now that (a) does not 
hold. We shall show that (b) holds. Let C1 be the set of vectors :: = 
ab ... , 'm) in Rm for which there exists an x E c satisfying 

/;(x) < 'i for i = I. ... , k, 
and 

f;(x) = 'i for i = k + I. ... , m. 

(Here C1 ~ 0, provided that C ~ 0, as can be supposed without loss of 
generality.) Let C2 be the non-positive orthant, 

C2 = {z = ai. ... 'L) I 'i ~ 0, i = I, ... , m}. 

Evidently C1 and C2 are convex sets, and C2 is polyhedral. We have 
C1 n C2 = 0, because (a) does not hold. According to a special separation 
theorem which we have proved for polyhedral convex sets, Theorem 20.2, 
there exists a hyperplane which separates C1 and C2 properly and does not 
contain C1. Thus there exists a real number rx and a vector ::* = 
0•1, ... , },,,,) such that 

rx ~ A1'1 + · · · + Am,m• 

rx ~ A1'1 + · · · + Am'm' 

'v'(,1, ... , 'm) E C1, 

'v'(,1, · · ·, 'm) E C2, 

and such that the first inequality holds as a strict inequality for at least one 
element of C1• The second inequality implies that 

rx ~ 0, 

The first inequality implies then that 

A1'1 + · · · + Ak'k + Ak+ifk+I(x) + · · · + },mf m(x) ~ rx 

whenever x EC and 'i > /;(x) for i = I, ... , k. Hence 

2J1(x) + · · · + },dk(x) + },k_,_ifw(x) + · · · + },mfm(x) ~ IX 

for every x in the convex set 

D = C n dom/1 n · · · n domfk· 

Since the convex function f = }.J1 + · · · + 2,nf m satisfies /(x) ~ IX for 
every x ED, it also satisfies/(x) ~IX for every x E cl D (Corollary 7.3.3). 
By hypothesis ri C c D, so for every x EC we have /(x) ~ IX, and 
con seq uentl y 

}.if; (x) + · · · + }.mfm(x) ~ 0, 

as desired. To complete the proof that (b) holds, we need only show that 
the multipliers }.1 , ••• , }.k are not all zero. Suppose },1 = · · · = 2"' = 0; 
we shall argue to a contradiction. We have f = },k+J1.+ 1 + · · · +}.mfrn, 
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so f is affine. By the hypothesis of the theorem, there exists at least one 
x Eri C such that/;(x) ~ 0 for i = k + 1, ... , m, and for such an x, 
we have/(x) ~ 0. But/(x) :2:'.: rx :2:'.: 0 for every x EC, so this implies that 
rx = 0 and that the infimum off over C is attained on ri C. Then f, being 
an affine function, must actually be constant on C, i.e./(x) = 0 for every 
x EC. On the other hand, according to the choice of the hyperplane 
separating C1 and C2, there is some ai. ... ' 'm) E C1 such that 

Thus there is some x E C such that 

For this x we have/(x) ~ 0, and the constancy of/is contradicted. 
Our main existence theorem for solutions to systems of weak (rather 

than strict) convex inequalities is the following. 

THEOREM 21.3. Let {/;I i EI} be a collection of closed proper convex 
functions on R", where I is an arbitrary index set. Let C be any non-empty 
closed convex set in R". Assume the functions f; hare no common direction 
of recession which is also a direction of recession of C. Then one and onZv one 
of the following alternatives holds: 

(a) There exists a vector x EC such that 

f;(X) ~ 0, Vi EI; 

(b) There exist non-negath"e real numbers A;, only finiteZv many non-zero, 
such that, for some c > 0, one has 

Vx EC. 

If alternative (b) holds, the multipliers A; can actually be chosen so that at 
most n + 1 of them are non-zero. 

PROOF. Adding the indicator function of C to the given collection if 
necessary, we can reduce the theorem to the case where C = R". Obviously 
(a) and (b) cannot hold simultaneously. Assume that (a) does not hold. 
We shall prove that (b) holds, and that will establish the theorem. 

Let k be the positively homogeneous convex function generated by 

h = conv {J;* Ii EI}. 

The conjugate of k is the indicator function of the convex set {x I h*(x) ~ 
O} (Theorem 13.5). Since every f; is closed by hypothesis, we have 

h* = sup U7* I i EI} = sup {f; I i E /} 
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by Theorem 16.5. Therefore k* is the indicator function of 

D = {x IJ;(x) ~ 0, Vi E/}. 

But D is empty, because (a) does not hold. Thus k* is the constant 
function + ro, and cl k = k* * must be the constant function - ro. [n 
particular, (cl k)(O) = - ro. 

The rest of the proof is in two parts: we show that alternative (b) holds 
if k(O) = (cl k)(O), and then we prove that k(O) = (cl k)(O) under our 
hypothesis about directions of recession. 

Suppose k(O) = - ro. Then h(O) < 0. Applying Carathfodory's 
Theorem in the form of Corollary 17.1.3, we get the existence of vectors x; 
and non-negative scalars A;, at most n + 1 of which are non-zero, such that 

L;EzA;Xf = 0, L;E12J;*(xf) < 0. 

For notational simplicity, let us suppose that the indices i corresponding 
to non-zero scalars A; are just the integers 1, ... , m (m ~ n + 1 ). Setting 
Y7 = },;xj, we then have 

Therefore 

Yi + · · · + Y ! = 0, 

(fi21)(yi) + ... + (f !2m)(y,':',) < 0. 

(Ji* 21 D · · · D f,';)m)(O) < 0. 

The latter inequality implies a certain property of the function f = 
2if1 + · · · + 2mfm· Namely, we have 

f* =cl CO.di)* L:J • • • u Pmf,,,)*) 
= cl (j * }, D · · · D f * 2 ) 1 1 mm 

by Theorems 16.4 and 16.1, and consequently /*(O) < 0. But, by 
definition, 

/*(0) =sup"' {(x, 0) - /(x)} = -infx/(x). 

Therefore inf f > 0, i.e. there exists some c > 0 such that 

Vx ER". 

The multipliers 2; thus satisfy alternative (b ). 
We must prove now that k(O) = (cl k)(O). The effective domain of k is 

the convex cone generated by the union of the sets dom/7, i EI. If the 
relative interior of this set contains 0, then certainly k(O) = (cl k)(O) as 
desired. Now if 0 ef= ri (<lorn k), we can separate 0 from <lorn k (Theorem 
11.3). In this case, therefore, there exists a non-zero vector y such that 
(y, x*) ~ 0 for every x* E <lorn k. We have 

(y, x*) ~ 0, Vx* E domj;.*, Vi EI, 
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so the direction of y is a direction of recession off; for every i EI (Theorem 
13.3). But the existence of such directions has been excluded by hypothesis. 
Thus it is impossible that 0 ef= ri (<lorn k), and this finishes the proof. II 

Theorem 21.3 applies both to infinite systems and finite systems. One 
of its main consequences, as far as infinite systems are concerned, is that 
existence questions for such systems can be reduced in the following sense 
to existence questions for finite systems. 

COROLLARY 21.3. I. Let{/; I i EI} be a collection of closed proper convex 
functions on R", where I is an arbitrary index set. Let C be any non-empty 
closed convex set in R". Assume that the functions j; have no common 
direction of recession which is also a direction of recession of C. Assume also 
that, for every c > 0 and every set of m indices ii. ... , i,,, in I with m ~ 
n + I, the system 

f; (x) < c, ... ,/; (x) < c, 
I m 

is satisfied by at least one x EC. Then there exists an x E C such that 

j;(x) ~ 0, Vx EI. 

PROOF. rt is enough to show that alternative (b) of the theorem is 
incompatible with the assumption here about subsystems having solutions. 
Under (b), there would exist a non-empty subset I' of/, containing n + I 
indices or less such that, for certain positive real numbers },; (where i E !') 
and a certain a > 0, 

LiE/' 2J;(x) :2:'.: b, Vx EC. 

Define}, = LiE[' A; and [:; = of)., Then 

LiEI' ().;/ }.)j;(x) :2:'.: c, V x EC, 
and consequently 

LiE/' (2;/).)(f;(x) - c) :2:'.: 0, Vx EC. 

This is impossible since, by our hypothesis, there exists an x EC such that 
j;(x) < c for every i EI'. II 

Corollary 21.3.1 includes an important classical result, known as 
Helly's Theorem. 

COROLLARY 21.3.2 (Helly's Theorem). Let {C; Ii EI} be a collection of 
non-empty closed convex sets in R", where I is an arbitrary index set. 
Assume that the sets C; ha1Je no common direction of recession. If every 
subcollection consisting of n + 1 or fewer sets has a non-empty intersection, 
then the entire collection has a non-empty intersection. 

PROOF. Apply the preceding corollary to the functions f; = o(. I C;), 
with c = R". 11 

The recession hypothesis in Helly's Theorem is satisfied of course if 
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one or more of the sets C; is bounded.As a matter of fact, it is satisfied if 
and only if some finite subcollection of the C/s has a bounded inter
section, assuming that every finite subcollection has a non-empty inter
section. The proof of this fact is left as an exercise. 

A counterexample which shows the need for the hypothesis about 
directions of recession in Theorem 21.3 may be obtained by taking C = 
R2./={l,2}and 

f1(x) = (¢f + I ) 112 
- ~2• 

f2(x) = ( ¢~ + I )112 
- ~i. 

for every x = ( ~1> ~2). The "hyperbolic" convex sets 

J I J < o~ {. t ·- ) I " < t2 i 112} lx 1(x) _ J = (1.;1, ~2 ~2 :2:-: <.;1 + ) , 
{x lflx) ~ O} = {(¢i. ~2) I ~ 1 ~ (~~ + 1)112

], 

have no point in common, so the first alternative of Theorem 21.3 does 
not hold. But the second alternative does not hold either, because for 
every choice of coefficients }.1 ~ 0 and 22 ~ 0 the infimum of 

}.if1(x) + 2zf~(x) 
is 0 along the ray emanating from the origin in the direction of the vector 
(I, I). The latter direction happens to be a direction of recession common 
tof1 andf2. 

A similar counterexample shows the need for the hypothesis about 
directions of recession in Helly's Theorem. With f 1 and f 2 as above, 
consider the collection consisting of all the (non-empty closed convex) 
subsets of R2 of the form 

[:; > 0, k =I, 2. 

Every subcollection consisting of three ( = n + 1) or fewer sets has a non
empty intersection, since each C,._, contains the half-line 

{A(l, I) I 2 ~(I - c2)/2c}, 

but the intersection of the entire collection is empty. 
The two counterexamples just given depend on the fact that the convex 

sets involved have non-trivial asymptotes. It may be hoped, therefore, 
that stronger results can be obtained in cases where there is enough 
linearity or polyhedral convexity present to prevent unsuitable asymptotic 
behavior. Refinements of this sort will be described in the next two theorems. 

THEOREM 21.4. The hypothesis about directions of recession in Theorem 
21.3 and Corollary 21.3. l may be replaced by the following weaker hypothesis 
if C = Rn. There exists a finite subset 10 of the index set I such that f; is 
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affine for each i E 10 , and such that each direction which is a direction of 
recession offJor every i EI is actually a direction in which f; is constant for 
every i c I\ 10 • 

PROOF. We have to show how to modify the proof of Theorem 21.3 to 
fit the weaker hypothesis. Only the last part of the proof, concerned with 
showing that (cl k)(O) = k(O), is affected. It is assumed that alternative 
(a) does not hold. 

Let 11 = I\ 10 . It suffices to show that (cl k)(O) = k(O) in the case 
where 10 and 11 are both non-empty. (We could always add new indices to 
10 and 11 with the corresponding new functions f; identically zero. The 
augmented system would still satisfy the hypothesis, and alternative (a) or 
(b) would hold if and only if the same alternative held for the original 
system.) For j = 0, I, let ki be the positively homogeneous convex 
function generated by 

hi = conv {f;* I i E Ii}. 

Let k be as in the proof of Theorem 21.3. It is clear that 

k = conv {k0 , k1}. 

Since the epigraphs of k 0 and k 1 are convex cones containing the origin, and 
the convex hull of two such cones is the same as their sum (Theorem 3.8), 
we have 

k(x*) = inf{µ I (x*, µ)EK}, 

where K = epi k0 + epi k 1. Therefore 

k(x*) =inf {k0(xti) + ki(x{) I xi+ x; = x*, x; E <lorn ki}. 

In particular, setting x* = 0, we have 

k(O) = inf {ko(-z) + k1(z) I:;: E (-<lorn ko) n <lorn k1}. 

Holding this fact in reserve for the moment, let us consider the nature of 
k0 and <lorn k 0 more closely. 

For each i E 10 , the function/; is affine by hypothesis, say 

f;(x) = (a;, x) - rx;. 

The conjugate function is then of the form 

f;*(x*) = 6(x* I a;)+ rx1, 

i.e. epi/;* is a vertical half-line in Rn+i emanating upward from the point 
(a;, :x;)· Thus epi k 0 is the convex cone in Rn+i generated by the points 
(a;, rx;) together with (0, 1). Since 

k 0(x*) = inf {u I (x*, µ) E epi k 0}, 
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it follows that 

k 0(x*) = inf {LiE/o A;CX; I A; :2:'.: 0, LiElo A;a; = x*}, 

so that k 0 is a finitely generated convex function. Therefore k 0 and <lorn k 0 

are polyhedral (Corollary 19.1.2). 
As the next step, we claim that 

(-<lorn k 0) n ri (<lorn k 1) ~ 0. 

This will be proved from the recession hypothesis by a separation argu
ment. Suppose the polyhedral convex set -<lorn k 0 does not meet 
ri (<lorn k 1). By Theorem 20.2, there exists a hyperplane which separates 
-<lorn k 0 and <lorn k 1 properly without containing <lorn k 1• This hyper
plane necessarily passes through the origin, since the origin belongs to 
both <lorn k 0 and <lorn k 1• Thus there exists some vector y ~ 0 such that 

(y, x*) :2:'.: 0, 

(y, x*) ~ 0, 

V x* E (-<lorn k 0) 

Vx* Edom ki. 

where (y, x* > < 0 for at least one x* E <lorn k 1• Then 

(y, x*> ~ 0, Vx* E domf;*, Vi EI, 

so the direction of y is a direction of recession of/; for every i EI 
(Theorem 13.3). By hypothesis, such a direction is a direction in which/; 
is constant for every i E 11• Thus/;, for every i E 11 , also has the direction 
of -y as a direction of recession, so that 

\-y,x*) ~ 0, Vx* Edomft, Vi E/ 1. 

But <lorn k 1 is the convex cone generated by the sets dom/t, i E 11• Hence 
we have 

(-y, x*) ~ 0, 

This contradicts the fact that (y, x*) < 0 for at least one x* E <lorn k 1• The 
contradiction shows that the intersection of -<lorn k 0 and ri (<lorn k 1) is 
non-empty as claimed. 

[f k 0 is improper, it must be identically - ro on <lorn k 0 (since it is a 
polyhedral convex function). [f k 1 is improper, it is identically - ro on 
ri (<lorn k 1). [neither case, for 

z E (-<lorn k 0 ) n ri (<lorn k 1) 

we have 
k0(-z) + k 1(z) = - w, 

and hence, by the formula for k which was established at the beginning 
of the proof, k(O) = - ro. Then k(O) = (cl k)(O), and there is nothing 
more to prove. 
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Assume therefore that k 0 and k 1 are both proper. Let g be the poly
hedral convex function defined by g(.:") = k 0(-:), so that <lorn g = 
-<lorn k 0• [n terms of g, we have 

k(O) = infz {g(.:) + k1(.:)} 

= -supz {(O, .:) - (g + k 1)(.:)} = -(g + k1)*(0). 

The conjugate of (g + k 1)* is given by the formula in Theorem 20.1, since 
g is polyhedral and <lorn g meets ri (<lorn k 1). Therefore 

-k(O) = (g* :::i ki)(O). 

Now, by the same argument given fork at the beginning of the proof of 
Theorem 21.3, k7 is the indicator function of the convex set 

j = 0, I. 

Consequently g* is the indicator function of -C0 , and g* l_J k~ is the 
indicator function of -C0 + C1• The set 

is empty, because alternative (a) is assumed not to hold. The origin thus 
does not belong to -C0 + C1 , and we have 

-k(O) = r)(O I -C0 +Ci)= + OC>. 

This implies again that (cl k)(O) = k(O) = - ro, and the proof of the 
theorem is complete. II 

THEOREM 21.5. The hypothesis in Hel~v·s Theorem (Corollary 21.3.2) 
about directions of recession may be replaced by the folloll'ing 1reaker 
hypothesis. There exists a finite subset 10 of the index set I such that Ci is 
polyhedral for ei·ery i E / 0 , and such that each direction which is a direction 
of recession of C Jor ei:ery i EI is actuallv a direction in which Ci is linear 
for every i EI\ / 0• 

PROOF. Let {Ci I i E /}be a collection satisfying this modified hypothesis 
for Helly's Theorem. First consider the case where, for every i E / 0 , Ci is a 
closed half-space. For i E / 0 , let f; be an affine function such that 

C; = {x IJ:(x) ~ O}. 

For i EI\ / 0 , let/; be the indicator function of Ci. Corollary 21.3.1 can be 
applied to C = R" and the collection {f; I i E /} under the weaker hypoth
esis just established in Theorem 21.4, and from this we may conclude that 
the intersection of {Ci I i E /}is not empty. Now in the general polyhedral 
case, each Ci for i E / 0 can be expressed as the intersection of a certain 
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finite collection of closed half-spaces. Put all these half spaces together 
into one collection denoted by { c; I i E /~}. Let c; = Ci for i EI\ lo, and 
form the collection 

{C; / i E /'},I' = (I\ 10) U I~. 

This collection again has then + I intersection property that {C, Ii EI} 
has. Any direction in which c; is receding for every i EI' is a direction in 
which C, is receding for every i EI, and hence is a direction in which C~ 
is linear for every i EI'\ I~. Thus the collection { c; I i EI'} satisfies the 
modified hypothesis for Helly's Theorem, with c; a closed half-space for 
i EI~. The result has already been verified in the half-space case, so the 
intersection of { c; I i E /'} (which is the same as the intersection of 
{Ci I i EI}) must be non-empty. II 

In the case of a finite collection of convex sets, Helly's Theorem is true 
without any hypothesis about directions of recession, as we now 
demonstrate. 

THEOREM 21.6. Let {Ci I i EI} be a finite collection of convex sets in Rn 
(not necessarily closed). If every subcollection consisting of n + I or fewer 
sets has a non-empty intersection, then the entire collection has a non-empty 
intersection. 

PROOF. For each subcollection consisting of n + I or fewer sets, 
select one of the vectors in the intersection of the subcollection. The 
selected vectors then make up a certain finite subset S of Rn. For each 
i EI, let c; be the convex hull of the non-empty finite sets n Ci. Each c; 
is a closed bounded convex set contained in Ci. If J is any set of n + I or 
fewer indices in /, the intersection of the sets Ci for i E J contains one 
of the vectors in S, and this vector then belongs to the intersection of the 
sets c; for i E J. The collection { c; I i EI} thus satifies the hypothesis of 
Corollary 21.3.2 and has a non-empty intersection. This intersection is 
contained in the intersection of the original collection, so that too is 
non-empty. II 

This version of Helly's Theorem is applicable to finite systems of convex 
inequalities: 

COROLLARY 21.6.1. Let there be given a system of the form 

where f 1 , ••• Jm are convex functions on Rn. (The inequalities may be all 
strict or all weak.) If every subsystem consisting of n + I or fewer inequalities 
has a solution in a given convex set C, then the system as a whole has a 
solution in C. 
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PROOF. Let C0 = C, 

C; = {x lf;(x) < O} for i = 1, ... , k 
and 

C; = {x lf;(x) ~ O} for i = k + 1, ... , m. 

Apply the theorem to the collection {C; I i = 0, ... , m}. II 
COROLLARY 21.6.2. If alternative (b) holds in Theorem 21.1 or Theorem 

21.2, the numbers A; can actually be chosen so that no more than n + 1 of 
them differ from 0. 

PROOF. If alternative (a) fails in Theorem 21.1 or Theorem 21.2, it 
already fails for a subsystem consisting of n + 1 or fewer inequalities, 
according to Corollary 21.6.1. Alternative (b) holds for this subsystem. II 



SECTION 22 

Linear Inequalities 

This section treats the theory of finite systems of (weak or strict) linear 
inequalities. First we shall state various existence results as special cases of 
relatively difficult theorems that have been established in §21 for more 
general systems of inequalities. An alternate method of development will 
then be presented which yields the same results in an elementary way 
independent of the general theory of convexity. 

THEOREM 22.1. Let a; E Rn and rx; E R for i = 1, ... , m. Then one 
and only one of the following alternatives holds: 

(a) There exists a vector x E Rn such that 

i = 1, ... ,m, 

(b) There exist non-negative real numbers A1 , ••• , Am, such that 

I:1 A;a; = 0 and I~1 l 1rx; < 0. 

PROOF. Let f;(x) = (a;, x> - rx; for i = 1, ... , m. The hypothesis of 
Theorem 21.4 is then satisfied with / 0 = I= {1, .. . , m}. Hence one and 
only one of the alternatives in Theorem 21.3 is satisfied (with C = Rn). 
Alternative (a) is the same as the present alternative (a). Alternative (b) 
in Theorem 21.3 says that, for certain non-negative numbers A1 , ... , Am, 
the function 

f(x) = L~i AJ;(x) = <I~1 A;a;, x> - L~i A;rx; 

has a positive lower bound on Rn. Since f is an affine function, this can 
only happen if/ is a positive constant function, and this is the meaning of 
alternative (b) in the present theorem. II 

In situations where strict inequalities are involved, the following result 
can be used. 

THEOREM 22.2. Let a; E Rn and rx; E Rf or i = 1, ... , m, and let k be an 
integer, 1 ~ k ~ m. Assume that the system 

(a;, x> ~ rx; for i = k + 1, .. . , m 

is consistent. Then one and only one of the following alternatives holds: 

198 
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(a) There exists a vector x such that 

(a;, x> < rx; for i = 1, .. . , k, 

(a;, x> ~ rx; for i = k + 1, . .. , m; 

199 

(b) There exist non-negative real numbers 21 , ••• , Am, such that at least 
one of the numbers 21 , ••. , }ck is not zero, and 

L;".'.,1 A;ai = 0 and _L:,1 A;rx; ~ 0. 

PROOF. Let f;(x) = (a;, x> - rx;, i = 1, ... , m. The hypothesis of 
Theorem 21.2 is satisfied with C = Rn. Alternatives (a) and (b) of 
Theroem 21.2 correspond to the present (a) and (b),just as in the preceding 
proof. II 

Theorem 22.1 is, of course, applicable to the system in the hypothesis of 
Theorem 22.2. Thus the hypothesis of Theorem 22.2 fails to be satisfied if 
and only if there exist non-negative real numbers 2k+1' ... , Am such that 

_L;'.!,k+I A;a; = 0 and _L;':k+1 A;rx; < 0 

Altogether then, one has a necessary and sufficient condition for the 
existence of solutions to any finite system of (weak and/or strict) linear 
inequalities. 

An inequality (a0 , x> ~ rx0 is said to be a consequence of the system 

i=l,. . .,m 

if it is satisfied by every x which satisfies the system. For example, the 
inequality ~1 + ~2 ~ 0 is a consequence of the system 

~i ~ 0, i = 1, 2; 

this is the case where (~1 , ~2) = x, a0 = (-1, -1), a1 = (-1,0), a2 = 
(0, -1) and rx0 = rx1 = rx2 = 0. 

THEOREM 22.3. Assume that the system 

i = 1, ... ,m, 

is consistent. An inequality (a0 , x> ~ rx0 is then a consequence of this system 
1f and only 1f there exist non-negative real numbers 21 , •.• , Am such that 

_L;:12;a; = a0 and L7'~ 1A;<X; ~ rx0 • 

PROOF. The inequality (a0 , x> ~ rx0 is a consequence if and only if the 
system 

(a;, x> ~ rx; for i = 1, ... , m, 

is inconsistent, i.e. has no solution x. By Theorem 22.2, such inconsistency 
is equivalent to the existence of non-negative real numbers 2~, 2~, ... , 2;,. 
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such that A~ ~ 0, 

A~(-a0) + A~a1 + · · · + A~,.am = 0. 

A~(-a.:0 ) + A~a.:1 + · · · + A;,,cxm ~ 0. 

This condition is equivalent to the one in the theorem under the relations 
A;= A;/A~, i = 1,. .. , m. II 

COROLLARY 22.3.1 (Farkas' Lemma). An inequality (a0 , x> ~ 0 is a 
consequence of the system 

i = 1, ... , m 

if and only if there exist non-negative real numbers Ai, ... , Am such that 

PROOF. The hypothesis of Theorem 22.3 is satisfied, because the zero 
vector satisfies (a;, x> ~ 0 for i = 1, ... , m. II 

Farkas' Lemma has a simple meaning in terms of polar convex cones. 
The set of all non-negative linear combinations of ai, ... , am is the convex 
cone K generated by a1 , •.. , am, and the solutions x to the system 
(a;, x> ~ 0, i = 1, . .. , m, form the cone K 0 polar to K. An inequality 
(a0 , x> ~ 0 is a consequence of the system if and only if (a0 , x) ~ 0 for 
every x E K 0

, in other words a0 E K 00
• Farkas' Lemma says that K 00 

= K. 
This result could also have been reached in another way. For any convex 
cone K, one has K 00 = cl K, as shown in §14. Here K is finitely generated, 
and hence closed (Theorem 19.1), so that K 00 

= K. 
Theorem 22.3 and Farkas' Lemma are also valid for certain infinite 

systems 

according to Theorem 17.3. The condition for validity is that the set of 
solutions to the system have a non-empty interior and that the set of points 

{ (a,, ex;) I i E I} 

be closed and bounded in Rn+1• 

If one of the inequalities in alternative (a) of Theorem 22.1 is changed to 
an equality condition, the effect on alternative (b) is to remove the non
negativity requirement from the multiplier A; corresponding to this con
dition. The reader can prove this, as an exercise, by applying Theorem 
22.1 to the modified system in which each equation is expressed by a pair 
of inequalities. 

Theorem 22.3 can easily be generalized to mixed systems of weak and 
strict inequalities (using the same proof), but the statement of the result 
becomes somewhat complicated in this case. 
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It is often convenient to express systems of inequalities in matrix 
notation. [n the case of Theorem 22.1, for example, let A be the m x n 

matrix whose rows are a1 , ... , am, and let a= (cx1 , ... , cxm)· The system 
in alternative (a) can be expressed as 

Ax~ a, 

using the convention that a vector inequality is to be interpreted component 
by component. Setting w = (21 , ... , Am), we can express the conditions 
in alternative (b) by 

w :2:'.: 0, A*w = 0, (w, a) < 0, 

where A* is the transpose matrix. This formulation makes it clear that (b), 
like (a), simply concerns the existence of a solution to a certain system 
which can be expressed by a finite number of linear inequalities. The 
system in (b) may be called the alternative to the system in (a). The two 
systems are dual to each other, in the sense that, no matter what coeffi
cients are chosen, one of the systems has a solution and the other does not. 

Other dual pairs of inequality systems can be constructed. For example, 
an alternative to the system 

x :2:'.: 0, Ax= a, 

may be found from Farkas' Lemma. Let a1 , ... , an denote the columns of 
A. The given system concerns non-negative real numbers ~1 , ••• , ~n 

(the components of x) such that ~1a1 + · · · + ~nan = a. According to 
Farkas' Lemma, such numbers fail to exist if and only if there is a vector 
w E Rm such that (ai, w> ~ 0 for j = 1, ... , n and (a, w> > 0. The 
system 

A*w ~ 0, (a, w> > 0, 

is thus dual to the given system. 
For the sake of an exercise, it can be shown that the system 

and the system 
w :2:'.: 0, 

are dual to each other. 

x :2:'.: 0, Ax~ a, 

A*w :2:'.: 0, (a, w> < 0, 

There are many dual pairs of systems that can be obtained by considering 
various mixtures of equations and weak and strict inequalities, and one 
cannot hope to write them all down. Nevertheless, there is a unified way 
of approaching the subject which provides one with a good "formula" 
for the alternative to a given system. 

We may say that, in general, we are interested in finding an alternative 
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to a system which can be expressed in the form 

'i E Ii for j = 1, ... , N, 

where N = m + n, A = (exii) is a given real coefficient matrix, and each Ii 
is a certain real interval. (By a real interval, we mean merely a convex 
subset of R; thus Ii may be open or closed or neither, and it may consist 
of just a single number.) For instance, the system Ax ~ a corresponds to 
the case where Ii= (- ro, +ex>) for j = 1, . .. , n and In+i = (- ro, ex;] 
for i = 1, . .. , m. The system x :2:'.: 0, Ax= a, corresponds to Ii= 
[O, +ro) forj = 1, ... , n and In+i ={ex;} for i = 1, ... , m. 

The alternative system in each of the cases we have already mentioned 
concerns a condition on the numbers '~, ... , (~ which satisfy 

_,; = _L;'.'.,,1,;,+iexii for j = 1, ... , n. 

In the alternative to Ax ~ a, the condition is that 

n = 0 for j = 1, ... ' n, 

c;,+i :2:'.: 0 for i = 1, ... 'm, 

,;,_,1ex1 + · ' ' + ';,+mexm < 0. 

Now notice that this condition is equivalent to the condition that 

for every choice of numbers , 1 , ••• , (v such that 'n+i ~ exJor i = 1, .. . , 
m, in other words for every choice of '1' ... , (v such that 'i E Ii for 
j = 1, ... , N. The condition in the alternative system can thus be 
expressed simply by 

'1*I1 +···+,_~IN< 0. 

(Here" <0" really means c (- ro, 0).) Similarly, in the alternative system 
to x :2:'.: 0, Ax = a, the condition is that 

'i :2:'.: 0 for j = 1, ... , n, 

';,+1ex1 + · · · + ,;,+,,.exm > 0, 

and this can be expressed in terms of the corresponding intervals Ii as 

One may conjecture that in the general case, no matter what intervals 
I1 , ••. , IN are specified, there will be an alternative system which can be 
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expressed in the form 

GI 1 + · · · + GI iv > 0, 

_,; = :L;'.:1 '!+icxii for j = 1, ... , n. 

(Note that there is no loss of generality in taking only the case ">0," 
because a solution exists for this case if and only if a solution exists for the 
case" <0.") We shall prove below that this conjecture is true. 

The vectors z = a1, ... ' (v) in RN which satisfy 

'n+i = I7~1 CX;j'J for i = 1, ... 'm 
form a certain n-dimensional subspace L of Rs. As pointed out at the end 
of §1, the orthogonally complementary subspace L1- consists of the vectors 
z* = (,;, ... ,(~)such that 

Y* - "\'m v* <' . - 1 -.,,i - L.i~l Sn+io:ii 1or J - , ... , n. 

We can simplify matters therefore by speaking of Land L1- rather than of 
linear relationships given by a coefficient matrix A. (Any subspace and its 
orthogonal complement can, of course, be expressed in terms of a coeffi
cient matrix by taking a Tucker representation, as in §1.) 

Thus we may suppose we are given simply a subspace L of R·v and certain 
real intervals I1 , ••. , f.v· The question is whether there exists a vector 
('i. ... , (v) EL such that 'i E Ii for j = 1, .. . , N. The conjecture is 
that such a vector fails to exist if and only if there exists a vector 
( ';, ... , ,,~) E L 1- such that I~1 ';Ii > 0. The set It1 '7 Ii is a real 
interval, by the way, since a linear combination of convex sets is convex. 

The conjecture is really in the form of a separation theorem: either the 
subspace L meets the generalized rectangle 

C = {<'1, ... , (v) I 'iEii,j = 1, ... , N}, 

or there exists a hyperplane {z I (z, z*) = O} containing Land not meeting 
C. This furnishes some geometric motivation for the conjecture. The 
proof given below makes no use of the geometry, however, and it does not 
invoke any general theorems about convexity. It is a completely 
independent proof of a combinatorial nature, and it provides a good ele
mentary way of deriving results like Farkas' Lemma directly. 

Everything depends on the concept of an "elementary vector" of a 
subspace L of RN. Thinking of a vector z = ( 'i. ... , (v) as a real-valued 
function on the set { 1, ... , N} (the value of the function being 'i at the 
point)), one is led to define the support of z to be the set of indices) such 
that 'i ~ 0. Each vector in L then has a certain subset of {l, ... , N} 
assigned to it, namely its support. An elementary vector of Lis a non-zero 
vector z in L whose support is minimal with respect to L, i.e. whose support 
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does not properly include the support of any other non-zero vector in L. 
If z is an elementary vector of L, then obviously so is 2z for any 2 ~ 0. 

The concept of an elementary vector is derived from an important 
example in the theory of graphs, which we shall now sketch for the sake 
of motivation. 

A directed graph G may be defined formally, for purposes of this example, 
as a triplet{£, V, C} where E = {ei, ... , e.d is an abstract set of elements 
called edges (branches, lines, arcs or links), V = {vi, ... , v_11 } is an 
abstract set of elements called vertices (nodes or points), and C = (c;j) is 
an M x N matrix, called the incidence matrix. whose entries are all + 1, 
- I or 0, with exactly one +I and one - I in each column. The inter
pretation of the incidence matrix C is that, for each edge ei• the vertex at 
the "initial end'' of ei is the L'; with cii = +I, while the vertex at the 
"terminal end" of e1 is the L'; with cii = -1. 

Given a directed graph G, consider the subspace L of R' consisting of 
all the vectors :: = ( 'i. .... ,,) such that 

Li~1 cii'i = 0 for i = 1, ... , M. 

If we think of Gas a representation of a network of pipes, say, and interpret 'i as the amount of water per second flowing through pipe e1 (a positive '; 
being regarded as a flow from the initial vertex of ei to the terminal vertex 
and a negative 'i as a flow in the oppsoite direction), then the vectors in L 
can be interpreted as the circulations in G, i.e. flows which are conservative 
at every vertex. The support of such a vector z gives the set of edges e1 in 
which the associated amount of flow 'i is non-zero. An elementary vector 
of L therefore corresponds to a non-zero circulation in G which is non-zero 
in a minimal set of edges. Without going into the details, it can be said 
that the minimal sets of edges in question comprise the elementary circuits 
of G (closed "paths" which do not intersect themselves), and that each 
elementary vector of L is in fact of the form 

where (t:1, ..•• E_y) is the incidence vector for some elementary circuit 
( Ei = +I if the circuit passes through the edge ei from the initial vertex 
to the terminal vertex, Ei = -1 if the circuit passes through ei in the 
opposite direction, Ei = 0 if the circuit does not use e1 at all). 

A further important example of elementary vectors can be obtained by 
considering the orthogonal complement L1- of the circulation space L. Of 
course, L 1- is the subspace of R' generated by the rows of the incidence 
matrix C. or in other words L '·consists of the vectors z* = <G, ... , (~) 
such that, for some vector p = (7Ti, ... , 7T_1,), one has 

.. "' °"' v f . 1 ~ 1 1,j = -L...i~i 7T;C,j or J = , ... , n. 
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If 7T; is interpreted as the "potential" at the vertex V;, this formula says 
that 'i is obtained simply by subtracting the potential at the initial vertex 
of e1 from the potential at the terminal vertex of e1• Thus the vectors z* in 
L 1 can be interpreted as the tensions in G, with q the amount of tension 
or potential difference across ei. The support of such a vector gives the set 
of edges in which the associated amount of tension is non-zero. An elemen
tary vector of L J_ corresponds to a tension in G which is non-zero in a mini
mal set of edges. rt can be shown that such sets of edges comprise the 
so-called elementary cocircuits of G, and that the elementary vectors of L J_ 

are of the form 

where (t:i. ... , Ex) is the incidence vector of some elementary cocircuit. 
(The elementary cocircuits of G, which correspond to "minimal cuts" of 
G, can be obtained as follows, assuming for simplicity that G is connected. 
Take any subset W of the vertex set V such that deletion from G of all the 
edges with one vertex in Wand one vertex not in W would leave a directed 
graph with exactly two connected components. The elementary cocircuit 
associated with W consists of the edges just described, with E1 = + 1 if e1 

has its initial vertex in Wand its terminal vertex not in W, E1 = -1 if e1 

has its terminal vertex in Wand its initial vertex not in W, and E1 = 0 if 
e1 has neither or both of its vertices in W.) 

[n the case of a general subspace of R"'" which is not the space of all 
circulations or tensions in some directed graph, it is not necessarily 
true, of course, that every elementary vector is a multiple of a vector whose 
components are all + 1, -1 or 0. Nevertheless the elementary vectors do 
have certain special properties, as shown in the following lemmas which 
will be needed in the proof of the main result, Theorem 22.6. 

LEMMA 22.4. Let L be a subspace of Rs. If z and ::.' are elementary 
vectors of L having the same support, then z and z' are proportional, i.e. 
z' = Azfor some A~ 0. 

PROOF. Let j be any index in the common support of z and::.', and let 
A = ';f'1 (where ' 1 and ';are the jth components of z and z'). The vector 
y = z' - Az belongs to L. The support of y is contained in the support of 
z, and it is properly smaller than the support of z because it does not 
containj. Since z is an elementary vector of L, it follows by definition that 
y has to be the zero vector. Thus z' = AZ. II 

COROLLARY 22.4.1. A subspace L of R-'" has only finitely many elementary 
vectors, up to scalar multiples. 

PROOF. There are only finitely many subsets of {l, ... , N} appearing 
as the supports of elementary vectors of L. The correspondence between 
these sets and the elementary vectors is one-to-one up to scalar multiples 
by the lemma. II 
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LEMMA 22.5. Every vector in a given subspace L can be expressed as a 
linear combination of elementary vectors of L. 

PROOF. Let z be any non-zero vector of L. There must exist an ele
mentary vector z1 of L whose support is contained in that of z. Let j be one 
of the indices in the support of z1 , and let 21 be the quotient of the jth 
component of z by the jth component of z1• The vector z' = z - 21z1 

belongs to Land has its support properly contained in that of z. If z' is 
elementary (or if z' = 0), the expression z = z' + 21z1 meets the require
ment. Otherwise, we can apply the same argument to z' to get a further 
decomposition 

where z2 is an elementary vector of Land z" is a vector of L whose support 
is properly contained in that of z'. (The support of z" thus contains at 
least two indices fewer than that of z.) After a finite number of decom
position steps, the required expression of z must result. II 

In the proof below, we shall need one other intuitively obvious fact: 
if J 1 , .•. , J mare real intervals such that no two are disjoint, then there is a 
point common to all m intervals. This is a special case of Helly's Theorem 
(Theorem 21.6 with n = 1 ), but it is such a simple case that we want to 
point out an easy independent proof. Form a symmetric m x m matrix A 
by choosing an element cxii from each intersection J; n Ji. Let 

f31 = max (min a.:,), 
' i 

{32 = min (max a.:iJ) = min (max a.:ii). 
j i i j 

Then {31 ~ {32• Let {J be any number between {31 and {32. For i = 1, ... , m, 
we have 

min a.:;i ~ {J ~ max a.:1i, 
i i 

so that {J lies between two numbers in Ji. Thus {J E Ji for i = 1, ... , m. 

THEOREM 22.6. Let L be a subspace of R·", and let 11 , .•• , IN be real 
intervals. Then one and only one of the following alternatives holds: 

(a) There exists a vector z = a1 , .•• , (y) EL such that 

,1 E f1, · · · , 'N E f.v; 

(b) There exists a vector z* = ( '~, ... , (~,) E L 1- such that 

'i/1 + ... + (\r(y > 0. 

If alternative (b) holds, z* can actually be chosen to be an elementary 
vector of L 1-. 
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PROOF. Alternatives (a) and (b) cannot both hold, for that would 
entail the existence of two vectors z and z* simultaneously satisfying 
z* J_ z and (z*, z) > 0. Assume that (b), in the stronger form involving 
elementary vectors, does not hold. [n other words, assume that 

0 E ('i/1 + ' ' ' + (~fl.;) 
for every elementary vector of L~. We shall demonstrate that (a) holds. 
Let p be the number of non-trivial intervals among / 1, .•• , IN, i.e. 
intervals which contain more than one point but are not simply the whole 
of (- ro, + ro). The proof is by induction on p. 

In the case where p = 0, we can suppose (for simplicity of notation) that 
11 consists of a single number rxi for j = 1, . .. , k, and Ii = (- ro, + ro) 
for j = k + 1, ... , N. Let L0 be the subspace of RN consisting of the 
vectors z' = ( ,~, ... , ''.v) for which there exists a z EL with '; = ''for 
j = 1, ... , k. The subspace Lt then consists of the vectors z* EL~ 
such that q = 0 for j = k + 1, ... , N. The elementary vectors of Lt 
are just the elementary vectors of L ~ which belong to Lt. Since by 
assumption 

for every elementary vector z* of L~, we have 

0 = 'i IX1 + ' ' ' + '~!X 1.; + ,~_, 1 ' 0 + ' ' ' + 'Ar ' 0 

for every elementary vector z* of Lt. The vector (rx1 , •.• , rxk, 0, ... , 0) 
is thus orthogonal to all the elementary vectors of Lt. Since Lt is generated 
algebraically by its elementary vectors according to Lemma 22.5, we have 

(rx1, ••• , rxk, 0, ... , 0) E L~l. = L0• 

This means there exists a vector z E L such that 'i = rxi for j = 1, ... , k. 
This z satisfies alternative (a). 

Now consider a case where at least one of the given intervals is non
trivial, say / 1• Make the induction hypothesis that (a) holds in all the 
cases where there are fewer non-trivial intervals than in the given case. We 
shall show that there exists a number rx1 E / 1 such that 

0 E ( Grx1 + GI 2 + · · · + 'V N) 

for every elementary vector z* of L~. This will mean that / 1 can be 
replaced by a trivial subinterval, so that, by induction, (a) is satisfied. 

The rx1 E / 1 which we need merely has to satisfy 

!X1 E [(if2 + '.' +'JIN] 
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for every elementary vector.::* of L - such that 'i = -1. By Lemma 22.4 
there are only finitely many elementary vectors of this type. Denote the 
set of them by E, and for each :* EE let Jz* denote the interval '; / 2 + 
· · · + '.'Us· To prove the existence of the desired ()(i, we must show that the 
finite collection of intervals consisting of / 1 and theJz*, :* E £,has a non
empty intersection. rt suffices to show that no two of the intervals in this 
collection are disjoint. For:* EE we have / 1 n Jz* ~ 0, because 

0 E [(-l)/1 + GI2 + ... + GI,y] = -/1 + }z* 

by our assumption that 0 E L7~i '7 Ii for every elementary vector z* of 
U . Observe that the latter condition is still satisfied if / 1 is replaced by 
(- ro, + ro). This replacement yields a system with fewer non-trivial 
intervals than the given system, and for this other system (a) holds by 
induction. Thus there exists a vector : E L such that ' 2 E / 2 , ••• , (\' E f.v· 
For each z* E £, this z satisfies 

0 = (z*, z) = (-lgl + ~n~ + ... + (n_y. 

Thus , 1 EJz* for every z* E £, and no two of the intervals Jz* can be 
disjoint. The theorem now follows. II 

[n the case of Theorem 22.6 where Lis the space of all circulations in some 
directed graph G, as described above, alternative (a) asserts the existence 
of a circulation z such that the amount of flow 'i in the edge ei lies in a 
certain prescribed interval Ii for every j. Alternative (b ), on the other hand, 
asserts something about the elementary vectors of LJ..., which is the space 
of all tensions in G. [n fact, bearing in mind the relationship between the 
elementary vectors of L J_ and the elementary cocircuits of G, we can 
express (b) as follows: there exists an elementary cocircuit of G whose 
incidence vector ( c:1 , ••• , c:_\') has the property that 

E1f1 + ' ' ' + Es/_y > 0. 

Similarly, in the case of Theorem 22.6 where L is the space of all 
tensions in some directed graph G, so that L J... is the space of all circulations 
in G, alternative (a) asserts the existence of a tension whose amounts lie in 
prescribed intervals, while alternative (b) asserts the existence of an 
elementary circuit of G whose incidence vector (c:i. ... , c_y) has the 
property that 

E1f1 + ' ' ' + Esfy > 0. 

As an application of Theorem 22.6, we shall prove: 

THEOREM 22.7 (Tucker's Complementarity Theorem). Cicen any sub

space L of R-', there exist a non-negatfre vector z = ( 'i, ... , '-') E L and 
a non-negatire rector.::* = ( 'i, ... , (~.) E LJ... such that the supports of z 
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and::* are complementary (i.e. for each index i either ' 1 > 0 and '7 = 0, 
or 'i = 0 and '7 > 0). The supports of:: and z* (but not z and z* themselves) 
are uniquely determined by L. 

PROOF. We note first that, for each index k, one and only one of the 
following alternatives holds: 

(a) There exists a non-negative z EL such that 'k > 0; 
(b) There exists a non-negative z* E L ~ such that '; > 0. 

This is seen by applying Theorem 22.6 to the case where I; = [O, + ro) 
for i ¥- k and lk = (0, + cx:>). Now let S be the set of indices k such that (a) 
holds, and for each k E S let z" be one of the non-negative vectors in L 
whose kth component is positive. Let S* be the set of indices k such that 
(b) holds, and for each k ES* let z; be one of the non-negative vectors in 
L~ whose kth component is positive. Then Sand S* are complementary 
subsets of { 1, ... , N}, and the non-negative vectors 

z = .L zk EL, 
kEF{ 

have Sand S* as their supports, respectively. 



Part V · Differential Theory 



SECTION 23 

Directional Derivatives and 

Subgradients 

Convex functions have many useful differential properties, and one of 
these is the fact that one-sided directional derivatives exist universally. 
Just as the ordinary two-sided directional derivatives of a differentiable 
function/ can be described in terms of gradient vectors, which correspond 
to tangent hyperplanes to the graph of/, the one-sided directional 
derivatives of any proper convex function/, not necessarily differentiable, 
can be described in terms of "subgradient" vectors, which correspond 
to supporting hyperplanes to the epigraph off 

Let/ be any function from R 11 to [ - ro, + oo], and let x be a point where 
f is finite. The one-sided directional derfratire off at x with respect to a 
vector v is defined to be the limit 

J'(x;y) = Jim f(x + } .. ~) - f(x)' 
1.;o A 

if it exists ( + ro and - oo being allowed as limits). Note that 

-f'(x; -y) = Jim /(x + 2~ - f(x) • 
!.'.O 

so that the one-sided directional derivative.[' (x; y) is two-sided if and only 
ifj'(x; -y) exists and 

f'(x; -y) = -f'(x; y). 

Of course, if f is actually differentiable at x, the directional derivatives 
f' (x; y) are all finite and two-sided, and one has 

f'(x;y) = (\lf(x),y>, Vy, 

where \lf(x) is the gradient off at x. (See §25.) 

THEOREM 23.1. Let f be a convex function, and let x be a point where f is 
finite. For each y, the difference quotient in the definition off' (x; y) is a 

213 
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non-decreasing function of 2 > 0, so thatf'(x;y) exists and 

!
'( ) . f /(x + 2y) - f(x) x;y =in , . 

A>O /i. 

Moreover, f' (x; y) is a positively homogeneous convex function of y, with 
f'(x; 0) = 0 and 

-f'(x; -y) ~ j'(x;y), Vy. 

PROOF. The difference quotient for 2 > 0 can be expressed as }c-1h(2y), 
where h(y) = f(x + y) - f(x). The convex set epi h is obtained by 
translating epi/ so that the point (x,f(x)) is moved to (0, 0). On the other 
hand }c-1h(2y) = (h2-1)(y), where by definition h}c-1 is the convex function 
whose epigraph is 2-1 epi h. Since epi h contains the origin, the latter set 
increases, if anything, as ,{-1 increases. In other words, for each y, the 
difference quotient (h2-1)(y) decreases if anything as 2 decreases. It follows 
that 

inf(h2-1)(y) = j'(x;y), Vy. 
A>O 

Thus the directional derivative function/' (x; ·) exists,and it is the positively 
homogeneous convex function generated by h. One hasf'(x; 0) = 0 by 
definition. Furthermore, given any µ 1 > f'(x; -y) and any µ 2 > f'(x;y), 
one has 

(1/2)µ1 + (1/2)µ 2 ~f'(x; (1/2)(-y) + (l/2)y) = 0 

by convexity. Therefore -f'(x; -y) ~f'(x;y) for every y. 
Observe that the effective domain off' (x; y) as a convex function of y 

is the convex cone generated by the translate (<lorn/) - x (which contains 
the origin). 

In the case where/is a convex function on the real line R, the directional 
derivatives off at x are completely described by the right derivative 

f~(x) = j'(x; 1) 
and the left derivative 

f!_(x) = -J'(x; -1). 

According to Theorem 23.1,f~ and/!_ are well-defined throughout <lorn/, 
if/ is proper, and/!_(x) ~ f~(x). This one-dimensional case will be treated 
in detail in §24. 

A vector x* is said to be a subgradient of a convex function fat a point x 
if 

f(z) ~f(x) + (x*, z - x), V z. 

This condition, which we refer to as the subgradient inequality, has a 
simple geometric meaning when/is finite at x: it says that the graph of the 
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affine function h(z) = f(x) + (x*, z - x) is a non-vertical supporting 
hyperplane to the convex set epi/ at the point (x,f(x)). 

The set of all subgradients off at x is called the subdifferential off at x 
and is denoted by (}j(x). The multivalued mapping (}j: x-+ (}j(x) is called 
the subdifferential off. Obviously (}j(x) is a closed convex set, since by 
definition x* E (}j(x) if and only if x* satisfies a certain infinite system of 
weak linear inequalities (one for each z). In general, (}j(x) may be empty, 
or it may consist of just one vector. If (}j(x) is not empty, f is said to be 
subdifferentiable at x. 

For example, the Euclidean norm f(x) = lxl is subdifferentiable at 
every x E Rn, although it is differentiable only at every x ~ 0. The set 
(}j (0) consists of all the vectors x* ·such that 

lzl ~ (x*, z), V z; 

in other words, it is the Euclidean unit ball. For x ~ 0, (}j(x) consists of 
the single vector lx1-1x. If f is the Tchebycheff norm instead of the 
Euclidean norm, i.e. 

f(x) =max {l~il lj =I, ... , n} for x = (~i, ... , ~n), 

it can be seen that 
(}j(O) = conv {±ei, ... , ±en} 

(where ei is the vector forming the jth row of then x n identity matrix), 
while for x ~ 0 

(}j(x) = conv {(sign ~i)ei lj EJ"'}, 
with 

J"' = {j I 1 ~ii = /(x)}. 

An example of a convex function which is not subdifferentiable every
where is 

{

-(! - lxl 2
)

112 if lxl ~ I, 
f(x) = 

+ ro otherwise. 

This f is subdifferentiable (in fact differentiable) at x when lxl < I, but 
(}j(x) = 0 when lxl ~ I, even though x E <lorn/for lxl = I. 

An important special case in the theory of subgradients is the case 
where f is the indicator of a non-empty convex set C. By definition, x* E 
(}b(x I C) if and only if 

b(z IC)~ b(x IC)+ (x*, z - x), Vz. 

This condition means that x EC and 0 ~ (x*, z - x) for every z EC, 
i.e. that x* is normal to Cat x. Thus (}b(x I C) is the normal cone to Cat x 
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(empty if x ef= C). The case where C is the non-negative orthant of Rn will 
be considered at the end of this section. 

rt will be shown in Theorem 25. l that CJf(x) consists of a single vector x* 
if and only if the convex function f is finite in a neighborhood of x, 
differentiable (in the ordinary sense) at x and has x* as its gradient at x. 
In this event, of course, CJf(x) completely describes the directional 
derivatives off at x. It turns out, however, that there is a close relationship 
between CJf(x) and the directional derivatives off at x even when CJf(x) 
does not consist of just a single vector. This will be demonstrated in the 
next three theorems. 

THEOREM 23.2. Let f be a convex function, and let x be a point where f 
is finite. Then x * is a subgradient off at x if and only if 

J'(x;y) ~ (x* ,y), Vy. 

In fact, the closure of f'(x;y) as a convex function of y is the support 
function of the closed convex set CJf(x). 

PROOF. Setting z = x + 2y, we can turn the subgradient inequality 
into the condition that 

[f(x + 2y) - f(x)]/2 ~ (x* ,y) 

for every y and 2 > 0. Since the difference quotient decreases tof'(x;y) 
as 2 t 0, this inequality is equivalent to the one in the theorem. The 
theorem now follows from applying Corollary 13.2. l to the positively 
homogeneous convex function/'(x; ·). II 

In the one-dimensional case of Theorem 23.2, the subgradients are the 
slopes x* of the non-vertical lines in R 2 which pass through (x,f(x)) 
without meeting ri (epi/). These form the closed interval of real numbers 
between/~(x) and/~(x). 

The consequences of Theorem 23.2 are many. First we give the main 
results on the existence of subgradients. 

THEOREM 23.3. Let f be a convex function, and let x be a point where f is 
finite. If f is subdifferentiable at x, then f is proper. lf f is not subdifferentiable 
at x, there must be some infinite two-sided directional derivative at x, i.e. 
there must exist some y such that 

J'(x;y) = -J'(x, -y) = -ro; 

in fact thelatter must hold for every y of the form z - x with z E ri (<lorn/). 

PROOF. Subdifferentiability at x implies that f majorizes a certain 
affine function, and hence that f is proper. The set CJf(x) is empty if and 
only if its support function is the constant function - ro. This support 
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function is cl (f'(x; ·))by the preceding theorem. The closure of a convex 
function is identically - ro if and only if the function itself has the value 
- ro somewhere. Thus if f is not subdifferentiable at x there must exist 
some y such that J'(x;y) = - ro (in which case -f'(x; -y) = - ro 
too, since by Theorem 23.1 one always has -j'(x; -y) -::;,j'(x;y)). In 
this case, J'(x; ·) must have the value - ro throughout the relative 
interior of its effective domain D (Theorem 7.2). But D is the union of 
the convex sets 2C over all 2 :2:'.: 0, where C is the translate (<lorn/) - x, 
and since 0 E C this implies that 

Cc D c affC. 

Thus ri C c ri D, both relative interiors being interiors relative to the same 
affine set. This shows that J'(x; ·) must have the value - ro throughout 
(<lorn/) - x, and the proof is complete. II 

THEOREM 23.4. let f be a proper convex function. For x ef= <lorn/, 
CJf(x) is empty. For x E ri (<lorn/), CJf(x) is non-empty,f'(x;y) is closed 
and proper as a function of y, and 

J'(x;y) =sup {(x*,y) Ix* E CJ/(x)} = b*(y I CJ/(x)). 

Finally, CJf(x) is a non-empty bounded set if and only if x E int (<lorn/), in 
which casef'(x;y) is finite for every y. 

PROOF. Taking z E <lorn/in the subgradient inequality, we see that the 
inequality cannot be satisfied by any x* whenf(x) = + ro. If x E ri (<lorn/), 
the effective domain ofj'(x; ·)is an affine set, the subspace parallel to the 
affine hull of domf. Since J'(x; ·) vanishes at the origin, it cannot be 
identically -ro on this affine set. Hencef'(x; ·)is proper (Theorem 7.2) 
and closed (Corollary 7.4.2). But thenf'(x; ·)is itself the support function 
of CJf(x) by Theorem 23.2, whence the supremum formula and the non
emptiness of CJf(x). If actually ri (<lorn/) = int (<lorn/), the effective 
domain of f'(x; ·) is the whole space, so that the support function 
b*(" I CJ/(x)) is finite everywhere. On the other hand, since b*( · I CJf(x)) is 
the closure of f'(x; ·), if b*(· I CJf(x)) is finite everywhere J'(x; ·) must 
be finite everywhere, implying by Corollary 6.4.1 that x E int (<lorn/). 
The last statement of theorem now follows from the fact that a non
empty convex set is bounded if and only if its support function is finite 
everywhere (Corollary 13.2.2). II 

There is also a more geometric way to prove that a proper convex 
function/is always subdifferentiable on ri (<lorn/). For any x E ri (<lorn/), 
one has (x, µ) in ri (epi/) for f(x) < µ < ro (Lemma 7.3), whereas 
(x,f(x)) is itself a relative boundary point of epif. By Theorem 11.6, 
there exists a non-trivial supporting hyperplane to epi f containing 
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(x,f(x)). This hyperplane cannot be vertical, so it is the graph of some 
affine function corresponding to a subgradient x* at x. 

An important case to keep in mind is where/ is a finite convex function 
on Rn. Then, at each point x, the subdifferential of(x) is a non-empty 
closed bounded convex set, f' (x; ·) is a finite positively homogeneous 
convex function, and for each vector y the directional derivativef'(x;y) 
is the maximum of the various inner products (x*, y) as x* ranges over 
of(x). 

A generalization of the assertion in Theorem 23.4 that of(x) is bounded 
when XE int (domj) is this: for any XE domf such that oj(x) ¥- 0, the 
recession cone of of(x) is the normal cone to dom/ at x. This may be 
proved as an exercise; the verification will be given later as part of the 
proof of Theorem 25.6, which explains how of(x) may be constructed 
from limits of sequences of ordinary gradients when int (<lorn/) is not 
empty. 

The set of points where a proper convex function is subdifferentiable 
lies between <lorn/ and ri (<lorn/) according to Theorem 23.4, but it need 
not actually be convex. For example, on R2 let 

/(~1' ~2) =max {g(~1), I ~21}, 

where g(~1 ) = 1 - ~~12 if ~1 z 0, g(~1 ) = + oo if ~1 < 0. The effective 
domain off is the right closed half-plane, and f is subdifferentiable 
everywhere on this half-plane except in the relative interior of the line 
segment joining (0, 1) and (0, -1). 

Duality is prevalent in the theory of subgradients, due to the following 
fact. 

THEOREM 23.5. For any proper convex function f and any vector x, 
the following four conditions on a vector x* are equivalent to each other: 

(a) x*Eof(x); 
(b) (z, x*) - f(z) achieves its supremum in z at z = x; 
(c) f(x) + f*(x*) ~ (x, x*); 
(d) f(x) + f*(x*) = (x, x*). 

If (clf)(x) = f(x), three more conditions can be added to this list; 
(a*) XE oj*(x*); 
(b*) (x, z*) - f*(z*) achieves its supremum in z* at z* = x*; 
(a**) x* E o(clj)(x). 

PROOF. The subgradient inequality defining (a) can be rewritten as: 

(x, x*) - f(x) z (z, x*) - f(z), Vz. 

This is (b). Since the supremum in (b) is/*(x*) by definition, (b) is the 
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same as (c) or (d). Dually, (a*), (b*) and (a**) are equivalent to 

f**(x) + f*(x*) = (x, x*), 

and this coincides with (d) when/(x) = (cl/)(x) = f**(x). II 
COROLLARY 23.5.1. If f is a closed proper convex function, of* is the 

inverse of of in the sense of multivalued mappings, i.e. XE oj*(x*) if and 
only if x* E oj(x). 

COROLLARY 23.5.2. If f is a proper convex function and x is a point 
where f is subdif.ferentiable, then (clf)(x) = f(x) and o(cl j)(x) = 0 f(x). 

PROOF. In general, 

f(x) z (cl/)(x) = f**(x) z (x, x*) - f*(x*). 

If/is subdifferentiable at x, there exists at least one x* such that (d) holds, 
implying/(x) = (cl/)(x). Then o(clf)(x) = of(x) by the equivalence of 
(a) and (a**) in the theorem. II 

COROLLARY 23.5.3. Let C be a non-empty closed convex set. Then, for 
each vector x*' oo*(x* I C) consists of the points x (if any) where the linear 
function (·, x*) achieves its maximum over C. 

PROOF. Take f = o(· I C) in the theorem, so that!* is the support 
function o*(· IC). Invoke the equivalence of (a*) and (b). II 

COROLLARY 23.5.4. Let K be a non-empty closed convex cone. Then 
x* E oo(x I K) if and only if x E oo(x* I K 0

). These conditions are equivalent 
to having 

XE K, x* E K 0
, (x, x*) = 0. 

PROOF. Take f = o( · I K),f* = o(· I K 0
), in the theorem and invoke 

the equivalence of (a), (a*) and (d). II 
We have shown that the support function o*(· I of(x)) can be obtained 

by closing the directional derivative function f' (x; · ). However, dis
crepancies can exist between the values of these two functions at certain 
relative boundary points of their effective domains. These discrepancies 
have a dual meaning which is disclosed by the study of "approximate 
subgradients." 

Let f be any convex function finite at x. A vector x* is called an e
subgradient off at x (where e > 0) if 

f(z) z (f(x) - e) + (x*, z - x), Vz. 

The set of all such e-gradients is denoted by oJ(x). 
Insight into the nature of e-subgradients can be obtained from the 

function 
h(y) = f(x + y) - f(x), 
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whose conjugate is given by 

h*(x*) = f*(x*) + f(x) - (x, x*). 

Observe that h* is a non-negative closed convex function on Rn, and that 
the set of points where h* vanishes is of(x) (Theorem 23.5). We have 
x* E oJ(x) if and only if 

ez(x*,y)-h(y), Vy. 

The supremum of (x*, y) - h(y) in y is h*(x*); thus 

oJ(x) = {x* 1 h*(x*) ~ e}. 

In particular' therefore, oJ(x) is a closed convex set. As E decreases, 
oJ(x) gets smaller, if anything, and the intersection of the nest of sets 
oJ(x), E > 0, is oj(x). 

Although oJ(x) decreases to of(x) as E decreases to 0, the supremum 
o*(y 1 oJ(x)) of a linear function <·, y> on oJ(x) does not necessarily 
decrease all the way to its supremum o*(y I of(x)) over of(x). This 
discrepancy corresponds exactly to the possible discrepancy between 
f'Cx;y)ando*(y 1 of(x)),asweshallnowdemonstrate. 

THEOREM 23.6. Let f be a closed proper convex function, and let x be a 
point where f is finite. Then 

f'(x;y) = 1im o*(y I a.1cxn. 
eio 

PROOF. Setting h(y) = f(x + y) - f(x) as above, we can express 
oJ(x) as the level set {x* I h* (x*) - E ~ O}. Since h* - Eis the conjugate 
of h + E, it follows from Theorem 13.5 that o*(· 1 oJ(x)) is the closure of 
the positively homogeneous convex function generated by h + e. Since 
h + e is finite and positive at the origin, the positively homogeneous 
function generated by h + e is itself closed according to Theorem 9. 7, and 
its value at y is the infimum of 

((h + e)A.)(y) = A.[f(x + A.-1y) - f(x) + e] 

over A > 0. Replacing A by its reciprocal, we get the formula 

o*(y I o,f(x)) = inf/(x + A.y); f(x) + E. 

A>O • 

As e ! 0, this decreases to 

inff(x + A.y) - f(x) 
l>O A , 

which isf'(x;y) by Theorem 23.1. 



§23. DIRECTIONAL DERIVATIVES AND SUBGRADIENTS 221 

To illustrate Theorem 23.6, we consider the function 

f = conv {/1 ,j;} 

on R2 , where for each x = ( ~i. ~2) 

{
o if ~~+(~2-1)2 ~1, 

f1(x) = 
+ oo otherwise, 

{
l if ~1 = 1, 

fz(x) = 
+ oo otherwise. 

It can be seen that, for y = (rii. t)2), 

if t/2 > 0, 

J'(O;y) = {~1 
+oo 

or if t)1 = 0 = t)2, 

if ri1 > 0 and ri2 = 0, 

if t/2 < 0, or if t)1 < 0 and t) 2 = 0. 

The closure of the functionf'(O; ·), on the other hand, has the value 0 
when ri 2 z 0 and the value + oo when ri2 < 0. The dual meaning of the 
discrepancies between J'(O; ·) and its closure may be seen from an 
inspection of the sets 

oJ(O) = {x* 1/(0) + f*(x*) - (0, x*)::::;: e} 

= {x* l/*(x*) ~ e}, E > 0. 

By Theorem 16.5,f* is the pointwise maximum of/j_ and/:. We have by 
direct calculation 

fi(x*) = (~,*2 + ~i2)1;2 + ~i· 
f i(x*) = ~i* - 1, 

and therefore oJ(O) consists of all the vectors x* = ( ~j_, ~:)which satisfy 

max {(~{2 + ~:2)112 + ~:, ~j_ - 1} ~ e. 

In other words, oJ(O) is for E > 0 the interS!!Ction of the "parabolic', 
convex set 

{x* I~::~ Ce/2) - crr;2e)} 
and the closed half-space 

whereas 
{ x* I ~i ::::;: 1 + e}, 

of(O) = Oof(O) = {x* I ~i = 0, ~: ::::;: O}. 

For Y1 = (I, 0), the supremum of (", y 1 ) over oJ(O) is 1 for all e > 0, 
but the supremum over of(O) is just 0. This corresponds to the fact that 
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the values of J'(O; ·) and its closure at Yi are 1 and 0, respectively. 
Similarly, for J2 = ( -1, 0) the supremum of(·, J2) over oJ(O) is + oo for 
all e > 0, but the supremum over of(O) is 0, and this corresponds to the 
fact that the values of f'(O; ·) and its closure at Y2 are + oo and 0, 
respectively. 

In classical analysis, one generally expects the gradient off at x to be 
orthogonal to the level surface off through x. An analogous result for 
subgradients may be stated in terms of normals to convex sets. 

THEOREM 23. 7. Let f be a proper convex function. Let x be a point such 
that f is subdif.ferentiable at x but f does not achieve its minimum at x. Then 
the normal cone to C = {z j/(z) ~/(x)} at xis the closure of the convex 
cone generated by of(x). 

PROOF. The set {z j/(z) </(x)} has the same closure as C by Theorem 
7.6, since/(x) > inf/by hypothesis. Hence, for x* to be normal to Cat x, 
it is necessary and sufficient that (z - x, x*) ~ 0 whenever /(z) <f(x). 
Now the vectors y of form A.(z - x) with A > 0 and /(z) <f(x) are 
precisely those such that/'(x;y) < 0 (Theorem 23.1). The normal cone 
K0 to Cat xis thus the polar of the (non-empty) convex cone 

K = {y jj'(x;y) < O}. 

We have (by Theorem 7.6 and Theorem 23.2) 

cl K = {.v I cl,,f'(x; y) ~ O} = {y I b*(y I of(x)) ~ O} 

= {y I (y, x*> ~ 0, Vx* E of(x)} = K~, 

where Ki is the convex cone generated by of(x) (consisting of all non
negative multiples of elements of of(x)). Thus 

Ko= K 0 = (cl K) 0 = K~0 =cl Ki, 

and this is what we wanted to prove. 
COROLLARY 23. 7.1. Let f be a proper convex function, and let x be an 

interior point of domf such that f(x) is not the minimum off A vector x* is 
then normal to C = {z j/(z) ~/(x)} at x if and only if there exists a 
A z 0 such that x* EA of(x). 

PROOF. The hypothesis implies by Theorem 23.4 that of(x) is a non
empty closed bounded convex set not containing the origin. In this case, 
the closure of the convex cone generated by of(x) is simply the union of 
the sets A. of(x) for A. z O (Corollary 9.6.1). 11 

It is immediate from the definition of subgradient that 

o(Aj)(x) = A. of(x), Vx, VA.> 0. 
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This formula is also valid trivially for A. = 0, provided that of(x) ¥- 0. 
A more surprising fact is that the formula 

o(/i + ... + fm)(x) = ofi(X) + ... + of,,,(x), Vx, 

is valid when /i, ... ,fm are proper convex functions whose effective 
domains overlap sufficiently. 

THEOREM 23.8. Let fi. ... ,f," he proper convex functions on R", and 
let/ =Ji+···+ fm· Then 

of(x) :::::> ofi(X) + ... + of,ll(x), Vx. 

If the convex sets ri (domf;), i = I, ... , m, have a point in common, then 
actually 

of(x) = ofi(X) + ... + ofm(x), Vx. 

This condition for equality can be weakened slightly if certain of the 
functions, s~v fi, ... ,fk, are polyhedral: then it is enough if the sets 
domf;, i = I, ... , k, and ri (domf;), i = k + I, ... , m, have a point in 
common. 

PROOF. If x* =xi + · · · + x!, where xj E of;(x), we have for 
every:: 

/(::) = fi(z) + · · · + f,,,(z) ~fi(x) + (z - x, xi)+···+ f m(x) + (z - x, Xr~> 

= f (x) + (z - x, xi* + · · · + x;:'.> = f (x) + (z - x, x*>, 

and hence x* E of(x). This proves the general inclusion. Assuming the 
ri (dom/i) have a point in common, we have/* given by the last formula 
in Theorem 16.4. Hence, by Theorem 23.5, x* E of(x) if and only if 

(x, x*) = fi(x) + · · · + f m(x) 

+inf {f 1*(xi) + · · · + J::;(x::;)/ xi+···+ x::; = x*}, 

where for each x* the infimum is attained by some xi, ... , x!. Thus 
of(x) consists of the vectors of the form xi + ... + x! such that 

(x, xi)+ · · · + (x, x~> = fi(x) + · · · + f m(x) + fi(xi) + · · · + f~(x~). 

But one always has (x, xi) ~ f;(x) + fj(xi), with equality if and only if 
xj E of;(x). Thus of(x) is the same as ofi(x) + · · · + ofm(x). In the case 
where some of the functions are polyhedral, one invokes Theorem 20.1 
in place of Theorem 16.4. II 

COROLLARY 23.8.1. Let Ci, ... , Cm be convex sets in R" whose relative 
interiors have a point in common. Then the normal cone to Ci n · · · n Cm 
at any given point x is Ki + · · · + Km, where Ki is the normal cone to Ci 
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at x. If certain of the sets, say Ci. ... , Ck, are polyhedral, the conclusion 
holds if merely the sets C1, ... ' Ck, ri CH1' ... ' ri cm have a point in 
common. 

PROOF. Apply the theorem to the indicator functions/; = o(- I C;). 
Because of the importance of Theorem 23.8 in various applications, it 

seems worthwhile to give a second proof which does not cover the final 
assertion (concerning polyhedral convexity), but which invokes only 
separation theory, rather than Theorem 16.4 or Theorem 20.1. 

ALTERNATIVE PROOF. Carrying over the above proof of the general 
inclusion in Theorem 23.8, we proceed to show that, when the sets 
ri (domf;), i = 1, ... , m, have a point in common, then for any x 

We shall consider only the case where m = 2, since the general case will 
follow from this by induction (upon application of Theorem 6.5 to the sets 
domf,). Thus, given any x and x* such that 

x* E 0(/1 + f2)(x), 
we shall show that 

x* E of1(x) + Ofz(X). 

Replacingf1 and f 2 by the proper convex functions 

gl(x) = fl(X + X) - fl(x) - (x, x*), 

g2(x) =fix + x) - f2(.X) 

if necessary, we can reduce the argument to the case where 

x = 0, x* = o, fl(O) = 0 = f 2(0), 

and consequently (since x* E o(/1 + j;)(x) by assumption) 

minx U1 + /;)(x) = U1 + f 2)(0) = 0. 

Let us consider now the convex sets 

C1 = {(x, µ) E Rn+I Iµ Z.f1(x)}, 

C2 = {(x, µ) E Rn+I Iµ ~ -f2(x)}. 

According to Lemma 7.3, we have 

ri C1 = {(x, µ)Ix E ri (domf1), µ > f 1(x)}, 

ri C2 = {(x, µ)Ix E ri (domf2), µ < -f2(x)}, 

and since the minimum off1 +his 0 it follows that 

ri C1 n ri C2 = 0. 
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Hence C1 and C2 can be separated properly by some hyperplane in Rn+I 
(Theorem 11.3). The separating hyperplane cannot be vertical, for if it 
were its image under the projection (x, µ) ~ x would be a hyperplane in 
Rn separating domf1 and domf2 properly, and this is impossible because 

ri (domf1) n ri (domf2) ¥- 0 

(Theorem 11.3). The separating hyperplane must therefore be the graph of 
an affine function on Rn, in fact a linear function since C1 and C2 have the 
origin of Rn+I in common. Thus there exists an x* E Rn such that 

µ z (x, x*), 

µ ~ (x, x*), 

V(x, µ) E C1. 

V(x, µ) E C2. 

The latter conditions can be expressed respectively as 

fi(x) zf1(0) + (x - 0, x*), Vx E Rn, 

fz(x) zfz(O) + (x - 0, -x*), Vx E Rn, 

or in other words, 
x* E of1(0) and -x* E of2(0). 

It follows from this that 
0 E of1(0) + ofz(O), 

and the proof is complete. II 
Here is another result which is useful in the calculation of subgradients. 

THEOREM 23.9. Let f(x) = h(Ax), where h is a proper convex function 
on Rm and A is a linear transformation from Rn to Rm. Then 

of(x) => A*oh(Ax), Vx. 

If the range of A contains a point of ri (<lorn h), or if h is polyhedral and the 
range of A merely contains a point of <lorn h, then 

of(x) = A*oh(Ax), Vx. 

PROOF. If x* E A*oh(Ax), then x* = A*y* for some y* E oh(Ax). 
For every z E Rn we have 

f(z) = h(Az) z h(Ax) + (y*, Az - Ax) = f(x) + (x*, z - x), 

and hence x* E of(x). On the other hand, suppose that the range of A 
contains a point of ri (<lorn h ). Then f is proper and 

f*(x*) =inf {h*(y*) I A*y* = x*} 

by Theorem 16.3, where the infimum is attained by some y* for each x* 
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such that/*(x*) ¥- + 00. Given any x* E of(x), we have 

f(x) + f*(x*) = (x, x*> 

by Theorem 23.5, and hence there exists a vector y* such that A*y* = x* 
and 

f(x) + h*(y*) = (x, A*y*). 

This condition says that 

h(Ax) + h*(y*) = (Ax,y*), 

in other words that y* E oh(Ax) by Theorem 23.5. Thus x* E A*oh(Ax). 
If his polyhedral, the same proof is valid if merely Ax E <lorn h for some 
x, because the formula for/* in terms of h* can be obtained still from 
Theorem 16.3 via Corollary 19.3.1. II 

For polyhedral convex functions, the theory of directional derivatives 
and subdifferentials is considerably simplified by the following theorem. 

THEOREM 23.10. Let f be a polyhedral convex function, and let x be a 
point where f is finite. Then f is subdif.ferentiable at x, and of(x) is a poly
hedral convex set. The directional derivative function f' (x; ·) is a proper 
polyhedral convex function, and it is the support function of of(x). 

PROOF. The polyhedral convex set 

(epi/) - (x,f(x)) 

contains the origin, so the convex cone it generates is polyhedral and in 
particular closed (Corollary 19.7.1). This cone just is the epigraph of 
j'(x; -), so f'(x;-) is a polyhedral convex function. Since f'(x; 0) = 0, 
f' (x;-) is proper. (A polyhedral convex function which has the value - oo 
somewhere cannot have any finite values at all.) It follows in particular 
thatf'(x; ·)coincides with the support function of of(x) (Theorem 23.2). 
This implies that of(x) is a non-empty polyhedral convex set (Corollary 
19.2.1). 11 

A polyhedral convex function whose subdifferential appears very often 
in extremum problems is the indicator function f of the non-negative 
orthant of Rn: 

{
o if ~1 z 0, ... '~n z 0, 

J(x) = o(x I x z o) = 
+ oo if not, 

where ( ~i. •.. , ~ n) = x. The sub gradients x* off at x form the normal 
cone to the non-negative orthant at x, so 

of(x) = {x* = (~i, ... '~~)I x* ~ 0, (x, x*> = O}. 

In other words, for this/ the relation x* E of(x) is equivalent ton comple
mentary slackness conditions: 

~ 1 z 0, ~j ~ 0, ~1~j = 0, ; = 1, ... , n. 



SECTION 24 

Differential Continuity and 

Monotonicity 

Let f be a closed proper convex function on Rn. The subdifferential 
mapping of defined in the preceding section assigns to each x E Rn a 
certain closed convex subset of(x) of Rn. The effective domain of of, which 
is the set 

ctom of= {x I of(x) ¥- 0}, 

is not necessarily convex, but it differs very little from being convex, in the 
sense that 

ri (<lorn/) c dom of c <lorn/ 

(Theorem 23.4). The range of of as a multivalued mapping is defined by 

range of= u {of(x) Ix E Rn}. 

The range of of is the effective domain of of* by Corollary 23.5.1, so 

ri (dom/*) c range of c <lorn/*. 

Certain continuity and monotonicity properties of of and the set 

graph of= {(x, x*) E R2n Ix* E o/(x)} 

will be proved in this section. These properties correspond to continuity 
and monotonicity properties of the directional derivatives of/, and they 
imply Lipschitz properties off itself. Necessary and sufficient conditions 
will be given in order that a multivalued mapping be the subdifferential 
mapping of a closed proper convex function. 

The one-dimensional case will be treated first, because it is much 
simpler and it helps to motivate the general results. 

THEOREM 24.1. Let f be a closed proper convex function on R. For 
convenience, extend the right and left derivative functions f~ and f'_ beyond 
the interval <lorn f by setting both = + oo for points lying to the right of 
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<lorn f and both = - oo for points lying to the left. Then J;and f!_ are non
decreasing functions on R,finite on the interior of domf, such that 

/;(z1) ~f!_(x) ~f,'(x) ~/!__(z2) when z1 < x < z2 • 

Moreover,for every x one has 

limf~(z) = f~(x), 
dx 

limf'.t-(z) = f '_(x), 
ztx 

limf '_(z) = f~(x), 
dx 

limf '_(z) = f'_(x). 
ztx 

PROOF. For any x E doni./, we have by definition 

! ' ( ) 1. /(z) - f(x) 1. f(x + A) - f(x) J'( I) 
+ x = Jill = Jill = x; ' 

zix Z - X 2io A 

f'_(x) =Jim f(z) - f(x) =Jim f(x - },) - f(x) = -f'(x; -1). 
dx z-x ;.io -A 

According to Theorem 23.1, these limits exist in the monotone decreasing 
and monotone increasing sense, respectively, and /!__(x) ~ J;(x). (The 
latter inequality also holds by definition if x ef: domf) It is clear, from the 
monotonicity of the difference quotients, that f;(x) < + oo if and only if 
x lies to the left of the right endpoint of cl (<lorn/), andj:_(x) > - oo if 
and only if x lies to the right of the left endpoint. Thus the points where 
J; and/!_ are both finite are precisely those in int (<lorn/). If y and z are 
both in dom/ and y < z, we have 

! '( ) ~ f(z) - f(y) = f(y) - f(z) ~ {:_(z). 
+Y z-y y-z · 

Ifyandzarenotbothindom/,andy < z,thenJ;(y) ~/!__(z)bydefinition. 
The triple inequality in the theorem now follows. This inequality implies 
in particular that/; and Lare non-decreasing. It further implies that 

J;(x) ~ limf!_(z) ~ limf~(z). 
z(x zix 

To prove that equality really holds, it suffices to show that the second limit 
is no greater than /~(x) in the case where <lorn/ contains the interval 
(x, x + e) for some e > 0. (Otherwise equality holds by the extended 
definition of J; and f!__.) In this case the limit of /(z) as z ! x is /(x) by 
Corollary 7.5.1, so that for x < y < x + e we have 

f(y) -f(x) =Jim f(y) -f(z) z limJ;(z). 
y - X zix Y - Z zix 
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Therefore 

lim.f~(z) ~Jim f(y) - f(x) = f~(x). 
zix Yix Y - X 

The other two limit formulas in the theorem are proved similarly. 
Under the hypothesis of Theorem 24.1, we have 

of(x) = {x* ER I f'_(x) ~ x* ~ f'f-(x)} 

for every x, as already pointed out after Theorem 23.2. For example, let 

{
/xi - 2(1 - x) 112 if -3 ~ x ~I, 

f(x) = . + oo otherwise. 

This/ is a closed proper convex function on R. We have 

so that 

I 1 + (1 - x)-112 if 0 ~ X < 1, 

{

+oo if x z 1, 

l+(x)= -l+(1-xr112 if -3~x<0, 
-00 if x < -3, 

I 1 + (1 - x)-112 if 0 < X < 1, 

{

+oo if x z 1, 

f _(x) = -1 + (1 - x)-112 if -3 < x ~ 0, 

of(x) = 

-00 if x ~ -3, 

0 if x z 1, 

{1 + (1 - x)-1!2} if 0 < x < 1, 

[O, 2] if x = 0, 

{ -1 + (I - x)-1!2} if -3 < x < 0, 

(-oo, -1/2] if x = -3, 

0 if x < -3. 

Observe that when the graph of of is drawn it takes the form of a "con
tinuous infinite curve." We shall see in Theorem 24.3 that the graphs of the 
subdifferential mappings of the closed proper convex functions on R can 
be characterized in fact as the "complete non-decreasing curves" in R2 • 

To see that the limit formulas in Theorem 24. l can fail when f is not 
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closed, consider the case where 

f(x) ~ r if x > 0, 

if x = 0, 

+oo if x < 0. 
In this case 

f ~(x) = {
0 if x > 0, 

-00 if x ~O, 

and therefore f~ is not right-continuous at 0. 
When/is closed and proper, each of the functions/~ and/~ determines 

the other by the limit formulas in the theorem. Indeed, let r:p be any 
function from R to [ - oo, + oo] such that 

and let 
f ~(x) ~ r:p(x) ~ f~(x), Vx ER, 

ffJ+(x) = Jim r:p(z), 
z J. x 

r:p_(x) =Jim r:p(z). 
ztx 

Then r:p is non-decreasing by Theorem 24. l, and one has/~ = ffJ+ and 
f~ = r:p_. Thus r:p determines of completely. The next theorem shows how r:p 
determines/itself up to an additive constant. (Note that r:p can be taken to 
be finite on the (non-empty) interval I= domain of Outside of I, r:p is 
necessarily infinite, while on int I it is necessarily finite.) 

THEOREM 24.2. Let a E R, and let r:p be a non-decreasing function from 
R to [-oo, +oo] such that r:p(a) is.finite. Let ffJ+ and r:p_ be the right and 
left limits of r:p as above. Then the function f given by 

f(x) = r r:p(t) dt 

is a well-defined closed proper convex function on R such that 

.C = r:p_ ~ r:p ~ ffJ+ =!~· 

Moreover, if g is any other closed proper convex function on R such that 
g'_ ~ r:p ~ g~, then g = f + 1Xfor some IX ER. 

PROOF. LetJ be the interval where r:p is finite. Since r:p is non-decreasing, 
f(x) is well defined and finite as a Riemann integral for x E J. At 
finite endpoints of cl J,f(x) is well-defined as a limit of Riemann integrals 
(or as a Lebesgue integral), while for x ef: cl J the integral is unambiguously 
+ oo. We shall show that f is convex on J. It will then follow from the 
continuity of the integral on cl J that/ is a closed proper convex function 
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on R. Let x and y be points of J, x < y, and let z = (1 - A.)x + A.y with 
0 < A < 1. Then A = (z - x)/(y - x) and (1 - A.) = (y - z)/(y - x). 
We have 

Therefore 

f(z) - f(x) = r cp(t) dt:::;; (z - x)cp(z), 

f(y) - f (z) = r cp(t) dt z (y - z)cp(z). 

(I - A.)[f(z) - f(x)] + A.l/'(z) - f(y)] 

:::;; [(l - A.)(z - x) - A.(y - z)]cp(z) = 0, 
and we have 

f(z) :::;; (1 - A.)f(x) + A.f(y). 

This proves the convexity off For any x E J, we have 

f(z; = ~(x) = 
2 
~ x J,:cp(t) dt z cp(x), Vz > x, 

so that J: (x) z cp(x). Similarly, cp(x) z f!_(x) for x E J. These two in
equalities also hold trivially when x ef: J, so we must have/~ = cp+ and 
f!_ = cp_ as explained just before the theorem. Now if g is any other closed 
proper convex function on R such that g'_ :::;; cp :::;; g~, we also have 
g~ = cp+ and g'_ = cp_, and hence g'c- = J: and g'_ = f!_. Then 

ri (domg) = ri (<lorn/)= riJ 

by the finiteness properties of left and right derivatives in Theorem 24. l 
and the fact that 

Jc <lorn/cell. 

Inasmuch as f and g are closed, their values on R are completely deter
mined by their values on ri J. Thus we need only show that g = f + const. 
on ri J. This is trivial if J consists of a single point, so we suppose ri J = 

int J ¥- 0. On int J, the left and right derivatives off and g are finite by 
Theorem 24.1. By the additivity of limits, the left and right derivatives of 
the function h = f - g on int J exist and 

h~(x) = f~(x) - g~(x) = 0, 

h'_(x) = f'_(x) - g'_(x) = 0. 

Thus the two-sided derivative of h on int J exists and is identically 0. 
This implies/ - g = const. on inti. II 

COROLLARY 24.2.1. Let f be a finite convex function on a non-empty 
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open real interval I. Then 
,.y ry 

f(y) - f(x) = 1 f~(t) dt = Jx f !_(t) dt 

for any x and y in I. 
PROOF. Extend f to be a closed proper convex function on R, and 

apply the theorem with r:p = f~ or r:p = f!_. II 
A complete non-decreasing curve is a subset of R 2 of the form 

r = {(x, x*) Ix ER, x* ER, r:p_(x) _:::;; x* _:::;; ffJ+(x)}, 

where r:p is some non-decreasing function from R to [ - oo, + oo] which is 
not everywhere infinite. Such a set r resembles the graph of a continuous 
non-decreasing function on the interval 

I= {x I (x, x*) Er for some x*}, 

except that it may contain vertical segments as well as horizontal segments. 
It is an elementary exercise to show that, for any complete non-decreasing 
curve r, the mapping (x, x*)-+ x + x* is one-to-one from r onto R 
and continuous in both directions. Thus r is a true curve and is "unbounded 
at both ends." 

The complete non-decreasing curves can be characterized as the 
maximal totally ordered subsets of R 2 with respect to the coordinatewise 
partial ordering. (In this ordering, a subset r of R 2 is totally ordered if and 
only if, for any two pairs (x0 , x;:') and (x1 , xi) in r, one has x0 _:::;; x1 and 
x;:' _:::;; xi, or one has x0 z x1 and x;:' z xi. A maximal totally ordered 
subset is one which is not properly contained in any other totally ordered 
subset.) 

The results in this section furnish the following simple characterization 
of subdifferential mappings from R to R. 

THEOREM 24.3. The graphs of the subdif.ferential mappings of of the 
closed proper convex functions f on R are precisely the complete non
decreasing curves r in R 2• Moreover f is uniquely determined by r up to an 
additive constant. 

PROOF. Immediate from Theorem 24. l and Theorem 24.2. 
If r is a complete non-decreasing curve, then so is 

r* = {(x*' x) I (x, x*) Er}. 

In fact, if f is a closed proper convex function on R such that r = graph 
of, then r* = graph of* by Theorem 23.5. By the same theorem, r con
sists of the points where the non-negative lower semi-continuous function 

h(x, x*) = f(x) + f*(x*) - xx* 
on R 2 vanishes. 
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In the general n-dimensional case, the nature of subdifferential mappings 
is not so easy to picture. Before characterizing such mappings abstractly, 
we shall establish some fundamental continuity results. 

THEOREM 24.4. Let f be a closed proper convex function on Rn. If 
Xi, Xz, ... , and x';', x:, ... , are sequences Such that x; E oj(xi), where Xi 
converges to x and x; converges to x*, then x* E of(x). In other words, the 
graph of of is a closed subset of Rn x Rn. 

PROOF. By Theorem 23.5, 

(x;, xi> z f(x;) + f *(xi), Vi. 

Taking the "Jim inf" as i---+ oo, and using the fact that/ and/* are closed, 
we get 

(x, x*> zf(x) + f*(x*) 

and hence x* E oj(x). 

THEOREM 24.5. Let f be a convex function on Rn, and let C be an open 
convex set on which f is finite. Let / 1,/2, ... , be a sequence of convex 
functions finite on C and converging pointwise to f on C. Let x E C, and let 
x 1 , x 2 , ••• , be a sequence of points in C converging to x. Then, for any 
y E Rn and any sequence y 1 , h• ... , converging toy, one has 

Jim supf;(xi; y;) ~f'(x; y). 
i- 00 

Moreover, given any e > 0, there exists an index i0 such that 

of;(x;) c of(x) + eB, 

where B is the Euclidean unit ball of Rn. 

PROOF. Given anyµ> f'(x;y), there exists a A> 0 such that x + 
A.y EC and 

[f(x + A.y) - f(x)]/A. < µ. 

By Theorem 10.8,f;(xi + A.yi) tends tof(x + A.y) andf;(xi) tends to/(x). 
Hence, for all sufficiently large indices i, one has 

Since 

it follows that 
Jim sup/;(xi;yi) ~ µ. 

i--oo 

This is true for any µ > f'(x;y), so the "lim sup" inequality in the 
theorem is valid. We may conclude in particular (by taking Yi = y for 
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every i) that 
Jim sup/;(x;;y) ~f'(x;y), 

i-- 00 

The convex functionsJ;(x;; ·) andf'(x; ·)are the support functions of the 
non-empty closed bounded convex sets oj;(x;) and of(x), respectively 
(Theorem 23.4), and hence they are finite throughout Rn. Therefore, 
given any e > 0, there exists by Corollary 10.8. l an index i0 such that 

J;'(x;;y) ~J'(x;y) + e, 

By positive homogeneity we have 

J;(x;;y) ~f'(x;y) + e lyl, 

Ui other words 

Vy EB, 

o*(y I oj;(x;)) ~ O*(y I of(x)) + eO*(y I B) 

= o*(y I of(x) + eB), Vy ER", 
This implies that 

oj;(x;) c of(x) + eB, Viz i0 

(Corollary 13.1.1). II 
COROLLARY 24.5.1. If f is a proper convex function on Rn ,f'(x; y) is an 

upper semi-continuous function of 

(x, y) E [int (<lorn/) x R"]. 

Moreover, given any x E int (<lorn/) and any e > 0, there exists a o > 0 
such that 

of(z) c of(x) + eB, Vz E (x + oB), 

where Bis the Euclidean unit ball of Rn. 
PROOF. Take C =int (<lorn/) and/;= /for every i. 
The fact that one generally has only a "Jim sup" relation in Theorem 

24.5 is illustrated by the case where C = R,f(x) = lxl and 

P; >I, 

The right derivatives/;(o; I) are here all 0, butf'(O; I) itself is I. It is 
clear also from the one-dimension case, of course, that the upper semi
continuity in Corollary 24.5. l cannot be strengthened in general to con
tinuity (although one does have continuity in y for each fixed x E 

int (<lorn/), since f' (x; ·) is a finite convex function on Rn). It will be 
seen in Theorem 25.4 that the question of the continuity off' (x; y) in x 
is closely related to that of the existence of two-sided directional 
derivatives. 

Suppose that f is a proper convex function, and let x E int (<lorn/). 
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Let Xi, X2, ... ' be a sequence of vectors tending to x, and let x: E of(x;) 
for each i. According to Corollary 24.5.1, the sequence xi, x:, ... , tends 
toward the (non-empty closed bounded) set of(x), but it need not actually 
have a limit, unless of(x) consists of just one vector. More can be said, 
however, if the sequence x1 , x 2 , ••• , approaches x from a single direction, 
i.e. if the sequence is asymptotic to the half-line emanating from x in the 
direction of a certain vector y. In this event, according to the theorem 
below, xi, x:, ... , must tend toward the portion of the boundary of 
of(x) consisting of the points x* at which y is normal to of(x). If there is 
only one such x* (and this is true for almost all vectors y, as we shall 
see in the next section), then xi, x:, ... , must converge to x*. 

For any x E <lorn/ and any y such thatf' (x; y) is finite, we shall denote 
the directional derivatives of the convex function/' (x; -) aty by f' (x; y; -). 
Thus 

f'(x; y; z) =Jim [f'(x; y + }.z) - f'(x; y)]/} .. 
;.io 

Observe that, by the positive homogeneity ofj'(x; -), 

f'(x;y +AZ) ~f'(x;y) + Aj'(x;z) 
and hence 

f'(x;y; z) ~f'(x; z), Vz. 

THEOREM 24.6. Let f be a closed proper convex function and let 
x E domf Let x 1 , x2, ... , be a sequence in domf converging to x but 
distinct from x, and suppose that 

Jim Ix; - xl-1(x, - x) = y, 
i-oo 

wheref'(x;y) > -ooandthehalfline{x + AY I A z O}meetsint (<lorn/). 
Then 

lim supf'(x;; z) ~f'(x;y; z), Vz. 
f-oo 

Moreover, given any e > 0 there exists an index i0 such that 

of(x;) c of(x)y + eB, 

where Bis the Euclidean unit ball and of(x)y consists of the points x* E of(x) 
such that y is normal to of(x) at x*. 

PROOF. Let IX > 0 be such that x + 1XY belongs to int (<lorn/). We 
can find a simplex S such that y E int Sand x + !XS c int (<lorn/). Let P 
be the convex hull of x and x + !XS. Then P is a polytope in domf Fix 
any vector z, and choose A > 0 so small that y + Az E int S. Set E; = 

Ix; - xi, y; = Ix; - xl-1(x; - x) and u; = y; + Az. By our hypothesis, 
E; tends to 0 and y; tends toy. It is possible to choose an index i 1 so large 
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that, for every i z i1 , one has y; E int S, u; E int Sand E; < ix. Then, for 
every i z i 1 , the vectors X; = x + E;Y; and X; + E;Az = x + E;U; belong 
to P, and we have 

0 = e;-1[f (x + e1y;) - f(x)] + e;--1[f(x + E;U;) - f(x + E;Y;)] 

+ e/1 [f(x) - f(x + E;U;)] 

z f'(x; Y;) + f'(x + e1y;; u; - Y;) + f'(x + e;u;; -u,). 

Since u, - y; = Az, it follows from the relations in Theorem 23.1 that 

J'(x;y;) + Aj'(x;; z) ~ -f'(x + E;u;; -u;) 

~ f' (x + E;U;; U;) ~ [f(x + E;U; + (Ju;) - f(x + E;U;)]/ (3, 

where (3 is an arbitrary number in the open interval (0, ix). We take the 
"Jim sup" of both sides of this inequality as i---+ oo. Since u;---+ y + AZ 
and E; ! 0, we have x + E;U; + (Ju; in P, as well as x + E;U; in P, for 
sufficiently large indices i. Since the polytope P is a locally simplicial set 
(Theorem 20.5),/is continuous relative to P (Theorem 10.2). Thus 

limf(x + E;U;) = f(x), 
i- 00 

limf(x + ep, + /3u;) = f(x + /i(y + Az)). 
i-ryj 

The vector x + ixy belongs to the interior of <lorn/, soy belongs to the 
interior of domf' (x; ·). Hcncef'(x; ')is continuous at y (Theorem 10.1), 
and 

limf'(x; Y;) =f'(x; y). 
i- 00 

Therefore 

f'(x; y) +Alim supf'(x;; z) ~ [f(x + (J(y + .A.z)) - f(x)]/(J 
i-oo 

for 0 < (3 < ix. Taking the limit as (3 ! 0, we get 

f'(x; y) + A Jim sup f'(x,; z) ~ j'(x; y + Az). 
i-oo 

By hypothesisf'(x;y) > -oo, and it follows that 

lim supf'(x;; z) ~ lf'(x; y +AZ) - f'(x; y)]/A. 
i- 00 

This inequality holds for any sufficiently small A > 0, and the limit of the 
difference quotient as A tends to 0 isf'(x;y; z) by definition. This proves 
the first assertion of the theorem. The second assertion follows by exactly 
the same argument as in the proof of Theorem 24.5, withf'(x; ')replaced 
by f' (x; y; -). By Theorem 23.4 the latter function is finite everywhere 
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(because the convex function f' (x; -) has y in the interior of its effective 
domain and is finite at y), and it is the support function of the closed 
convex set of(x)y described in the theorem (Corollary 23.5.3). II 

The next theorem describes a boundedness property of of and relates it 
to Lipschitz properties off which were established in § 10. 

THEOREM 24. 7. Let f be a closed proper convex function, and let S be a 
non-empty closed bounded subset of int (<lorn/). Then the set 

of(S) = u {of(x) I x ES} 

is non-empty, closed and bounded. The real number 

IX= sup {lx*l Ix* E oj(S)} < 00 

has the property that 

f'(x; z) ~IX lzl, Vx ES, Vz, 

lf(y) - /(x)I ~IX ly - xi, Vy ES, Vx ES. 

PROOF. We shall show first that of(S) is bounded. For each x ES, 
of(x) is non-empty, bounded and has J'(x; ') as its support function 
(Theorem 23.4). Hence 

IX = sup sup (x*, z) 
x•Eof(S) lzl=l 

= sup sup sup (x*, z) 
lzl=l xES x•Ei!f(x) 

=sup supf'(x; z). 
lzl~-1 XES 

Since S is closed and bounded and f' (x; z) is upper semi-continuous in x 
on S (Corollary 24.5.1), the quantity 

g(z) =sup {f'(x; z) Ix ES} 

is finite for each z. The functiong is the pointwise supremum of a collection 
of convex functions. Thus g is a finite convex function and must be 
continuous (Theorem 10.1). It follows that 

oo >sup {g(z) I 1=1 = I}= IX, 

and hence that of(S) is bounded. 
To see that of(S) is closed, consider any sequence xi, xi, ... , in 

of(S) converging to a point x*. Choose X; ES such that x: E of(x;). 
Since Sis closed and bounded, we can suppose (extracting subsequences 
if necessary) that the sequence x1 , x2 , ••• , converges to a point x ES. 
Then x* E of(x) by Theorem 24.4, so x* E of(S) and the closedness of 
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of(S) is established. For any points x and y in S, x ¥- y, we have 

f(y) - f(x) Z.J'(x;y - x) Z. -j'(x; x - y), 

(Theorem 23.1), and hence 

f(x) - f(y) ~f'(x; x - y) =Ix - yl ·f'(x; z), 

where z =Ix - yl-1(x - y). This z has lzl = 1, sof'(x; z) ~IX. Thus 

f(x) - f(y) ~ IX Ix - yl 

for any x and yin S, and the theorem follows. II 
The subdifferentials of convex functions on Rn will now be characterized 

in terms of a monotonicity property. A multivalued mapping p from R" 
to Rn will be called cyclically monotone if one has 

(x1 - x0, xci> + (x2 - X1, x'[> + · · · + (x0 - Xm, x!) ~ 0 

for any set of pairs (xi, xi), i = 0, 1, ... , m (m arbitrary) such that 
x; E p(xi). A maximal cyclically monotone mapping is one whose graph 
is not properly contained in the graph of any other cyclically monotone 
mapping. 

If f is a proper convex function, of is cyclically monotone. Indeed, if 
x: E of(xi) for i = 0, ... , m, we have 

(x1 - Xo, xri> ~ f (x1) - f (xo), 

and so forth, for each of the inner products in the sum in the definition of 
"cyclically monotone," so that the sum is majorized by 

THEOREM 24.8. Let p be a multivalued mapping from Rn to Rn. In order 
that there exists a closed proper convex function f on Rn such that p(x) c 

of(x)for every x, it is necessary and sufficient that p be cyclically monotone. 

PROOF. The necessity is clear, since a subdifferential mapping of is 
itself cyclically monotone. Suppose on the other hand that p is cyclically 
monotone. Fix any pair (x0 , x;:') in the graph of p (which can be supposed 
to be non-empty), and define f on Rn by 

f(x) = sup { (x - xm, x,'!;) + · · · + (x1 - x0, xri> }, 

where the supremum is taken over all finite sets of pairs (x;, x;), i = 1, 
... , m, in the graph of p. Since f is the supremum of a certain collection 
of affine functions (one for each choice of (xi. xi), ... , (xm, x!,)), f is a 
closed convex function. The cyclic monotonicity of p implies thatf(x0) = 0 
and hence that f is proper. Now let x and x* be any vectors such that 
x* E p(x). We shall show that x* E of(x). It is enough to show that, for 
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any IX <f(x) and any y E Rn, we have 

f(y) >IX+ (y - X, x*). 

Given IX < f(x), there exist (by the definition of/) certain pairs (x;, xi), 
i = 1, ... , m, such that x'; E p(x;) and 

IX < (x - Xm, X7~) + · · · + (x1 - X0, x;j). 

Setting xm+i = x and x~+i = x*, we have 

f(y) z (y - Xm+I• x!,+1) + (xm+l - Xm, x,'::) + · · · + (x1 - Xo, x;j) 

> (y - X, x*) + IX 
by the definition off This proves that p c of 

THEOREM 24.9. The subdif.ferential mappings of the closed proper convex 
functions on Rn are the maximal cyclically monotone mappings from Rn to 
Rn. The function is uniquely determined by its subdif.ferential mapping up 
to an additive constant. 

PROOF. If pis a maximal cyclically monotone mapping, there exists by 
Theorem 24.8 some closed proper convex function f such that p c of 
Since of is itself cyclically monotone, we must actually have p = of On 
the other hand, let/be any closed proper convex function, and let p be a 
cyclically monotone mapping such that of c p. By Theorem 24.8, p c og 
for a certain closed proper convex function g. Then of(x) c og(x) for 
every x. To prove the theorem, it will be enough to show that this implies 
g = f + const. From the relation of c og, we have 

ri (dom/) c <lorn of c <lorn og c dom g 

(Theorem 23.4). For any x E ri (<lorn/) and y E Rn, 

f'(x; y) = sup (x*, y) ~ sup (x*, y) ~ g'(x; y) 
x*Ei!f(x) x*Ei!g (x) 

(Theorem 23.4 and Theorem 23.2). It follows that, for any x1 and x2 in 
ri (<lorn/), the convex functions h and k defined by 

h().) = /((1 - A)x1 + h 2), k(A) = g((l - A)x1 + Ax2), 

have the property that 

By Theorem 6.4, the interval I= int (domh) is non-empty, and we have 

[O, l] c I= {).I (1 - A)x1 + h 2 E ri (dom/)} 

c {A I (1 - A)x1 + h 2 E domg} = dom k. 

Hence by Corollary 24.2.1 

f(x 2) - f(x1) = h(l) - h(O) = f h~(A) d). = k(l) - k(O) = g(x2) - g(x1). 
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Thus there exists a real constant IX such that g(x) = f(x) + IX for every 
x E ri (<lorn/). Since f and g are closed, we must actually have g(x) = 

f(x) + IX for every x E cl (<lorn/) by Corollary 7.5.1. For x ef: cl (dom/), 
f(x) = + oo so that g(x) :::;; f(x) + IX trivially; equality must be proved. 
We shall make use of a dual argument. For the conjugate functions/* 
and .i::-*, we have 

of*(x*) = (of)-1(x*) c (og)-1 (x*) = og*(x*), 

so there exists a real constant IX* such that g*(x*) :::;;j*(x*) +IX* for 
every x*, with equality for x* E cl (<lorn/*). For any vectors x and x* 
such that x* E oj(x), we have x* E og(x) too and hence 

f(x) + f*(x*) = (x, x*> = g(x) + g*(x*); 

moreover x E <lorn/ and x* E <lorn/*, so this implies IX* = -IX. Thus 
g* :::;; f * - IX = (f + IX)*. Since the conjugacy correspondence is order
inverting, we may conclude thatg Z. f + IX. But we already hadg :::;; f + IX. 
Thus g = f + IX. II 

A multivalued mapping p from Rn to Rn is said to be monotone if 

(x1 - x0, xi - xci> Z. 0 

for every (x0 , x;:') and (x1 , x'i) in the graph of p. This condition corresponds 
to the case where m = 1 in the definition of cyclic monotonicity; thus every 
cyclically monotone mapping is in particular a monotone mapping. 

When n = 1, the monotone mappings are simply the mappings whose 
graphs are totally ordered in R 2 with respect to the coordinatewise partial 
ordering, so that the maximal monotone mappings correspond to the 
complete non-decreasing curves r. It follows from Theorem 24.3 and 
Theorem 24.9 that, when n = 1, the monotone mappings and the cyclically 
monotone mappings are the same. However, when n > 1 there exist 
monotone mappings which are not cyclically monotone. For example, 
when p is the (single-valued) linear transformation from Rn to Rn corre
sponding to an n x n matrix Q, pis cyclically monotone if and only if Q 
is symmetric and positive semi-definite (as may be deduced from Theorem 
24.9 as an exercise). Yet p is monotone if merely 

(x1 - x0, Q(x1 - x0)> Z. 0, Vx0, x1, 

i.e. if the symmetric part (l/2)(Q + Q*) of Q is positive semi-definite. 
It will be proved in §31 (Corollary 31.5.2) that the subdifferential mapping 

of of any closed proper convex function f is also a maximal monotone 
mapping. (Note that this is not immediate from Theorem 24.9 and the 
fact that every cyclically monotone mapping is a monotone mapping.) 
Other examples of maximal monotone mappings will be constructed in 
§37 from the subdifferential mappings of saddle-functions. 



SECTION 25 

Differentiability ef Convex Functions 

Let/be a function from Rn to [- oo, + oo], and let x be a point where/ 
is finite. According to the usual definition,f is differentiable at x if and only 
if there exists a vector x* (necessarily unique) with the property that 

f(z) = f(x) + (x*, z - x) + o(lz - xi), 

or in other words 

Jim f(z) - f(x) - (x*, z - x) = O. 
z~x I= - xi 

Such an x*, if it exists, is called the gradient off at x and is denoted by 
Vf(x). 

Suppose that f is differentiable at x. Then by definition, for any y ¥- 0, 

0 
= Jim f(x + A.y) - f(x) - (Vf(x), A.y) 

;_1 o A. I.vi 

= [f'(x; y) - (\if(x), y)]/IYI· 

Therefore f'(x; y) exists and is a linear function of y: 

f'(x;y) = (V/(x),y), Vy. 

In particular, for j = 1, ... , n, 

(Vf(x), e;) = Jim f(x + },e!) - f (x) = of (x), 
A~O J\ O~; 

where e; is the vector forming the jth row of the n x n identity matrix, 
and ~; denotes the jth component of x. It follows that 

(
of of ) Vf(x) = - (x), ... , - (x) , 
0~1 o~n 

so that for any y = ( t)1, ... , rJn) 

, of of 
f (x; y) = 0~1 (x)ri1 + ... + o~n (x)rin-

241 
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In the case where f is convex, one may ask how the concept of 
"gradient" is related to concept of"subgradient" which has been developed 
in §23 and §24. The relationship turns out to be very simple. 

THEOREM 25.1. Let f be a convex function, and let x be a point where f is 
finite. Iffis differentiable at x, then Vf(x) is the unique subgradient off at 
x, so that in particular 

f(z) Z.f(x) + (Vf(x), z - x), Vz. 

Conversely, if f has a unique subgradient at x, then f is differentiable at x. 

PROOF. Suppose first that f is differentiable at x. Then f' (x; ") is the 
linear function (Vf(x), -). By Theorem 23.2, the subgradients at x are the 
vectors x* such that 

(Vf(x),y) Z. (x*,y), Vy, 

and this condition is satisfied if and only if x* = Vf(x). Thus Vf(x) is the 
unique sub gradient off at x. Suppose on the other hand that f has a 
unique sub gradient x* at x. The convex function g defined by 

g(y) = f(x + y) - f(x) - (x*, y) 

then has 0 as its unique subgradient at the origin. We must show that this 
implies 

lim g(y) = 0. 
y~o lyl 

The closure of g' (0; ") is the support function of og(O), which here is the 
constant function 0 (Theorem 23.2). Therefore g' (0; ") itself is identically 
0, since g' (0; -) cannot differ from its closure other than at boundary 
points of its effective domain, and we have 

0 = g'(O; u) =Jim [g(A.u) - g(O)]/A., Vu. 
do 

Here g(O) = 0, and the difference quotient is a non-decreasing function of 
A. The convex functions hA, where 

thus decrease pointwise to the constant function 0 as A decreases to 0. Let 
B be the Euclidean unit ball, and let {ai, ... , am} be any finite collection 
of points whose convex hull includes B. Each u EB can be expressed as a 
convex combination 
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and one then has 

0 :::;; h ;.(u) :::;; L;'.: 1 A;h ;.(a;) 

:::;; max {h;.(a;) Ii= 1, ... , m}. 

Since h;.(a;) decreases to 0 for each i as).! 0, we may conclude that h;.(u) 
decreases to 0 uniformly in u EB as ). ! 0. Given any e > 0, there exists 
therefore a o > 0 such that 

VJ.. E (0, o], Vu EB. 

Since each vector y such that 0 < lyl :::;; o can be expressed as J..u with 
). = lyl and u EB, we have g(y)/lyl :::;; e whenever 0 < lyl :::;; o. This 
proves that the limit of g(y)/lyl is 0 as claimed. II 

COROLLARY 25.1.1. Let f be a convex function. If f is finite and differ
entiable at a given point x, then f is proper and x E int (<lorn/). 

PROOF. The inequality in the theorem implies that f(z) > - oo for 
every z, and hence that f is proper. It is obvious from the definition of 
differentiability that, if f is differentiable at x, f must be finite in some 
neighborhood of x. II 

We notice from Corollary 25.1.1 that the gradient mappings VJ and 
V(cl/) coincide, inasmuch as/ and cl/coincide on int (<lorn/). 

COROLLARY 25.1.2. Let f be a proper convex function on Rn. Then the 
exposed points of the convex set epif* in Rn+i are the points of the form 
(x* ,f*(x*)) such that,for some x,f is differentiable at x and Vf(x) = x*. 

PROOF. Since (cl/)* = f*, and V(cl/) = VJ as just remarked, we 
can assume/is closed. By definition, (x*, µ*)is an exposed point of epi/* 
if and only if there is a supporting hyperplane H to epi/* which meets 
epi/* only at (x*, µ*).Such an Hhas to be non-vertical, andµ* must be 
f*(x*). In fact H must be the graph of an affine function (x, ·) - µsuch 
that x E of*(x*), and x ef: of*(z*) for every z* ¥- x*. By Theorem 23.5, 
this condition means that x* is the unique element of of(x). Thus the 
exposed points of epi/* are of the form (x* ,f*(x*)) where, for some x, 
x* is the sole element of of(x). Apply the theorem. 11 

COROLLARY 25.1.3. Let C be a non-empty closed convex set, and let g 
be any positively homogeneous proper convex function such that 

C = {z I (y, z):::;; g(y), Vy}. 

(Jn particular, g may be taken to be the support function of C.) Then z is an 
exposed point of C if and only if there exists a pointy such that g is differ
entiable at y and Vg(y) = z. 

PROOF. The indicator function of C is g* by Corollary 13.2.1. Apply 
the preceding corollary to g. II 
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THEOREM 25.2. Let f be a convex function on R", and let x be 
a point at which f is finite. A necessary and sufficient condition for f to 
be differentiable at x is that the directional derivative function f' (x; ·) be 
linear. Moreover, this condition is satisfied if merely the n two-sided partial 
derivatives of(x)/o~j exist at x and are.finite. 

PROOF. If the function/' (x; ·) is linear, it is a closed convex function 
and hence directly equal to the support function of of(x) (Theorem 23.2). 
Then of(x) must consist of a single point, implying by Theorem 25. l that 
f is differentiable at x. To complete the proof, we need only show that the 
existence and finiteness of the oflo~; at x impliesf'(x; ·)is linear. Let e; 
be the vector forming the jth row of then x n identity matrix. We have 

f '( . of c . 1.,( . x; e;) = - x) = - x; -e;), 
at; 

J = 1, ... , n. 

The effective domain ofj'(x; ·)therefore contains the 2n vectors ±ei, and 
consequently it contains all positive multiples of the ±e; by positive 
homogeneity. Since the effective domain is convex, it must be all of R". 
It follows that f' (x; ·) is proper, for otherwise it would be identically - oo 
(Theorem 7.2). The linearity is assured by Theorem 4.8. II 

Results about the existence of two-sided directional derivatives and 
gradients may be deduced from the continuity theorems of §24, as will be 
demonstrated next. 

THEOREM 25.3. Let f be a finite convex function on an open interval I 
of the real line. Let D be the subset of I where the (ordinary two-sided) 
derivative f' exists. Then D contains all but perhaps countably many 
points of I (so that in particular D is dense in I), and f' is continuous and 
non-decreasing relative to D. 

PROOF. Extend f to be a closed proper convex function on R. By 
Theorem 24.1,/~(x) = f:_(x) if and only if/~ is continuous at x. Thus D 
consists of the points of I where/~ is continuous. The points of I not in D 
are those where the non-decreasing function/~ has a jump, and there can 
be only countably many such jumps. Sincef' agrees with/~ on D,f' is 
continuous and non-decreasing relative to D. II 

THEOREM 25.4. Let f be a proper convex function on R". For a given 
y ¥- 0, let D be the set of points x in int (<lorn/) where f' (x; y) = 

-f' (x; -y), i.e. where the ordinary two-sided directional derivative 

1
. f(x + A.y) - f(x) 
1m~--~-~-

,i~o }. 
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exists. Then D consists precisely of the points of int (<lorn/) where J'(x; y) 
is continuous as a function of x. Moreover, Dis dense in int (<lorn/). Jn 
fact, the complement of Din int (<lorn/) is a set of measure zero, and it can 
be expressed as a countable union of sets Sk closed relative to int (<lorn/), 
such that no bounded interval of a line in the direction of y contains more 
than finitely many points of any one sk. 

PROOF. In view of Corollary 24.5.1, the points of int (<lorn/) where 
f' (x; y) is continuous as a function of x are the same as those where it is 
lower semi-continuous as a function of x. We claim, however, that 

Jim infj'(z; y) = -f'(x; -y), Vx E int (domf). 

Proving this relation will establish the continuity assertion in the theorem. 
In the first place, z must hold, becausef'(z;y) z -J'(z; - y) for every 
z in <lorn/by Theorem 23.1, andf'(z; -y) is upper semi-continuous in 
z on int (<lorn/). On the other hand, ~ must hold because, for the one
dimensional convex function g(A.) = f(x + A.y), one has 

limj'(x + A.y; y) = Jim g~(.A.) = g'_(O) = -f'(x; - y) 
Alo Ato 

(Theorem 24.1). Thus the "Jim inf" relation holds as claimed. We 
demonstrate next how the complement of Din int (<lorn/) can be expressed 
in the manner described in the theorem. The complement consists of the 
points x of int (<lorn/) where 

0 <f'(x;y) + f'(x; -y) = h(x). 

Hence it is the union of the increasing sequence of sets 

sk = {x E int (<lorn/) I h(x) z l/k}, k = 1, 2, ... 

As the sum of two upper semi-continuous functions of x, h is itself upper 
semi-continuous on int (<lorn/). Thus each Sk is closed relative to 
int (<lorn/) (and hence is a measurable set). Given any x E Rn, let Lx be the 
line through x in the direction of y. Suppose Lx meets Sk. By restricting/ 
to Lx one gets a one-dimensional convex function g as above, and the 
points z = x + A.y in Lx n Sk correspond to the values of A. such that 

g~(A.) - g'._(A.) 2 1/k. 

The inequality in Theorem 24.1 ensures that there cannot be more than a 
finite number of such points in any bounded interval. This proves that 
each sk has the required intersection property' which implies that sk has 
measure zero. (The measure of Sk can be obtained by integrating the 
measure of Lx n sk as a function of x E S~, where s~ is the projection of 
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Sk on the subspace of Rn orthogonal toy.) Since the complement of Din 
int (<lorn/) is the union of the sets Sb it too must have measure zero. In 
particular, then, this complement can have no interior points, so that Dis 
dense in int (<lorn/). II 

The main theorem about the gradient mapping of a convex function is 
the following. 

THEOREM 25.5. Let f be a proper convex function on Rn, and let D be 
the set of points where f is differentiable. Then D is a dense subset of int 
(dom/), and its complement in int (<lorn/) is a set of measure zero. 
Furthermore, the gradient mapping Vf:x ~ Vf(x) is continuous on D. 

PROOF. Let e1 , ... , e,, be the rows of the n x n identity matrix. 
Applying Theorem 25.4 toy = e;, we see that the subset D; of int (<lorn/) 
where of/o~; exists has complement of zero measure in int (<lorn/). The 
union of these complements for j = 1, ... , n likewise has measure zero. 
It is the complement of D1 n · · · n D,,, and the latter set is D by 
Theorem 25.2. In particular, the complement of Din int (<lorn/) has no 
interior, i.e. D is dense in int (<lorn/). Each partial derivative function 
oflo~; is continuous on the corresponding D; by Theorem 25.4, so all n 
partial derivatives are continuous on D. Since V/(x) is the vector of first 
partial derivatives where it exists, VJ is continuous on D. II 

COROLLARY 25.5.1. Let f be a finite convex function on an open convex 
set C. If f is differentiable on C, then/ is actually continuously differentiable 
on C. 

The set Din Theorem 25.5 is topologically a G,,, i.e. the intersection of a 
countable collection of open sets. Indeed, the proof shows that D is the 
intersection of sets Du .. . , D,,, each of which is a G0 by Theorem 25.4. 

We shall now show how the entire subdifferential mapping of of a 
convex function f can be constructed from the gradient mapping VJ, 
when/ is closed and V/is not vacuous. 

THEOREM 25.6. Let f be a closed proper convex function such that 
<lorn/ has a non-empty interior. Then 

of(x) = cl (conv S(x)) + K(x), Vx, 

where K(x) is the normal cone to domf at x (empty if x ef: <lorn/) and S(x) 
is the set of all limits of sequences of the form Vf(x1), V/(x2), ••• , such that/ 
is differentiable at xi and xi tends to x. 

PROOF. For each x we have S(x) c of(x){bec~~ the graph of of is 
closed (Theorem 24.4). Since of(x) is a closed convex set, this implies 
cl (conv S(x)) is included in of(x). We observe next that, for any x such 
that of(x) ¥- 0 (and hence x E <lorn/), K(x) is the recession cone of 
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of(x). Indeed, given any x* E of(x), the recession cone of of(x) consists of 
the vectors y* such that 

x* +~I'* E of(x), VA. z 0, 

(Theorem 8.3), i.e. such that 

f(z) z/(x) + (x* + A.y*'::: - x), 

This condition is satisfied if and only if 

(y*,::: - x) :=:;; 0, V:: Edom/, 

which means by definition that y* E K(x). It follows that 

cl (conv S(x)) + K(x) c of(x) + K(x) = of(x). 

The opposite inclusion must now be proved. Since int (<lorn/) is not 
empty, K(x) contains no lines, and this implies that of (x) itself contains 
no lines, because x* + K(x) is included in of(x) for every x* E of(x). 
Hence of (x) is the convex hull of its extreme points and extreme direc
tions by Theorem 18.5. Every extreme point of of(x) is a limit of exposed 
points by Theorem 18.6. On the other hand, every vector whose direction 
is an extreme direction of of(x) belongs (by Theorem 8.3, since of(x) is 
closed) to the recession cone of of(x), i.e. to the convex cone K(x). Thus 

of(x) c conv (cl E) + K(x), 

where Eis the set of all exposed points of of(x). Of course 

conv (cl E) c cl (conv E), 

since cl (conv E) is a convex set containing cl E. Therefore, to prove that 

of (x) c cl (conv S(x)) + K(x) 

it suffices to prove that E c S(x), i.e. that every exposed point of of(x) 
can be expressed as the limit of a sequence of gradients V/(x;) with X; 

tending to x. 
Given any exposed point x* of of(x), there exists by definition a 

supporting hyperplane to of(x) which meets of(x) only at x*. Thus there 
exists a vector y with lyl = 1 such that y is normal to of(x) at x*, but y 
is not normal to of (x) at any other point, i.e. 

(y, x*) > (y, z*), Vz* E of(x), z* "¥- x*. 

Since K(x) is the recession cone of of (x), the latter condition on y 
implies in particular that 

(y, y*) < 0, Vy* E K(x), y* ¥- 0. 

Hence (since K(x) is also the normal cone to <lorn/ at x) there does not 
exist a vector y* ¥- 0 such that 

(z,y*) :=:;; (x,y*) :=:;; (x + ixy,y*) 
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for every z E <lorn/ and every IX z 0. In other words, the half-line 
{x + 1XY I IX z O} cannot be separated from domf 1t follows from 
Theorem 11.3 that this half-line must meet the (non-empty) interior of 
<lorn f Thus (by Theorem 6.1 and the fact that x E <lorn./) there exists an 
IX> 0 such that x + ey E int (domf) when 0 < e ~IX. Choose any 
sequence e1 , e2 , ••• , tending to 0 such that 0 < E; ~ IX for all i. Since f 
is differentiable on a dense subset of int (domf) by Theorem 25.5, there 
exists for each i an X; ¥- x such that f is differentiable at X; and 

We have 

limx;= x, 

and this implies by Theorem 24.6 that, given any e > 0, we have 

of(x;) c of(x)y + eB 

for all sufficiently large indices i, where B is the closed unit Euclidean ball 
and of(x)y is the set of all points of of(x) at which y is a normal vector. 
Here of(x;) consists of just Vf(x;) (Theorem 25.1), while of(x)y consists 
of just x*. Thus, given any e > 0, we have 

IVf(x;) - x*I < e 

for all sufficiently large indices i. This shows that 

Jim Vf(x;) = x*, 

and since x* was an arbitrary exposed point of of(x), the proof of the 
theorem is complete. II 

Ordinarily, of course, if f 1,f2 , ••• , is a sequence of differentiable func
tions on an open interval I converging pointwise to a differentiable f on /, 
the sequence of derivatives f~,f~, ... , need not converge to f' and may 
diverge wildly. It is a remarkable fact, however, that if the functions are 
convex.f~, f~, ... , not only converges to f' but converges uniformly on 
each closed bounded subinterval of/. This is a corollary of the following 
theorem. 

THEOREM 25. 7. Let C be an open convex set, and let f be a convex 
function which is.finite and differentiable on C. Letf1 ,j;, ... , be a sequence 
of convex functions finite and differentiable on C such that limf;(x) = f(x) 
for every x E C. Then i~ 00 

Jim Vf;(x) = Vf(x), Vx EC. 



§25. DIFFERENTIABILITY OF CONVEX FUNCTIONS 249 

In fact, the mappings VJ; converge to \!/uniformly on every closed bounded 
subset of C. 

PROOF. Let S be a closed bounded subset of C. To prove the theorem, 
it is enough to prove that the partial derivatives off; converge to those of/ 
uniformly on S. Thus it is enough to prove that, given any vector y and 
any e > 0, there exists an index i0 such that 

l(V/;(x),y) - (V/(x),y)I _:::;; e, 

This inequality can be written as a pair of inequalities 

(Vj;(x), y) _:::;; (\f(x), y) + e, 

(V/;(x), -y) _:::;; (v/(x), -y) + e. 

Vx ES. 

We shall show that there exists an index i1 such that the first inequality 
holds for every i ~ i1 and every x E S. An index i 2 can be produced 
similarly for the second inequality, and the desired i0 is then obtained by 
taking the larger of i1 and i2 • Arguing by contradiction, we suppose that 
there is no i1 with the specified properties. Then there are infinitely many 
indices i for which one can select a corresponding vector X; E S such that 

(Vj;(x;), y) > (V/(x;), y) + e. 

Passing to subsequences if necessary, we can suppose that this holds for 
every index i, and that the selected sequence x1 , x2 , ••• , converges to a 
point x of S. For any A > 0 small enough that x + A.y E C, we have 
X; + A.y EC for all sufficiently large indices i and 

(Vj;(x;), y) _:::;; [f;(X; + A.y) - j;(x;)]/A.. 

The functions f; converge to f uniformly on closed bounded subsets of C 
(Theorem 10.8), and since f is continuous on C this implies that /;(x;) 
tends to/(x) and/;(x; + A.y) tends tof(x + A.y). Since v/is continuous 
by Theorem 25.5, V/(x;) tends to vf(x). Therefore 

(Vf(x), y) + e = Jim (vf(x;), y) + e 

_:::;; Jim sup (Vf,(x;), y) 

_:::;; Jim [f,(x; + }.y) - f;(x,)]j}. 
i-+ 00 

= [f(x + .A.y) - f(x)]/A.. 
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This is supposed to hold for every sufficiently small A. > 0. But 

(\j(x), y) = f'(x; y) =Jim [f(x + A.y) - f(x)]/}., 
;.lo 

so this situation is impossible. II 
It may be remarked that, in the hypothesis of Theorem 25.7,j;(x) need 

only converge to f(x) for every x E C', where C' is some dense subset of C. 
This implies by Theorem 10.8 and the continuity of finite convex functions 
on C that j;(x) converges to f(x) for every x E C. 



SECTION 26 

The Legendre Traniformation 

The classical Legendre transformation for differentiable functions defines 
a correspondence which, for convex functions, is intimately connected 
with the conjugacy correspondence. The Legendre transformation will be 
investigated here in the light of the general differential theory of convex 
functions. We shall show that the case where it is well-defined and 
involutory is essentially the case where the subdifferential mapping of the 
convex function is single-valued and in fact one-to-one. 

A multivalued mapping p which assigns to each x E Rn a set p(x) c Rn 
is said to be single-valued, of course, if p(x) contains at most one element 
x* for each x. (Thus p is to reduce to an ordinary function on <lorn p = 
{x I p(x) ¥- 0}, but <lorn pis not required to be all of Rn.) If p and p-1 are 
both single-valued, p is said to be one-to-one. Here p-1 denotes the inverse 
of p, which in the sense of multivalued mappings is defined by 

p-1(x*) = {x Ix* E p(x)}. 

Thus p is one-to-one if and only if the set 

graph p = {(x, x*) E R2n Ix* E p(x)} 

does not contain two different pairs with the same x component, or two 
with the same x* component. 

An extended-real-valued function/ on Rn is said to be smooth, of course, 
only if f is actually finite and differentiable throughout Rn. However, 
we shall call a proper convex function/ essentially smooth if it satisfies the 
following three conditions for C = int (<lorn/): 

(a) C is not empty; 
(b) f is differentiable throughout C; 
(c) Jim IV/(x;)I = + oo whenever x1 , x2 , ••• , ts a sequence m C 

i-- 00 

converging to a boundary point x of C. 
Note that a smooth convex function on Rn is in particular essentially 
smooth (since (c) holds vacuously). 

THEOREM 26.1. Let f be a closed proper convex function. Then of is a 
single-valued mapping if and only if f is essentially smooth. Jn this case, of 

251 
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reduces to the gradient mapping vf, i.e. of(x) consists of the vector vf(x) 
alone when XE int (domj), while oj(x) = 0 when X ef: int (domj). 

PROOF. From Theorem 25.1, we see that the mapping of is single
valued if and only if it reduces everywhere to Vf The criterion for this is 
just that of(x) be empty whenever f is not differentiable. Since of(x) ¥- 0 
when x E ri (<lorn/) (Theorem 23.4), this condition implies that f is 
differentiable throughout ri (<lorn/). All points where f is differentiable 
belong to int (<lorn/), however. Thus of is single-valued if and only if the 
above conditions (a) and (b) hold for C = int (<lorn/), and of(x) = 0 
when x ef: C. Of course of(x) is always empty for x ef: domf It will be 
enough therefore to show (assuming (a) and (b)) that condition (c) fails 
for a given boundary point x of C if and only if of(x) ¥- 0. Now, if (c) 
fails, there exists a sequence x1 , x 2 , ••• , converging to x such that the 
sequence V/(x1), V/(x2), ••• , is bounded. Extracting a subsequence if 
necessary, we can assume that V/(x;) converges to a certain vector x*. 
This x* must belong to of(x) (Theorem 24.4), so of(x) ¥- 0. Conversely, 
suppose of(x) ¥- 0. Then of(x) contains the limit of some sequence 
V/(xi), V/(x2), ••• , by Theorem 25.6, so (c) fails. II 

The definition of essentially smooth may be expressed in terms of 
directional derivatives instead of norms of gradients: 

LEMMA 26.2. Condition (c) in the definition of essentially smooth is 
equivalent to the following condition (assuming (a) and (b)): 

(c') f'(x + A.(a - x); a - x) ! - oo as A! 0 for any a EC and any 
boundary point x of C. 

PROOF. Both (c) and (c') involve the behavior off only on the open 
convex set C, so there is no loss of generality if we suppose the proper 
convex function/ to be closed. Let a E C and let x be a boundary point of 
C. As demonstrated in the proof of Theorem 26.1, ( c) fails for x if and 
only if of(x) ¥- 0. On the other hand, according to Theorem 23.3, 
of(x) ¥- 0 if and only if/(x) < oo andf'(x;y) > - oo for every y. The 
last property is implied simply by f'(x; a - x) > - oo (Theorem 7.2), 
because f' (x; ·) is a convex function with a - x in the interior of its effec
tive domain. Thus (c) fails for x ifand only if/(x) < oo andf' (x; a - x) > 
- oo. We claim, however, that the latter holds if and only if (c') fails for x. 
Consider the closed proper convex function g on R defined by g(A.) = 

f(x + A.(a - x)). By Theorem 24.1, 

limj'(x +}.(a - x); a - x) =Jim g'c-(A) = g~(O), 
;.fo ;)o 

where (by the extended definition of g~ in Theorem 24.1) 

{
f'(x; a - x) if 0 E <lorn g, i.e. x E domf, 

g~(O) = . . 
- oo 1f 0 ef: <lorn g, 1.e. x ef: domf. 
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The limit in (c') thus fails to be - oo if and only if x E <lorn/ and 
J'(x; a - x) > -oo. II 

Theorem 26. l will now be dualized with respect to the conjugacy 
correspondence. 

A real-valued function/ on a convex set C is said to be strictly convex 
on C if 

for any two different points x 1 and x 2 in C. A proper convex function/ on 
Rn will be called essentially strictly convex if f is strictly convex on every 
convex subset of 

{x I of(x) ¥- 0} = ctom of 
Since by Theorem 23.4 

ri (<lorn/) c <lorn of c <lorn/, 

this condition implies/ is strictly convex on ri (<lorn/). (As demonstrated 
in §23, <lorn of itself is not always a convex set.) 

A closed proper convex function/ which is essentially strictly convex 
need not be strictly convex on the entire convex set <lorn/, as is shown by 

{
(~~/2~i) - 2~~12 if ~1 > 0, ~2 ~ 0, 

f(x) = 0 if ~1 = 0 = ~2, 

+ oo otherwise, where x = ( ~i. ~2). 

Here <lorn of is an open convex set, namely the positive quadrant of R 2 , 

and f is strictly convex on <lorn of, but along the non-negative ~1-axis f is 
identically zero and hence not strictly convex. Observe incidentally that 
this f happens to be, not only essentially strictly convex, but essentially 
smooth. 

It is also possible for a closed proper convex function/ to be strictly 
convex on ri (<lorn/) but fail to be strictly convex on some other convex 
subset of <lorn of (and therefore fail to be an essentially strictly convex 
function on Rn). An example of this behavior is 

{
(~~/2~i) + ~~ if ~I > 0, ~2 ~ 0, 

.f(x) = 0 if ~1 = 0 = ~2 , 

+ oo otherwise, where x = (~1 , ~2). 

For this function, ri (<lorn/) is the positive quadrant of R2 , and/is strictly 
convex on this set, but <lorn of also includes the entire non-negative ~1-
axis, which is a convex set on which/ is constant. 

THEOREM 26.3. A closed proper convex function is essentially strictly 
convex if and only if its conjugate is essentially smooth. 
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PROOF. Let/be a closed proper convex function. According to Theorem 
23.5, the subdifferential mapping of the conjugate function/* is (0/)-1, 
and by Theorem 26. l this mapping is single-valued if and only if f * is 
essentially smooth. Thus it suffices to show that f is essentially strictly 
convex if and only if oj(x1) n of (x2) = 0 whenever X1 '¥- X2. 

Suppose first that f is not essentially strictly convex. Then there exist 
two different points x1 and x2 such that, for a certain x = (I - A.)x1 + 
h 2, 0 < A. < 1, one has of(x) ¥- 0 and 

f(x) = (1 - A.)/(x1) + A.f(x2). 

Take any x* E of(x), and let Hbe the graph of the affine function h(z) = 
f(x) + (x*, z - x). This His a supporting hyperplane to epi/at (x ,f(x)) 
Now (x,f(x)) is a relative interior point of the line segment in epi/ 
joining (x1,f(x1)) and (x2,f(x2)), so the points (x1,f(x1)) and (x2,f(x2)) 
must belong to H. Thus x* E of(x1) and x* E of(x2), implying 

of(x1) n of(x2) ¥- 0. 

Suppose conversely that x* is an element of of(x1) n of(x2), where 
x1 ¥- x2. The graph of h(z) = (x*, z) - µ for a certain µ (namely µ = 
f*(x*)) is then a non-vertical supporting hyperplane Hto epif containing 
(x1,f(x1)) and (x2,f(x2)). The line segment joining these points belongs 
to H, so f cannot be strictly convex along the line segment joining x1 and 
X2. Every x in this line segment has x* E of(x). Hence/is not an essentially 
strictly convex function. II 

COROLLARY 26.3.1. Let f be a closed proper convex function. Then of 
is a one-to-one mapping if and only if! is strictly convex on int (<lorn/) and 
essentially smooth. 

PROOF. We have (of)-1 = of* by Corollary 23.5.1. Thus, by Theorem 
26.1, of is one-to-one if and only if f and/* are both essentially smooth. 
Since /is the conjugate of/*, the essential smoothness of/* is equivalent 
to the essential strict convexity off When/is essentially smooth, essential 
strict convexity reduces to strict convexity on int (<lorn/) by Theorem 
26.1. 11 

Various results about the preservation of essential smoothness may be 
derived from Theorem 26.3. 

COROLLARY 26.3.2. Let / 1 and h be closed proper convex functions on 
Rn such that / 1 is essentially smooth and 

ri (domfi) n ri (domf:) ¥- cp. 
Then / 1 D / 2 is essentially smooth. 

PROOF. By Theorem 26.3,f~ is essentially strictly convex. Furthermore, 

/1 Df2 =(Ji+ fi)* 
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by Theorem 16.4 and 

o(f i + fi)(x*) = ofi*(x*) + ofi(x*), Vx* 

by Theorem 23.8. The latter implies in particular that 

<lorn 0U1* + J 2*) c <lorn of:, 

and it follows from this and the essential strict convexity off: that/: + 
J; is essentially strictly convex. Therefore (/~ + J;)* is essentially 
smooth by Theorem 26.3. II 

COROLLARY 26.3.3. Let f be a closed proper convex function on Rn 
which is essentially smooth, and let A be a linear transformation from Rn 
onto Rm. If there exists a y* ER"' such that A *y* E ri (<lorn/*), then the 
convex function Af on R"' is essentially smooth. 

PROOF. By Theorem 26.3,f* is essentially strictly convex. Furthermore, 

Af= (f*A*)* 
by Theorem 16.3, and 

o(f* A*)(y*) = A of*(A*y*) 

by Theorem 23.9, so that 

<lorn o(f*A*) = A*-1 <lorn of*. 

Here A *-1 is single-valued (inasmuch as A maps R" onto Rm), and it 
follows therefore from the essential strict convexity off* that f *A* is 
strictly convex. Hence(/* A*)* is essentially smooth by Theorem 26.3. II 

Corollary 26.3.2 implies, for instance, that if C is any non-empty closed 
convex set in Rn and 

f(x) = inf {Ix - ylv I y E C}, p > l, 

then f is a differentiable convex function on R" (hence continuously 
differentiable by Corollary 25.5.1). Namely f = / 1 0/2, where 

/ 1(x) = !xiv, j;(x) = b(x I C), 

and <lorn/~ is all of R" (Corollary 13.3. l ). 
Corollary 26.3.3 implies that, if f is any (finite) differentiable convex 

function on Rn and A is a linear transformation from R" onto Rm such 
that 

Ax = 0 and x ¥- 0 imply (JO+)(x) > 0, 

then Af is a differentiable convex function on Rm. (The condition here on 
JO+ implies by Corollary 16.2. l that the range of A* meets ri (<lorn/*).) 
In particular, taking A to be a projection of the form 

(~1' · · · '~m• ~m+l• · · · '~n) ~ (~l• · · ·' ~m), 
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we see that if f is a differentiable convex function whose recession cone 
contains no non-zero vectors of the form 

(0, ... , 0, ~m+l• ... , ~,,), 

then the convex function g defined by 

sm+1 ... .,sn 

is (continuously) differentiable throughout R"'. Needless to say, differ
entiability could hardly be expected to be preserved under this kind of 
construction if f were not convex. 

Let f be a differentiable real-valued function on an open subset C of Rn. 
The Legendre conjugate of the pair (C,f) is defined to be the pair (D, g), 
where D is the image of C under the gradient mapping VJ, and g is the 
function on D given by the formula 

g(x*) = ((V/)-1(x*), x*) - /((VJ)-1(x*)). 

It is not actually necessary to have VJ one-to-one on C in order that g be 
well-defined (i.e. single-valued). It suffices if 

(xi. x*) - /(xi) = (x2 , x*) - /(x2) 

whenever V/(xi) = v/(x2) = x*. Then the value of g(x*) can be obtained 
unambiguously from the formula by replacing (V/)-1(x*) by any of the 
vectors it contains. 

Passing from (C,f) to the Legendre conjugate (D, g), if the latter is 
well-defined, is called the Legendre transformation. 

In the case where f and C are convex, we can extend f to be a closed 
convex function on all of Rn with C as the interior of its effective domain. 
The Legendre conjugate of ( C,f) is then related to the (ordinary) conjugate 
of the extended/ as follows. 

THEOREM 26.4. Let f be any closed proper convex function such that 
the set C = int (<lorn/) is non-empty and f is differentiable on C. The 
Legendre conjugate (D, g) of (C,f) is then well-defined. Moreover, Dis a 
subset of domf* (namely the range of VJ), and g is the restriction off* 
to D. 

PROOF. On C, of reduces to VJ (Theorem 25.1). For a given x* in the 
range of VJ, the vectors x such that Vf(x) = x* are the vectors in C 
where the function ( ·, x*) - f happens to attain its supremum f*(x*) 
(Theorem 23.5). Thus, no matter which x we choose in (V/)-1(x*), we 
get the same value for (x, x*) - f(x), namely /*(x*). The formula for 
g(x*) is therefore unambiguous, and it gives/*(x*). II 
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COROLLARY 26.4.1. Let f be any essentially smooth closed proper 
cDnvex function, and let C = int (<lorn/). (In particular, f may be any 
differentiable convex function on Rn, in which case C = Rn.) Then the 
Legendre conjugate (D, g) of ( C,f) is well-defined. One has 

D = {x* I of*(x*) ¥- 0}, 

so that D is almost convex in the sense that 

ri (<lorn/*) c D c <lorn/*. 

Furthermore, g is the restriction off* to D, and g is strictly convex on every 
convex subset of D. 

PROOF. The hypothesis implies that of= VJ (Theorem 26.1), so that 
('VJ)- 1 = of* (Theorem 23.5). The range D of \7/ therefore consists of the 
set of points x* such that of*(x*) ¥- 0. This set lies between <lorn/* and 
ri (<lorn/*) according to Theorem 23.4. The strict convexity of g follows 
from the fact that f* is essentially strictly convex (Theorem 26.3). II 

Corollary 26.4.1 says, among other things, that the conjugate of an 
essentially smooth convex function/ may be obtained from the Legendre 
conjugate (D, g) of (C,f) merely by extending g to be a closed proper 
convex function. We have/* = g on D, and at any boundary point x* 
of D the value of/* can be obtained as the limit of g along any line segment 
joining x* with a point of ri D (Theorem 7.5). Outside of cl D, we have 
f*(x*) = + oo. 

Although the Legendre conjugate in Theorem 26.4 is well-defined, one 
can not always invert v/ explicitly to get a workable formula in a given 
case. Notice, however, that the mapping v/, which is continuous from C 
onto D by Theorem 25.5, provides a natural parameterization of D. Under 
the (nonlinear) change of variables x* = \j(x), we have 

f*(\7/(x)) = (x, \f(x)) - f(x). 

In this sense, the Legendre conjugate of (C,f) can be treated as a (non
convex) function on C itself. 

If f is a differentiable convex function on a non-empty open convex 
set C such that condition ( c) of the definition of essentially smooth is not 
satisfied, then the domain D of the Legendre conjugate might not be 
"almost convex." For example, let C be the open upper half-plane in R 2

, 

and let 

f(;1, ;2) = ;i/4;2 
on C. Then/ is differentiable and convex, but the image D of C under v/ 
is not convex, in fact D is the parabola 

P = {c;:, ;n I;:= -(;i)2
}. 

Condition ( c) fails for fat the origin. 
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In general, the Legendre conjugate of a differentiable convex function 
need not be differentiable or convex, and we cannot speak of the Legendre 
conjugate of the Legendre conjugate. The Legendre transformation does, 
however, yield a symmetric one-to-one correspondence in the class of all 
pairs ( C ,/) such that C is an open convex set and f is a strictly convex 
function on C satisfying conditions (a), (b) and ( c) (or ( c')) of the definition 
of essentially smooth. This is shown in the theorem below. For convenience, 
a pair (C,f) in the class just described will be called a convex/unction of 
Legendre type. By Corollary 26.3. l, a closed proper convex function/ has 
of one-to-one if and only if the restriction off to C = int (<lorn/) is a 
convex function of Legendre type. 

THEOREM 26.5. Let f be a closed convex function. Let C = int (<lorn/) 
and C* =int (<lorn/*). Then (C,f) is a convex function of Legendre type 
if and only if (C* ,/*) is a convex function of Legendre type. When these 
conditions hold, (C*,f*) is the Legendre conjugate of (C,f), and (C,f) 
is in turn the Legendre conjugate of (C* ,/*). The gradient mapping Vf is 
then one-to-one from the open convex set C onto the open convex set C*, 
continuous in both directions, and VJ* = (VJ)-1• 

PROOF. Since of* = (of)- 1 , we have of one-to-one if and only if we 
have of* one-to-one. The first assertion of the theorem thus follows from 
Corollary 26.3.1. The rest of the theorem is then immediate from Theorem 
26.1 and Corollary 26.4.1, except for the continuity of VJ and VJ*, which 
is guaranteed by Theorem 25.5. II 

To illustrate Theorem 26.5, we return to an example considered earlier 
in this section: 

{
(~~/2~i) - 2~~/ 2 if ~I > 0, ~2 Z. 0, 

f (x) = 0 if ~1 = 0 = ~2, 

+ oo otherwise, where x = (~1> ~2). 

As already remarked, this f is both essentially strictly convex and 
essentially smooth. Thus ( C,f) is a convex function Legendre type, where 

C =int (<lorn/) = {x = (~1, ~2) I ~1 > 0, ~2 > O}. 

For x EC and x* = ( r:, ~:), we have x* = Vf(x). if and only if 

. * t2/21:2 ~1 = -<;2 <;1, 

~: = (~2/~1) - (1/~~12 ). 

These nonlinear equations can easily be solved explicitly for ~1 and ~2 in 
terms of ~i find~: (in most examples, unfortunately, this would not be the 
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case), and we see that the equation x = (v/)-1(x*) is expressed by 

~1 = 11c-2~:>112[(-2a)112 - ~:f, 

~2 = l/[(-2~:)112 - ~:r 

for x* EC*, the range of VJ, where 

C* = {x* = (~1*, ~i) I ~i < 0, ~i < (-2~i)1;2}. 
According to Theorem 26.5, we actually have 

C* = int (<lorn/*), 
and from the formula 

f*(x7) = ((Vfr1(x*), x*> - f(("Vf)-1(x*)), 

which is valid for x* EC*, we obtain 

J*(x*) = 1 /[(-2~i) 112 
- ~n 
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The Legendre conjugate of (C,f) is (C* ,/*), and (C* ,/*)is therefore 
another convex function of Legendre type. It may be verified as an 
exercise that the Legendre conjugate of this (C* ,/*) is indeed (C,f) 
again. 

The values of the conjugate function/* on the whole space can always 
be determined from the values on ri (<lorn/*) by a closure construction, 
and in this example we obtain, from the knowledge of (C* ,/*),the formula 

f* *
' {1/l(-2~i/ 12 - ~il if ~i:::;; 0, ~: < (-2~i) 112, 

(x ) = 
+ oo otherwise. 

To finish off this section, we shall describe the case where the Legendre 
transformation and the conjugacy correspondence coincide completely. 
Recall that, according to the definition given in §13, a finite convex 
function/ on Rn is said also to be co-finite if epi/ contains no non-vertical 
half-lines, and this is equivalent (by Corollary 8.5.2.) to the condition that 

+ oo = (JO+)(y) = Jim f ( A.y)/ A., Vy¥- 0. 
A~OO 

THEOREM 26.6. Let f be a (finite) differentiable convex function on Rn. 
In order that VJ be a one-to-one mapping from Rn onto itself, it is necessary 
and sufficient that f be strictly convex and co-finite. When these conditions 
hold, f * is likewise a differentiable convex function on Rn which is strictly 
convex and co-finite, and/* is the same as the Legendre conjugate off, i.e. 

f*(x*) = ((V/)-1(x*), x*) - /((V/)-1(x*)), Vx*. 

The Legendre conjugate off* is then in turn[ 
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PROOF. This is obvious from Corollary 26.3.1, Theorem 26.5 and the 
fact that domf* =Rn if and only if/ is co-finite (Corollary 13.3.1). II 

The following characterization of co-finiteness is helpful in applying 
Theorem 26.6. 

LEMMA 26. 7. Let f be a differentiable convex function on Rn. Jn order 
that f be co-finite, it is necessary and sufficient that 

Jim IYf(xi)I = + oo 

for every sequence x 1 , x 2 , ••• , such that 

Jim lx11 = + oo. 

PROOF. Since domf* = R" if and only if f is co-finite, it suffices to 
show that int (domf*) ¥- Rn if and only if there exists an unbounded 
sequence x1, x2, ... , such that the sequence Vf(x1), Vf(x2), ... , is con
vergent. Suppose the latter holds. Let x7 = Vf(xi) for i = I, 2, ... , 
and let x* = Jim x7. Then xi E of*(x7) for every i. If x* were an interior 

i-oo 

point of domf*, oj*(x*) would be bounded (Theorem 23.4), and by 
Corollary 24.5.l there would exist an index i 0 such that 

of*(xi) c of*(x*) + B, i ~ i 0 , 

(B = unit ball). This would contradict the unboundedness of the sequence 
x1, x2, ... , so we may conclude that x* ef: int (domf*). Suppose now 
conversely that int (domf*) ¥- R". Let x* be any boundary point of 
domf*. Either of*(x*) is unbounded or of*(x*) = 0. If of*(x*) is 
unbounded, it contains an unbounded sequence x1, x2, ... , and for each 
X; we have x* E of(xi), i.e. x* = Vf(x;), so that Vf(x1), Vf(x2), ... ' is 
trivially a convergent sequence. On the other hand, if of*(x*) = 0 let 
xi, x:, ... , be any sequence in ri (domf*) converging to x*. For each 
i, choose an element Xi E oj*(x:), which is possible sincej* is subdiffer
entiable on ri (<lorn f*) by Theorem 23.4. Then x7 = Vf(xi) for every i, 
so that Vf(xi) tends to x*. The sequence x1, x2, ... , must be unbounded, 
for if not some subsequence would converge to a point x, and we would 
have x E of*(x*) by Theorem 24.4, contrary to oj*(x*) = 0. II 
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SECTION 27 

The Minimum ef a Convex Function 

The great importance of extremum problems and variational principles 
in applied mathematics leads one to the general study of the minimum or 
maximum (or of certain minimax extrema) of a function h over a set C. 
When a sufficient amount of convexity is present, the study is greatly 
simplified, and many significant theorems can be established, particularly 
as regards duality and characterizations of the points where the extrema 
are attained. 

In this section we shall study the minimum of a convex function h over 
a convex set C in Rn. There is no real loss of generality in assuming h to be 
a proper convex function on R". Minimizing h over C is of course equiva
lent to minimizing 

{
h(x) if x EC, 

f (x) = h(x) + b(x I C) = 
+ oo if x ef: C, 

over all of R". We therefore begin with a discussion of the (unconstrained) 
minimum of a (possibly infinity-valued) convex function/ on Rn and then 
specialize to the case where f = h + b( · I C). r n §28 we shall consider in 
detail the case where C is the set of solutions to some system of inequalities. 

rn what follows, our attention will be focused on the properties of the 
parameterized nest of level sets 

levaf = {x l/(x) ~ix}, IX ER, 

belonging to a given proper convex function[ The sets lev a fare convex, 
and if/ is closed (a sensible regularity assumption) they are all closed. The 
union of the leva/for ix ER is domf Minimizing/ over Rn is the same as 
minimizing/ over the convex set domf 

Let inf/ denote the infimum of /(x) as x ranges over Rn. rn terms of 
JeveJ Sets, inf f is characterized by the property that Jev a f = 0 for IX < 
inf[ For ix = inf/, leva/ consists of the points x where the infimum of/ 
is attained; we call this level set the minimum set off Obviously it is of 
great importance in a given case to know whether the minimum set is 
empty or non-empty, or whether it consists of a unique point. Certainly it 
cannot contain more than one point if f is strictly convex on domf In 
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any event, the minimum set off is a certain convex subset of R", closed if f 
is closed. 

The manner in which the sets lev, f decrease to the minimum set as 
IX ! inf f is important in situations where one is concerned with the con
vergence of vector sequences x1 , x2 , ••• , such that f(x;) decreases to 
inff 

A necessary and sufficient condition for a given point x to belong to the 
minimum set of/ is that 0 E of(x), i.e. that x* = 0 be asubgradient off at x. 
Indeed, this is true simply by the definition of "subgradient." What makes 
the condition 0 E oj(x) useful and significant is the general differential 
theory of convex functions, particularly the results in §23 relating sub
gradients and directional derivatives, and the formulas for computing 
subgradients in various situations. 

According to Theorem 23.2, one has 0 E of (x) if and only if /is finite at x 
and 

f'(x; y) z 0, Vy. 

Of course, the one-sided directional derivatives/' (x; y) depend only on the 
values off in an arbitrarily small neighborhood of x. It follows that, if 
x is a point where f has a finite local (relative) minimum, i.e. if x E <lorn/ 
and /(z) z f(x) for every z within a certain positive distance e of x, then 
0 E of(x), so that xis a point where/ has its global minimum. This is one 
of the most striking consequences of convexity, and it is one of the main 
technical justifications for assuming convexity in the first attempts at 
analyzing a new class of minimum problems. 

The theory of the minimum of a convex function is rich with duality, 
and a great deal will be said on this topic in the following sections. At the 
heart of this duality is the fact that there is an extensive correspondence 
between properties of the nest of level sets lev, f and properties of the 
conjugate function f* at the origin. The correspondence has been 
established bit by bit in previous sections, and it is appropriate to summarize 
it here for convenience. 

THEOREM 27.1. The following statements are valid/or any closed proper 
convex function f 

(a) inf/= -f*(O). Thus f is bounded below if and only ifO E <lorn/*. 
(b) The minimum set off is of*(O). Thus the infimum off is attained if and 

only if f* is subdifferentiable at 0. This condition is satisfied in particular 
when 0 E ri (<lorn/*); moreover, one has 0 E ri (<lorn/*) 1/ and only if 
every direction of recession off is a direction in which/ is constant. 

(c) For the infimum off to be finite but unattained, it is necessary and 
sufficient that f*(O) be finite and f*'(O; y) = - oo for some y. 
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(d) The minimum set off is a non-empty bounded set if and only if 
0 E int (<lorn/*). This holds 1f and only if! has no directions of recession. 

( e) The minimum set off consists of a unique vector x if and only if f* 
is differentiable at 0 and x = VJ *(O). 

(f) The non-empty sets among the sets leva f (including the minimum set 
off, if that is non-empty) all have the same recession cone. This coincides 
with the recession cone off It is the polar of the convex cone generated by 
<lorn/*. 

(g) For each IX ER, the support function of levaf is the closure of the 
positively homogeneous convex function generated by f * + IX. If f is bounded 
below, the support function of the minimum set off is the closure of the 
directional derivative function f*' (0; · ). 

(h) If inf/ is.finite, one has 

Jim b*(y I Ievaf) = f*'(O; y), Vy. 
'"'!inf f 

(i) One has 0 E cl (<lorn/*) if and only if(fO+)(y) z Ofor every y. Thus 
0 ef: cl (<lorn/*) 1/ and only 1f there exists a z:ector y ¥- 0 and a real number 
e > 0 such that 

f(x + A.y) ~f(x) - A.e, VA. z 0, Vx E domf 

PROOF. (a): By the definition of /*(O) in §12. (b): Theorem 23.5, 
Theorem 23.4 and Corollary 13.3.4. (c): By (a), (b) and Theorem 23.3.'f 
(d): By (b), Theorem 23.4 and Corollary 13.3.4. (e): By (b) and Theorem 
25.1. (f): Theorem 8.7 and Theorem 14.2. (g): Theorem 13.5 applied to 
f - IX, Theorem 23.2. (h): By (a) and Theorem 23.6, the set oJ*(O) being 
leva /for IX= inf/+ e. (i): Corollary 13.3.4 and Theorem 8.5. II 

The directions of recession off are by definition the directions of the 
non-zero vectors y (ifany) such that/(x + A.y) is a non-increasing function 
of A. for every choice of x. If such a direction exists, there will obviously 
exist unbounded sequences xi. x2 , ••• , such that f(x;) ! inf/, and hence 
the infimum off might not be finite or attained. It is a remarkable fact 
about closed convex functions that such behavior is possible only if a 
direction of recession exists. 

THEOREM 27.2. Let f be a closed proper convex function which has no 
direction of recession. The infimum off is then.finite and attained. Moreover, 
for every e > 0 there exists a r5 > 0 such that every vector x satisfying 
f(x) ~ inf/+ r5 lies within the distance e of the minimum set off (i.e. 
lz - xi < efor at least one z such thatf(z) =inf/), the minimum set here 
being a non-empty closed bounded convex set. 

PROOF. That the infimum is finite and attained is immediate from 
Theorem 27.1 (d). Also, since there are no directions of recession, all the 
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(closed, convex) sets leva/ are bounded (Theorem 27.l(f) and Theorem 
8.4). Let M denote the minimum set of/, and let B denote the unit 
Euclidean ball. Fix any e > 0. The set M + e(int B) is open, because it is a 
union of translates of the open set e (int B). For each o > 0, let S0 denote 
the intersection of the complement of M + e (int B) with leva/, where 
IX = inf/+ o. The sets S 0 form a nest of closed bounded subsets of Rn. If 
every S0 were non-empty, there would exist a point x common to every S0 • 

Such an x would have the contradictory property that f(x) :::;; inf/+ o 
for every o > 0 (hence x EM), yet x ef: M + e (int B). Thus S0 must be 
empty for some o > 0. For this o, the level set {x l/(x) :::;; inf/+ o} lies 
entirely in M + e (int B) as required. II 

CoROLLAR Y 27 .2.1. Let f be a closed proper convex function which has 
no direction of recession. Let Xi, x 2 , ... , be any sequence such that 

limf (x;) = infj. 
i-oo 

Then Xi, x 2 , ••• , is a bounded sequence, and all its cluster points belong to 
the minimum set off 

COROLLARY 27.2.2. Let f be a closed proper convex function which 
attains its infimum at a unique point x. If Xi, x 2 , ••• , is any sequence of 
vectors such that f(x1),f(x2), ••• , converges to inf/, then Xi, x2, .•. , 

converges to x. 
PROOF. If the minimum set (a certain lev af) consists of a single point, 

f cannot have any directions of recession. Apply the theorem. II 
A closed proper convex function on the real line attains its infimum if 

it is neither a non-increasing function nor a non-decreasing function. 
This is the one-dimensional case of Theorem 27.2. In the n-dimensional 
case, the theorem says that a closed proper convex function f attains its 
infimum if the restriction off to each line in Rn is a one-dimensional 
convex function of the sort just described (or the constant function+ oo). 
It suffices actually if each restriction which is not a constant function is of 
the sort described. This follows from part (b) of Theorem 27.1. 

A reasonable conjecture is that, if f is a closed proper convex function 
on R 11 which attains its infimum relative to each line in Rn (i.e. the restric
tion off to each line is a function whose infimum is attained), then f 
attains its infimum on R". Here is an example which shows that this 
conjecture is false. Let P be the "parabolic" convex set in R2 defined by 

P = {(~i, ~2) I ~2 z m. 
For each x E R2 , let/0(x) be the square of the distance of x from P, i.e. 

f 0(x) = inf {Ix - yt 2 I y E P} = (f1 Df2)(x) 
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wherefi(x) = lxl 2 and.fz(x) = b(x!P). Let 

f(x) =/(~1' ~2) =/0(~1' ~2) - ~1· 

Then/ is a finite convex function on R 2• (In fact, it can be shown that/ 
is continuously differentiable.) Along any line which is not parallel to the 
~2-axis, the limit of f(x) is + oo in both directions, so the infimum off 
relative to such a line is attained. Along any line parallel to the ~2-axis, 
f (x) is non-increasing as a function of ~2 and constant for large positive 
values of ~2 and hence attains its infimum. Thus f satisfies the hypothesis 
of the conjecture. But f does not attain its infimum on R 2• Along the 
parabola ~2 = ~i, the value of/(~i. ~2) is -~1 , so/is not even bounded 
below! 

In particular one can have (fO+)(y) z 0 for every y, and yet inf/= - oo. 
This corresponds to the case where 0 E cl (<lorn/*) but 0 ef: <lorn/* (see 
parts (a) and (i) of Theorem 27.1). 

We shall now take up the special case where f is explicitly of the form 
h + b(· I C), i.e. where a convex function h is to be minimized over a 
convex set C not necessarily equal to <lorn h. Properties of the infimum 
are to be described in terms of the relationship between h and C. 

THEOREM 27.3. Leth be a closed proper convex function, and let C be a 
non-empty closed convex set over which h is to be minimized. If h and C 
have no direction of recession in common (which is trivially true if either h 
or Chas no direction of recession at all), then h attains its injimum over C. 
In the case )1,here C is polyhedral, h achieves its infimum over C under the 
weaker hypothesis that every common direction of recession of h and C is a 
direction in which h is constant. 

PROOF. Let /(x) = h(x) + b(x I C). The infimum of h over C is the 
same as the infimum of/ over W. If/is identically +oo, the infimum is 
trivially attained throughout C. If f is not identically + oo, f is a closed 
proper convex function whose directions of recession are the common 
directions of recession of hand C. By Theorem 27.2,/attains its infimum 
when there are no such directions. This establishes the non-polyhedral 
case of the theorem. A different argument is needed to get the refinement for 
C polyhedral. Setting 

(3 = inf {h(x) I x E C} < + oo, 

we consider the collection of closed convex sets consisting of C and the 
sets leva h, IX> (3. By hypothesis, C is polyhedral, and the only directions 
in which all the sets in the collection recede are directions in which all the 
sets other than Care linear (Theorem 27.l(f)). Helly's Theorem, in the 
form of Theorem 21.5, is applicable to such a collection. Every finite 
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subcollection has a non-empty intersection by the choice of (3, so the whole 
collection has a non-empty intersection. The points of this intersection are 
the points where the infimum of h relative to C is attained. II 

COROLLARY 27.3.1. Leth be a closed proper convex function such that 
ei·ery direction of recession of h is a direction in which h is affine. (This 
condition is satisfied of course if h is an affine or quadratic convex function, 
or merely 1f <lorn h * is an affine set (Corollary 13.3.2).) Then h attains its 
infimum relatice to any polyhedral coni·ex set C on which it is bounded 
below. 

PROOF. Under the hypothesis, any common direction of recession of 
h and C must be a direction in which h is affine. Thus, if y is a vector with 
such a direction, one has, for any x E C, 

x + }.y E C and h(x + }.y) = h(x) + v}., '0. z 0, 
where 

v = (hO+)(y) = -(hO+)(-y) _:::;; 0. 

When his bounded below on C, this condition implies that v = 0, so that 
every common direction of recession of h and C is actually a direction in 
which h is constant, and the theorem is applicable. II 

The hypothesis of Corollary 27.3.1 is also satisfied by any polynomial 
coni·ex function, i.e. a convex function h such that h(~i. ... , ~n) can be 
expressed as a polynomial in the variables ~1 , ••• , ~n· (Then h(x + A.y) 
is a polynomial convex function of the single real variable A., no matter 
what x and y are chosen, and such a function of A must either be affine or 
have limit + oo as IA.I---+ oo.) 

COROLLARY 27.3.2. A polyhedral (or equivalently: finitely generated) 
convex function h attains its injimum relative to any polyhedral convex set 
C on which it is bounded below. 

PROOF. Let D be the intersection of epi h with the "vertical prism" in 
Rn+i consisting of the points (x, µ) such that x E C. Since C and h are 
polyhedral, Dis the intersection of two polyhedral convex sets and hence 
is polyhedral. Minimizing h over C is equivalent to minimizing the linear 
function (x, µ)---+µover D. This infimum is attained, if it is not - oo, by 
the preceding corollary. II 

COROLLARY 27 .3.3. Let / 0 and Ji be closed proper convex functions on Rn 

for i E /, where I is an arbitrary index set (finite or infinite). Assume that the 
system of constraints 

f;(x) ~ 0, Vi E /, 

is consistent. If there is no direction of recession common to fo and all the 
functions j;, then the infimum of fo subject to these constraints is attained. 
More generally, the infimum is attained if there exists a.finite subset 10 of I 
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such that f; is polyhedral (or affine,for example)for i E / 0 , and such that the 
only directions of recession common to fo and all the functions f; are directions 
in which fo and all the functions f;, for i E I\ / 0 , are constant. 

PROOF. In the non-polyhedral case, let h = / 0, and let C be the set of 
vectors satisfying the constraints; the theorem is then applicable. For the 
polyhedral refinement, let 

{

/ 0(x) if /;(x) ~ 0, 
h(x) = 

+ oo if not. 

Let C be the polyhedral convex set consisting of the vectors x satisfying 
J;(x) ~ 0 for every i E / 0. The polyhedral case of the theorem is then 
applicable. II 

For an illustration of Corollary 27.3.3, consider the problem ofminimiz
ing/0(x) subject to the constraints 

x z 0, 

where J; is of the form 

f;(x) = (l/p;)(x, Q;x)1'd2 + (a;, x) + rx; 

for i = 0, ... , s with p; > 1 and Q; an n x n symmetric positive semi
definite matrix, while/; is of the form 

f;(x) = (a;, x) + rx; 

for i = s + 1, ... , m. (The convexity of Ji for i = 0, 1, ... , s follows 
from the fact that the function 

g;(x) = (x, Q;x)112 

is a gauge; see the example following Corollary 15.3.2.) The condition 
x z 0 can be written, of course, as the system 

fm+1(X) ~ 0, · · · Jm+n(x) ~ 0, 
where 

lm+i(x) = - ~j for x = ai. ... ' ~n)· 
To get a sufficient criterion for the attainment of the minimum in this case, 
we can apply the last part of Corollary 27.3.3 with 

I= {l, ... , m + n}, / 0 = {s + 1, ... , m + n}. 

The directions of recession of/; are by definition the directions of the vectors 
y ¥- 0 such that (f;O+)(y) ~ 0, and by the formula in Corollary 8.5.2 we 
have 

{

(a;, y) if Q;y = 0, 
(f;O+)(y) = . 

+oo 1f Q;y ¥- 0, 
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for i = 0, 1, . .. , s, 
u;o+)(y) = (a;. y) 

for i = s + 1, . .. , m, and 

Um+iO+)(y) = -rii for Y = ('r/1, · · ·, 'r/n)· 

The existence criterion furnished by Corollary 27.3.3 is that the system 

(f;O+)(y) ~ 0 for i = 1, ... , m + n 

should not be satisfied by any y which does not also satisfy 

(f;O+)(-y) ~ 0 for i = 0, 1, ... , s. 

In other words,f0(x) attains its minimum subject to the given constraints 
if every solution y to the system 

y z 0, (a;, y) ~ 0 for i = 0, 1, . .. , m, 

Q;y = 0 for i = 0, 1, . .. , s, 
actually satisfies 

(a;, y) = 0 for i = 0, 1, ... , s. 

The points at which a constrained infimum is attained may be character
ized by means of subdifferential theory. Suppose, for example, that we 
want to minimize a function of the form 

on Rn, where Ji, ... ,f,,, are proper convex functions and Ai, ... , Am 
are non-negative real numbers. (Some of the functions may be indicator 
functions.) A necessary and sufficient condition for the infimum to be 
attained at the point x is that 0 E of(x). Now, under certain mild 
restrictions specified in Theorem 23.8, the formula 

of(x) = A1 ofi(x) +···+Am ofm(x), 'Vx, 

is valid. In this case, then, we get a necessary and sufficient subdifferential 
condition: 

which can be analyzed further according to the nature of Ji, ... ,fm· 
The following theorem exemplifies this approach. 

THEOREM 27.4. Leth be a proper convex function, and let C be a non
empty convex set. Jn order that x be a point where the injimum of h relative 
to C is attained, it is sufficient that there exist a vector x* E oh(x) such that 
-x* is normal to Cat x. This condition is necessary, as well as sufficient, 
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if ri (<lorn h) intersects ri C, or if C is polyhedra/ and ri (<lorn h) merely 
intersects C. 

PROOF. We want to minimize h + o(· I C) on R". By Theorem 23.8, 
the condition 

0 E [oh(x) + oo(x I C)] 

is always sufficient for the infimum to be attained at x, and it is a necessary 
condition under the given assumptions about the intersection of <lorn h 
and C. The set oo(x I C) is just the normal cone to Cat x. II 

The condition in Theorem 27.4 can also be derived easily from separation 
theory without invoking Theorem 23.8. The argument, which is a 
specialization of the alternative proof of Theorem 23.8 given in §23, may 
be sketched as follows. Let IX be the infimum of h over C, and consider in 
R 11 +1 the convex sets C1 = epi lz and 

C2 = {(x, µ)I x EC,µ ~ IX}. 

These sets can be separated by a non-vertical hyperplane, i.e. the graph of 
some affine function (", x*) + (3. If xis any point where the infimum of 
hover c is attained, then this x* belongs to oh(x), and -x* is normal to 
C at x. The details of this proof can be developed as an exercise. 

£f h is actually differentiable at x in Theorem 27.4, oh(x) reduces to the 
single vector \1 h(x) (Theorem 25.1 ). The minimality condition is then that 
-\lh(x) be normal to Cat x. In the case where C is a subspace L, say, 
this condition would say that x EL and \lh(x) J_ L. 

As an application of Theorem 27.4, consider the problem of finding 
the nearest point of a convex set C to a given point a. This is the same as the 
problem of minimizing the differentiable convex function 

h(x) = (1/2) Ix - al 2 

over C. The intersection hypothesis of Theorem 27.4 is satisfied trivially, 
so a necessary and sufficient condition for x to be the point of C nearest to 
a is that the vector 

-vh(x) =a - x 

be normal to C at x. 
For another application, consider the problem of minimizing a function 

of the form 

over a subspace L of R", where!J is a closed proper convex function on R 
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for j = 1, ... , n. Here oh(x) is a generalized rectangle: 

oh(x) = {x* = (~{, ... '~~)I~; E of1(~1) for j = 1, ... 'n} 

= {x* E WI f'._(~1):::;; ~j:::;; /~(~1) for j = 1, ... , n}, 

and for any x E <lorn h and z = CSi. ... , Sn) one has 

h'(x; z) = f { (~1; S1) + · · · + f ;, (~n; Sn) 

= sup {s1 ~i*+ ... + Sn~~ I ~; E of1(~1), j = 1, ... , n}, 

where (since each of1(~1) is a closed interval) the latter supremum is 
attained unless it is infinite. In particular, for any x E <lorn hand z E Rn, 

h'(x; z) =sup {(z, x*> Ix* E oh(x)}. 

Suppose that L contains at least one element of ri (<lorn h), i.e. an x such 
that 

~1 Eri (dom!J) for j = 1, ... , n. 

Then by Theorem 27.4 the infimum of hover Lis attained at a given point 
x if and only if x EL and there exists an x* E Ll. satisfying the inequality 
system 

rf..1:::;;~j:::;;(3j, j=1, ... ,n, 

where r/..j = J~aj) and /31 = 1:c~1)· 
Observe incidentally that, if such an x* does not exist, then there 

exists by Theorem 22.6 an elementary vector z = (S1 , ••• , Sn) of L such 
that 

or in other words, in view of the above formula for h'(x; z), 

h'(x; z) < 0. 

Thus, given any x EL n <lorn h, either the infimum of h over Lis already 
attained at x, or one can move away from x in the direction of some 
elementary vector of L (and there are only a finite number of such 
"elementary directions" according to Corollary 22.4.1) to a point x' E 
L n <lorn h with h(x') < h(x). In situations where the elementary vectors 
of L are convenient to work with, as for example when L is the space of 
all circulations (or the space of all tensions) in some directed graph as dis
cussed in §22, this observation leads to an efficient algorithm for minimiz
ing h over L (at least when the functions;; are suitably polyhedral, i.e. 
piecewise linear). 

Further remarks on the preceding example will be made following 
Corollary 31.4.3. 



SECTION 28 

Ordinazy Convex Programs and 

Lagrange Multipliers 

The theory of Lagrange multipliers tells how to transform certain 
constrained extremum problems into extremum problems involving fewer 
constraints but more variables. Here we shall present the branch of the 
theory which is applicable to problems of minimizing convex functions 
subject to "convex" constraints. 

By an ordinary convex program (P) (as opposed to a "generalized" 
convex program, to be defined in §29), we shall mean a problem of the 
following form: minimize f 0(x) over C subject to constraints 

Ji (x) :::;; 0, ... ,f,.(x) :::;; 0, fr+1(x) = 0, ... Jm(x) = 0, 

where C is a non-empty convex set in R", f, is a finite convex function 
on C for i = 0, 1, ... , r, and/; is an affine function on C for i = r + 
1, .. . , m. Included here are the special cases where r = m (i.e. no equality 
constraints) or r = O(i.e. no inequality constraints). 

Of course, to define (P) as a "problem" is rather vague, and it might 
lead to misunderstandings. For the sake of mathematical rigor, we must 
say that what we really mean by an ordinary convex program (P) is an 
(m + 3)-tuple (C,/0 , ••• Jm, r) satisfying the conditions just given. 
Technically speaking, the fact that we have constrained minimization in 
mind is only to be inferred from the concepts we define in terms of (P) and 
the theorems we prove concerning them. 

Only the values of the functions f; on C itself are actually involved in 
the definition of (P). However, we shall assume for convenience that each 
Ji is defined on all of Rn in such a way that (a)fo is a proper convex function 
with dom/0 = C, (b)/1 , ••• ,f,. are proper convex functions with 

ri (<lorn/;)=> ri C, domf,. => C 
' ' 

and (c)f; is affine throughout Rn for every i ¥- 0 such that Ji is affine on C. 
There is no loss of generality in this assumption. (One can always arrange 
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for (a) and (b) to be satisfied by settingf;(x) = +cx:i when x ef: C, for 
i = 0, 1, ... , r. As for (c), one need only recall that the graph of each 
affine function/; on C is contained in at least one non-vertical hyperplane, 
and such a hyperplane is the graph of an affine extension off; to all of Rn.) 

A vector x will be called a feasible solution to (P) if x EC and x satisfies 
the m constraints of (P). In other words, the set of feasible solutions to 
(P) is defined to be the (possibly empty) convex set 

where 
C0 = C n C1 n · · · n Cm, 

C; = {x IJ;(x):::;; O}, 

C; = {x IJ;(x) = O}, 

i=l,. .. ,r, 

i = r + 1, ... , m. 

The convex function f on Rn defined by 

{

/ 0(x) if x E C0 , 

f(x) = fo(x) + o(x I Co) = 
+ oo if x ef: C0 , 

will be called the objective function for (P). Note that/has C0 as its effective 
domain, and that f is closed when / 0,/i. ... ,fr are closed. Minimizing 
f over Rn is the same as minimizing / 0(x) over all feasible solutions x. 
The infimum off (which may be finite or - oo or + oo) will be called the 
optimal value in (P). The points where the infimum of/is attained will be 
called the optimal solutions to (P), provided that/ is not identically + oo, 
i.e. that C0 ¥- 0. The set of all optimal solutions is thus a (possibly empty) 
convex subset of the set of all feasible solutions. 

Some theorems about the existence of optimal solutions can be obtained 
by applying the results in §27, most notably Corollary 27.3.3. There is no 
need to discuss such results any further here. We shall focus our attention 
rather on various characterizations of optimal solutions. 

It should be emphasized that, by our definitions, two ordinary convex 
programs can have the same objective function (and hence the same 
feasible solutions, optimal value and optimal solutions), and yet be 
significantly different. An ordinary convex program has structure not 
reflected by its objective function alone, since its definition requires the 
specification of the values of the functions/; throughout C, and it is this 
further structure which is all-important where Lagrange multipliers are 
concerned. 

We define (A1 , ••• , Am) E R"' to be a vector of Kuhn-Tucker coefficients 
for (P), or simply a Kuhn-Tucker rector for (P), if A; z 0 for i = 1, ... , r 
and the infimum of the proper convex function 
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(whose effective domain is C) is finite and equal to the optimal value in 
(P). (This terminology is discussed on p. 429.) 

One reason for theoretical interest in Kuhn-Tucker coefficients is that 
such coefficients A;, if known, would make it possible to commute 
operations in (P). Instead of first determining the feasible solutions to (P) 
and then minimizing / 0 over these, one would be able first to minimize 
/ 0 + A.i/1 + · · · + Amfm over Rn and then eliminate from the minimum 
set the points which fail to satisfy certain constraints. This is explained in 
the following theorem. 

THEOREM 28.1. Let (P) be an ordinary convex program. Let (A.1 , ••. , Am) 
be a Kuhn-Tucker vector for (P), and let 

Let D be the set of points where h attains its infimum over Rn. Let I be the 
set of indices i such that 1 ~ i ~ rand A; = 0, and let J be the complement 
of I in {l, ... , m}. Let D0 be the set of points x ED such that 

f;(x) = o, 
f;(x) ~ o, 

Vi El, 

Vi El. 

Then D0 is the set of all optimal solutions to (P). 

PROOF. By hypothesis inf h = inf/, where f is the objective function 
for (P) and inf/is finite. For any feasible solution x to (P), we have 

A.;f;(x) ~ 0, i = 1, ... ,m, 
so that 

fo(x) + A. 1fi(x) + · · · + Amfm(x) ~fo(x). 

Thus h(x) ~f(x) for every x, with equality if and only if xis a feasible 
solution such that 

A.;f;(x) = 0, i = 1, ... ,m. 

It follows that the minimum set of/is contained in the minimum set of h 
and is in fact D0 • But the minimum set of/is the set of optimal solutions 
to (P). 11 

The fact that the D 0 in Theorem 28. l can be a proper subset of the mini
mum set Dis clear from the case where C = Rn and every j; is affine. In 
this case h, being an affine function which is bounded below on Rn, must 
be constant; thus D = R", while D0 c C0• However, there is another 
important case where D 0 does coincide with D, so that no further con
ditions have to be checked after a point has been determined which 
minimizes h: 
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COROLLARY 28.1.1. Let (P) be an ordinary convex program, and let 
(A1 , ••• , Am) be a Kuhn-Tucker vector for (P). Assume that the functions 
Ji are all closed. If the infimum of 

is attained at a unique point x, this x is the unique optimal solution to (P). 
PROOF. The hypothesis implies that h and the objective function f of 

(P) are closed. Suppose that the infimum of h is attained at a unique 
point x. The corollary will follow from the theorem if we show that (P) 
has at least one optimal solution, i.e. that the infimum off is attained 
somewhere. Since the minimum set of h consists. of x alone, h has no 
directions of recession, i.e. the closed convex set epi h contains no 
"horizontal" half-lines. We have f z h by the proof of the theorem so 
epi/likewise contains no "horizontal" half-lines. Thus/has no directions 
of recession, and by Theorem 27.2 the minimum set of/is not empty. II 

It should be noted in Corollary 28.1.1 that, if / 0 is strictly convex on C, 
then h is strictly convex on C, so that the infimum of h is attained at a 
unique point if attained at all. 

Kuhn-Tucker coefficients can be interpreted heuristically as "eq uilib
rium prices," and this is an important motivating idea. For each u = 

(Vi, ••. , vm)t in Rm, let p(u) = p( Vi, •.• , vm) denote the infimum of fo(x) 
over C subject to the constraints 

j;(x) :::;; V;, 

j;(x) = V;, 

i = 1, ... , r, 

i = r + 1, ... , m. 

(The infimum is + oo by convention if these constraints cannot be 
satisfied.) Of course, p(O) is the optimal value in (P), and in general p(u) 
is the optimal value in the ordinary convex program (Pu) obtained by 
replacing f; by f; - V; for i = 1, ... , m. Thinking of the vectors u as 
representing "perturbations" of (P), we call p the perturbation function for 
(P) and direct our attention to the properties of p around u = 0. 

Let us assume that/0(x) can be interpreted as the "cost" of x; thus in 
(P) we want to minimize cost subject to certain constraints. It may be 
possible, however, to modify the constraints to our advantage by buying 
perturbations u. Specifically, let us assume that we are allowed to change 
(P) to any (P,,) that we please, except that we must pay for the change, the 
price being v7 per unit of perturbation variable v;. Then, for any pertur
bation u, the minimum cost we can achieve in the perturbed problem 

i· Here the symbol P, to be distinguished from the italic v, is the Greek letter upsilon. 
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(Pu), plus the cost of u, will be 

p(vi. ... , vm) + v~v1 + · · · + v::',vm = p(u) + (u*, u). 

A perturbation will be "worth buying" if and only if this quantity is less 
than p(O, ... , 0), the optimal value in the unperturbed problem. 

Now here is where Kuhn-Tucker coefficients come in. We claim that, 
when the optimal value in (P) is finite, (A.1 , ••• , Am) is a Kuhn-Tucker 
vector for (P) if and only if, at the prices v; = A;, no perturbation what
soever would be worth buying (so that one would be content with the 
constraints as given, an "equilibrium" situation). Indeed, the infimum 
in u of the cost p(u) + (u*, u) is the same as the infimum of 

f 0(x) + v~v1 + · · · + v:;,vm 

in u and x subject to vi z f;(x) for i = 1, ... , r and V; = f;(x) for 
i = r + 1, ... , m. The latter is 

infx {f0(x) + vi/1(x) + · · · +v,;';fm(x)} 

if v; z 0 for i = 1, ... , r, but - oo otherwise. Thus, when p(O, ... , 0) 
is finite and v7 = A;, the inequality 

p(v1, . .. , Vm) + A1V1 + · · · + AmVm z p(O, . .. , 0) 

holds for every u = (v1 , ••• , vm) if and only if Ai z 0 for i = 1, ... , r 
and 

infx {f0(x) + Ai/1(x) + · · · + Amfm(x)} = p(O, . .. , 0). 

This condition means that (A1 , •.. , Am) is a Kuhn-Tucker vtctor for (P). 
The next theorem shows that Kuhn-Tucker coefficients can usually 

be expected to exist. 

THEOREM 28.2. Let (P) be an ordinary convex program, and let I be 
the set of indices i ¥- 0 such that f; is not affine. Assume that the optimal 
value in (P) is not - oo, and that (P) has at least one feasible solution in 
ri C which satisfies with strict inequality all the inequality constraints for 
i EI. Then a Kuhn-Tucker vector (not necessarily unique) exists for (P). 

PROOF. We shall first treat the case where there are no equality 
constraints, i.e. r = m. Let the indices in I be 1, ... , k for convenience, 
and let the optimal value in (P) be denoted by IX. By hypothesis, the system 

fi(x) < 0, ... ,/1c(x) < 0, fw(x) ~ 0, ... ,/m(x) ~ 0, 

has at least one solution in ri C. However, by the definition of IX, the 
system 

f 0(x) - IX< 0, f1(x) < 0, ... ,fk(x) < 0, 

fk+1(x) ~ 0, ... Jm(x) ~ 0, 
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has no solution in C. The second system satisfies the hypothesis of 
Theorem 21.2, so there exist non-negative real numbers A.0 , Ai. ... , Am, 
not all zero, such that 

Vx EC. 

Actually A.0 itself must be positive, for if A. 0 = 0 we would have A.J1 + 
· · · + A.mf m non-negative on C with at least one of the coefficients A. 1 , .•. , 

Ai.· positive, and this would contradict the assumed existence of a solution 
to the first inequality system. Dividing all the coefficients A; by A.0 if 
necessary, we can suppose that A.0 = I. The function 

h = fo + Ai/1 + · · · + Amfm 

then satisfies h(x) z IX for all x E C and h(x) = + oo for all x ef: C, so that 
inf h z IX. On the other hand, for any feasible solution x one has h(x) :::;; 
f 0(x) (since A; z 0 and /;(x) :::;; 0 for i = 1, ... , m), and hence inf h 
cannot be greater than the infimum of/0 over the set of feasible solutions, 
which is IX. Thus inf h = IX, and (A.1 , ••• , Am) is a Kuhn-Tucker vector for 
(P). The theorem is now established for the case where there are no 
equality constraints. 

When equality constraints are present, i.e. r < m, the corresponding 
functions fr+i. ... ,fm are affine by the definition of (P). Each constraint 
f;(x) = 0 can be replaced by two constraints 

f;(x) :::;; 0, (-/;)(x) :::;; 0, 

to obtain an "equivalent" ordinary convex program (P') with only 
inequality constraints. The part of the theorem which has already been 
proved is applicable to (P'). Kuhn-Tucker coefficients for (P') are non
negative real numbers A. 1 , ••• , A.,, A.;+1' ... , A.;,,, A.;+1' ••• , A~ such that 
the infimum of the function 

fo + ~;~1 A.J; + ~;'!,+1 A.:J; + ~,','.:,..u A~( - f;) 

is finite and equal to the optimal value in (P'), which is the same as the 
optimal value in (P). Setting A; = A.; - A.; for i = r + 1, ... , m, one 
obtains from such coefficients a Kuhn-Tucker vector {A1 , ••. , Am) for 
(P). II 

COROLLARY 28.2.1. Let (P) be an ordinary convex program with only 
inequality constraints, i.e. with r = m. Assume that the optimal value in (P) 
is not - oo, and that there exists at least one x EC such that 

/1(x) < 0, ... .fm(x) < 0. 

Then a Kuhn-Tucker vector exists for (P). 
PROOF. If x E C satisfies f;(x) < 0 for i = 1, ... , m and y 1s any 
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point of ri C (and hence of ri (domf;) for i = 1, . .. , m by assumption 
(b) at the beginning of this section), then the point 

z = (1 - A.)x + A.y 

for A. > 0 sufficiently small satisfies f;(z) < 0 for i = 1, ... , m and z E 

ri C (Theorem 7.5 and Theorem 6.1). Thus the hypothesis of the theorem 
is satisfied. II 

Corollary 28.2.1 can also be given a more direct proof which, unlike the 
proof of Theorem 28.2 via Theorem 21.2, uses only the separation results 
in §11 and no facts about polyhedral convexity. The argument is almost 
the same as in the first half of the proof of Theorem 28.2 (under the 
assumption that there are only inequality constraints), except that one 
uses the more elementary Theorem 21.l instead of Theorem 21.2; the 
details of this proof make an easy exercise. 

Another important special case of Theorem 28.2, whose proof does 
depend on the theory of polyhedral convexity, is the following. 

COROLLARY 28.2.2. Let (P) be an ordinary convex program with only 
linear constraints, i.e. with 

f;(x) = (ai, x) - rx;, i = 1, ... , m. 

If the optimal value in (P) is not - oo and (P) has a feasible solution in ri C, 
then a Kuhn-Tucker vector exists for (P). 

For an example of an ordinary convex program for which Kuhn-Tucker 
coefficients do not exist, let C = R 2

, / 0a1 , ~2) = ~1' /i(~1, ~2) = ~2 , 
/2(~1, ~2) = ~i - ~2 , r = 2. The only x = a1 , ~2) satisfying the 
constraints 

is x = (0, 0). This program therefore has (0, 0) as its unique optimal 
solution and 0 as its optimal value. However, if (A.1 , A. 2) were a Kuhn
Tucker vector we would have A.1 Z. 0, A. 2 Z. 0 and 

which is impossible. The hypothesis of Theorem 28.2 is not satisfied here, 
since there is no (~i. ~2) such thatfi(~1 , ~2):::;; 0 and/2a1, ~2) < 0. 

This example can be modified to show that something like the relative 
interior condition in Theorem 28.2 and Corollary 28.2.2 is needed, even 
when/0 is linear on C and all the constraints are linear equations. Let 

C = {(~1' ~2 ) E R 2 I ~~ - ~2 ~ 0}, 

/o(~i. ~2) = ~1' /i(~1. ~2) = ~2 , r = 0. In the ordinary convex program 
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given by this choice of elements, x = (0, 0) is again the unique optimal 
solution and 0 is the optimal value. A Kuhn-Tucker vector would consist 
of a single real number A. 1 such that 

But no such A. 1 exists. 
Kuhn-Tucker coefficients can be characterized in terms of the directional 

derivatives of the perturbation function p of (P) at u = 0, as we shall show 
in a more general setting in §29. It will follow from this characterization 
that Kuhn-Tucker coefficients always exist, except for certain situations 
where their existence would be highly unnatural from the heuristic 
"equilibrium price" point of view. 

We shall now show how Kuhn-Tucker coefficients and optimal 
solutions in an ordinary convex program (P) can be characterized in terms 
of the "saddle-point" extrema of a certain concave-convex function on 
Rm X Rn. 

The Lagrangian of (P) is the function L on Rm x Rn defined by 

(

fo(x) + v;J1(x) + · · · + v~f m(x) if u* EE,, x EC, 

L(u*, x) = - oo if u* ef: E,, x EC, 

+ oo if x ef: C, 
where 

E, = {u* = (v;, ... , v~) E Rm Iv;* z 0, i = 1, ... , r}. 

The variable v; is known as the Lagrange multiplier associated with the ith 
constraint in (P). 

If v: is interpreted heuristically as the price per unit of perturbation 
variable V; as above, Lhasa natural meaning. For any given u* E Rm and 
x E Rn, we have 

L(u*, x) = inf {fo(x) + v;v1 + · · · + v:vm I u E Ux}, 

where Ux is the set of perturbations u = ( v1 , ... , vm) such that V; z f;(x) 
for i = 1, ... , r and vi = f;(x) for i = r + 1, ... , m, i.e. such that x 
satisfies the constraints in the perturbed problem (Pu). Thus L(u*, x) 
can be interpreted as the minimum cost at which x can be obtained when 
the price for perturbations is u*. 

Observe that L is concave in ·u* for each x and convex in x for each u*. 
Moreover, L reflects all the structure of (P), because the (m + 3)-tuple 
(C,/0 , ••• ,fm, r) can be recovered completely from L. (Namely, C and r 
are uniquely determined by L because the set of points where Lis finite is 
E, x C. The values of the functions / 0,fi, ... ,fm on C can be obtained 
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from L by the formulas 

f 0(x) = L(O, x), x E C, 

fi(x) = L(ei, x) - L(O, x) for i = 1, ... , m, XE C, 

where e; is the vector forming the ith row of them x m identity matrix.) 
There is thus a one-to-one correspondence between ordinary convex programs 
and their Lagrangians. 

A vector pair (it*, x) is said to be a saddle-point of L (with respect to 
maximizing in u* and minimizing in x) if 

L(u*, x) ~ L(it*, x) ~ L(it*, x), Vu*, Vx. 

THEOREM 28.3. Let (P) be an ordinary convex program in the notation 
above. Let it* and x be vectors in Rm and Rn, respectively. Jn order that it* 
be a Kuhn-Tucker vector for (P) and x be an optimal solution to (P), it is 
necessary and sufficient that (it*, x) be a saddle-point of the Lagrangian L 
of (P). Moreover, this condition holds if and only 1f x and the components A; 
of it* satisfy 

(a) A; z O,f;(x) ~ 0 and A;/;(i) = 0, i = 1, ... , r, 
(b) f;(i) = 0 for i = r + 1, ... , m, 
(c) 0 E [ofo(x) +Al ofi(.X) + ... +Am ofm(x)].(OmittermswithA1=0.) 

PROOF. By the definition of "saddle-point," (it*' x) is a saddle-point 
of L if and only if 

supu• L(u*, x) = L(it*, x) =inf,. L(u*, x). 

However, the inequality 

SU Pu• L(u*' x) z L(it*' x) z infx L(it*' x) 

always holds. Thus (it*, x) is a saddle-point if and only if 

SU Pu• L(u*' x) = infx L(it*' x). 

No matter what the choice of x, we have 

sup,.. L(u*, x) =sup {fo(i) + v:fi(x) + · · · + v!fm(x) I (v~, ... , v!) EE,} 

= foU:) + b(x I Co) > - oo, 

where C0 is the set of all feasible solutions to (P). On the other hand, for 
any given it* = (A1 , ... , Am) we have 

{
infh if it*EE,, 

+ oo > inf., L(it*, x) = 
- oo if it* ef: E,, 

where h = / 0 + Ai/1 + · · · + Amfm· Thus (it*, x) is a saddle-point of L 
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if and only if 

( d) ii* EE,, x E C0 , inf h = f 0(i). 

Condition (d) is satisfied when ii* is a Kuhn-Tucker vector and xis an 
optimal solution, since then inf h = IX and / 0(i) = IX, where IX is the 
optimal value in (P) and is finite. On the other hand, suppose (d) is 
satisfied. For any x E C0 we have 

A,f;(x) ~ 0, i = 1, ... , m, 

and consequently h(x) ~ fo(x). Therefore 

inf h = inf h(x) ~ inf / 0(x) = IX ~ fo(x), 

and it follows that 
xECo xECo 

inf h = IX = f 0(x). 

Thus ( d) implies that ii* is a Kuhn-Tucker vector and x is an optimal 
solution. 

Of course, from the argument just given we have 

inf h ~ h(x) ~ / 0(.X) 

when ii* EE, and x E C0 , where the second inequality is strict unless 

A;f;(x) = 0, i = 1, ... , r. 

Thus (d) implies (a), (b) and the condition: 

(c') h(x) = inf h. 

Conversely, (a), (b) and (c') imply (d), because h(x) = f 0(x) under (a) 
and (b). To complete the proof of the theorem, we need only show that 
(c') is equivalent to (c), assuming ii* EE,. By definition, h attains its 
infimum at x if and only ifO is a subgradient of hat x, i.e. 0 E oh(x). Since 

n:o ri (domf;) = ri c ¥- 0 

(by our blanket assumption on p. 273), we have 

oh(x) = of0(x) + o(Aif~)(x) + · · · + o(Amfm)(x) 

= ofo(x) + A1 ofi(x) + · · · + Am ofm(x) 

for every x by Theorem 23.8. Thus the condition 0 E oh(x) is equivalent 
to (c). II 

Conditions (a), (b) and (c) are known as the Kuhn-Tucker conditions for 
(P). When the functions/; are actually differentiable at x, of;(x) reduces 
of course to the gradient Vf;(i) off; at x (Theorem 25.1), and (c) becomes 
the gradient equation 

Vf0(x) + Ai Vfi(i) + · · · + Am Vfm(x) = 0. 
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It follows from Theorem 28.3 that, in circumstances where Kuhn
Tucker vectors are sure to exist, solving the constrained minimization 
problem in (P) is equivalent to solving the unconstrained (or rather: more 
simply constrained) extremum problem of finding a saddle-point of L. 

COROLLARY 28.3.1 (Kuhn-Tucker Theorem). Let (P) be an ordinary 
convex program satisfying the hypothesis of Theorem 28.2. In order that a 
given vector x be an optimal solution to (P), it is necessary and sufficient 
that there exist a vector ii* such that (ii*, x) is a saddle-point of the 
Lagrangian L of (P). Equivalently, .X is an optimal solution if and only if 
there exist Lagrange multiplier ualues Ai which, together with x, satisfy the 
Kuhn-Tucker conditions for (P). 

It is interesting to see that the Kuhn-Tucker conditions for an ordinary 
convex program could also be derived in a different and rather instructive 
way directly from the theory of subdifferentiation. For simplicity of 
exposition, we shall assume that C = Rn, r = m, and that the system 

fi(x) < 0, ... ,/m(x) < 0, 

has at least one solution. (The argument could be extended to the general 
case, however.) Setting as above 

Ci= {x I /;(x):::;; O}, i = 1, ... ,m, 

we may express the objective function f for (P) by 

f(x) = f 0(x) + b(x I C1) + · · · + b(x I Cm). 

The optimal solutions to (P) are the vectors x such that 0 E of(x). Our 
assumption about the system _f;(x) < 0, i = 1, ... , m, implies (by the 
continuity of finite convex functions on Rn) that 

int C1 n · · · n int Cm ¥- 0. 

Of course, Ci is the effective domain of r5(· I C;) for i = 1, ... , m, and 
Rn = domf0 • It follows from Theorem 23.8 that 

of(x) = ofo(x) + ob(x I C1) + ... + ob(x I Cm). 

Furthermore, ob(x I Ci) is the normal cone to Ci at x, and according to 
Corollary 23. 7.1 this is given by 

{
u {A.i of;(x) I A; z O} if /;(x) = 0, 

ob(x I C;) = {O} if /;(x) < 0, 

0 if /;(x) > 0. 

It follows that of(x) is non-empty if and only if x satisfies f,(x) :::;; 0 for 
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i = 1, ... , m, in which case of (x) is the union of 

~fo(x) + -11 ~t;_ (x) + · · · + A.m of,,,(x) 

over all choices of coefficients Ai z 0 such that 

A;f;(x) = 0 for i = 1, ... , m. 

Thus 0 E of(x) if and only if there exist coefficients A1, ... 'Am which 
along with x satisfy the Kuhn-Tucker conditions. 

Theorem 28.3 shows how the optimal solutions and Kuhn-Tucker 
vectors for (P) can be characterized in terms of the Lagrangian L of (P). 
The following theorem shows how the optimal value in (P) can likewise be 
characterized in terms of the Lagrangian L. 

THEOREM 28.4. Let (P) be an ordinary convex program with Lagrangian 
L. If ii* is a Kuhn-Tucker vector for (P) and x is an optimal solution, the 
saddle-value L(ii*, x) is the optimal value in (P). More generally, ii* is a 
Kuhn-Tucker vector for (P) if and only if 

-oo < infL(ii*,x) = supinfL(u*,x) = infsupL(u*,x), 
• • x u x x ll 

in which case the common extremum value in the latter equation is the 
optimal value in (P). 

PROOF. If ii* = (A.1, ... , Am) is a Kuhn-Tucker vector and j; is an 
optimal solution, we have 

L(ii*, x) = f 0(x) + A.1.fi (x) + · · · + A.mf m(x) = fo(i) 

by the Kuhn-Tucker conditions in Theorem 28.3, and hence L(ii*, x) is 
the optimal value in (P). Now in general, as was shown in the proof of 
Theorem 28.3, 

SUPu• L(u*' x) = fo(x) + o(x I Co) = f(x), 

where f is the objective function for (P). Thus 

infx SUPu• L(u*, x) = IX, 

where IX is the optimal value in (P). For any ii* = (A.1, ..• , Am) we have 

SUPu• L(u*, x) z L(ii*, x), V x, 
so that 

IX z infx L(ii*, x). 

Moreover, according to the proof of Theorem 28.3, 

. _* _ {inf(fo + A.if1 + · · · + A.,Jm) 
mfxL(u ,x)-

- oo if ii* ef: E,. 

if ii* EE,, 
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Therefore ii* is a Kuhn-Tucker vector if and only if the supremum of the 
function 

g = infx L(·, x) 

over Rm is IX > - oo and is attained at ii*. This is the assertion of the 
theorem. 

COROLLARY 28.4. l. Let (P) be an ordinary convex program having at 
least one Kuhn-Tucker vector, e.g. an ordinary convex program satisfying 
the hypothesis of Theorem 28.2. Let g be the concave function defined by 

g(u*) = infx L(u*, x), 

where Lis the Lagrangian of (P). The Kuhn-Tucker vectors for (P) are then 
precisely the points ii* where g attains its supremum over Rm. 

The concavity of g in Corollary 28.4. l is immediate, of course, from 
the fact that g is the pointwise infimum of the concave functions L(-, x), 
x E Rn. Note that, as a matter of fact, g is the pointwise infimum of the 
affine functions of the form 

u* = M', ... , v,'::)---+ fo(x) + vif1(x) + · · · + v,'::f m(x) 

+ v!S'1 + · · · + v,*l.;,, 

where x EC and /.;; z 0 for i = 1, . .. , r. 
Corollary 28.4.1 shows that the problem of determining a Kuhn-Tucker 

vector for a given (P) can be reduced to the numerical problem of 
maximizing a certain concave function g on Rm. ln some cases the latter 
problem is computationally feasible, since an explicit representation is 
known for g as the pointwise infimum of a collection of affine functions, 
even though no "analytic" formula for g may be known. rt is interesting 
to note that 

g(u*) = -p*(-u*), 

where p is the perturbation function for (P) introduced earlier in this 
section. (In terms of the conjugacy correspondence for concave functions 
defined at the beginning of §30, one has g = (-p)*. The function pis 
convex, as will be shown in Theorem 29.1.) 

An important decomposition principle can be derived from the Lagrange 
multiplier theory for ordinary convex programs. Suppose that the functions 
j; in (P) can be expressed in the form 

j;(x) = /;,1 (x1) + · · · + f;.(x.), i = 0, 1, ... , m, 

where eachj;k is a proper convex function on Rnk (affine for i > r) and 

x = (xi. ... , x.), n1 + · · · + n. = n. 
Let 

k = 1, ... , s, 
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so that (by our convention that <lorn / 0 = C) 

C = {x = (xi. ... , X8 ) I xk E Ck, k = 1, ... , s}. 

Then (P) can be described as the problem of minimizing 

/01 (x1) + · · · + fos(x.) 
subject to 

xk E Ck for k = 1, ... , s, 

/;1(X1) + · · · + /; 8 (X8 ) ~ 0 for i = 1, ... , r 

/;1(X1) + · · · + /; 8 (X8 ) = 0 for i = r + 1, .. . , m. 

Heuristically, we may think of such a problem as arising whens different 
problems of the form 

minimize fok over Ck, k = 1, ... , s 

(where the convex set Ck may given by some system of inequalities or 
equations in Rn•) become interdependent through the introduction of a 
few joint constraints. The decomposition principle asserts that, when a 
Kuhn-Tucker vector {A.1 , ••• , Am) exists for (P), it is possible to break 
(P) down again into s independent problems over the sets Ck by appropriate 
modification of the functionsfok· 

Specifically, given the coefficients A;, we can reduce (P), as explained 
in Theorem 28.1 (or Corollary 28.1.l) to the problem of minimizing h 
over C, where 

h = fo + Ai/1 + · · · + Amf m· 

In view of the given expressions for / 0 , ••• ,fm, however, we have 

where 
k = 1, ... ,s, 

so that the problem of minimizing h over C is equivalent to the s 
independent pro bl ems: 

minimize hk over Ck, k = 1, ... ,s. 

Note that the latter extremum problems are in the spaces Rnk, whereas 
by Corollary 28.4.1 the problem of determining a Kuhn-Tucker vector 
(A1 , ••• , Am) is an extremum problem in Rm. Thus, by means of the 
decomposition principle, the extremum problem (P) of dimensionality n 
can be replaced by s + 1 extremum problems of (possibly much lower) 
dimensionalities n1 , ••• , n" and m. In many cases such a reduction in 
dimensionality makes possible the numerical solution of problems which 
would otherwise be hopelessly large. 
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A good illustration of the decomposition principle is provided by the 
problem of minimizing 

subject to 
~i+···+~n=l, 

where each qk is a proper convex function on R such that 

<lorn qk ~ [O, l]. 

To express this problem in the above form, we set 

~k z 0, 

~k < 0, 

k = 1, ... ,n- 1, 

In terms of these functions, the problem is to minimize 

subject to the linear constraint 

Thus we have an ordinary convex program to which the decomposition 
principle is applicable, namely the (P) given by ( C,/0 ,fi, 0), where 

C = dom/0 = {x I ~k E domfok• k = 1, ... , n}. 

The infimum in (P) is finite (since the functions qk, being finite and convex 
on [O, l], are all bounded on [O, l]), and the interior of C contains points 
x such thatfi(x) = 0. Hence by Corollary 28.2.2 a Kuhn-Tucker vector, 
consisting here of just a single Kuhn-Tucker coefficient Ai. exists for (P). 
If such a A.1 can be calculated, we can replace the original problem by n 
problems of one dimension: 

minimize fok( ~k) + A.iflk( ~k) in ~k· 

Having determined fork = 1, ... , n the real interval Ik consisting of the 
points where the latter minimum is attained, we can get all the optimal 
solutions to the original problem by taking all the vectors x = ai, ... ' ~n) 
such that ~k E Ik for k = 1, ... , n and ~1 + · · · + ~n = 1 (Theorem 
28.1). 

To see how a Kuhn-Tucker coefficient A.1 may be calculated, we apply 
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Corollary 28.4.1. The Lagrangian of (P) is given simply by 

L(v7, x) = -v7 + ~;'~1 Uok(~k) + v~ ~"] 
for every v; E R and x E R", where vi is the Lagrange multiplier 
associated with the constraint fi(x) = 0, and hence the g in Corollary 
28.4.1 is given by 

g(vi) = -vi+ ~~~ 1 inf {f0ka,) + v;~"l~k ER} 

= -vi - ~;~Jo:c-vn. 

Thus A. 1 is a Kuhn-Tucker coefficient for (P) if and only if vi = A. 1 

minimizes the quantity 

-g(vi) =vi+ frii_(-vi) + · · · + f;\'n(-i:i). 

Computing the minimum of the convex function -g is, of course, a 
relatively easy matter, since only one real variable vi is involved and the 
conjugate functions /0~ are fairly simple to determine. Thus the decom
position principle allows us in this example to replace a problem in 
essentially n - 1 real variables (one of the original variables ~k being 
redundant because of the constraint ~1 + · · · + ~n = 1) by n + 1 
problems, each in a single real variable. 

A more general example of an application of the decomposition principle 
is the following. Fork = 1, . .. , s, letfok be a proper convex function on 
Rnk and let Ak be an m x nk real matrix. We shall consider the problem of 
minimizing 

subject to 
A1x 1 + · · · + A 8 X 8 =a, 

where a is a given element of Rm. Here each/0k might itself be the objective 
function in some ordinary convex program (Pk); in particular, the effective 
domain Ck of fok might be given by some further system of constraints. 
However, at the moment we are only concerned with the constraints 
which make x 1 , ••• , x. interdependent, and we are supposing that these 
constraints are linear. 

For i = 1, ... , m and k = 1, ... , s let a;k denote the vector in Rn• 
forming the ith row of the matrix Ak, and let rx, be the ith component of a. 

Let 

and let 

where 

f;k(xk) = (a,k, xk) for k = 1, ... , s - 1, 

f;.(x.) =·(a,., x.> - rx,, 

x = (x1 , ••• , x,), 
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The ordinary convex program (P) we want to consider is the one given by 
( C,/0 , ••• Jm, 0), where 

C = domfu = {x I xk EC", k = 1, ... , s}. 

Observe incidentally that, if each c1c happens to be the set of feasible 
solutions to some (Pk), the interior of C could well be empty; it is for the 
sake of situations like this that we have formulated Theorem 28.2 and 
Corollary 28.2.2 in terms of ri C. 

According to Corollary 28.2.2, if the infimum in (P) is finite and it is 
possible to choose vectors xk E ri Ck such that 

A1x 1 + · · · + Asxs =a, 

then a Kuhn-Tucker vector 

ii* = 0.1, ... , A.m) 

exists for (P). Given such a ii*, we could replace (P) by the s independent 
problems in which the function hk is minimized over R"" fork = 1, . .. , s, 
where 

hk = fuk + ).iflk + · · · + Amfmk 

= {fok + ( · , A,,*ii*> if k = 1, ... , s - 1, 

f 0 ., + ( · , A.7ii*) - (a, ii*) if k = s 

(A: being the transpose of Ak). The set of optimal solutions to (P) would 
then consist of the vectors x = (x1 , ... , x.) such that xk E Dk and 
~t~1 Akxk = a, where Dk is the set of points where hk attains its minimum 
(Theorem 28.1 ). 

The Lagrangian in this example is 

L(u*,x) = -(a, u*) + ~~~1[f0k(xk) + (xk, A~'u*)] 

so that in Corollary 28.4.1 we have 

g(u*) = -(a, u*> - ~~~1 sup {(xk, -A:u*> - fuk(xk)} 
Xk 

= -(a, u*> - ~~~d6k(-A:u*). 

The Kuhn-Tucker vectors for (P) can therefore be obtained by minimizing 
the convex function 

w(u*) =<a, u*) +fci'1(-Aiu*) + · · · +fci'.(-Aiu*) 
on Rm. 

The problem of minimizing w is not necessarily easy, but it is worth 
noting that it may be tractable even in certain cases where the conjugate 



290 VI: CONSTRAINED EXTREMUM PROBLEMS 

functions f'6k can not be written down explicitly. Let us assume for 
simplicity that each of the functions fuk is co-finite (this being true in 
particular iffuk is closed and Ck is bounded), so thatf;k is finite throughout 
Rm. Then w is finite throughout Rm, and by Theorems 23.8 and 23.9 the 
subgradients of w are given by the formula 

ow( u*) = a - A1 ofci1( -Aiu*) - · · · - As ofci.(-A7u*). 

On the other hand, by Theorem 23.5 we have 

xk E of';k(-A:u*) 

if and only if xk minimizes the function 

fok + ( · , A:u*), 

the minimum value itself being, of course,f0~(-A~u*). Thus, given any 
u* E Rm' it IS possible to calculate w( u*) and ow( u*) by solving the s 
problems 

minimize fuk(xk) + (x"' A:u*> in xk. 

It follows that, in cases where the latter problems are relatively easy to 
solve (as for example when every fuk is of the form 

{
g,(xk) if xk z 0, Bkxk = bk> 

fok(x,J = . + oo otherwise, 

with gk some finite differentiable convex function on Rnk), one could 
minimize w by any method which demanded only the ability to calculate 
w(u*) and an element of ow(u*) for any given u*. Note in particular that, if 
every fuk is actually strictly convex on Ck, then every fu*k is differentiable 
(Theorem 26.3) and ow(u*) reduces to \7w(u*), so that gradient methods 
could be considered. 



SECTION 29 

Bifunctions and Generalized Convex 

Programs 

In an ordinary convex program (P), one is interested in minimizing a 
certain convex function on Rn, the objective function for (P), whose 
effective domain is the set of all feasible solutions to (P). But there is more 
to (P) than just this abstract minimization problem. Another ordinary 
convex program can have the same objective function as (P) and yet 
have a different Lagrangian and different Kuhn-Tucker coefficients. If 
one is to have a full generalization of the concept of "convex program," 
one must somehow take this fact into account. 

The Kuhn-Tucker vectors corresponding to an ordinary convex 
program can be characterized in terms of a certain class of perturbations 
of the objective function for the program, as we have shown in §28, and 
this is the key to the generalization which will be developed below. A 
convex program will be defined in effect as an (extended-real-valued) 
convex "objective function" together with a particular class of "convex" 
perturbations of this "objective function." For such generalized programs 
a Lagrangian theory will be given in which Kuhn-Tucker vectors can be 
interpreted in terms of "equilibrium prices" for the perturbations, much 
as in §28. 

In order to express the dependence of the objective function in a mini
mization problem on a vector u corresponding to a perturbation, we find 
it convenient to introduce the concept ofa "bifunction," as a generalization 
of a multivalued mapping. This is not so much a new concept as a different 
way of treating an old concept, the distinction between "variables" and 
"parameters." Actually, there is nothing in the present section which 
would compel us to introduce bifunction terminology. All the results 
could just as well be stated in more conventional terms. But the concept 
of a bifunction will be increasingly useful as this book progresses, so we 
might as well begin exploiting it now. 

We define a bifunction from Rm to Rn to be a mapping F which assigns 
to each u E Rm a function Fu on Rn with values in [ - oo, + oo ]. The value 

291 
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of Fu at a point x E Rn will be denoted by (Fu)(x). The function 

(u, x) ~ (Fu)(x), 

will be called the graph function of F. (The concept of a bifunction could 
be developed in more general terms, but the definition given here will 
suffice for present purposes.) 

It is clear that each extended-real-valued function f on Rm+n is the 
graph function of exactly one bifunction from Rm to Rn, namely the F 
defined by 

Fu= f(u, ·), Vu ER"'. 

Thus a bifunction can simply be regarded as the first stage of a function 
broken down into two stages: 

F: u ~Fu: x ~ (Fu)(x). 

The one-to-one correspondence between bifunctions from Rm to Rn and 
extended-real-valued functions on Rm+n is analogous to the one-to-one 
correspondence between multivalued mappings from Rm to Rn and 
subsets of Rm+n (the graphs of the mappings). The terminology of bi
functions is useful in the same contexts where the terminology of multi
valued mappings is useful, i.e. where one wants to stress analogies with 
notions familiar for single-valued mappings from Rm to Rn. 

For heuristic purposes, it is helpful to think of a bifunction as a 
generalization of a multivalued mapping in the following way. Let F be 
any bifunction from Rm to Rn such that (Fu)(x) is never - oo, and for 
each u E Rm let Su be the set of points x E Rn such that (Fu)(x) < + oo. 
To specify F completely, it is enough to specify for each u the set Su and a 
certain real-valued function on Su (the restriction of Fu), since F can be 
reconstructed from this information by a + oo extension. Thus F may be 
identified heuristically with a correspondence which assigns to each u E Rm 
a set Su equipped with a distinguished real-valued function (a "valuation" 
giving the "cost," say, of each element x of Su). This correspondence 
reduces to the multivalued mapping S: u ~ Su if the distinguished function 
is identically zero on Su for every u, i.e. if Fis the ( + oo) indicator bi
/unction of S: 

(Fu)(x) = {
0 

+oo 

if x ESu, 

if x ef=Su. 

(Here we have invoked + oo extensions and excluded - oo as a possible 
value of Fu, but in later sections, where concave bifunctions as well as 
convex bifunctions appear, the opposite situation-where the roles of+ oo 
and - oo are reversed-will also have to be kept in mind. In particular, we 
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will sometimes make use of indicator bifunctions which have - oo in 
place of + oo.) 

A bifunction F from Rm to Rn will be called convex if its graph function 
is convex on Rm+n. This implies in particular that Fu is a convex function 
on Rn for each u E Rm. A convex bifunction will be said to be closed or 
proper according to whether its graph function is closed or proper, 
respective! y. 

The graph domain of a convex bifunction F from Rm to Rn is defined 
to be the effective domain of the graph function of F(a certain convex set 
in Rm+n). The effective domain of F, denoted by <lorn F, is defined to be 
the set of all vectors u E Rm such that Fu is not the constant function + oo. 
Thus dom F is the projection on Rm of the graph domain of F in Rm+n 
and hence is a convex set in Rm. If Fis proper, <lorn Fconsists of the vectors 
u such that the convex function Fu is proper. 

A simple example of a convex bifunction which will be very important 
to us theoretically, although not in conjunction with generalized convex 
programs, is the ( + oo) indicator bifunction of a linear transformation A 
from Rm to Rn, i.e. the F defined by 

(Fu)(x) = o(x I Au) = {
0 

+oo 

if x =Au, 

if x ¥-Au. 

This Fis convex, because its graph function is the indicator function of the 
graph of A, which happens to be a convex set (a subspace) in Rm+n. 
Observe that Fis closed and proper, and <lorn F = Rm. This example, 
as will be seen later, provides a useful bridge between linear algebra and 
the theory of convex bifunctions. 

The main example for present purposes is the following. Let (P) be an 
ordinary convex program in the notation of §28. For each u = 

(v1 , ... , vm) E Rm, let Su denote the subset of Rn consisting of the 
vectors x such that 

Define the bifunction F from Rm to Rn by 

Fu =lo+ o(' I Su), Vu. 

We shall call F the convex bifunction associated with the ordinary convex 
program (P). The convexity of F follows from the fact that the graph 
function of F can be expressed as a sum of functions g; on Rm+n, each of 
which is obviously convex: 

(Fu)(x) = g0(u, x) + g1(u, x) + · · · + gm(u, x) 
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where 

{

/ 0(x) for i = 0, 

g;(u, x) = b(u, x I f;(x) = v;) for ~: 1, . .. , r, 

b(u, x I f;(x) - v;) for 1 - r + 1, ... , m. 

(The notation here means that, for i = 1, ... , r,g;(u, x) is 0 when the 
ith component V; of u satisfies V; z f;(x), and otherwise g;( u, x) = + oo. 
Thus, for i = 1, . .. , r, g; is the indicator function of a copy of the 
convex set epif;. Analogously for i = r + 1, ... , m.) We have 

dom F = {u E Rm I Su n c ¥- 0}, 

where C = domfu. The convex set dom Fis not empty, because it con
tains the vector 

for each x EC. Since <lorn F ¥- 0 and (Fu)(x) is never - oo, Fis proper. 
If the convex functions / 0,/1 , ... ,f, are closed, Fis closed. (Recall that, 
in the notation of §28, it is assumed that/,+i. ... Jm are affine functions 
on Rn and hence closed.) 

It is important to realize that an ordinary convex program (P) is uniquely 
determined by its associated bifunction F. The (m + 3)-tuple (C,fu, ... , 
fm, r) can be reconstructed from Fas follows. In the first place, 

C = {x E Rn I 3u E Rm, (Fu)(x) < + oo}. 

For any x EC and any u such that (Fu)(x) < + oo, one has 

fu(x) = (Fu)(x). 

This fixes fu. For any x EC, one has 

{u E Rm I (Fu)(x) < + oo} = (/1(x), ... Jm(x)) + K, 

where K is the convex cone in Rm consisting of the vectors y = 

('Y/i. ... , 'YJm) such that 'YJ; z 0 for i = 1, . .. , r and 'Y/; = 0 for i = 
r + 1, ... , m. This characterizes the integer r and determines the values 
of the functions /i. ... Jm on C. 

Thus, instead of defining an ordinary convex program on Rn formally 
in terms of a certain (m + 3)-tuple, we could just as. well define it in terms 
of a certain convex bifunction from Rm to Rn. This is the approach which 
we shall now take in a more general setting. 

Let F be any convex bifunction from Rm to Rn. We define the 
(generalized) convex program (P) associated with Fto be the "minimization 
problem with perturbations" in which the function FO is to be minimized 
over Rn and the given perturbations are those that replace FO by Fu for 
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different choices of u E Rm. (The rigorous definition of (P) is that (P) is 
simply F itself; cf. the remarks at the beginning of §28. However, the 
introduction of (P) and of terminology tied to (P) rather than to F is 
useful, even if redundant, because there are contexts in which we shall 
want to use the notion of a convex bifunction without evoking the picture 
of a particular "minimization problem with perturbations.") 

The convex function FO will be called the objective function for (P), 
and its infimum (over Rn) will be called the optimal value in (P). The 
vectors in the convex set 

dom FO = {x ER" I (FO)(x) < + oo} 

will be called the feasible solutions to (P), and (P) will be said to be 
consistent if at least one such vector exists. (Thus (P) is consistent if and 
only if the optimal value in (P) is < + oo.) We define an optimal solution 
to (P) to be a vector x E Rn such that (FO)(x) is finite and equal to the 
optimal value in (P). (Thus we do not speak of optimal solutions to (P) 
when (P) is inconsistent, even though in that case (FO)(x) is the optimal 
value + oo in (P) for every x.) 

The set of all optimal solutions to (P) is empty unless FO is proper; 
when FO is proper it is the minimum set of FO, a (possibly empty) convex 
subset of the set of all feasible solutions to (P). 

A general condition for the existence of optimal solutions to (P) may 
be obtained by applying Theorem 27.2 to FO. In what follows we shall be 
concerned not so much with optimal solutions as with generalized Kuhn
Tucker vectors. 

Thinking of the convex function Fu on R" as the objective function for 
(P) perturbed by the amount u, we define the perturbation function for (P) 
to be the (extended-real-valued) function inf Fon Rm given by 

(inf F)(u) = inf Fu = infx (Fu)(x). 

Note that the value of inf Fat u = 0 is just the optimal value in (P). 
We define a vector u* E Rm to be a Kuhn-Tucker vector for (P) if the 

quantity 

infu { (u*, u) + inf Fu} = infu,x { (u*, u) + (Fu)(x)} 

is finite and equal to the optimal value inf FO in (P). Since (u*, u) + 
inf Fu equals inf FO when u = 0, this condition on u* is equivalent to the 
condition that (inf FO be finite and) 

inf Fu+ (u*, u) ~ inf FO, Vu. 

Kuhn-Tucker vectors for ( P) can therefore be interpreted heuristically 
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as equilibrium price vectors exactly as in §28, and this is one of the main 
motivations for studying them. 

The function L on Rm x Rn given by 

L(u*, x) = infu {(u*, u) + (Fu)(x)}, 

will be called the Lagrangian of (P). Since 

Vu*, Vx, 

infu,x {(u*, u) + (Fu)(x)} = infx L(u*, x), 

the definition of a Kuhn-Tucker vector for (P) can be stated in terms of L 
just as well as in terms of inf F: u* is a Kuhn-Tucker vector if and only 
if the infimum of the function L(u*, ·) on Rn is finite and equal to the 
optimal value in (P). We shall demonstrate below that Kuhn-Tucker 
vectors and optimal solutions under the generalized definitions correspond 
to saddle-points of the Lagrangian L, just as in the case of ordinary 
convex programs in Theorem 28.3, at least when Fis closed and proper. 

If (P) is an ordinary convex program, the concepts just defined do, of 
course, reduce to those defined earlier. The function inf F becomes the 
perturbation function p in the discussion of "equilibrium prices" in §28. 
The formula for the Lagrangian of (P) reduces to 

L(u*, x) =inf {v~v1 + · · · + v::'.vm + fu(x) / u E Ux}, 

where Ux is the set of vectors u = (vI> ... , vm) E Rm such that V; ?::.f;(x) 
for i = 1, ... , r and V; = f;(x) for i = r + 1, ... , m, and therefore 

* _ (fu(x) ~ _v~f1~x) + · · · + v~fm(x) if u* EE" x EC 
L(u , x) - - oo 1f u ef: E,, x EC, 

+oo if x ef: C, 

as in §28, where £, is the set of vectors u* = (v!, ... , v:,) such that 
v'; ?::. 0 for i = 1, ... , r. The definition of a Kuhn-Tucker vector u* in 
terms of L(u*, ·)becomes, for this L, the definition in §28. 

For a miscellaneous but illuminating example of a generalized convex 
program which is not an ordinary convex program, consider the bi
function F: R 2 -* Rn defined by 

{

[(x, Qx)/(l + v1)] + (a, x) if v1 > -1 and x EB+ v2e, 

(Fu)(x) = 0 if v1 = -1, Qx = 0 and x EB + v2e, 

+ oo otherwise, 

where u = (v1 , v 2), Q is a symmetric n x n positive semi-definite matrix, B 
is the Euclidean unit ball of R", and a and e are elements of Rn with lei = 
1. This Fis a closed proper convex bifunction, as is easily seen from the 
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fact that 
(Fu)(x) = fi(l + V1, x) + f 2(v 2 , x) 

where / 1 is given in terms of the quadratic convex function 

q(x) = (x, Qx) + (a, x) 
by the formula 

{

(qA.)(x) if A. > 0, 

/ 1(.1, x) = (qO+)(x) if A. = 0, 

+oo if A.< 0 

(see the remarks preceding Corollary 8.5.2), and/2 is the indicator of the 
convex set 

{(v2 , x) I Ix - v2el ,:::;; l}. 

The objective function in the convex program (P) associated with Fis 

FO = q + o(· i B). 

Thus in (P) we want to minimize q over the Euclidean unit ball B, and B 
is the set of all feasible solutions. We are also interested in what happens 
when this minimization problem is perturbed through right scalar 
multiplication of q and translation of B in the direction of the vector e 
(or the opposite direction). Specifically, with each u = (v1 , v 2) with 
v1 > -1 we associate the problem of minimizing 

Fu = q . (I + V1) + o(. I B + V2e) 

over Rn (or equivalently q ·(I + v1) over B + v2e), and we study the 
minimum in this problem (the quantity inf Fu) as a function of the 
perturbation variables v1 and v 2 in a neighborhood of v1 = 0, v2 = 0. 
The Lagrangian L in this generalized convex program is easily calculated 
from the formula in the above definition: for u* = (vi, v;) one has 

L(u*, x) = 2[vi(x, Qx)] 112 
- v~ - (x, a - v:e) 

- lv:I [1 - Ix _J (x, e)el 2]112 

if vi z 0 and Ix - (x, e)el ,:::;; 1, whereas 

{
- oo if vi < 0 and Ix - (x, e)el ,:::;; 1, 

L(u*, x) = 
+ oo if Ix - (x, e)el > 1. 

Further examples of generalized convex programs involving perturba
tion by right scalar multiplication or translation will be investigated in 
§30 and §31. 
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The reader should note that, in a certain sense, "generalized" convex 
programs are really no more general than ordinary convex programs. In 
fact they can be expressed in a roundabout way as ordinary convex 
programs with linear equations as the only explicit constraints. Let F be 
any proper convex bifunction from Rm to Rn. Let 

D = {(u,x)I (Fu)(x) < +oo} c Rm+n, 

g0(u, x) = (Fu)(x), 

i = 1, ... ,m. 

Let (Q) be the ordinary convex program in which g0(u, x) is minimized 
over D subject to the constraints 

g;(u, x) = 0, i = 1, ... ,m. 

The objective function g for (Q) is essentially the same as the one for the 
convex program (P) associated with F, namely 

{
(FO)(x) if u = 0, 

g(u, x) = 
+ 00 if u ¥- 0, 

and the perturbations associated with (Q) correspond in a direct way to 
those in (P). Moreover, the Kuhn-Tucker vectors u* = (vi, ... , v!,) 
for (Q) can be identified with those of (P). To a certain extent, therefore, 
the theory of (P) could be expressed equivalently in terms of (Q). However, 
this would not be very natural (cf. the case where (P) is itself an ordinary 
convex program with inequality constraints). The Lagrangian of (Q) 
involves u, as well as u* and x, and it therefore differs from the Lagrangian 
of (P) in an essential way. An attempt to make ordinary convex programs 
with linear equation constraints the basic model for everything, rather 
than "generalized" convex programs, would consequently lead to a 
seriously restrictive theory of Lagrangians and duality. We shall show in 
§36 that the saddle-point problems corresponding to the Lagrangians of 
generalized convex programs are in effect the most general ("regularized") 
concave-convex minimax problems. 

The fundamental fact about the perturbation function of any convex 
program, ordinary or generalized, is the following. 

THEOREM 29.1. Let F be any convex bifunction from Rm to Rn. Then the 
perturbation function inf F in the convex program (P) associated with F 
is a convex function on Rm whose effective domain is dom F. When the 
optimal value in (P) is finite, the Kuhn-Tucker vectors for (P) are precisely 
the vectors u* E Rm such that -u* is a subgradient of inf Fat u = 0, i.e. 

-u* E o(inf F)(O). 
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PROOF. Letf(u, x) = (Fu)(x), and let A be the linear transformation 
(u, x) ~ u. Then/is a convex function on Rm+n and Af =inf F, whence 
it follows from Theorem 5.7 that inf Fis a convex function. Since the value 
of inf Fat a given point u is + oo only if Fu is the constant function + oo, 
we have 

dom (inf F) = dom F. 

By definition, u* is a Kuhn-Tucker vector for (P) if and only if inf F is 
finite at 0 and 

(inf F)(u) z (inf F)(O) + (-u*, u), Vu. 

This inequality says that - u* E o(inf F)(O). 
The importance of Theorem 29. l is that it enables us to bring to bear 

on the study of perturbations and Kuhn-Tucker vectors the whole theory 
of continuity and differentiability of convex functions. We shall state some 
of the principal results as corollaries to Theorem 29. I. 

COROLLARY 29.1.1. Let F be any convex bifunction from Rm to R". 
Suppose that the optimal value in the convex program (P) associated with 
Fis finite. Then the one-sided directional derivative 

(inf F)'(O; u) = Jim (inf F)().u) - (inf F)(O) 
Alu A 

exists for every u E Rm and is a positively homogeneous convex function of u. 
The Kuhn-Tucker vectors u* for (P)form a closed convex set in Rm whose 
support function is the closure of the function 

u ~(inf F)'(O; -u). 

PROOF. Apply Theorems 23.l and 23.2 to inf F. 
COROLLARY 29.1.2. Let F be any convex bifunction from Rm to R". 

Suppose that the optimal value in the convex program (P) associated with F 
is finite. A Kuhn-Tucker vector then fails to exist for (P) if and only if there 
exists a vector u E Rm such that the two-sided directional derivative 

I
. (inf F)(Au) - (inf F)(O) 
1m~~~~~~~---'-'-

;.~u ). 

exists and equals - oo. 
PROOF. Apply Theorem 23.3 to inf F. 
Corollary 29.1.1 makes possible a complete interpretation of Kuhn

Tucker vectors in terms of rates of change of the optimal value in (P) with 
respect to the given perturbations of the objective function for (P). From 
the "equilibrium price" point of view, Corollary 29.1.2 is the definitive 
result about the existence of Kuhn-Tucker vectors. It says that a convex 
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program with a finite optimal value has at least one Kuhn-Tucker vector, 
unless the program is unstable in a certain sense which obviously precludes 
all possibility of an "equilibrium." If there exists a vector u with the prop
erty in Corollary 29.1.2 then u gives a direction of perturbation in which 
the optimal value in the program drops off infinitely steeply. Perturbation 
in this direction is "infinitely advantageous" in the sense of the heuristic 
remarks in §28, and therefore no equilibrium price vector u* = (vi, ... , 
v~) can exist, because no finite prices can compensate for an infinite 
marginal improvement in minimum cost. 

The question of the uniqueness of Kuhn-Tucker vectors has a satisfying 
answer: 

COROLLARY 29.1.3. Let F be any convex bi/unction from Rm to Rn. 
Suppose that the optimal value in the convex program (P) associated with F 
is finite. Then (P) has a unique Kuhn-Tucker vector u* = (vi, ... , v~) if 
and only if the function inf Fis differentiable at u = 0, in which case u* is 
given by the formula 

v;* = - j_ (inf F)I . 
avi ll=O 

PROOF. This is immediate from Theorem 29.l and Theorem 25.1. 
For example, consider an ordinary convex program (P) in the notation 

of §28 with r = m. Assume that (P) has unique Kuhn-Tucker coefficients 
vi, . .. , v!. By definition, (inf F)(v1 , 0, ... , 0) is the infimum of fu(x) 
subject to the constraints 

/z(x) :::;; 0, ... Jm(x) :::;; 0. 

The derivative of this function of v1 is -vi at v1 = 0, according to Corol
lary 29.1.3. 

We have already defined a convex program (P) to be consistent if it has 
feasible solutions, i.e. if 0 Edom F. To aid in stating further corollaries of 
Theorem 29.1, we shall call (P) strongly consistent if 0 E ri (<lorn F) and 
strict~v consistent if 0 E int (<lorn F). When (P) is an ordinary convex 
program in the notation of §28, (P) is strongly consistent if and only if 
there exists an x E ri C such that 

f 1(x) < 0, ... ,f,.(x) < 0, fr+1(x) = 0, ... Jm(x) = 0. 

This may be proved by the reader as ap exercise. It is obvious that, when 
(P) is an ordinary convex program with r = m, i.e. with only inequality 
constraints, (P) is strictly consistent if and only if there exists an x EC 
such that 

fi(x) < 0, ... Jm(x) < 0. 

In general, a convex program (P) is strictly consistent if and only if, for 
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every u E Rm, there exists a A. > 0 such that A.u Edom F, i.e. such that 
F(Au) on Rn is not the constant function + oo (Corollary 6.4.1). Thus, 
informally speaking, a consistent convex program is strictly consistent 
unless there is some direction of perturbation in which the set of feasible 
solutions immediately becomes vacuous. 

COROLLARY 29.1.4. Let F be any convex bifunction from Rm to Rn. 
Suppose that the optimal value in the convex program (P) associated with F 
is finite and that (P) is strongly (or strictly) consistent. Let U* denote the 
set of all Kuhn-Tucker vectors for (P). Then U* ¥- 0 and 

(inf F)'(O; u) = -inf {(u*, u) I u* EU*}, 

PROOF. Apply Theorem 23.4 to inf F. (Here inf Fis necessarily proper 
by Theorem 7.2, since by hypothesis it is finite at 0, and 0 is a relative 
interior point of its effective domain.) II 

COROLLARY 29.1.5. Let F be any convex bifunction from Rm to Rn. 
Suppose that the optimal value in the convex program (P) associated with F 
is finite and that (P) is strictly consistent. Then there is an open convex 
neighborhood of 0 in Rm on which inf Fis finite and continuous. Moreover, 
the Kuhn-Tucker vectors for (P) form a non-empty closed bounded convex 
subset of Rm. 

PROOF. By hypothesis, inf FisfiniteatOandO E int (<lorn F).Moreover, 
dom Fis the effective domain of inf F by Theorem 29.1. Therefore inf F 
is finite and continuous on int (dom F) (Theorems 7.2 and 10.1). By 
Theorem 23.4, o(inf F)(O) is a non-empty closed bounded convex set, and 
hence so is the set of all Kuhn-Tucker vectors for (P). II 

COROLLARY 29.1.6. Let F be any convex bifunction from Rm to Rn. 
If there exists a vector u E Rm such that inf Fu = - oo, then inf Fu= - oo 
for every u E ri (dom F) (whereas inf Fu= + oo for every u ef: dom F). 

PROOF. Apply Theorem 7.2 to inf F. II 
When (P) is an ordinary convex program, Corollary 29.1.4 does not 

provide quite as broad a criterion for the existence of Kuhn-Tucker 
vectors as does Theorem 28.2, because Theorem 28.2 takes into special 
account the fact that certain of the inequality constraints may be affine. 
Corollary 29.1.4 and other results for general convex programs can be 
refined to some extent, however, by invoking polyhedral convexity. 

A convex bifunction F will be called polyhedral if its graph function is 
polyhedral. The convex programs associated with such bifunctions will 
be called polyhedral convex programs. 

As important examples of polyhedral convex programs, we mention the 
linear programs; these we define to be the ordinary convex programs in 
which (in the notation of §28) the functions fu,J1 , .•• Jm are all affine 
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on C and C is of the form 

{x = (~1, ... , ~n) I ~i z O,j = 1, ... ,s} 

for some integer s, 0 :=:;: s :=:;: n. The Lagrangians of linear programs are 
thus the functions L on Rm x Rn of the form 

{

K(u*, x) if (~1 , .•• , ~s) z 0, (v{, ... , v:) z 0, 

L(u*, x) = -oo if (~i. ... , ~.) z 0, (v{, ... , v;) £ 0, 

+ 00 if (~1' ... ' ~.) £ 0, 

where K is a bi-affine function on Rm x R", i.e. a function of the form 

K(u*, x) = (u*, Ax) + (u*, a) + (a*, x) + ix. 

(The reader may wonder why we do not simply define a linear program 
to be an ordinary convex program in which every J; is affine and C =Rn, 
since conditions like ~i z 0 can always be assumed to be represented 
explicitly among the constraintsf;(x) :=:;: 0. The reason is that, in the theory 
of §28, constraints corresponding to the functions/; have Lagrange multi
pliers assigned to them, whereas constraints incorporated into the mini
mization problem by the specification of the set C do not. It should be 
recalled that, from our point of view, two convex programs can involve 
exactly the same minimization problem and yet be different, because they 
are associated with different convex bifunctions. The bifunction chosen 
in a given case depends on what perturbations and Kuhn-Tucker vectors 
one is interested in. Different bifunctions yield different Lagrangians and 
furthermore, as will be seen in §30, lead to different dual programs.) 

An example of a polyhedral convex program which is not just a linear 
program may be obtained, for instance, from the problem of minimizing 

llxllro =max {l~il lj = 1, ... , n}, 

over the polytope 
conv {ai, ... , a.}, 

where the ak's are given points in Rn. To get a convex program from a 
minimization problem, one needs to introduce some suitable class of 
perturbations; let us take the perturbations here to be translations of the 
points akin the directions of certain vectors bi, ... , bm. Specifically, let us 
consider the bifunction F: Rm ~ Rn defined by 

Fu= ll·llro + o(· I Cu), 

where for each u = (v1 , ..• , vm) 

Cu = n:::1 conv {a1 + V;b;, ... 'a. + V;bJ. 
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This F is a (proper) polyhedral convex bifunction, since the graph 
function of Fon Rm+n is the sum of the polyhedral convex function 

(u, x) ~ llxllro 

and the indicators of the m polyhedral convex sets 

{(u, x) Ix - v;b; E conv {ai. ... , a.}}, i = 1, ... , m 

(see the theorems in the second half of §19). The convex program (P) 
associated with Fis by definition polyhedral, and the objective function in 
(P) is 

FO = ll-llro + o(· I conv {a1, ... 'a,}), 

so that the minimization problem in (P) is the given problem. 
Polyhedral convex programs have many special properties. The most 

important of these are listed in the next theorem. 

THEOREM 29.2. Let F be a polyhedral convex bifunctionfrom Rm to Rn. 
The objective function FO and the perturbation function inf F in the poly
hedral convex program (P) associated with F are then polyhedral convex 
functions. If the optimal value in (P) is finite, (P) has at least one optimal 
solution and at least one Kuhn-Tucker vector. Moreover, the set of all 
optimal solutions and the set of all Kuhn-Tucker vectors are polyhedral 
convex sets. 

PROOF. The graph function f(u, x) = (Fu)(x) is a polyhedral convex 
function on Rm+n, and hence (FO)(x) is a polyhedral convex function of 
x E Rn. As was shown in the proof of Theorem 29.1, inf Fis the image of/ 
under a certain linear transformation A. Since linear transformations 
preserve polyhedral convexity (Corollary 19.3.1) we may conclude from 
this that inf Fis polyhedral. Assume now that the optimal value in (P) is 
finite. Then FO is bounded below on Rn, and by Corollary 27 .3.2 the 
infimum of FO is attained. Of course, the minimum set of FO is polyhedral, 
being a level set of the form {x I (FO)(x) :=:;: ix}. Thus (P) has optimal 
solutions, and these form a polyhedral convex set. Since inf Fis polyhedral 
and (inf F)(O) is finite, o (inf F)(O) is a non-empty polyhedral convex set 
(Theorem 23.10). It follows from Theorem 29.1 that the Kuhn-Tucker 
vectors for (P) form a non-empty polyhedral convex set. II 

We turn now to the Lagrangian characterization of Kuhn-Tucker 
vectors and optimal solutions. 

THEOREM 29.3. Let F bea closed proper convex bifunction from Rm to Rn, 
and let L be the Lagrangian of the convex program (P) associated with F. Let 
a* and x be vectors in Rm and Rn, respectively. In order that ii* be a Kuhn
Tucker vector for (P) and x be an optimal solution to (P), it is necessary and 
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sufficient that (ii*, x) be a saddle-point of L, i.e. 

L(u*, x) _:::;; L(ii*, x) _:::;; L(ii*, x), Vu*, Vx. 

PROOF. As observed at the beginning of the proof of Theorem 28.3, the 
saddle-point condition is equivalent to 

SUPu• L(u*, x) = infx L(ii*' x). 

We have already pointed out, in connection with the definition of L, that 

infx L(ii*, x) = infu {(ii*, u) +inf Fu}_:::;; inf FO. 

On the other hand, in terms of the convex function h(u) = (Fu)(x), we 
have 

and hence 

L(u*, x) = infu { (u*, u) + h(u)} 

=-sup {(-u*, u) - h(u)} = -h*(-u*) 

SUPu• L(u*' x) = SUPu• {(O, -u*) - h*(-u*)} 

= h**(O) = (cl h)(O). 

Since Fis closed by hypothesis, we have cl h = h and 

SUPu• L(u*' x) = (FO)(x) z inf FO. 

The properness of F implies that 

infu{(ii*,u) +inf Fu}< +oo, (FO)(x) > - oo. 

Therefore (ii*, x) is a saddle-point of L if and only if 

infu {(ii*, u) + inf Fu} = inf FO = (FO)(x) ER. 

This condition means by definition that ii* is a Kuhn-Tucker vector for 
(P) and x is an optimal solution to (P). II 

A generalization of the Kuhn-Tucker Theorem follows at once: 

COROLLARY 29.3.1. Let F be a closed proper convex bifunction from Rm 
to Rn. Suppose that the convex program (P) associated with Fis strongly (or 
strictly) consistent, or that (P) is polyhedral and merely consistent. In order 
that a given vector x E Rn be an optimal solution to (P), it is necessary and 
sufficient that there exist a vector ii* E Rm such that (ii*, x) is a saddle-point 
of the Lagrangian L of (P). 

PROOF. Under the given consistency hypothesis, if (P) has an optimal 
solution x it also has at least one Kuhn-Tucker vector ii* (Corollary 
29.1.4 and Theorem 29.2). II 

Generalized Kuhn-Tucker conditions may be formulated in terms of the 
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"subgradients" of the Lagrangian L, which is actually a concave-convex 
function on Rm x Rn. We refer the reader to §36, where the general nature 
of the Lagrangian saddle-point problem corresponding to (P) is explained 
in detail. Another form of Corollary 29.3.1, the general Kuhn-Tucker 
Theorem, is stated as Theorem 36.6. 

Theorem 28.4 can likewise be generalized from ordinary convex pro
grams to the convex programs associated with arbitrary closed proper 
convex bifunctions. However, we shall leave this as an exercise at present, 
since the result will be obvious from the theory of dual programs. 

In order to apply Theorem 29.3 and the duality theory which will be given 
in §30, it is sometimes necessary to regularize a given convex program by 
"closing" its associated bifunction. If Fis any convex bifunction from Rm 
to Rn, the closure cl F of F is defined to be the bifunction from Rm to Rn 
whose graph function is the closure of the graph function of F. Thus cl F 
is a closed convex bifunction, proper ifand only if Fis proper. The follow
ing theorem and corollary describe the relationship between the convex 
programs associated with F and cl F. 

THEOREM 29.4. Let F be a convex bifunctionfrom Rm to Rn. For each 
u E ri (<lorn F), one has 

(cl F)u = cl (Fu), 

inf (cl F)u = inf Fu. 

Moreover, assuming that Fis proper, one has 

dom F c <lorn (cl F) c cl (<lorn F). 

PROOF. For f(u, x) = (Fu)(x), one has 

(clf)(u, x) = ((cl F)u)(x) 

by definition. Since <lorn Fis the projection on Rm of <lorn/, ri (dom F) is 
the projection ofri (domf) (Theorem 6.6). Hence, given any u E ri (<lorn F), 
there exists some x such that (u, x) E ri (domf). In particular such an x 
belongs to ri (<lorn Fu) (Theorem 6.4), and if f(u, x) > - oo we have f 
and Fu proper (Theorem 7 .2) and 

((cl F)u)(y) = limf(u, (1 - A.)x + A.y) = (cl(Fu))(y), Vy 
;.h 

(Theorem 7 .5). If f(u, x) = - oo, of course 

((cl F)u)(y) = - oo = (cl (Fu))(y), Vy. 

Therefore, at all events, (cl F)u = cl (Fu) for every u E ri (<lorn F). The 
convex functions Fu and cl (Fu) have the same infimum on Rn, so Fu and 
(cl F)u have the same infimum when u E ri (<lorn F). Thus the functions 
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inf F and inf (cl F) agree on ri (dom F). When F is proper, its graph 
function f is proper and 

<lorn/ c <lorn (elf) c cl (domf). 

Projecting these sets on Rm, we get the effective domain inclusions in the 
theorem. II 

COROLLARY 29.4.1. Let F be a convex bifunction from Rm to Rn. Let 
(P) be the convex program associated with F, and let (cl P) be the convex 
program associated with cl F. Assume that (P) is strongly consistent. Then 
(cl P) is strongly consistent. The objective function for (cl P) is the closure of 
the objective function for (P), so that (P) and (cl P) have the same optimal 
value and every optimal solution to (P) is an optimal solution to (cl P). The 
perturbation functions for (P) and (cl P) agree on a neighborhood of 0, so 
that the Kuhn-Tucker vectors for the two programs are the same. 



SECTION 30 

Adjoint Bifunctions and Dual Programs 

A fundamental fact about generalized convex programs is that each 
such "minimization problem with perturbations" has a dual, which is a 
certain "maximization problem with perturbations," a generalized concave 
program. In most cases, two programs dual to each other have the same 
optimal-value, and the optimal solutions to one are the Kuhn-Tucker 
vectors for the other. 

The duality theory for convex programs is based on a concept of the 
"adjoint" of a convex bifunction. The adjoint operation for bifunctions 
may be regarded as a generalization of the adjoint operation for linear 
transformations, and a considerable "convex algebra" parallel to linear 
algebra may be built around it, as will be shown in §33 and §38. 

Only minimization problems have been discussed in preceding sections, 
but here we shall need to deal on an equal footing with maximization 
problems in which the objective function is an extended-real-valued 
concave function. The changes in passing from minimization to maximiz
ation and from convexity to concavity are essentially trivial and obvious. 
The roles of + oo, _:::;; and "inf" are everywhere interchanged with those 
of - oo, ;::: and "sup." We shall summarize the most important 
alterations. 

A function g from Rn to [- oo, + oo] is concave if - g is convex. For a 
concave function g, one defines 

epig = {(x, µ)Ix E Rn,µ ER,µ_:::;; g(x)}, 

dom g = {x I g(x) > - oo }. 

One says that g is proper if g(x) > - oo for at least one x and g(x) < + oo 
for every x, i.e. if - g is proper. The closure cl g of g is the pointwise 
infimum of all the affine functions h such that h z g, i.e. it is -(cl (-g)). 
If g is proper, or if x Eel (domg), one has 

(cl g)(x) = Jim sup g(y). 
v~x 

If g is the constant function - oo, then cl g = g; but if g is an improper 
concave function which has the value + oo somewhere, then cl g is the 

307 
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constant function + oo. One says that g is closed if cl g = g (i.e. if -g is 
closed). If g is proper, g is closed if and only if it is upper semi-continuous, 
i.e. if and only if the convex sets 

{x I g(x) z ix}, IX ER, 
are all closed. 

The conjugate of a concave function g is defined by 

g*(x*) = infx {(x, x*) - g(x)}, 

and one has g** = cl g. Caution: in general, 

g* ¥- -(-g)*. 

For the convex function/= -g, one has, not g*(x*) = -f*(x*), but 

g*(x*) = -f*(-x*). 

The set og(x) consists by definition of the vectors x* such that 

g(z):::;; g(x) + (x*, z - x>, Vz. 

We shall call such vectors x* subgradients of g at x, and the mapping 
x ~ og(x) the subdif.ferential of g, for simplicity' even though terms like 
"supergradients" and "superdifferential" might be more appropriate. 
One has 

og(x) = - o(-g)(x). 
If g is proper, one has 

g(x) + g*(x*) :::;; (x, x*>, V x, V x*, 

with equality holding if and only if x* E og(x). If g is closed, one has 
x* E og(x) if and only if X E og*(x*). 

A bifunction from Rm to Rn is said to be concave if its graph function is 
concave, and so forth. For a concave bifunction G, dom G is defined to 
be the set of vectors u E Rm such that Gu is not the constant function - oo 
on Rn. The concave program (Q) associated with G is defined to be the 
"maximization problem with perturbations" in which the concave 
function GO is to be maximized over Rn and the given perturbations are 
those in which GO is replaced by Gu for different choices of u E Rm. One 
calls GO the objective function for (Q). The vectors x such that (GO)(x) > 
- oo (i.e. those in dom GO) are the feasible solutions to (Q). The supremum 
of GO over Rn is the optimal value in (Q), and if this supremum is finite the 
points where it is attained (if any) are called optimal solutions to (Q). The 
perturbation function for (Q) is the function sup G on Rrn defined by 

(sup G)(u) = sup Gu = supx (Gu)(x). 
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This is an (extended-real-valued) concave function on Rm, and its effective 
domain is dom G. A vector u* E Rm is said to be a Kuhn-Tucker vector for 
(Q) if the quantity 

supu {(u*, u) +sup Gu}= supu,x {(u*, u) + (Gu)(x)} 

is finite and equal to the optimal value in (Q). This condition holds if and 
only if sup G is finite at 0 and 

-u* E o(sup G)(O). 

The Lagrangian L of (Q) is defined by 

L(u*, x) = supu {(u*, u) + (Gu)(x)}. 

Consistency, strong consistency and strict consistency for a concave 
program mean (as for a convex program) that 0 Edom G, 0 E ri (<lorn G) 
and 0 E int (dom G), respectively. 

So much for the terminology of concave functions and concave 
programs. The results in §29 can be translated into this terminology 
without difficulty. 

For any convex bifunction F from Rm to Rn, 

F:u-+Fu:x-+ (Fu)(x), 

the adjoint of F is defined as the bifunction 

F*:x*-+ F*x*:u*-+ (F*x*)(u*) 

from Rn to Rm given by 

(F*x*)(u*) = inf {(Fu)(x) - (x, x*) + (u, u*) }. 
u,x 

The adjoint of a concave bifunction is defined in the same way, except 
with the infimum replaced by a supremum. 

The adjoint correspondence for bifunctions is actually just a modifi
cation of the conjugacy correspondences for convex and concave 
functions. Let/be the graph function of the convex bifunction F. Regarding 

(u, -u*) + (x, x*) 

as the inner product of the vectors (u, x) and (-u*, x*) in Rm+n, we have 

(F*x*)(u*) = inf {J(u, x) - (x, x*) + (u, u*)} 
u,x 

= -sup {(u, -u*) + (x, x*) - f(u, x)} = -f*(-u*, x*), 
u,x 

where f* is the conjugate off. The graph function of F* is thus a closed 
concave function, i.e. F* is a closed concave bifunction. By definition, 
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then, the adjoint F** of F* is the bifunction from Rm to Rn given by 

(F**u)(x) =sup {(F*x*)(u*) - (u*, u) + (x*, x)} . . x ,u 

=sup {(u, -u*) + (x, x*) - f*(-u*, x*)} . . 
X ,U 

= f**(u, x) = (clf)(u, x). 

But the convex bifunction from Rm to Rn whose graph function is elf is, 
by definition, the closure cl F of F. The fundamental facts about the adjoint 
operation may therefore be summarized as follows. 

THEOREM 30.1. Let F be any convex or concave bifunction from Rm to 
Rn. Then F* is a closed bifunction of the opposite type from Rn to Rm, 
proper if and only if Fis proper, and 

F** =cl F. 

In particular, F** = F if Fis closed. Thus the adjoint operation establishes 
a one-to-one correspondence between the closed proper convex (resp. 
concave) bifunctions from Rm to Rn and the closed proper concave (resp. 
convex) bifunctions from Rn to Rm. If Fis polyhedral, so is F*. 

PROOF. By Theorem 12.2 and the preceding remarks. The fact that the 
adjoint operation preserves polyhedral convexity is immediate from 
Theorem 19.2. II 

As a first example of the adjoint operation for bifunctions, let F be the 
convex indicator bifunction of a linear transformation A from Rm to Rn, i.e. 

(Fu)(x) = b(x I Au) = {
0 

+oo 

Calculating F* directly, we get 

if x =Au, 

if x ¥-Au. 

(F*x*)(u*) =inf {r5(x I Au) - (x, x*) + (u, u*)} 
u,x 

= inf {-(Au, x*) + (u, u*)} = inf (u, u* - A *x*) 
u u 

= {O if u* = A*x*, 

- oo if u* ¥- A*x*. 

Thus F* is the concave indicator bi/unction of the adjoint transformation A* 
from Rn to Rm, 

F*x* = -r5(· I A *x*), 

This shows that the adjoint operation for bifunctions can rightly be viewed 
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as a generalization of the adjoint operation for linear transformations; 
see also §33. 

Other notable examples of adjoint bifunctions will be given shortly. 
However, it is clear from the relationship between the graph functions of 
F and F*, as explained before Theorem 30.1, that numerous examples of 
convex and concave bifunctions adjoint to each other could be generated 
just from the examples in Part III of convex functions conjugate to each 
other. 

The explicit calculation of the adjoint of a given convex bifunction is, of 
course, not always an easy task, but the applicability of the general 
formulas in §16 should not be overlooked. Further formulas of use in this 
connection will be derived in §38 for the adjoints of bifunctions con
structed by means of certain natural operations which are analogous to 
addition and multiplication of linear transformations. 

Let F be a convex bifunction from Rm to Rn, and let (P) be the 
associated convex program. The concave program associated with the 
(concave) adjoint bifunction F* will be called the program dual to (P) 
and will be denoted by (P*). 

In (P) we minimize FO as a function of x E Rn, and we perturb FO by 
replacing it by Fu for different choices of u E Rm. In the dual program 
(P*), we maximize F*O as a function of u* E Rm, and we perturb F*O by 
replacing it by F*x* for various choices of x* E Rn. The optimal value in 
(P) is inf FO, and the optimal value in (P*) is sup F*O. A Kuhn-Tucker 
vector for (P) is a u* E Rm such that the quantity 

inf { (u, u*> + inf Fu} = inf { (u, u*> + (Fu)(x)} 
u u,x 

is finite and equal to the optimal value in (P), while a Kuhn-Tucker vector 
for (P*) is an x E Rn such that the quantity 

sup { (x, x*> + sup F*x*} = sup { (x, x*:> + (F*x*)(u*)} 
x• x• ,u.• 

is finite and equal to the optimal value in (P*). 
In the case where F is closed and proper (the only case really of 

interest), we have F** = F by Theorem 30.1, so that program dual to 
(P*) is in turn (P). 

The relationship between a general dual pair of programs will be 
analyzed in a moment, but first we want to display the classic dual pair 
of linear programs as an example. Let A be a linear transformation from 
Rn to Rm, and let a and a* be fixed vectors in Rm and Rn, respectively. 
The linear program (P) which we want to consider is the ordinary convex 
program in which 

f 0(x) = (a*, x) + b(x Ix z 0) 
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is to be minimized subject to them linear constraints f;(x) ~ 0 expressed 
by the system 

a - Ax~ 0. 

The bifunction associated with (P) is the polyhedral proper convex 
bifunction F from Rm to Rn defined by 

(Fu)(x) =(a*, x) + b(x Ix z 0, a - Ax~ u). 

Here, of course, we are employing the convention that a vector 
inequality like z z z' is to be interpreted componentwise, i.e. ~1 z ~; for 
every index j. The indicator function notation has the obvious meaning: 
for C = {x I x z O}, we simply write r5(x I x z 0) instead of r5(x I C), 
etc. Thus r5(x I x z 0) is the function of x which has the value 0 when 
x z 0 and + oo when x ~ 0. 

To determine the program (P*) dual to (P), we calculate the adjoint of 
F. By definition, 

(F*x*)(u*) = inf {(a*, x) + b(x Ix z 0, d - Ax~ u) - (x, x*> + (u, u*)} 
u,x 

= inf {<x, a* - x*) +(a - Ax+ v, u*)} 
x~o.v--::o 

= inf {(a, u*> + (v, u*> + (x, a* - x* - A*u*>} 
x=:: O,v?='. O 

= (a, u*> + inf (v, u*> + inf (x, a* - x* - A*u*> 
v--=:: O x~O 

= {(a, u*> if u* z 0 

- oo otherwise. 

and a* - x* - A* u* z 0, 

In other words, 

(F*x*)(u*) = (a, u*> - b(u* I u* z 0, a* - A *u* z x*), 

and (P*) is the linear program (of the maximizing type) in which one 
maximizes 

g0(u*) = (a, u*> - b(u* I u* z 0) 

subject to then linear constraints g1(u*) z 0 expressed by the system 

a* - A*u* z 0. 

In (P*), the perturbations which receive attention are those which replace 
a* by a* - x* for different choices of x* E Rn, whereas in (P) they are 
those that replace a by a - u for different choices of u E Rm. 

As a further illustration consider the problem which was examined at 
the end of §28 in connection with the decomposition principle: minimize 

fu(x) = fu1(X1) + · · · + fus(x.) 
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subject to the linear constraints expressed by the vector equation 

A1x 1 + · · · + A.x. = a, 

where a is an element of R"', Ak is a linear transformation from Rnk to R"', 
fuk is a proper convex function on Rnk and 

n1 + · · · + n. = n. 

Here we are interested in an ordinary convex program (P) whose assoc
iated convex bifunction F: Rm ---+ Rn is given by 

(Fu)(x) = f 0(x) + b(x I Ax = a + u), 
where 

Ax= A1x 1 + · · · + A.x •. 

The adjoint bifunction F* may be calculated as follows, where 
x* =(xi, ... , x:): 

(F*x*)(u*) =inf {fu(x) + b(x I Ax= a + u) - (x, x*> + (u, u*>} 
U,:£ 

XI• • • • .:r~ 

*· ,-s f * ( * * *) = -(a, u ) - ...:,k~1 ok xk - Ak u 

The objective function in the concave program (P*) dual to (P) is therefore 
given by 

(F*O)(u*) =-(a, u*> -f~1(-Aiu*) - · · · - f0~(-A:u*), 

and the problem of maximizing this expression in u* is to be perturbed 
by translating each conjugate function/0~ on Rnk by an amount -x: E Rnk. 
The components xk of the Kuhn-Tucker vectors x = (xi, ... , x.) for 
(P*) will measure (in the sense of the analogue of Theorem 29.1 and its 
corollaries for the case of concave programs) the differential effect such 
translations would have on the optimal value in (P*). 

Observe in the example just given that the objective function in (P*) is 
the function whose maximization yields the Kuhn-Tucker vectors for 
(P), when such vectors exist, as explained at the end of §28. Thus, if a 
Kuhn-Tucker vector exists for (P), the set of such vectors is the same as 
the set of all optimal solutions to (P*). We shall see below that the same 
thing is actually true for any convex or concave program and its dual. 

Duals of ordinary convex programs with inequality constraints will be 
discussed at the end of this section, and further examples of dual programs 
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will be considered in §31. We proceed now, however, with the development 
of the general theory of such programs. 

Almost everything, about the general relationship between a convex 
program and its dual, hinges on the following fact. 

THEOREM 30.2. Let F be a convex bifunctionfrom Rm to Rn, and let (P) 
be the convex program associated with F. The objective function F*O in 
the concave program (P*) dual to (P) is then the conjugate of the concave 
function - inf Fin (P), i.e. one has 

(-inf F)* = F*O, (F*O)* = -cl (inf F). 

If Fis closed, the objective function FO in (P) is the conjugate of the convex 
function -sup F* in (P*), i.e. one has 

(-sup F*)* = FO, 

PROOF. By definition, 

(FO)* = -cl (sup F*). 

(F*O)(u*) = inf {(Fu)(x) - (x, 0) + (u, u*)} 
u,x 

=inf {(u, u*) + inf(Fu)(x)} 
u x 

=inf {(u, u*) - (-inf F)(u)} =(-inf F)*(u*). 
u 

On the other hand, if Fis closed we have F** = F and hence 

(FO)(x) = (F**O)(x) = sup {(F*x*)(u*) - (0, u*) + (x, x*)} . . x ,u 

= sup { (x, x*) + sup (F*x*)(u*)} 
x• u• 

=sup {(x, x*) - (-sup F*)(x*)} =(-sup F*)*(x). 
x• 

The formulas for (F*O)* and (FO)* are then consequences of the basic 
properties of the conjugacy correspondences. II 

Observe from the preceding proof that the objective function in (P*) 
is given by 

(F*O)(u*) = infx L(u*, x), Vu*, 

where L is the Lagrangian of (P). If Fis closed, the objective function in 
(P), on the other hand, is given by 

(FO)(x) = supu• L(u*, x), Vx, 

as was shown in the proof of Theorem 29.3. Thus the optimal value in 
(P*) is 

SUPu• infx L(u*, x), 
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whereas, assuming that Fis closed, the optimal value in (P) is 

infx sup,,. L(u*, x). 

The role of Lagrangians in the theory of dual programs will be discussed 
further towards the end of §36; see also Corollary 30.5.1 below. 

The formulas in Theorem 30.2 lead to immediate results about the 
relationship between the optimal value in (P) and the optimal value in 
(P*) and in particular to results about the consistency of (P) and (P*). 

COROLLARY 30.2.1. Let F be a closed convex bifunctionfrom Rm to Rn, 
and let (P) be the convex program associated with F. The dual program (P*) 
is inconsistent if and only if there is a vector u E Rm such that Fu has no 
lower bound on Rn. On the other hand, (P) is inconsistent if and only 1f 
there is a vector x* E Rn such that F*x* has no upper bound on Rm. 

PROOF. The inconsistency of (P) means that the function FO is identi
cally + oo. Since FO is the conjugate of the convex function -sup F* by 
the theorem, this happens if and only if -sup F* has the value - oo 
somewhere, i.e. 

+ oo = (sup F*)(x*) = sup (F*x*) 

for some x* E Rn. Dually for the inconsistency of (P*). 
Corollary 30.2. l should be considered in conjunction with Corollary 

29.1.6. 
COROLLARY 30.2.2. Let F be a closed convex bifunctionfrom Rm to Rn, 

and let (P) be the convex program associated with F. Then the optimal value 
inf FO in (P) and the optimal value sup F*O in (P*) satisfy 

(cl (inf F))(O) = (sup F*)(O) = sup F*O, 

(cl (sup F*))(O) = (inf F)(O) = inf FO. 

In particular, one always has 

inf FO ~sup F*O. 

PROOF. According to Theorem 30.2, 

(cl (inf F))(O) = -(F*O)*(O) = -infu• {(O, u*) - (F*O)(u*)} 

= SUPu• (F*O)(u*) = sup F*O. 

Similarly for the other formula. 
COROLLARY 30.2.3. Let F be a closed convex bifunction from Rm to Rn, 

and let (P) be the associated convex program. Except in the case where 
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neither (P) nor (P*) is consistent, one has 

Jim inf (inf Fu) = sup F*O, 
u~o 

Jim sup (sup F*x*) = inf FO. 
x•-o 

PROOF. From what we know in general about the closure operation 
for convex functions, the formula 

(cl (inf F))(O) =Jim inf(inf F)(u) 
u~o 

holds except in cases where the left side is - oo and the right is + oo. The 
left side equals sup F*O by the preceding corollary, and this is - oo only 
when (P*) is inconsistent. When the right side is + oo, we have inf FO = 
+ oo in particular, so that (P) is inconsistent. Thus the first formula in the 
corollary holds unless both (P) and (P*) are inconsistent. Similarly for the 
second formula. II 

Let us agree to call a convex program (P) normal if its perturbation 
function inf Fis closed at u = 0, i.e. 

(cl (inf F))(O) = (inf F)(O). 

If (P) is consistent, or if merely 0 E cl (<lorn F), this condition is equivalent 
to inf Fu being a lower semi-continuous function of u at u = 0. This is a 
natural property to demand of a convex program, for without this lower 
semi-continuity there would exist some v E Rm such that the limit of the 
convex function h(A.) = inf F(A.v) as).! 0 is strictly less than h(O) = inf FO 
(Theorem 7.5). The program would thus be very unstable with respect to a 
certain direction of perturbation. If 0 ef: cl (<lorn F), (P) is normal trivially, 
except in the situation described in Corollary 29.1.6. 

Normality is defined analogously for concave programs. Thus the dual 
of a convex program is normal if and only if 

(cl (sup F*))(O) = (sup F*)(O); 

this implies the upper semi-continuity of sup F* at x* = 0. 

THEOREM 30.3. Let F be a closed convex bi/unction from Rm to Rn, and 
let (P) be the convex program associated with F. Then the following con
ditions are equivalent: 

(a) (P) is normal; 
(b) (P*) is normal; 
(c) inf FO = sup F*O, i.e. the optimal value in (P) equals the optimal 

value in (P*). 

PROOF. This is immediate from Corollary 30.2.2. 
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We shall say simply that normality holds for a dual pair of programs if 
the three equivalent conditions in Theorem 30.3 are satisfied. Normality 
does hold "normally," as the next theorem shows. 

THEOREM 30.4. Let F be a closed convex bi/unction from Rm to Rn, 
and let (P) be the convex program associated with F. Then any one of the 
following conditions is sufficient to guarantee that normality holds for (P) 
and (P*): 

(a) (P) is strongly (or strictly) consistent; 
(b) (P*) is strongly (or strictly) consistent; 
(c) The optimal value in (P) is finite, and a Kuhn-Tucker vector exists 

for (P); 
(d) The optimal value in (P*) is.finite, and a Kuhn-Tucker vector exists 

for (P*); 
( e) (P) is polyhedral and consistent; 
(f) (P*) is polyhedral and consistent; 
(g) {x I (FO)(x) ~ ix} is non-empty and bounded for some ix; 
(h) {u* I (F*O)(u*) ~ ix} is non-empty and bounded for some ix; 
(i) (P) has a unique optimal solution, or the optimal solutions to (P) 

form a non-empty bounded set; 
U) (P*) has a unique optimal solution, or the optimal solutions to (P*) 

form a non-empty bounded set. 

PROOF. Under (a), 0 belongs to the relative interior of the effective 
domain of inf F (Theorem 29.1), so inf F agrees with cl (inf F) at 0 
(Theorems 7.2, 7.4). Under (c), inf Fis subdifferentiable at 0 (Theorem 
29.1), and this too implies inf Fis closed at 0 (Corollary 23. 5.2). Under 
(e), inf Fis a polyhedral convex function with 0 in its effective domain 
(Theorem 29.2). A polyhedral convex function always agrees with its 
closure on its effective domain. Thus (a), (c) and (e) imply that normality 
holds. Dually, (b ), ( d) and (f) imply that normality holds. Condition (g) 
is equivalent by Theorem 27.1 (d) to having 0 E int (<lorn (FO)*), i.e. (P*) 
strictly consistent. Thus (g) is a special case of (b), and similarly (h) is a 
special case of (a). Of course, (i) and U) are contained in (g) and (h). II 

Theorem 30.4 can be applied, for example, to the dual pair of linear 
programs described earlier in this section. These are polyhedral convex 
programs, so it follows that the optimal value in (P) and the optimal value 
in (P*) are equal, unless both programs are inconsistent. This result is 
known as the Gale-Kuhn-Tucker Duality Theorem. Of course, a poly
hedral convex or concave program has an optimal solution by Theorem 
29.2 when its optimal value is finite. 

There do exist convex programs which are not normal, although such 
programs are necessarily rather freakish and are not of much interest in 
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themselves, as is clear from Theorem 30.4. For an example of abnormality 
consider the closed proper convex bifunction F from R to R defined by 

{
exp (-Jux) if u z 0, x z 0, 

(Fu)(x) = 
+ oo otherwise. 

The function inf F is given by 

inf Fu= 1 if u = 0, 
{ 

0 if u > 0, 

+oo if u < 0. 

Thus the optimal value in (P) is 1, whereas 

(cl (inf F))(O) = 0. 

The optimal value in (P*) must be 0, by Corollary 30.2.3. Note that (P) 
is not strongly consistent. 

The reader can easily construct other, similar examples of abnormality 
in which (inf F)(O) is finite but (cl (inf F))(O) = -oo, or in which 
(inf F)(O) = + oo but (cl (inf F))(O) is finite or - oo. 

The next theorem describes a remarkable duality between Kuhn-Tucker 
vectors and optimal solutions. 

THEOREM 30.5. Let F be a closed convex bi/unction from Rm to Rn, and 
let (P) be the convex program associated with F. Suppose that normality 
holds for (P) and (P*). Then u* is a Kuhn-Tucker vector for (P) if and only 
1f u* is an optimal solution to (P*). Dually, x is a Kuhn-Tucker vector for 
(P*) if and only 1f x is an optimal solution to (P). 

PROOF. As we know from Theorem 29. l, u* is a Kuhn-Tucker vector 
for (P) if and only if inf FO is finite and -u* belongs to o(inf F)(O). Since 
normality holds by assumption, inf F agrees with cl (inf F) at 0, and hence 
inf F and cl (inf F) have the same subgradients at 0 (see Theorem 23.5). 
Moreover, -cl (inf F) = (F*O)* by Theorem 30.2. Thus u* is a Kuhn
Tucker vector for (P) if and only if (F*O)*(O) is finite and 

u* E o(F*O)*(O), 

i.e. (by Theorem 27.1 in the concave case) if and only if the supremum of 
F*O is finite and attained at u*. Thus the Kuhn-Tucker vectors u* for (P) 
are the optimal solutions to (P*). The proof of the dual assertion of the 
theorem is parallel. II 

COROLLARY 30.5.1. Let F be a closed convex bi/unction from Rm to Rn, 
and let (P) be the convex program associated with F. Then the following 
conditions on a pair of vectors x E Rn and u* E Rm are equivalent: 
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(a) normality holds, and x and ii* are optimal solutions to (P) and (P*) 
respectively; 

(b) (ii*, x) is a saddle-point of the Lagrangian L of (P); 
(c) (FO)(.X) :::;: (F*O)(ii*) (in which case equality must actually hold). 
PROOF. The equivalence of (a) and (b) is immediate from Theorem 

29.3, since the existence of a Kuhn-Tucker vector implies normality by 
Theorem 30.4. The equivalence of (a) and (c) is by the definition of the 
phrase "normality holds." II 

An example of a normal convex program (P), such that (P) has an 
optimal solution but (P*) has no optimal solution, is obtained when Fis 
the closed convex bifunction from R to R given by 

(Fu)(x) = {x 
+oo 

if x 2 :=:;: u, 

if x 2 > u. 

The perturbation function is then given by 

{

-u112 if u z 0, 
inf Fu= 

+oo if u < 0. 

This function is lower semi-continuous at u = 0, but it has derivative - oo 
there. Thus (P) is normal but has no Kuhn-Tucker "vector" u* (Corollary 
29.1.2). No optimal solution can exist for (P*), in view of Theorem 30.5, 
although x = 0 is trivially an optimal solution for (P). 

Existence theorems for optimal solutions to (P) can be deduced from 
Theorem 30.5 by applying to (P*) the various existence theorems for 
Kuhn-Tucker vectors. 

COROLLARY 30.5.2. Let F be a closed convex bifunctionfrom Rm to Rn, 
and let (P) be the convex program associated with F. If (P) is consistent and 
(P*) is strongly consistent, then (P) has an optimal solution. Dually, if (P) 
is strongly consistent and (P*) is consistent, then (P*) has an optimal 
solution. 

PROOF. If (P*) is strongly consistent, normality holds (Theorem 30.4), 
so that the optimal values in (P) and (P*) are equal. The common value 
cannot be - oo (because (P*) is consistent) nor + oo (because (P) is 
consistent), and hence it is finite. At least one Kuhn-Tucker vector x 
exists for (P*) by Corollary 29.1.4, and this x is an optimal solution to 
(P) by Theorem 30.5. II 

Other duality results are clearly possible, in view of the conjugacy 
relationship between objective functions and perturbation functions in 
Theorem 30.2 and the correspondences listed in Theorem 27 .1. Generally 
speaking, any property of the perturbation function in (P) is dual to some 
property of the objective function in (P*), and any property of the 



320 YI: CONSTRAINED EXTREMUM PROBLEMS 

perturbation function in (P*) is dual to some property of the objective 
function in (P). 

The rest of this section is devoted to a discussion of the dual of an 
ordinary convex program. The discussion will be limited, for notational 
simplicity, to the case where all the (explicit) constraints are inequalities. 

Let (P) be the ordinary convex program in which/0(x) is to be minimized 
over C subject to 

/ 1(x) ::=:;; 0, ... ,f",,,(x) ::=:;; 0, 

where/0,/1 , ••• ,fm are proper convex functions on Rn such that dom/0 = 
Cand 

domf; => C, ri (domf;) ::::> ri C, i = 1, ... ,m. 

The convex bifunction F from R 111 to Rn associated with (P) is given by 

(Fu)(x) = fo(x) + o(x IJ;Cx) ::=:;; V;, i = 1, ... 'm), 

where u = (v1 , ••• , vm). The adjoint F* of F may be calculated as 
follows, with z = ( ~1 , ••• , ~m): 

(F*x*)(u*) =inf {(Fu)(x) - (x, x*) + (u, u*)} 
u,x 

= inf inf {fo(x) + o(x I f;(x) ::=:;; V;, i = 1, . .. ' m) 
xeRnuERm 

- (x, x*) + v';v1 + · · · + v,~vm} 

= !~ !~~ { fo(x) - (x, x*) + i~l v;*(f;(x) + ~;)} 

= ~~{fo(x) +i~v;*f;(x)-(x,x*>} + ~~~(u*,z) 

= -sup {<x, x*> - foCx) - i vtf;Cx)} - o(u* I u* ~ o). 
XEC t=l 

If u* ~ 0, this expression is -oo, whereas if u* ~ 0 it is 

-supn {(x, x*) - (f0 + vif1 + · · · + v!fm)(x)} 
xER 

= -Cfo + vif1 + · · · + v,:frn)*(x*). 

By Theorem 16.4 and Theorem 16.1, the latter is 

-(fri D (vif1)* D · · · D (v,;:'fm)*)(x*) 

= -(f'/; D f'fv'i D · · · D f!v:)(x*) 

= -inf { f*(xri) + ;~ (f;*v:)(x:) I;~ x;* = x*}, 



§30. ADJOINT BIFUNCTIONS AND DUAL PROGRAMS 321 

where the infimum is attained and 

'f * *)( *) _ {v,*f ;*(v';'-
1
x;*) if v;* > 0, 

\ i V; X1 -

b(x'!' I 0) if vi = 0. 

Therefore F* is given by 

( * *) * {-(fci Df'[vi D · · · Dj.,~v::;)(x*) 
F x (u ) = 

-oo if u*~O. 

if u* z 0, 

By definition, in the (generalized) concave program (P*) dual to (P) 
one maximizes the concave function F*O over R"', and one perturbs 
F*O by replacing it by F*x* for different choices of x* E Rn. Since the 
effective domain of 

fri ofivi D ···of ::;v::; 

(for vj z 0) is the convex set 

Cci + v'[C'\' + · · · + v::;c::; c W, 

where 
C;* = domf;* , i = 0, 1, ... , m, 

the feasible solutions to (P*) are the vectors u* = (vi, ... , v!) such that 

vi z 0, ... , v;:: z 0, 

0 E (Cci + vi'Ci + · · · + v::;c::;). 

Over the convex subset of Rm consisting of all such vectors u*, one is to 
maximize the (finite) concave function 

(v1*, ... , v::;)-* -(fci D f1*v'[ D · · · D J::;v::;)(O) 

= -inf {fci(zci) + v'[fi*(zi) + · · · + v!f'::,(z'::,) I 
z;* EC;*, i = 0, 1, ... , m, zri + viz{ + · · · + v::;z:, = O} 

(where infimum is attained by some z;:', . .. , z! for each feasible u*). 
The perturbation corresponding to a given x* E Rn changes this problem 
by replacing 0 by x* in the constraints 

0 E (Cci + v'[Ci + · · · + v::;c:,), 

zri + v{zi + · · · + v!z! = 0. 

As the above calculations show, the objective function in (P*) can also 
be expressed by 

(F*O)(u*) = o 1 1 m m 
{ 

inf(f, + v*f + · · · + v *f ) if u* z 0, 

-oo if u* ~ 0. 



322 YI: CONSTRAINED EXTREMUM PROBLEMS 

Hence the feasible solutions to (P*) can also be described as the vectors 
u* ~ 0 such that the infimum of the proper convex function 

fo + vif1 + · · · + v::,J",,, 

on Rn is not - oo. If the infimum is attained whenever it is not - oo, and if 
the functions/; are differentiable throughout Rn, then the feasible solutions 
are the vectors u* ~ 0 such that, for some x E Rn, 

Vfo(x) + vi Vf1(x) + · · · + v,~ Vfm(x) = O; 

for any such u* and x one has 

(F*O)(u*) = fo(x) + v{fi(x) + · · · + v'inf m(x). 

It may seem strange that the objective function for the dual of an 
ordinary convex program should itself need to be expressed in terms of an 
extremum problem. In a certain sense, this is due to the fact that the 
perturbations which are naturally associated with an ordinary convex 
program are not enough to compensate for the non-linearity of the 
constraint functions. A more explicit dual program can be obtained by 
replacing the given ordinary convex program (P) by a generalized convex 
program (Q) having the same objective function as (P) but more per
turbations. 

Specifically, given (P) as above, let (Q) be the convex program 
associated with the convex bifunction G from Rk to Rn defined by 

(Gw)(x) =fo(X - Xo) + o(x IJ;Cx - xi)::::;: vi, i = 1, ... 'm), 

where 

k = m + (m + l)n. In (Q), as in (P), we minimize f 0(x) subject to 
f;(x) ::::;: 0, i = 1, .. . , m, but in (Q) the given class of perturbations is 
larger: we perturb the constraint/i(x)::::;: 0 to f;(x) ::::;: v; as in (P), but we 
also perturb each function Ji by translating it by an amount X; E Rn. 
Setting 

w* = (u*, x(\', ... , x!) ER\ 

we can calculate G* to determine the concave program dual to (Q). 
Making use of the initial steps in the calculation of F* above, we get, 
for u* ~ 0, 

(G*x*)(w*) = ~~ { (Gw)(x) - (x, x*) + (u, u*) +;~(xi, xt>} 

= inf. {f0(x - x0) + ~ vifi(x - X;) - (x, x*) + .~ (x;, xt>}· 
x,xi i-1 i-0 
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Upon substitution of Yi = x - X;, this becomes 

~~ { fo(y 0) + i~I vihCY;) - ( x, x* - i~o xi) - ;~o (Yi, xi>} 

= -s~p {(x, x* - i~o xi)} - s~p {(y0, xci) - f 0(y0)} 

rn 

- L sup { (Y;, xi> - ( vtfi)(yi)} 
i=l Yi 

= -[ o( x* - ;~xi I 0) + fci'(xci') + ~1 (v;*f;)*(xi)J 

= -[ bC~0 xt Ix*) + JciCxci) + i~/fivt)Cxt)J 
If u* ~ 0, we get (G*x*)(w*) = -oo as in the calculation of F*. It 
follows that 

(

-fci(xci) - (fi*v{)(xi) - · · • - (J,!v:!;)(x:!;) 

(G*x*)(w*) = if u* z 0 and xci + · · · + x:!; = x*, 

- oo otherwise. 

The feasible solutions to the dual program (Q*) are thus the vectors 
w* = (u*, x;:', ... , x~) such that 

u* z 0, xci' + xi + · · · + x:, = 0, 

where C* = dom/* as above. Over the set of these vectors w*, we want 
' ' to maximize the concave function 

-lf ci(xci) + (fi*vi)(xi) + · · · + (f,,iv':;,)(x!)]. 

The perturbation in (Q*) corresponding to a given x* E Rn alters the 
constraint x;:' + · · · + x~ = 0 to x;:' + · · · + x':;, = x*. 

Of course, x; is related to the z'j in the expression of (P*) above by 

x{ = v{z'[- for i = 1, ... , m. 

According to the general duality theory, the x; components of the optimal 
solutions w* to (Q*) describe the rates of change of 

inf {f0(x) IJ;Cx)::;; 0, i = 1, ... , m} 

with respect to translating the functions Ji by amounts xi. 
If there are directions in which certain of the functions Ji are affine, the 

corresponding convex sets C;* = domf;* are less than n-dimensional 
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(Theorem 13.4). The dual problem (Q*) is then degenerate, in the sense 
that there is a proper subspace of Rk which contains <lorn G*x* for every 
x*. In this case, in passing from (P) to (Q) one has overcompensated for 
the nonlinearity of the f; by introducing redundant degrees of perturbation: 
a translation off; by an amount X; in a direction in which f; is affine 
merely alters f; by a constant, i.e. it has the same effect as a perturbation 
corresponding to the variable V;. 

It is sometimes desirable in such cases to consider convex programs 
"intermediate" between (P) and (Q) in which the perturbations are chosen 
more carefully, so as to match the particular nonlinearity at hand. Suppose 
that each f; is expressed in the form 

f;(x) = h;(A;x + a;) + (a{, x) + rx;, 

where h; is a closed proper convex function on Rn;, A; is a linear trans
formation from Rn to Rn,, a; and a'; are vectors in Rn; and Rn respectively, 
and rx; is a real number. (The vectors in the null space of A; then give 
directions in which/; is affine.) Let (R) be the convex program associated 
with the convex bifunction H from Ra to Rn defined by 

{ 

h0(A 0x + a0 -· Po) + (at, x) + rx0 if 

h;(A;x + a; - P;) + (a{, x) + rxi :::;; V; 
(Hw)(x) = 

for i = 1, ... , m, 

+ oo otherwise, 

where d = m + n0 + · · · +nm and 

The objective function in (R) is again the same as in the ordinary convex 
program (P), i.e. in (R) one minimizes f 0(x) over C subject to f;(x) :::;; 0 
for i = 1, ... , m. The adjoint of H may be determined by direct calculation 
as above. One finds that 

(

rxo + (ao, Pt> - ht(Pt) 

+ ~I'.:1 [rx;v{ + (a;, p{) - (h{v{)(p;*)] 

(H*x*)(w*) = l if u* z 0 and 

* + "m * * + "m A* * _ * ao ..::,;~1 V; a; ..::,;~o ; Pi - x , 

- oo otherwise, 
where 

w* = (u*, Pt, ... , P!), 

Thus, in the dual program (R*), one maximizes 

rxo + (a0, Pt> - h;';(pt) + ~I'.:1 [rx;v{ + (a;, pi) - (h{vi)(pi)] 
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subject to 

Pi E vi Di and vi z 0 for i = 1, ... , m, 

*+"m * *+"m A* *-O ao L,id V; a; L.i=O ; P; - , 

where D'; = <lorn h'; for i = 0, ... , m. If the expression of each f; is 
such that there are no directions in which h; is affine, the convex set Di 
will be of dimension ni and hence will have a non-empty interior in Rn'. 
(It is easily seen that, when C is n-dimensional, such an expression off; 
always exists with n; = rank/;, unless f; is affine, in which event h;, A;, 
a;, p; and pj can simply be omitted from all the formulas.) 

The Lagrangian L of (R) may be calculated from the defining relation 

L(w*, x) = infw {(w, w*) + (Hw)(x)}. 
One obtains 

L(w*, x) = ix0 + (ao, Pt> - ht(pt) 

+ ~,".', 1 [ix;vi + (a;, Pi> - (hivi)(pi)] 

+(at+ ~,".',1 viai + ~,".',0 Aipi, x) 

if u* z 0, whereas L(w*, x) = -oo if u* ~ 0. 
As an illustration of programs (R) and (R*), consider the important 

case where 

f;(x) =log c~;~l exp (ix;o + ~;=1 IX;i~i)) 
for i = 1, ... , m. Here f; is a finite convex function on Rn (affine if 
n; = l); see the example preceding Theorem 16.5. (Note that, under the 
substitution Ti= e<1, each of the terms 

takes on the general form 

where (30 > 0.) The problem of minimizing fo(x) subject to f;(x) :=;: 0 for 
i = 1, ... , m corresponds to (R) in the case where 

A; is the linear transformation given by the n; x n matrix ( ix;i), a; is the 
vector in Rn; with components ix:0 , and aj = 0, ix; = 0. From the cal
culation preceding Theorem 16.5, we have 

{
"n' * 1 * "f * > 0 * * * _ L.r=l 7T;r og 7Tir I 7Tir - ' 

h; ( 7T;1' • • · ' 7Tin ) -' + oo otherwise. 

"n· * 1 .L..r~l 'Trir = ' 



326 VI: CONSTRAINED EXTREMUM PROBLEMS 

It follows that in (R*) one maximizes the concave function 

II'.:o (a;, Pi> - hci(Pci) - I;".!1 (hjvi)(pi) 

= I;':oo I;,!,,1 ( 7T;~ix~ 0 - 7T,~ log 7T;~) + IZ:1 vi log vi 

subject to the linear constraints 

where 

7T;~ z 0 for i = 0, ... , m and r = 1, ... , n;, 

"no * _ 1 L.r=l 7Tor - d "n' * - * f an L.r=l 7T;, - vi or i = 1, ... ,m, 

"m "n' * i - 0 f . - 1 L,i=O L.r=l 7T;r1Xri - Of } - , • • • , n, 

p; = (7T;1, ... , 7T;n) for i = 0, 1, ... , m. 

By the general duality theory, the components ~i of an optimal solution 
x to (R) describe the rates of change of the supremum in (R*) with respect 
to perturbing the latter constraints to 

for j = 1, ... , n, 

whereas the components vi and 7Tir of an optimal solution to (R*) describe 
the rates of change of the infimum in (R) with respect to perturbing the 
functions f; by subtracting certain constants v; and performing certain 
translations. Optimal solutions to (R) and (R*) correspond to saddle
points of the Lagrangian function 

{

II':o I;~1 ( 7T;~IX~o - 7T;i;. log 7T;i;,) + I:'.:1 vi log vi 

L(w*, x) = + I7=1 I;".'.,0 I;~ 1 7T;~ix~i~i if w* ED*, 

-oo if w* ef: D*, 

where D* is the set of vectors w* = (u*, p;':, . .. , p!) such that 

7T;~ z 0 for i = 0, ... , m and r = l, ... , n;, 

"no * _ 1 L.r=l 7Tor - d ~-n, * - * ,. an kr=l 7T;1. - v, ior i =·l, ... , m. 



SECTION 31 

Fenchel' s Duality Theorem 

Fenchel's duality theorem pertains to the problem of minimizing a 
difference f(x) - g(x), where f is a proper convex function on Rn and g 
is a proper concave function on Rn. This problem includes, as a special 
case, the problem of minimizing/ over a convex set C (take g = -oC· I C)). 
In general, f - g is a certain convex function on Rn. The duality resides 
in the connection between minimizing f - g and maximizing the concave 
function g* - f*, where f* is the (convex) conjugate off and g* is the 
(concave) conjugate of g. This duality is a special case of the general 
duality in §30, as we shall show, but it can also be deduced independently of 
the general theory by an elementary separation argument. 

Note that the minimization off - g effectively takes place over the 
convex set 

<lorn (f- g) =<lorn/ n <lorn g, 

whereas the maximization of g* - f * effectively takes place over the 
convex set 

<lorn (g* - f*) =<lorn g* n domf*. 

THEOREM 31.1 (Fenchel's Duality Theorem). Let f be a proper convex 
function on R", and let g be a proper concave function on Rn. One has 

infx {f(x) - g(x)} = SUPx• {g*(x*) - f*(x*)} 

if either of the following conditions is satisfied: 
(a) ri (domf) n ri (<lorn g) ¥- 0; 
(b) f and g are closed, and ri (<lorn g*) n ri (<lorn/*)¥- 0. 

Under (a) the supremum is attained at some x*, while under (b) the injimum 
is attained at some x; if (a) and (b) both hold, the injimum and supremum 
are necessarily finite. 

Ilg is actually polyhedral, ri (<lorn g) and ri (<lorn g*) can be replaced by 
<lorn g and <lorn g* in (a) and (b ), respectively (and the closure assumption 
in (b) is superfluous). Similarly if f is polyhedral. (Thus, if f and g are both 
polyhedral, ri can be omitted in all cases.) 

PROOF. For any x and x* in R", we have 

f(x) + f*(x*) z (x, x*) z g(x) + g*(x*) 

327 
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by Fenchel's Inequality, and hence 

f(x) - g(x) z g*(x*) - f*(x*). 
Therefore 

inf (f - g) z sup (g* - f *). 

If the infimum is - oo, the supremum is - oo too and is attained 
throughout Rn. Assume now that (a) holds and that IX = inf (f - g) is 
not - oo. Then IX is finite, and it is the greatest of the constants (3 such that 
f z g + (3. To show that the supremum of g* - f* is IX and is attained, 
it is enough to show that there exists a vector x* such that g*(x*) -
(*(x*) z IX. Consider the epigraphs 

c = {(x, µ)Ix E Rn, ft ER,µ zf(x)}, 

D = {(x, µ)Ix E Rn,µ ER,µ:::;; g(x) +IX}. 

These are convex sets in Rn+i. According to Lemma 7.3, 

ri C = {(x, ,u) Ix E ri (dom/),f(x) < u < oo}. 

Since f z g + IX, ri C does not meet D. Hence there exists a hyperplane 
Hin Rn":-1 which separates C and D properly (Theorem I 1.3). If H were 
vertical, its projection on Rn would be a hyperplane separating the 
projections of C and D properly. But the projections of C and D on Rn 
are dom.f and <lorn g, respectively, and these sets cannot be separated 
properly because of assumption (a) (Theorem 11.3). Therefore H is not 
vertical, i.e. His the graph of a certain affine function h, 

h(x) = (x, x*) - IX*. 

Since H separates C and D, we have 

f(x) z (x, x*/ - ex.* z g(x) +IX. Vx. 

The inequality on the left implies that 

IX* z supx {(x, x*) - f(x)} =f*(x*), 

while the inequality on the right implies that 

IX*+ ex.:::;; infx{\x,x*)-g(x)) =g*(x*). 

It follows that IX :::;; g*(x*) -f"'i'-(x*) as desired. 
When g is polyhedral, i.e. when D is a polyhedral convex set, we can 

sharpen the proof by invoking Theorem 20.2, instead of Theorem I 1.3, 
to get a separating hyperplane H. By Theorem 20.2, H can be chosen so 
that it does not contain C. If H were vertical, its projection on R" would 
be a hyperplane separating <lorn/ and dom g and not containing all of 
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<lorn f When ri ( domf) and <lorn g (which is polyhedral) have a point in 
common, this situation is impossible by Theorem 20.2, so that H must be 
non-vertical and the proof goes through as before. Similarly when/, rather 
than g, is polyhedral. 

When both f and g are polyhedral, a somewhat different argument, not 
involving relative interiors at all, can be used in the case where IX = 
inf (f - g) is finite to show the existence of an x* such that g*(x*) -
f*(x*) z IX. ln this case, by the definition of IX, the closure of the convex 
set C - D in Rn+i contains the origin (0, 0), but C - D does not contain 
any (x, µ) with x = 0 and µ < O. Since C and D are polyhedral (by the 
fact that/ and g are polyhedral), C - Dis polyhedral by Corollary 19.3.2 
and hence is closed. Let C - D be expressed as the intersection of a finite 
collection of closed half-spaces in Rn+i. These half-spaces all contain the 
origin of R"+1, but at least one of them must be disjoint from the half-line 
{(O, µ)Iµ < O}, for otherwise this half-line would meet C - D, contrary 
to what we have just observed. At least one of these half-spaces must 
therefore be the epigraph of a linear function (', x*) on R". 

For this x* we have 
µ1 - µz Z (x1 - Xz, x*) 

for every (x1, 11 1) EC and every (x2 , µ 2 ) ED, or in other words 

(x2 , x*) - g(x2) - IX z (xi, x*) - f(x1), Vxi, Vx2. 

This implies that 

g*(x*) - IX z f*(x*) 

as required. 
The part of the theorem concerning condition (b) follows by duality, 

since/=!** andg = g** when/andg are closed. Of course,/* andg* 
are polyhedral when f and g are polyhedral, respectively (Theorem 
19.2). 11 

The next theorem shows how the extremum problems in Fenchel's 
Duality Theorem, in a generalized form, can be regarded as a dual pair 
of convex and concave programs in the sense of §30. The theorems in 
§29 and §30 can be applied to these programs, and in this way one can 
refine the conclusions of Fenchel's Duality Theorem and gain insight into 
their meaning. 

THEOREM 31.2. Let f be a proper convex function on R", let g be a 
proper concave function on R"', and let A be a linear transformation from 
Rn to Rm. Let 

(Fu)(x) = f(x) - g(Ax + u), 
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Then F is a proper convex bi/unction from Rm to Rn, closed if f and g are 
closed. The optimal value in the convex program (P) associated with Fis 

infx {f(x) - g(Ax)} = inf FO, 

and (P) is strongly consistent if and only if there exists a vector x E ri ( domf) 
such that Ax E ri (<lorn g). The adjoint of Fis given by 

(F*x*)(u*) = g*(u*) - f*(A*u* + x*), Vu* E Rm, Vx* E Rn. 

The optimal value in the dual concave program (P*) is 

SUPu• {g*(u*) -f*(A *u*)} = sup F*O, 

and (P*) is strongly consistent if and only if there exists a vector u* E 

ri (<lorn g*) such that A *u* E ri (<lorn/*). 

PROOF. It is obvious that f(x) - g(Ax + u) is a proper convex 
function of (u, x), closed if f and g are closed. The assertions about F 
are thus valid. The optimal value in (P) is the infimum of FO by definition. 
The function Fu is identically + oo unless there exists an x such that f(x) 
and g(Ax + u) are both finite, i.e. unless Ax + u E <lorn g for some x E 

dom.f. Thus 
dom F= domg - A domf, 

and by the calculus of relative interiors (Theorem 6.6, Corollary 6.6.2) we 
have 

ri (<lorn F) = ri (domg) - A (ri (domf)). 

It follows that (P) is strongly consistent if and only if 

0 E [ri (<lorn g) - A (ri (<lorn/))], 

i.e. if and only if ri (<lorn g) and A (ri (domf)) have a point in common. 
The formula for F* is proved by direct calculation using the substitution 
y =Ax+ u: 

(F*x*)(u*) =inf {(Fu)(x) - (x, x*) + (u, u*)} 
x,u 

= inf {J(x) - g(Ax + u) - (x, x*) + (u, u*)} 
x,u 

= inf {J(x) - g(y) - (x, x*) + (y, u*) - (Ax, u*)} 
X,Y 

=inf {J(x) - (x, A*u* + x*)} +inf {(y, u*) - g(y)} 
x !I 

= -f*(A*u* + x*) + g*(u*). 

The statement about (P*) is justified like the statement about (P). 
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The convex and concave programs in Theorem 31.2 reduce to the 
extremum problems in Fenchel's Duality Theorem when m = n and A 
is the identity transformation I: Rn-+ R". Thus Fenchel's Duality Theorem 
is obtained from the problem of minimizing f - g by introducing the 
perturbation which replaces g by a translate g,, for each u, where 

g 11 (x) = g(x + u). 

The perturbation function in this convex program (P) 1s the (convex) 
function p given by 

p(u) = inf (f - g,i). 

The duality between minimizing f - g and maximizing g* - f* has to 
do with the behavior of p(u) around u = 0. Indeed, g* - f* is the 
objective function in the dual concave program (P*) (in which perturbation 
corresponds to translation of/*), so g* - f * is the concave conjugate of 
-p (Theorem 30.2). Assuming that domf n <lorn g is not empty, or that 
<lorn g* n domf* is not empty (and assuming for simplicity in applying 
results of §30 that f and g are closed, so that F is closed by Theorem 
31.2-this assumption is actually unnecessary in view of Corollary 
29.4.1), we have 

sup (g* - f*) = lim inf p(u)::::;: p(O) =inf([- g) 
u~o 

(Corollary 30.2.3). Condition (a) of Theorem 31.1 (which corresponds to 
(P) being strongly consistent, according to Theorem 31.2) is sufficient, as 
we have seen, for the existence of at least one vector x* such that 

g*(x*) - f*(x*) =sup (g* -/*)=inf (f- g). 

When inf (f - g) is finite, such vectors x* are precisely the Kuhn-Tucker 
vectors for (P) (Theorem 30.5), and a necessary as well as sufficient con
dition for their existence is that 

p'(O;y) > -oo, Vy 

(Corollary 29.1.2). For there to exist exactly one such vector x*, it is 
necessary and sufficient that p be finite and differentiable at u = 0, in 
which case the unique x* is -vp(O) (Corollary 29.1.3). 

Of course, the results in §29 and §30 can be applied in the same way 
to the more general programs in Theorem 31.2 to get conditions under 
which 

infx {f(x) - g(Ax)} =sup,.. {g*(u*) -f*(A *u*)}, 

and so forth. In particular, Theorem 30.4 and Corollary 30.5.2 yield a 
generalintion of Fenchel's Duality Theorem to these programs: 
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COROLLARY 31.2.1. Let f be a closed proper com' ex fitnction on R", let 
g be a closed proper concave function on R"', and let A be a linear trans
formation ji·om R" to R"'. One has 

infx {f(x) - g(Ax)} =sup,,. {g*(u*) - f*(A*u*)} 

if either of the fol101ring conditions is satisfied: 
(a) There exists an x E ri (domf) ~uch that Ax E ri (<lorn g); 
(b) There exists au* E ri (<lorn g*) such that A *u* E ri (domf*). 
Under (a) the supremum is attained at some u*, 1rhile under (b) the infimum 

is attained at some x. 
It can be shown that in Corollary 31.2.1, just as in Theorem 31.1, "ri" 

can be omitted whenever the corresponding function f or g is actually 
polyhedral. However, the proof will not be given here. 

The convex programs in Theorem 31.2 have some interesting special 
cases. When 

f(x) = <a*, x> + ocx I x z o), 

g(u) = -b(u I u z a), 

for given vectors a and a* in R"' and R", respectively, (P) 1s the 
linear program on p. 311, whose optimal value is 

inf {(a*, x) Ix z 0, Ax z a}. 

The conjugate functions in this case are given by 

f*(x*) = b(x* I x* :::;; a*), 

g*(u*) = (u*, a) - <)(u* I u* z 0), 

so that (P*) is the dual linear program, whose optimal value is 

sup {1u* a) I u* > 0 A *u* < a*'. \ ' - ' - J 

Another case worth noting is where f is an arbitrary positively homo
geneous closed proper convex function on R" (e.g. a norm) and g(u) = 
-b(u I D), where D is a non-empty closed convex set in R"'. By Theorem 
13.2, f is the support function of a certain non-empty closed convex set C 
in R", and f *(x*) = b(x* I C). The conjugate of g is given by 

g*(u*) =inf {(u, u*) I u ED} = -o*(-u* ID), 

and hence it is a positively homogeneous closed proper concave function. 
In (P) one minimizes f(x) subject to the constraint Ax ED, whereas in 
(P*) one maximizes g*(u*) subject to the constraint A *u* EC. 

The theory of subgradients can be employed to get conditions for the 
attainment of the extrema in Theorem 31.2. A necessary and sufficient 
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condition for the infimum off - gA to be attained at x is trivially that 

0 E o(f- gA)(x). 
In general, we have 

o(f - gA)(x) => of(x) - A *og(Ax) 

by Theorems 23.~ and 23.9, with equality in particular when the image of 
ri ( dom/) under A meets ri ( dom g) (Theorem 6. 7). The condition 

o E (of(x) - A*og(Ax)) 

is thus always sufficient and "usually" necessary for the infimum of/ - gA 
to be attained at x. Similarly, the condition 

o E (og*(u*) - A ~l*(A *u*)) 

is always sufficient and "usually" necessary for the supremum of g* -
f* A* to be attained at u*. When/ and g are closed (so that ~l* = (of)- 1 

and og* = (og)-1 by Theorem 23.5), there is a remarkable duality between 
these two sufficient-and-usually-necessary conditions. This may be seen 
by considering the subdifferential relations 

A*u* E of'(x), Ax E og*(u*), 

which we shall call the Kuhn-Tucker conditions for the programs in 
Theorem 3 ! .2. (This terminology will be justified in §36, where Kuhn
Tucker conditions will be defined for arbitrary convex programs.) A 
vector x satisfies 

o E (of(x) - A *og(Ax)) 

if and only if there exists a vector u* such that x and u* together satisfy 
the Kuhn-Tucker conditions. On the other hand, a vector u* satisfies 

0 E (og*(u*) - A of*(A*u*)) 

if and only if there exists a vector x such that u* and x satisfy the Kuhn
Tucker conditions. Thus the sufficient-and-usually-necessary condition 
for (P) can be satisfied if and only if the corresponding condition for (P*) 
can be satisfied. 

The significance of the Kuhn-Tucker conditions for the programs in 
Theorem 31.2 can also be stated and proved more directly, as follows. 

THEOREM 31.3. Let f be a closed proper convex junction on Rn, let g 
be a closed proper concave function on R"', and let A be a linear transfor
mation from Rn to R"'. In order that x and u* be t•ectors Sllch that 

f(x) - g(Ax) = inf (f - gA) 

=sup (g* - f*A*) = g*(u*) -f*(A*u*), 
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it is necessary and sufficient that x and u* satisfy the Kuhn-Tucker 
conditions: 

A *u* E of(x), Ax E og*(u*). 

PROOF. The Kuhn-Tucker conditions are equivalent to the conditions 

f(x) + f*(A*u*) = (x, A*u*), 

g(Ax) + g*(u*) = (Ax, u*) 

(Theorem 23.5), and these are in turn equivalent to 

f(x) - g(Ax) = g*(u*) -f*(A*u*), 

in view of the general inequality 

f(x) + f*(A*u*) z (x, A*u*) 

= (Ax, u*) z g(Ax) + g*(u*). 

The general inequality implies that 

inf (f - gA) z sup (g* - f* A*), 

so the theorem follows. 
COROLLARY 31.3.1. Assume the notation of the theorem. Assume also 

that the image of ri (<lorn/) under A meets ri (<lorn g). Then, in order that 
x be a vector at which the injimum off- gA is attained, it is necessary and 
sufficient that there exist a cector u* such that x and u* sati4ji the Kuhn
Tucker conditions. 

PROOF. Apply Corollary 31.2.1. 
In the linear program example mentioned above we have 

.rcx) = <a*, x> + ocx I x z o) 

g*Cu*) = <u*, a> - o(u* 1 u* z o) 

for certain vectors a and a*. Calculating by the rule in Theorem 23.8, we 
get 

a1cx) = a* + aocx I x z o) 

= {a* + {x* :::;; 0 I (x*, x) = O} if x z 0, 

0 if x * O; 

og*Cu*) = a - aocu* 1 u* z o) 

= {a + {u z 0 I (u*, u) = O} 

0 if u* * 0. 

if u* z 0, 
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The Kuhn-Tucker conditions in this case are therefore 

x ~ 0, A*u* - a*~ 0, 

Ax - a~ 0, u* ~ 0, 

(x, A*u* - a*)= 0, 

(Ax - a, u*) = 0. 
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In the example of "homogeneous" programs introduced following 
Corollary 31.2.1, we have 

f(x) = o*(x I C), g*(u*) = -o*(-u* ID), 

where C and D are closed convex sets. The Kuhn-Tucker conditions then 
mean that xis normal to Cat the point A*u*, and u* is normal to D at the 
point Ax (Corollary 23.5.3). 

In the case of the extremum problems in Fenchel's Duality Theorem, A 
is the identity transformation and the Kuhn-Tucker conditions reduce to 

x* E of(x), XE og*(x*). 

Some important consequences of Fenchel's Duality Theorem will now 
be stated. 

THEOREM 31.4. Let f be a closed proper convex function on Rn, and let 
K be a non-empty closed convex cone in Rn. Let K* be the negative of the 
polar of K, i.e. 

K* = {x* I (x*, x) ~ 0, Vx EK}. 

One has 
inf {j(x) Ix EK}= -inf {j*(x*) Ix* EK*} 

if either of the following conditions hold: 
(a) ri (domf) n ri K ~ 0; 
(b) ri (domf*) n ri K* ~ 0. 
Under (a), the injimum off* over K* is attained, while under (b) the 

infimum off over K is attained. 
If K is polyhedral, ri Kand ri K* can be replaced by Kand K* in (a) 

and (b). 
In general, x and x* satisfy 

f(x) =inf/= -inf/*= -f*(x*), 
K K* 

if and only !f 

x* E of(x), XEK, x* EK*, (x, x*) = 0. 

PROOF. Apply Theorem 31.1 with g(x) = -o(x I K). The conjugate 
of o(· I K) is o(· I K 0

) (Theorem 14.1), so we have 

g*(x*) = -o(-x* I K 0
) = -o(x* I K*). 
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The Kuhn-Tucker conditions in Theorem 31.3 reduce to x* E of(x), 
x E og*(x*). We have XE og*(x*) if and only if 

(x, x*) = g(x) + g*(x*) = -c~(x I K) - <~(x* I K*) 

(Theorem 23.5), and this means that x EK, x* EK* and (x, x*) = 0. 
COROLLARY 31.4.1. Let f be a closed proper convex function on Rn. 

One has 
inf {f(x) Ix ~ O} = -inf {f*(x*) Ix* ~ O} 

if either of the following conditions holds: 
(a) There exists a rector x E ri (domf) such that x ~ 0; 
(b) There exists a rector x* E ri (dom.f*) such t!tat x* ~ 0. 

Under (a), the second infimum is attained, while under (b) the first infimum 
is attained. In general, in order that the tll'o infima be the negatives of each 
other and be attained at x =(ti. ... ,~,,) and x* = (tj, ... , t;;), 
respectively, it is necessary and sufficient that x* E ~f(x) and 

t j ~ 0, tj ~ 0, t jtj = 0, j = 1, ... ' n. 

PROOF. Take K to be the non-negative orthant of Rn. 
COROLLARY 31.4.2. Let f be a closed proper convex function on Rn, 

and let L be a subspace of Rn. One has 

inf {f(x) I x EL} = -inf {j*(x*) I x* E L1-} 

if either of the following conditions is satisfied: 

(a) L n ri (domf) ~ 0; 
(b) L1- n ri (domf*) ~ 0. 

Under (a) the injimum off* on L1- is attained, while under (b) the injimum 
off on Lis attained. In general, x and x* satisfy 

.f(x) = infLf = -infL1-f* = -f*(x*) 

if and only (f x E L, x* EL 1- and x* E of(x). 
PROOF. Take K = L. II 
If f(x) = h(z + x) - (z*, x), where z and z* are given vectors and h 

is any closed proper convex function, then 

f*(x*) = h*(z* + x*) - (z, x*) - (z, z*) 

(Theorem 12.3). A remarkable duality between h and h* is brought to 
light when Theorem 31.4 and its corollaries are applied to .f with z and 
z* regarded as parameters. For simplicity, we shall state this duality only 
in the case where h and h* are both finite everywhere. 

COROLLARY 31.4.3. Let h be a convex function on Rn which is both 
finite and co-finite. Let K be any non-empty closed convex cone in Rn, and 
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let K* = -K0
• Then for every z and z* in R" one has 
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inf {h(z + x) - (z*, x)} + inf {h*(z* + x*) - (z, x*)} = (z, z*), 
XE].[_ x*E /{* 

where the injima are both.finite and attained. 
PROOF. Since his co-finite, h* is finite everywhere (Corollary 13.3.1). 

The convex function 
f(x) = h(z + x) - <z*, x) 

and its conjugate f* thus have dom/ = R" and domf* = R". Apply 
Theorem 31.4 to .f. II 

If f is taken to be a partial affine function in Corollary 31.4.1, one 
obtains the Gale-Kuhn-Tucker Duality Theorem for linear programs. 
This is obvious from any Tucker representation off and the corresponding 
Tucker representation off*; see ~12. Duality theorems for "quadratic" 
programs can be derived similarly from Corollary 31.4. l by taking/to be a 
partial quadratic function, and so forth. 

The subspaces Land L1- in Corollary 31.4.2 can, of course, be given 
various Tucker representations, as explained in §1, and in this way one 
can interpret the corollary as a result about extremal properties of "dual 
linear systems of variables." Observe that L can in particular be taken 
to be the space of all circulations in some directed graph G, in which event 
L1- is the space of all tensions in G (see §22). Then the two problems 
dual to each other are, on the one hand, to find a circulation x in G which 
minimizes f(x), and on the other hand to find a tension x* in G which 
minimizes.f*(x*). 

An especially important case of Corollary 31.4.2 is the one where f is 
separable, i.e. 

where / 1 , ... ,fn are closed proper convex functions on R. Then f* is 
separable too. In fact, as is easily verified, 

f*(x*) = f*(t{, ... , t;,) = fi(l;i) + · · · + f~(t;,), 
where f;* is the conjugate of .f;. The extremum problems in Corollary 
31.4.2 then become: 

(I) minimize f 1(t1) + · · · + fnCtn) subject to (t1, ... , tn) EL; 

(II) minimize;~Ca) + · · · + J:(t~) subject to (ti, ... , t~) E L.i. 

The Kuhn-Tucker conditions at the end of Corollary 31.4.2 become: 

(Ill) (t1, ... ,tn)EL, (ti, .. ,t~)EL.i, 

(t;,n)Er; for j=l, ... ,n, 
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where r; is the graph of the subdifferential of;· (The fact that, in this 
separable case, 

x* E oj(x) if and only if $j E ~(;($;) for j = 1, ... , n, 

can be deduced, as an exercise, directly from the definition of "sub
gradient.") 

The interesting thing about these Kuhn-Tucker conditions is that, 
according to Theorem 24.3, the sets r; which can occur are precisely the 
complete non-decreasing curves in R2 • Thus, given any set of n complete 
non-decreasing curves r; in R 2 and subspaces Land L1- in Rn, Corollary 
31.4.2 gives an extremal characterization of the solutions to system (III) 
in terms of problems (I) and (II), where each/; is a closed proper convex 
function on R determined by r; uniquely up to an additive constant. (In 
the case where L and L1- are the circulation space and tension space, 
respectively, of a directed graph Gas described in §22, the curve r; can be 
interpreted as a specified "resistance" relation between the amount of 
flow $;in the edge e; and the potential difference $j across e;.) 

Theorem 22.6 can be put to good use in the analysis of problems (I) 
and (II), because so many of the sets associated with the functions/;, like 
domf;, dam of; and of;($;), are real intervals. 

THEOREM 31.5 (Moreau). Let f be a closed proper convex function on 
Rn, and let w(z) = ct) lzl 2 • Then 

(JD w) + (f* Ow)= w, 

i.e. for each z E Rn one has 

infx {j(x) + w(z - x)} + infx• {j*(x*) + w(z - x*)} = w(z), 

where both infima are finite and uniquely attained. The unique vectors x and 
x* for which the respective infima are attained for a given z are the unique 
vectors x and x* such that 

z = x + x*, 
and they are given by 

x = \l(f* D w)(z), 

PROOF. Fix any z, and define g by 

x* E of(x), 

x* = V(f o w)(z). 

g(x) = -w(z - x). 

Then g is a finite concave function on Rn, and by direct calculation 

g*(x*) = infx { (x, x*) + w(z - x)} 

= -w(z - x*) + w(z). 
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According to Fenchel's Duality Theorem, 

inf {f - g} + inf {f* - g*} = 0, 

where both infima are finite and attained. This proves the infimum 
formula in the theorem. The vectors x and x* for which the respective 
infima are attained are unique, due to the strict convexity of w, and they 
are characterized as the solutions to the Kuhn-Tucker conditions 

x* E of(x), x = Vg*(x*) = z - x*. 

Since of* = (oJ)- 1 (Corollary 23. 5.1 ), it follows from the uniqueness 
that x and x* satisfy these conditions if and only if 

Z - XE of(x), Z - x* E of*(x*). 

The latter conditions can be written as 

z E [of(x) + Vw(x)] = o(f + w)(x), 

z E [of*(x*) + Vw(x*)] = o(f* + w)(x*) 

(Theorem 23.8), and hence as 

X E o(j + w)*(z), x* E o(j* + w)*(z). 

The uniqueness of x and x* implies that o can be replaced by \7 (Theorem 
25.1). Of course 

(f + w)* =f* D w*, (f* + w)* =JD w*, 

by Theorem 16.4, where w* = w by direct calculation. 
According to Theorem 31.5, given any closed proper convex function 

f on Rn, each z E Rn can be decomposed uniquely with respect to f into a 
sum 

z = x + x* 

such that (x, x*) belongs to the graph of of The component x in this 
decomposition, which is the unique x for which 

infx {j(x) + (1/2) lz - xl 2
} 

is attained, is denoted by prox (z If), and the mapping 

z-+ prox (z If) 

is called the proximation corresponding to f The proximation correspond
ing to f* is thus related to the proximation corresponding to f by the 
formula 

prox (z If*) = z - prox (z If), Vz. 
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If f is the indicator function of a non-empty closed convex set C, 
prox (z If) is the point of C nearest to z. If f = o(· I K), where K is a 
non-empty closed convex cone, so that f* = o(· I K 0

), the decomposition 
of z with respect to f yields a unique expression of z as a sum z = 

x + x* such that 
XEK, x* EK0

, (x, x*) = 0. 

This reduces to the familiar orthogonal decomposition of z with respect to 
a subspace L when K = L, K 0 = L1-. 

Theorem 31.5 says that prox C· If) is the gradient mapping of a certain 
differentiable convex function on Rn, namely f* D w. It follows then from 
Corollary 25.5.1 that prox C· If) is a continuous mapping of Rn into itself. 
The range of prox C· If) is of course dom of, the image of the graph of of 
under the projection (x, x*)-+ x. 

The continuity of prox C· If) also follows from the fact that prox C· If) 
is a contraction, i.e. 

lprox (z1 If) - prox (zo lf)I ~ lz1 - zol, 

To verify the contraction property, observe that for 

X; = prox (z; If), 

xj = prox (z; If*), 

i = 0, 1, 

i = 0, 1, 

one has Z; = X; + xj, i = 0, 1, and consequently 

iz1 - zol 2 
= lx1 - Xol 2 + 2(x1 - Xo, xi - xri) + lxi - xril 2

• 

Furthermore, since xj E of(x;), i = 0, 1, and of is a monotone mapping 
(as explained at the end of §24), one has 

Therefore 
lz1 - Zol 2 ~ lx1 - Xol 2

, 

and lx1 - x0 1 ~ lz1 - z0 1 as claimed. 
The theory of proximations leads to two important conclusions about 

the geometric nature of the graphs of subdifferential mappings: 
COROLLARY 31.5.1. Let f be any closed proper convex function on Rn. 

The mapping 
(x, x*)-+ x + x* 

is then one-to-one from the graph of of onto Rn, and it is continuous in both 
directions. (Thus the graph of of is homeomorphic to Rn.) 

COROLLARY 31.5.2. If f is any closed proper convex function on Rn, 
of is a maximal monotone mapping from Rn to Rn. 
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PROOF. We already know from the end of §24 that of is a monotone 
mapping. To prove maximality, we must show that, given any (y,y*) 
not in the graph of of, there exists some (x, x*) in the graph of of such 
that 

(y - x, y* - x*) < 0. 

This is easy: by Theorem 31.5, there exists some (x, x*) in the graph of of 
such that 

y + y* = x + x*, 

and for this (x, x*) we have 

(y - x, y* - x*) = -ly - xl 2 = -ly* - x*l 2 • 



SECTION 32 

The Maximum ef a Convex Function 

The theory of the maximum of a convex function relative to a convex 
set has an entirely different character from the theory of the minimum. 
For one thing, it is possible, even likely, in a given case that there are many 
local maxima besides the global maximum. This phenomenon is rather 
disastrous as far as computation is concerned, because once a local 
maximum has been found there is, more or less by definition, no local 
information to tell one how to proceed to a higher local maximum. In 
particular, there is no local criterion for deciding whether a given local 
maximum is really the global maximum. Generally speaking, one would 
have to make a list of all the local maxima and find the global maximum 
by comparison. 

There is some consolation, however, that the global maximum of a 
convex function f relative to a convex set C, generally occurs, not at just 
any point of C, but at some extreme point. This will be seen below. 

A good illustration of the difference between minimizing and maximizing 
a convex function is obtained by taking C to be a triangular convex set in 
R2 and/to be a function of the formf(x) =Ix - al, where a is a point in 
R 2 • Minimizing/ over C is the same as looking for the point of C nearest 
to a. This problem always has a unique solution, which could lie anywhere 
in C, depending on the position of a. Maximizing f over C, on the other 
hand, is the same as looking for the point of C farthest from a. The farthest 
point can only be one of the three vertices of C, but local (non-global) 
maxima may well occur at these vertices. 

The first fact to be established is a maximum principle resembling the 
one for analytic functions. 

THEOREM 32.1. Let f be a convex function, and let C be a convex set 
contained in domf If f attains its supremum relative to Cat some point of 
ri C, then f is actually constant throughout C. 

PROOF. Suppose the relative supremum is attained at a point z E ri C. 
Let x be a point of Cother than z. We must show thatf(x) = f(z). Since 

342 
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z E ri C, there is a real numberµ > 1 such that the pointy = (I - µ)x + 
µz belongs to C. For Jc = tt-1 , one has 

z = (1 - A)X + Ay, 

and the convexity off implies that 

0 <Jc< 1, 

f(~) ~ (I - Jc)f(x) + lf(y). 

At the same time, f(x) ~ f(z) and f(y) ~ f(z) because f(z) is the 
supremum off relative to C. If f(x) ~ f(z), we would necessarily have 
f(z) >f(x). Thenf(y) would have to be finite in the convexity inequality, 
(since otherwisef(y) = - oo andf(z) = - oo), and we would deduce the 
impossible relation 

f(z) < (I - Jc)f(z) + lf(z) = f(z). 

Thereforef(x) =f(z). II 
COROLLARY 32.1.1. Let f be a convex function, and let C be a convex 

set contained in domf Let W be the set of points (if any) where the 
supremum off relative to C is attained. Then Wis a union of faces of C. 

PROOF. Let x be any point of W. There exists a unique face C' of C 
such that x E ri C' (Theorem 18.2). The supremum off relative to C' is 
attained at x, so f must be constant on C' by the theorem. Thus C' c W. 
This demonstrates that Wis a union of faces. II 

Theorem 32.1 implies that a convex function/which attains its supremum 
relative to an affine set Min domf must be constant on M. As a matter of 
fact, this conclusion holds even if the supremum is merely finite, as has 
already been noted in Corollary 8.6.2. 

The convex hull operation is important in the study of maximization, 
according to the following theorem. 

THEOREM 32.2. Let f be a convex function, and let C = conv S, where 
S is an arbitrary set of points. Then 

sup {j(x) Ix EC} = sup {j(x) Ix ES}, 

where the first supremum is attained only when the second (more restrictive) 
supremum is attained. 

PROOF. This is obvious from the fact that a level set of the form 
{x if(x) < ex}, being a convex set, contains C if and only if it contains 
s. 11 

COROLLARY 32.2.1. Letf be a convex function, and let C be any closed 
convex set which is not merely an affine set or hall of an affine set. The 
supremum off relative to C is then the same as the supremum off relative 
to the relative boundary of C, and the former is attained only when the 
latter is attained. 
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PROOF. Here C is the convex hull of its relative boundary by Theorem 
18.4. 

Theorem 32.2 can be applied to a given closed convex set C by represent
ing C as the convex hull of its extreme points and extreme directions as in 
§18. 

THEOREM 32.3. Letfbe a convex function, and let C be a closed convex 
set contained in domf Suppose there are no half-lines in C on which f is 
unbounded above. Then 

sup {f(x) I x E C} = sup {j(x) I x E £}, 

where E is the subset of C consisting of the extreme points of C n L 1-, L 
being the lineality space of C. The supremum relative to C is attained only 
when the supremum relative to E is attained. 

PROOF. The hypothesis implies that/ is constant along every line in C 
(Corollary 8.6.2). The set D = C n L1- is a closed convex set containing 
no lines, and C = D + L. Given any x EC, the affine set x + L in C 
intersects D, and on this affine set/ is constant. Hence the supremum over 
C can be reduced to the supremum over D. Now, Dis the convex hull of 
its extreme points and extreme directions (Theorem 18.5), so 

D = K + conv E 

for a certain convex cone K. Every point of D which is not actually in 
conv E belongs to a half-line of the form 

{x + Jcy I A ~ O}, x Econv E, y EK. 

Along such a half-line,f(x + Jcy) is bounded above as a function of}. by 
hypothesis and hence is non-increasing as a function of}. (Theorem 8.6). 
The supremum of/relative to such a half-line is thus attained at the end
point x. This demonstrates that the supremum over D can be red!!,ced to 
the supremum over conv E. The desired conclusion follows then from 
Theorem 32.2. II 

COROLLARY 32.3.1. Let f be a convex function, and let C be a closed 
convex set contained in dom.f Si.ppose that C contains no lines. Then, if 
the supremum off relative to C is attained at all, it is attained at some 
extreme point of C. 

PROOF. If C contains no lines, then L = {O} and C n L1- = C. 
COROLLARY 32.3.2. Letf be a convex function, and let C be a non-empty 

closed bounded convex set contained in ri ( domf). Then the supremum off 
relative to C is finite, and it is attained at some extreme point of C. 

PROOF. Since C c ri ( dom.f), f is continuous relative to C (Theorem 
10.1 ). The supremum off relative to C is then finite and attained, because 
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C is closed and bounded. By the preceding corollary, it is attained at 
some extreme point. II 

COROLLARY 32.3.3. Letf be a convex function, and let C be a non-empty 
polyhedral convex set contained in domf Suppose there are no half-lines in 
C on which f is unbounded above. Then the supremum off relative to C is 
attained. 

PROOF. In this case, the set C n L1- in the theorem is polyhedral, so 
that Eis a finite set (Corollary 19.1.1 ). II 

COROLLARY 32.3.4. Let f be a convex function, and let C be a non
empty polyhedral convex set contained in dom f Suppose that C contains 
no lines, and that f is bounded above on C. Then the supremum off 
relative to C is attained at one of the (finitely many) extreme points of C. 

PROOF. This just combines Corollary 32.3.1 and Corollary 32.3.3. II 
Corollary 32.3.4 applies in particular to the problem of maximizing an 

affine function over the set of solutions to a finite system of weak linear 
inequalities. This is a fact of fundamental importance in the computational 
theory for linear programs. 

The condition Cc ri (domf) in Corollary 32.3.2 cannot be weakened 
to C c domf; even when/ is closed, without a risk that the supremum off 
relative to C might not be attained or might not be finite. This is 
illustrated by the following pair of examples. 

In the first example, we take/ to be the closed proper convex function on 
R2 defined by 

{

{ti/t2) - t2 if t2 > 0, 

f(t1, t2) = 0 if ti = t2 = 0, 

+ oo otherwise. 

(It can be seen that/ is the support function of the parabolic convex set 
which consists of the points (ti, t2) such that 

ti + 4t2 + 4 ~ 0, 

and this is one way to verify that/ is convex and closed.) We take C to be 
the non-empty closed bounded convex subset of domf defined by 

C={(ti.t2)iti~t2~ 1}. 
Clearly f( ti, t2) < 1 throughout C. The value off( ti, $2) approaches 1 as 
(ti, t2) moves toward (0, 0) along the boundary of C. Thus 1 is the 
supremum of/relative to C, and this supremum is not attained. 

The second example is obtained from the same/ with C replaced by the 
(non-empty closed bounded convex) set 

D = {(ti. t2) It~ ~ t2::::;; l}. 
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Along the boundary curve$~ = $2 of D, the value of/($1 , $2) is $;2 
- $2 , 

and this rises to + oo as ($1 , $2) moves toward the origin. Thus f is not 
even bounded above on D. 

The theory of subgradients can be used to some extent to characterize 
the points where a relative supremum is attained. 

THEOREM 32.4. Let f be a convex function, and let C be a convex set on 
which f is finite but not constant. Suppose that the supremum off relative to 
c is attained at a certain point x E ri (domf). Then every x* E oj(x) is a 
non-zero vector normal to Cat x. 

PROOF. Here f must be proper by Theorem 7.2, since f is assumed 
to be finite at a point of ri (domf). Let the supremum be IX, and let 

D = {z lf(z) ~IX}. 

By hypothesis, C is contained in D and xis a point of C such thatf(x) = IX. 
Since f is not constant on C, we have inf/< f(x) and hence 0 ¢: of(x). 
The set of(x) is non-empty' because x E ri ( domf) (Theorem 23.4). 
Every vector in of(x) is normal to D at x (Theorem 23.7) and hence in 
particular is normal to Cat x. II 

COROLLARY 32.4.1. Let f be a proper convex function, and let S be a 
non-empty set on which f is not constant. Suppose the supremum off 
relative to S is attained at a certain point x E ri (domf). Then every 
x* E of(x) is a non-zero vector such that the linear function (-, x*) attains 
its supremum relative to Sat x. 

PROOF. Let C = conv S. By Theorem 32.2, the supremum off relative 
to C is the same as the supremum relative to S. The supremum is.f(x), 
which is finite because x E ri (domf). The theorem can be applied to C. 
Thus every x* E of(x) is a non-zero vector normal to Cat x. The normality 
means that the linear function (·, x*) attains its supremum relative to C 
(which is again the supremum relative to S) at x. II 

A noteworthy case of Theorem 32.4 is where C is the unit Euclidean 
ball. The vectors normal to Cat a boundary point x are then just the vectors 
of the form Ax, A > 0, so that the maximization off over C leads to the 
"eigenvalue" condition 

},x E of(x), lxl =I. 
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SECTION 33 

Saddle-Functions 

Let C and D be subsets of Rm and Rn respectively, and let Kbe a function 
from C x D to [-oo, + oo]. We say that Kis a concave-convex function if 
K(u, v) is a concave function of u E C for each v E D and a convex function 
of v ED for each u EC. Convex-concave functions are defined similarly. 
We speak of both kinds of functions as saddle-functions. 

The theory of saddle-functions, like that of purely convex or concave 
functions, can be reduced conveniently to the case where the functions 
are everywhere defined but possibly infinity-valued. There are some 
ambiguities, however, which at first may seem awkward or puzzling. 

Let K be a concave-convex function on C X D. In extending K(u, v) 
beyond Das a convex function of v for a fixed u EC, we can set K(u, v) = 

+ oo. On the other hand, in extending K(u, v) beyond C as a concave 
function of u for a fixed v ED, we naturally set K(u, v) = - oo. This leaves 
us in doubt as to how K(u, v) should be extended to points (u, v) such that 
u ¢: C and v ¢: D. It turns out that there is usually not one natural extension 
but two, or even more. The functions K1 and K2 defined by 

ru,u) if UE C, v ED, 

K 1 (u, v) = + 00 if UE C, v ¢: D, 

-00 if u ¢: C, 

ru,u) if UE C, v ED, 

K2(u, v) = - oo if u ¢: c, VE D, 

+oo if v ¢: D, 

are the simplest examples of concave-convex functions on Rm X Rn which 
agree with Kon C x D. We shall call K1 the lower simple extension of K 
and K2 the upper simple extension of K. Either K1 or K2 is adequate for 
most of the analysis of K. We shall therefore develop most of the theory 
of saddle-functions in terms of saddle-functions on all of Rm X Rn, 
pointing out from time to time relationships with results about restricted 
saddle-functions. 

349 
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Given a concave-convex function K on R"' x Rn, we can apply the 
convex and concave closure operations to achieve some regularization. 
The function obtained by closing K(u, v) as a convex function of v for each 
fixed u is called the convex closure of K and is denoted by clv K or cl2 K. 
Similarly, the function obtained by closing K(u, v) as a concave function of 
u for each fixed v is called the concave closure of Kand is denoted by cl,, K 
or cl1 K. We shall see in a moment that these closure operations preserve 
concavity-convexity. If K coincides with its convex closure, we say K 
is convex-closed, etc. 

There is a surprising correspondence between saddle-functions and 
convex bifunctions which is at the heart of the theory of saddle-functions. 
This correspondence is a generalization of the classical correspondence 
between bilinear functions and linear transformations. 

If A is any linear transformation from R"' to Rn, the function K defined 
by 

K(u, x*) = (Au, x*) 

is a bilinear function on R"' x R". Conversely, of course, any bilinear 
function K on R"' X R" can be expressed this way for a unique linear 
transformation A from R"' to R". The analogous correspondence between 
saddle-functions K on R"' x Rn and bifunctions F from R'" to R" is one
to-one modulo closure operations, and it is based on the conjugacy 
correspondence rather than the ordinary inner product. 

For the sake of emphasizing the analogies with linear algebra, it is con
venient to introduce an inner product notation for the conjugate of a 
convex or concave function .f: 

(j, x*) = (x* ,f) = f *(x*). 

(More general "inner products" <J, g), where f is a convex function and g 
is a concave function, will be defined in §38.) Note that (j, x*) = (x, x*) 
when f is the indicator of the point x, i.e. when 

f(z) = {
0 

+oo if z ~ x. 

if z = x, 

For any convex or concave bifunction F from R"' to Rn, we form 

(Fu, x*) = (x*, Fu) = (Fu)*(x*) 

as a function of (u, x*) on R'" x Rn. Thus, by definition, 

(Fu, x*) = supx { (x, x*) - (Fu)(x)} 
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if Fis convex, whereas 

(Fu, x*) = infx { (x, x*) - (Fu)(x)} 
if Fis concave. 

If F is the convex indicator bifunction of a linear transformation A 
from R"' to Rn, i.e. 

(Fu)(x) = o(x I Au), 
we have 

(Fu, x*) = (Au, x*). 

(Note: when the graph function of the bifunction Fis actually affine, 
it would be possible to regard F as either convex or concave, so that 
(Fu, x*) might be ambiguous. This causes no real technical difficulty, 
however, since it is always clear from the context how a given Fis to be 
regarded. Such ambiguities could be eliminated rigorously by introducing 
a concept of an "oriented bifunction," meaning a bifunction paired with 
one of the symbols "sup" or "inf." For a "sup" oriented bifunction one 
would define (Fu, x*) using "sup," while for an "inf" oriented bifunction 
one would define (Fu, x*) using "inf." This device is not worth the effort 
in the present case, although we shall have occasion to employ it in a 
related situation in §39.) 

THEOREM 33.1. ff F is any convex bifunction from Rm to Rn, then 
(Fu, x*) is a concave-convex function of (u, x*) which is convex-closed, and 
one has 

(cl (Fu))(x) = supx• {(x, x*) - (Fu, x*)}. 

On the other hand, given any concave-convex function Kon R'" x R", define 
the bifunction F from Rm to Rn by 

(Fu)(x) = supx• {(x, x*) - K(u, x*)}. 

Then Fis convex, Fu is closed on Rn for each u E Rm, and one has 

(Fu, x*) = (cl 2 K)(u, x*). 

(Similarly for concave bi/unctions F and convex-concave functions K.) 

PROOF. Since (Fu, ') is just (Fu)* by definition, it is a closed convex 
function of x*, and its conjugate is cl (Fu) (Theorem 12.2). This proves the 
first part of the theorem, except for the fact that (Fu, x*) is concave in u. 
To prove the concavity, fix any x* in Rn. We have 

-(Fu, x*) = infx h(u, x), VuERm, 

where h is the convex function on Rm+n defined by 

h(u, x) = (Fu)(x) - (x, x*). 
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Thus -(Fu, x*) as a function of u is Ah, where A is the projection 
(u, x)-+ u. It follows that -(Fu, x*) is convex in u (Theorem 5.7), and 
hence that (Fu, x*) is concave in u. 

Next consider the bifunction F defined in the theorem for a given 
concave-convex function K. For each x*, the function 

kx.(u, x) = (x, x*) - K(u, x*) 

is a (jointly) convex function of (u, x) on R"'+". As the pointwise supremum 
of the collection of such functions, the graph function of F is a convex 
function on Rm+n. Thus Fis a convex bifunction. Of course, the formula 
for Fu says that Fu is the conjugate of the convex function K(u, ·)for each 
u E Rm, so Fu is closed and (Fu)* = (Fu, -) is the closure of K(u, · ). The 
latter is (cl 2 K)(u, ·)by definition. II 

COROLLARY 33.1.1. If K is any concave-convex function on R"' x Rn, 
then cl1 Kand cl2 Kare concave-convex functions such that cl1 K is concave
closed and cl2 K is convex-closed. (Similarly for convex-concave functions.) 

PROOF. According to the theorem, (cl 2 K)(u, x*) is of the form 
(Fu, x*) for a certain convex bifunction F, where (Fu, x*) is concave in u 
and closed convex in x*. Similarly in all the other cases. II 

The convex bifunctions F from R'" to Rn correspond one-to-one with 
their graph functions 

f(u, x) = (Fu)(x), 

which are just the convex functions on Rm+n. To obtain (Fu, x*) from/, 
one takes the conjugate of f(u, x) as a function of x for each u. This may 
be thought of as a partial conjugacy operation, as opposed to the ordinary 
conjugacy operation, where one takes 

f*(u*, x*) =sup {(u, u*) + (x, x*) -f(u, x)}. 
u.x 

In this sense, Theorem 33.1 says that convex-closed saddle-functions are 
just the partial conjugates of (purely) convex functions. 

Let us call a convex or concave bifunction F image-closed if the function 
Fu is closed for every u. (If Fis closed, then Fis in particular image
closed.) For such bifunctions, a one-to-one correspondence is implied by 
Theorem 33.1. 

COROLLARY 33.1.2 The relations 

K(u, x*) = (Fu, x*), Fu= K(u, ·)*, 

express a one-to-one correspondence between the convex-closed concave
convex functions Kon Rrn x Rn and the image-closed convex bifunctions F 
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from R"' to R". (Similarly for concave-closed saddlejunctions and image
closed concave bifunctions.) 

In the case of polyhedral convexity, the correspondence between 
saddle-functions and bifunctions is somewhat simpler. 

COROLLARY 33.1.3. Let F be a polyhedral convex bzfunction from Rm 
to Rn. Then (Fu, x*) is a polyhedral convex function of x* for each u and 
a polyhedral concave function of u for each x*. Moreover, assuming Fis 
proper, F can be expressed in terms of (Fu, x*) by the formula 

(Fu)(x) = sup"'. { (x, x*) - (Fu, x*) }. 

PROOF. For each u, Fu is a polyhedral convex function. If Fis proper, 
Fu nowhere has the value - ((); since the epigraph of Fu is a closed set, 
this implies cl (Fu) = Fu. The conjugate (Fu, ') of Fu is a polyhedral 
convex function by Theorem 19.2. Now in the proof of Theorem 33.1 
it was shown that the function u-+ -(Fu, x*) was the image of a certain 
convex function h under a linear transformation A. When Fis polyhedral, 
the It involved is actually polyhedral, so that the image Ah is not only 
convex but polyhedral (Corollary 19.3.1). Therefore (Fu, x*> is polyhedral 
concave rn u. II 

By Corollary 33.1.2, the relations 

L(u, x*) = (u, Gx*), Gx* = L(·, x*)*, 

express a one-to-one correspondence between the concave-closed concave
convex functions L on Rni x Rn and the image-closed concave bifunctions 
G from Rn to Rm. Of course, if Fis any convex bifunction from Rm to Rn, 

F:u-+ Fu:x-+ (Fu)(x), 

the adjoint F* of Fis a closed concave bifunction from Rm to Rn, 

F*: x*-+ F*x*: u*-+ (F*x*)(u*). 

It follows that (u, F*x*> is concave-convex and concave-closed. 
The exact relationship between (Fu, x*) and (u, F*x*> is explained by 

the next theorem and its corollaries. 

THEOREM 33.2. For any convex or concave bifunction F from Rm to Rn, 
one has 

(u, F*x*> = cl,, (Fu, x*), 

clx• (u, F*x*) = ((cl F)u, x*). 
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PROOF. Suppose that Fis convex. By definition 

(F*x*)(u*) = inf {(Fu)(x) - (x, x*> + (u, u*>} 
U,;r 

= inf {<u, u*) - sup {<x, x*> - (Fu)(x)}} 
u :r 

=inf {<u, u*> - <Fu, x*/}. 
u 

Thus, for the concave-convex function K(u, x*) = '.Fu, x*), F* is the 
bifunction from Rn to R"' obtained by taking the (concave) conjugate of 
K(u, x*) in u for each x*. This situation is covered by Theorem 33. l (with 
only differences in notation): one has 

(u, F*x*) = (cl 1 K)(u, x*) = clu (Fu, x* ;. 

The same formula holds when F is concave, as is seen by interchanging 
"inf" and "sup." Applying this formula to F* in place of F, one gets 

(F**u, x*) = clx• (u, F*x*>· 

By Theorem 30.1, F* * = cl F. 
COROLLARY 33.2.1. Let F be any convex or concave bifunction from 

R"' to Rn. If u E ri (dom F), one has 

(Fu, x*) = (u, F*x*) 

for every x* E Rn. On the other hand, 1f Fis closed and x* E ri (dom F*) 
the same equation holds for every u E R"'. 

PROOF. Suppose Fis convex. If u ¢: dom F, Fu is identically + oo and 
(Fu, x*) = - oo for every x*. If u Edom F, Fu is not identically + oo, so 
(Fu, x*) > - oo for every x*. Thus, for each x*, the effective domain of 
the concave function u -+ (Fu, x*) is dom F. A concave function agrees 
with its closure on the relative interior of its effective domain, and here 
the closure function is (', F*x*) by Theorem 33.2. Thus (Fu, x*) and 
(u, F*x*) agree when u E ri (dom F). The argument is similar when Fis 
concave. The second fact in the corollary is proved by applying the first 
fact to F*. 11 

COROLLARY 33.2.2. Let F be a proper polyhedral convex or concave 
bi/unction. Then 

(Fu, x*) = (u, F*x*) 

holds, except when both u ¢: dom F and x* ¢: dom F*. (In the exceptional 
case, one of the quantities is + oo and the other - oo.) 

PROOF. Since F is polyhedral, we have cl F = F. The function u-+ 
(Fu, x*) is polyhedral by Theorem 33.1, and hence it coincides with its 
closure on its effective domain (rather than just on the relative interior of 
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this effective domain). The proof of Corollary 33.2.1 may be sharpened 
accordingly. II 

The preceding results show that, for a convex or concave bifunction F, 
the inner product equation 

(Fu, x*) = (u, F*x*) 

holds for "most" choices of u and x*. This provides more justification for 
the "adjoint" terminology which we have introduced for F*. Even though 
(Fu, x*) and (u, F*x*) may differ for certain choices of u and x*, 
Theorem 33.2 implies that, when cl F = F, the functions (Fu, x*) and 
(u, F*x*) completely determine each other and determine F and F* as 
well. 

When Fis the convex indicator bifunction of a linear transformation 
A from Rm to Rn, F* is the concave indicator bifunction of the adjoint 
transformation A*, and the inner product equation for F and F* reduces 
to the classical relation 

(Au, x*) = (u, A *x*). 

The inner product equation for a convex bifunction F and its adjoint 
asserts (by definition) that 

supx { (x, x*) - (Fu)(x)} = infu• { (u, u*) - (F*x*)(u*)}. 

In other words, it asserts a certain relationship between a problem of 
maximizing a concave function of x and a problem of minimizing a convex 
function of u*. There is a close connection between this and the duality 
theory for convex programs. 

In the generalized convex program (P) associated with a closed convex 
bifunction Fas in §29, one studies the function inf F around u = 0. By 
definition, 

(inf F)(u) =inf Fu= -supx {(x, 0) - (Fu)(x)} = -(Fu, 0). 

In the dual program (P*), one studies sup F* around x* = 0, where 

(sup F*)(x*) = sup F*x* = -infu• { (0, u*) - (F*x*)(u*)} 

= -(0, F*x*). 

The condition that the optimal values in (P) and (P*) be equal, i.e. that 

inf FO = sup F*O, 

is thus equivalent to the condition that 

(FO, 0) = (0, F*O). 

More generally, fix any u E Rm and x* E Rn, and define the convex 
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bifunction H from R"' to Rn by 

(Hv)(y) = (F(u + v))(y) - (y, x*). 

The (concave) adjoint H* of His then given by 

(H*y*)(v*) =inf {(Hv)(y) - (y, y*) + (u, v*)} 
l),'1/ 

=inf {(F(u + v))(y) - (y, x* + y*) + (v, v*)} 
V,Y 

=inf {(Fw)(y) - (y, x* + y*) + <w - u, v*)} 
w.u 

= (F(x* + y*))(v*) - (u, u*). 

Thus in the convex program (Q) associated with H the optimal value is 

inf HO= infy {(Fu)(y) - (y, x*)} = -(Fu, x*), 

while in the dual concave program (Q*) the optimal value is 

sup H*O = sup
0

• {(F*x*)(v*) - (u, v*)} = -(u, F*x*). 

Therefore, in general, the question of whether 

(Fu, x*) = (u, F*x*) 

for a certain u and x* is equivalent to the question of whether normality 
holds for a certain dual pair of programs (Q) and (Q*). 

The fact that one can sometimes have (Fu, x*) = - oo and (u, F*x*) = 
+ oo corresponds to the fact that (Q) and (Q*) can sometimes both be 
inconsistent. This extreme situation occurs when both u ¢: dom F and 
x* ¢: dom F* (because then Fu is the constant function + oo, while F*x* 
is the constant function - oo). Similarly, since there exist dual pairs of 
(abnormal) programs in which the optimal values are both finite but 
unequal, or in which one of the optimal values is finite and the other is 
infinite (see the examples in §30), it really is possible on some occasions to 
have (Fu, x*) and (u, F*x*> both finite but unequal, or one finite and the 
other infinite. The possibility of such discrepancies will be analyzed 
thoroughly in §34, where explicit examples will be given. 

A saddle-function K on Rrn x Rn is said to be fully closed if it is both 
convex-closed and concave-closed. For example, K is fully closed if it is 
finite everywhere (inasmuch as a finite convex or concave function is 
continuous and hence closed). By Corollary 33.1.2 and Theorem 33.2, the 
fully closed concave-convex functions are the functions of the form 
K(u, x*) = (Fu, x*), where Fis a convex bifunction such that 

(Fu, x*> = (u, F*x*), Vu, Vx*. 
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Clearly Fhas this property if dom F = Rm, or if Fis closed and dom F* = 

Rn, by Corollary 33.2.1. But F cannot have this property if dom F ~ Rm 
and dom F* ~ Rn, since in this case, as pointed out in the preceding 
paragraph, (Fu, x*) and (u, F*x*) are oppositely infinite for certain 
choices of (u, x*). The class of fully closed saddle-functions thus corre
sponds to only a special class of closed bifunctions. For many purposes, 
weaker notions of closedness are needed. 

A concave-convex function K will be said to be lower closed if 
cl2 (cl1 K) = Kand upper closed if cl1 (cl2 K) = K. The way to remember 
which is which, is that lower closedness entails lower semi-continuity in the 
argument of K for which this is natural, the convex argument, whereas 
upper closedness entails upper semi-continuity in the concave argument. 
(If K is convex-concave, instead of concave-convex, we say K is lower 
closed if cl1 (cl2 K) = Kand upper closed if cl2 (cl1 K) = K.) 

A saddle-function is fully closed if and only if it is both lower closed and 
upper closed. 

THEOREM 33.3. The relations 

K(u, x*) = (Fu, x*), Fu = K(u, ·)*, 

define a one-to-one correspondence between the lower closed concave-convex 
functions Kon Rm X Rn and the closed convex bzfunctions F.from Rrn to Rn. 
Similarly for upper closed saddle-functions and closed concave bi/unctions. 

PROOF. By Theorem 33.2, the convex bifunction cl F satisfies 

((cl F)u, x*> = cl'". (u, F*x*) = cl'". cl" (Fu, x*). 

Thus the saddle-function K(u, x*) = (Fu, x*) is lower closed if and only if 

((cl F)u, x*) = (Fu, x*), Vu, Vx*. 

For image-closed convex bifunctions F, the latter condition is equivalent 
to cl F = F. The result thus follows from the correspondence already 
established in Corollary 33.1.2. II 

COROLLARY 33.3.1. Let Ji and K be concave-convex functions on 
Rm x Rn. In order that there exist a closed convex bzfunction F (necessarily 
unique) such that 

fi(u, x*) = (Fu, x*), K(u, x*) = (u, F*x*), 

it is necessary and sufficient that !5. and K satisfy the relations 

These relations imply that !5. is lower closed, K is upper closed, and !5. ~ K. 
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PROOF. The necessity of the condition is already known from Theorem 
33.2. To prove the sufficiency, we observe that the closure relations imply 

cl2 Ccl1 E) = cl2 K = E· 
so that E is lower closed and E(u, x*) = (Fu, x*> for a unique closed 
convex bifunction F. We then have 

K(u, x*) = (cl1 E)(u, x*) = clu (Fu, x*> = (u, F*x*> 

by Theorem 33.2, and everything follows. 
COROLLARY 33.3.2. The relations 

define a one-to-one correspondence between the lower closed concave-convex 
functions E and the upper closed concave-convex functions Kon Rrn x Rn. 

PROOF. This is immediate from Theorem 33.3, Theorem 33.2 and the 
fact that the adjoint correspondence for closed convex and concave 
bifunctions is one-to-one. II 

COROLLARY 33.3.3. Let C and D be non-empty closed convex sets in 
Rm and Rn, respectively, and let K be any finite continuous concave-convex 
function on C X D. Let E and K be the lower and upper simple extensions of 
K to Rm X Rn, respectively. Then Eis lower closed, K is upper closed, and 
there exists a unique closed convex bzfunction F from Rm to Rn such that 

E(u, x*) = (Fu, x*>, K(u, x*) = (u, F*x*). 

The bzfunctions F and F* are expressed in terms of K by 

{
sup {(x, x*> - K(u, x*) Ix* ED} 

(Fu)(x) = 
+oo if utf:C, 

if u EC, 

{
inf {(u, u*> - K(u, x*) I u EC} if x* ED, 

(F*x*)(u*) = 
-oo if x*tf:D. 

In particular, dam F = C and dam F* = D. 
PROOF. The continuity of Kand the closedness of C and D ensure that 

cl1 E = K and cl2 K = E The result is then immediate from Corollary 
33.3.1 and the definitions. II 
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Closures and Equivalence Classes 

A pairing has been established in §33 between the lower closed saddle
functions K_ and the upper closed saddle-functions Kon R"' x Rn, where 
each pair corresponds to a uniquely determined closed convex bifunction 
and its (closed concave) adjoint. This pairing will be extended below to an 
equivalence relation among closed saddle-functions, "closed" being 
a slightly weaker notion than "lower closed" or "upper closed." The 
structure of closed saddle-functions will be analyzed in detail. We shall 
show that each "proper" equivalence class of closed saddle-functions is 
uniquely determined by its "kernel," which is a finite saddle-function on 
a product of relatively open convex sets. 

Let K be any saddle-function on R"' x R". Having formed cl1 K and 
cl2 K (which are saddle-functions by Corollary 33.1.1), we can proceed 
to form cl2 cl1 Kand cl1 cl2 K. If K is concave-convex, cl2 cl1 K is called the 
lower closure and cl1 cl2 K the upper closure of K. If K is convex-concave, 
the terminology is reversed. By definition, then, K is lower closed if and 
only if it coincides with its lower closure, etc. It is not obvious that lower 
and upper closures are always lower and upper closed, respectively, i.e. that 

cl2 cl1 cl2 cl1 K = cl2 cl1 K, V K, 

cl1 cl2 cl1 cl2 K = cl1 cl2 K, V K, 

but this is true, as we now demonstrate. 

THEOREM 34.1. If K is any saddle:function on R"' x R", the lower 
closure of K is a lower closed saddle-function and the upper closure of K is an 
upper closed saddle-function. 

PROOF. We assume for definiteness that K is concave-convex. Let F be 
the bifunction from R"' to Rn defined by Fu = K(u, ·)*. According to 
Theorem 33.1, Fis convex and 

(Fu, x*) = (cl2 K)(u, x*). 

When the closure operation in u is applied to both sides of this equation, 
we get 

(u, F*x*) = (cl1 cl2 K)(u, x*) 

359 



360 VII: SADDLE-FUNCTIONS AND MINIMAX THEORY 

by Theorem 33.2. Since F* is a closed concave bifunction (Theorem 30.1), 
we may conclude from Theorem 33.3 that cl1 cl2 K is an upper closed 
concave-convex function. The proof for the lower closure operation is 
analogous. II 

For reasons explained just prior to Theorem 33.3, one cannot hope to 
construct from an arbitrary given saddle-function K a saddle-function 
which is both lower closed and upper closed by repeated application of 
cl1 and cl2. In general, the lower and upper closure operations do not 
quite produce the same result: 

cl2 cl1 K ~ cl1 cl2 K. 

This discrepancy is a fundamental one, and it plays a crucial role in the 
theory of saddle-functions. The typical nature of the difference between 
cl2 cl1 Kand cl1 cl2 K will be illustrated by examples. 

The saddle-function in the first example will be concave-convex on the 
plane R x R. Let C and D be the open unit interval (0, 1). On the open 
square C x D, let K be given by the formula 

O<v<I. 

(Note that this formula does give a function which is concave in u and 
convex in v.) To get the values of Kon the rest of R x R, take either the 
lower simple extension or the upper simple extension of this function on 
C x D. (It makes no difference which extension one takes.) The reader 
may verify (as a very good exercise for understanding the nature of the 
closure operations for saddle-functions) that 

uv if uE [O, 1], vE [O, 1], (u,v) ~ (0,0), 

if (u, v) = (0, 0), 

+oo if uE [O, 1], vtf= [O, 1], 

-00 if u ¢: [O, 1], v E [O, 1], 

+oo if utf= [O, 1], v¢: [O, 1], 

UV if uE [0, l], VE [0, l], (u,v) ~ (0,0), 

0 if (u, v) = (0, 0), 

(cl2 cl1 K)(u, v) = +oo if u E [O, 1], v ¢: [O, 1], 

-00 if utf= [O, 1], vE [O, 1], 

-00 if u ¢: [O, 1], v ¢: [O, I]. 

Thus cl1 cl2 Kand cl2 cl1 K differ in two places. The less significant place 
is where u ¢: [O, 1] and v ¢: [O, 1], one of the functions having the value + oo 
and the other - oo. To some extent, this discrepancy is a just consequence 
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of our conventions regarding ± oo, although it does have a natural meaning 
in minimax theory, as will be seen later. The really interesting discrepancy is 
at the origin, where one of the functions has the value 1 and the other the 
value 0. This reflects an intrinsic property of the function uv on the unit 
square: there simply is no way to define 0° so as to have uv both lower semi
continuous in v and upper semi-continuous in u at the (0, 0) corner of the 
square. Any value between 0 and 1 can be assigned to 0° so as to make uv 
concave-convex on the square, but there is no unique natural value. 

As another example, let K be the lower or upper simple extension of the 
concave-convex function on the positive quadrant of R x R with values 
given by u/v. Then 

r if u ~ 0, v > 0, 

(cl1 cl2 K)(u, v) = - oo if u < 0, v > 0, 

+oo if v ~ 0, 

r 
if u ~ 0, v > 0, 

(cl2 cl1 K)(u, v) = O 
if (u, v) = (0, 0), 

+oo if u ~ 0, v ~ 0 and (u, v) ~ (0, 0), 

-00 if u < 0. 

Thus cl1 cl2 K differs from cl2 cl1 K when u < 0 and v ~ 0 (cl1 cl2 K 
having the value + oo and cl2 cl 1 K the value -w), and when (u, v) = 

(0, 0) (cl1 cl2 Khaving the value+ oo an<:l cl2 cl1 Kthe value 0). The notable 
feature of this example is that the set of points where cl2 cl1 K is finite is 
not the same as the set where cl1 cl2 K is finite, and it is not even a product 
set in R x R. 

In certain freakish cases, cl1 cl 2 Kand cl2 cl1 K differ so completely as 
to be almost unrelated to each other. Let Kbe the concave-convex function 
on R x R defined by 

{

+ 00 if UV > 0, 

K(u, v) = 0 if uv = 0, 

-00 if UV< 0. 

Then trivially 

(cl1 cl2 K){u, v) = {~ 
00 

if u = 0, 

if u ~ 0, 

(cl2 cl1 K)(u, v) = {
0 if v = 0, 

+oo if v ~ 0. 
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Note that the set of points where K(u, v) is finite is far from being a product 
of convex sets. 

In the uv example, one plainly has 

cl2 (cl1 cl2 K) = cl2 cl1 K, 

cl1 (cl2 cl1 K) = cl1 cl2 K. 

Further application of cl1 and cl2 thus merely produces an oscillation 
between the lower and upper closures, and it accomplishes nothing. 
Indeed, the concave-convex functions K = cl1 cl2 K and !5. = cl2 cl1 K 
satisfy the relations 

so that by Corollary 33.3.1 there exists a unique closed convex bifunction 
F from R to R such that 

(cl2 cl1 K)(u, v) = (Fu, v), 

(cl1 cl2 K)(u, v) = (u, F*v). 

The situation is entirely the same in the u/v example. In the freakish 
example, however, the functions cl1 cl2 Kand cl2 cl1 Kare fully closed, yet 
different, and no application of cl1 or cl2 turns either function into the 
other. 

The concept of the effective domain of a saddle-function will be useful 
in describing the general structure of lower and upper closures. Given any 
concave-convex function K on Rm x Rn, we define 

dom1 K = {u I K(u, v) > - oo, Vv}, 

dom2 K = {v I K(u, v) < + oo, Vu}. 

Observe that dom 2 K is the intersection of the effective domains of the 
convex functions K(u, ·) as u ranges over Rm, while dom1 K is the inter
section of the effective domains of the concave functions K(·, v) as v 
ranges over Rn. In particular, dom1 K is a convex set in Rm and dom2 K 
is a convex set in Rn. The (convex) product set 

dom K = dom1 K x dom2 K 

is called the effective domain of K. Since 

-oo < K(u, v) < +oo 

when u E dom1 Kand v E dom2 K, K is finite on dom K. However, there 
may also be certain points outside of dom K where K is finite, as in the 
u/v example above. If dom K ~ 0, K is said to be proper. 
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If K is the lower simple extension of a finite saddle-function on a non
empty convex set C x D, one has dom1 K = C and dom2 K = D, so that 

domK= C x D 

and K is proper. Similarly if K is an upper simple extension. 
Two concave-convex functions K and L on Rm x Rn are said to be 

equivalent if cl1 K = cl1 L and cl2 K = cl2 L. For example, the lower and 
upper simple extensions of a finite saddle-function on a convex C x D ~ 0 
are equivalent. It is clear from the properties of the closure operations for 
convex and concave functions that equivalent saddle-functions must 
nearly coincide. 

If cl1 K and cl2 K are both equivalent to K, K is said to be closed. In 
view of the fact that 

the conditions 

are necessary and sufficient for K to be a closed saddle-function. Trivially, 
if K is closed and L is equivalent to K, then L is closed. 

THEOREM 34.2. Given any closed convex bzfunction F from Rm to Rn, let 

!S_(u, x*) = (Fu, x*), K(u, x*) = (u, F*x*), 

and let D.( F) be the collection of all concave-convex functions K on Rm x Rn 
such that fS. ~ K ~ K. Then Q(F) is an equivalence class (containing Kand 
K), and all the functions in Q(F) are closed. Conversely, every equivalence 
class of closed concave-convex functions is of the form Q(F) for a unique 
closed convex bzfunction F. 

For any Kin D.(F), one has 

Moreover, 

dom K = dom F x dom F*, 

(Fu)(x) = sup"'. { (x, x*) - K(u, x*)}, 

(F*x*)(u*) = infu {(u, u*) - K(u, x*)}. 

K(u, x*) = (Fu, x*) = (u, F*x*) 

zfu E ri (dom F) or if x* E ri (dom F*). 

PROOF. First we shall show that each equivalence class of closed 
concave-convex functions is contained in a unique D.(F). Then we shall 
show that the functions in Q(F) are equivalent and have all the properties 
claimed. This will establish the theorem. 
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Let K be any closed concave-convex function on R"' x Rn. Then 

so by Corollary 33.3.1 there exists a unique closed convex bifunction F 
such that 

(cl2 K)(u, x*) = (Fu, x*>, (cl1 K)(u, x*) = (u, F*x*). 

Inasmuch as 
cl2 K ~ K ~ cl1 K, 

K must belong to Q(F). Furthermore, if Lis any concave-convex function 
equivalent to K, we have 

cl2 K = cl2 L ~ L ~ cl1 L = cl1 K, 

and therefore L too must belong to !.2.(F). 
Now let K be an arbitrary member of !.l.(F). By Theorem 33.2, 

cl1 K = cl1 cl1 !5. = cl1 !5. = K, 

cl2 !5. = cl2 cl2 K = cl2 K = !5_. 

Since !5_ ~ K ~ K, this implies that 

and consequently 

Thus K is closed and equivalent to !5. and K. Since the convex function 
K(u, ·) has !S_(u, ·) as its closure, we have 

K(u, ·)* = !5,(u, ·)* =Fu, Vu. 

In particular, it follows that u ¢: dom1 Kif and only if Fu is the constant 
function + oo, i.e. u ¢: dom F. Similarly, 

K(", x*)* = K(·, x*)* = F*x*, Vx*, 

and we have x* ¢: dom2 K if and only if F*x* is the constant function 
- oo, i.e. x* ¢: dom F*. This proves that 

dom1 K x dom2 K = cfom F x dom F* 

and that the formulas for F and F* in terms of K are valid. The last 
assertion of the theorem is justified by Corollary 33.2.1. II 

COROLLARY 34.2.1. Let K be a closed saddle-function on Rrn X Rn, 
and let L be a saddle-function equivalent to K. Then dam L = dom K, and 
one has L(u, v) = K(u, v) whenever u E ri (dom1 K) or v E ri (dom2 K). 
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COROLLARY 34.2.2. A lower closed or upper closed (or fully closed) 
saddle-function is in particular closed. Each equivalence class of closed 
saddle-functions contains a unique lower closed function (the least member of 
the class) and a unique upper closed function (the greatest member of the 
class). 

PROOF. By Theorem 33.3. 
For a closed convex bifunction F, the class D.(F) in Theorem 34.2 

consists of all the concave-convex functions equivalent to the function 

(u, x*)-+ (Fu, x*). 

We define Q(G) for a closed concave bifunction G as the class of all 
concave-convex functions equivalent to the function 

(x*, u) -+ (x*, Gu) 

(so that under the Q notation we are always speaking of concave-convex 
functions rather than convex-concave functions). Thus, for the concave 
adjoint F* of a closed convex F, D.(F*) consists of all the concave-convex 
functions equivalent to 

(u, x*)-+ (v, F*x*). 

By Theorem 34.2, these are precisely the concave-convex functions K 
such that 

(Fu, x*):::;; K(u, x*):::;; (u, F*x*), Vu, Vx*, 

and we have 
Q(F*) = Q(F). 

The latter formula might be regarded as the "true" analogue of the 
formula 

(Au, x*) = (u, A*x*) 

defining the adjoint of a linear transformation A. 
How is the properness of the saddle-functions in D.(F) related to the 

properness of F? If F is proper, F* is proper by Theorem 30.1, so that 
dom F ~ 0 and dom F* ~ 0. Then every KE D.(F) is proper, because 
dom K ~ 0 by Theorem 34.2. On the other hand, if Fis a closed convex 
bifunction which is not proper, the graph function of F must be identically 
+ oo or identically - oo. In the first case, we have 

(Fu, x*) = (u, F*x*) = - oo, Vu, V x*, 

while in the second case 

(Fu, x*) = (u, F*x*) = + oo, Vu, Vx*. 

The following conclusion may be drawn. 
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COROLLARY 34.2.3. The only improper closed saddle-functions on Rm x 
Rn are the constant functions + oo and - oo (which are not equivalent). 

The structure of certain equivalence classes of proper closed saddle
functions can also be described without further ado. 

COROLLARY 34.2.4. Let C and D be non-empty closed convex sets in 
Rm and Rn, respectively, and let K be a finite continuous concave-convex 
function on C X D. Let Q be the class of all concave-convex extensions of 
K to Rm X Rn satisfying 

{
+oo if uEC, 

K(u, v) = 
-oo if u ¢: C, 

v ¢: D, 

v ED. 

(The lower simple extension of Kand the upper simple extension of Kare the 
least and greatest members of Q, respectively.) Then Q is an equivalence 
class of proper closed saddle-functions. 

PROOF. This is immediate from Theorem 34.2 and Corollary 33.3.3. 
We shall now show that the structure of general equivalence classes of 

proper closed saddle-functions is only slightly more complicated. 

THEOREM 34.3. Let K be a proper concave-convex function on Rm x Rn. 
Let C = dom1 Kand D = dom2 K. In order that K be closed, it is necessary 
and sufficient that K have the following properties: 

(a) For each u E ri C, K(u, ·) is a closed proper convex function with 
effective domain D. 

(b) For each u E (C \ ri C), K(u, ·) is a proper convex function whose 
effective domain lies between D and cl D. 

(c) For each u ¢: C, K(u, ·) is an improper convex function which has the 
value - oo throughout ri D (throughout D itself zf actually u ¢:cl C). 

(d) For each v E ri D, K(-, v) is a closed proper concave function with 
effective domain C. 

(e) For each v E (D \ ri D), K(-, v) is a proper concave function whose 
effective domain lies between C and cl C. 

(f) For each v ¢: D, K(", v) is an improper concave function which has 
the value + oo throughout ri C (throughout C itself if v ¢:cl D). 

PROOF. Assume that K is closed. Let F be the unique closed proper 
convex bifunction from Rm to Rn such that KE Q(F) as in Theorem 34.2. 
Then C = dom F and D = dom F*. Let J5.(u, v) = (Fu, v> and K(u, v) = 
(u, F*v>. We have 

J5.(u, v) > - oo, Vv, if u EC, 

J5.(u, v) = - oo, Vv, if u ¢: C, 

K(u, v) < + oo, Vu, if v ED, 

K(u, v) = + oo, Vu, if v ¢: D. 
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For each u, the convex function K(u, ·) lies between the convex function 
K(u, ·) and the closure of K(u, ·), all three functions coinciding when 
u E ri C (Theorem 34.2). The ± oo relations imply that, for each u E C, 
K(u, ·) has D as its effective domain and !S_(u, ·) is proper. Properties (a) 
and (b) are immediate from this and the basic properties of the closure 
operation for convex functions. The proof of (d) and (e) is similar. 
Properties (c) and (f) are trivial consequences of (a), (b), (d) and (e). 

Conversely, assume that Khas properties (a) through (f). By (a) we have 

(cl2 K)(u, v) = K(u, v), Vv, 

when u E ri C. On the other hand, by (c) 

(cl2 K)(u, v) = - oo, Vv, 

when u ¢: C. Hence, for each v ¢: D, the concave functions (cl2 K)(·, v) and 
K(', v) are both improper with the value + oo on ri C. For each v ED, 
(cl2 K)(·, v) and K(·, v) are proper and their effective domains have the 
same relative interior, namely ri C, on which they coincide. It follows 
that (cl2 K)(·, v) and K(·, v) have the same (concave) closure for every v, 
i.e. cl1 cl2 K = cl1 K. By a parallel argument, cl2 cli K = cl2 K. Thus K 
is closed. II 

The restriction of a saddle-function K to dom K is a certain finite 
saddle-function on a product of convex sets, as we have already noted. 
The restriction of K to 

ri (dom K) = ri (dom1 K) x ri (dom2 K) 

will be called the kernel of K. 

THEOREM 34.4. Two closed proper concave-convex functions on Rm x 
Rn are equivalent if and only if they have the same kernel. 

PROOF. Let K and L be closed proper concave-convex functions on 
R"' x Rn. If L is equivalent to K, then L has the same kernel as K by 
Corollary 34.2.1. Converse! y, suppose that L has the same kernel as K. 
Then, in particular, the effective domains of K and L have the same 
relative interior. Let 

C' = ri (dom1 K) = ri (dom1 L), 

D' = ri (dom2 K) = ri (dom2 L). 

Property (a) of Theorem 34.3 asserts that, for each u EC' the convex 
function K(u, ·) is closed and has D' as the relative interior of its effective 
domain; likewise L(u, ·).Moreover K(u, ·)and L(u, ·)agree on D' when 
u E C', because K and L have the same kernel. Since a closed convex 
function is uniquely determined by its values on the relative interior of its 
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effective domain, it follows that K(u, ·) and L(u, ·) agree throughout Rn 
when u EC'. In particular, dom2 Kand dom2 L must be the same convex 
set D by property (a) of Theorem 34.3. The agreement of K(u, ·) and 
L(u, ·) when u EC' can be expressed another way: the concave functions 
K(', v) and L(·, v) agree on C' for each v E Rn. By properties (d), (e) and 
(f) of Theorem 34.3, K(·, v) and L(·, v) are proper and have C' as the relative 
interior of their effective domains when v E D, whereas both are improper 
with the value + oo throughout C' when v ¢: D. Thus K(·, v) and L(·, v) 
must have the same (concave) closure for each v E Rn, i.e. cl1 K = cl1 L. 
By a parallel argument, cl2 K = cl2 L. Thus L is equivalent to K. II 

According to Theorem 34.4, each equivalence class of closed proper 
saddle-functions has a uniquely determined kernel, and the correspondence 
between equivalence classes and kernels is one-to-one. Each kernel is a 
finite saddle-function on a non-empty product of relatively open convex 
sets. Is every function of the latter sort the kernel of some equivalence 
class of closed proper saddle-functions? The answer is yes. To prove this, 
we need to examine more closely the lower and upper closure operations. 

A concave-convex function K on Rm x Rn will be said to be simple if 
the effective domain of the convex function K(u, ·) is contained in 
cl (dom2 K) for every u E ri (dom1 K), and the effective domain of the 
concave function K(·, v) is contained in cl (dom1 K) for every 
v E ri (dom2 K). 

The most important examples of simple saddle-functions, for our 
purposes, are the lower and upper simple extensions of finite saddle
functions on convex sets C x D. Every closed proper saddle-function is 
simple by Theorem 34.3. The reader can show, as an exercise, that every 
saddle-function of the form 

K(u, x*) = (Fu, x*) 

(F a convex or concave bifunction from Rm to Rn) is simple. It can be 
shown further that every saddle-function whose effective domain has a 
non-empty interior is simple. An example of a concave-convex function 
which is not simple is a function on R x R already encountered: 

{

+oo if UV> 0, 

K(u, v) = 0 if uv = 0, 

-00 if UV< 0 

THEOREM 34.5. Let K be any proper concave-convex function on Rm X 

Rn which is simple. The lower closure cl2 cl1 K and upper closure cl1 cl2 K 
of Kare then equivalent, and 

cl2 cl1 K ~ cl1 cl2 K. 
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The concave-convex functions between cl2 cl1 K and cl1 cl2 K form an 
equivalence class of closed proper concave-convex functions having the same 
kernel as K. 

PROOF. We shall demonstrate first that cl2 K is simple and has the same 
kernel as K. By the definition of dom1 K and dom2 K, when u ¢: dom1 K 
the convex function K(u, ·) has the value - oo somewhere, whereas when 
u E dom1 K the effective domain of K(u, ·) includes the non-empty set 
dom2 Kand K(u, ·) is proper. Thus (cl2 K)(u, ·) is the constant function 
- oo when u ¢: dom1 K, whereas when u E dom1 K it is again a proper 
convex function whose effective domain includes dom2 K. This shows that 

dom1 (cl2 K) = dom1 K, 

dom2 (cl2 K) ::::i dom2 K, 

and in fact that dom1 K is the effective domain of every one of the concave 
functions (cl2 K)(", v). SinceKis simple, foreachu E ri (dom1 K)theconvex 
function (cl2 K)(u, ·) actually agrees with K(u, ·) on ri (dom2 K), and its 
effective domain is contained in cl (dom2 K). Therefore 

dom2 (cl2 K) c cl (dom2 K), 

and dom2 (cl2 K) has the same relative interior and closure as dom2 K. It 
follows that cl2 K is simple, and that the relative interior of its effective 
domain is the same as ri ( dom K). The kernels of cl2 Kand Kare the same, 
because cl2 K agrees with Kon ri (dom K). This proves that the operation 
cl2 preserves the class of simple proper concave-convex functions and 
their kernels. By a parallel argument, cl1 has this property too. Therefore 
c) 2 cl1 Kand cl1 cl2 K must be simple proper concave-convex functions having 
the same kernel as K. Since cl 2 cl1 K is lower closed and cl1 cl2 K is upper 
closed (Theorem 34.1), these two functions are in particular closed (Corollary 
34.2.2), and by Theorem 34.4 they must be equivalent. The saddle
functions equivalent to cl2 cl1 K and cl1 cl2 K likewise have the same 
kernel as K by Theorem 34.4. The equivalence class contains a unique 
lower closed !5. and upper closed K with !5. ~ K, and it consists of the 
concave-convex functions between !5. and K (Theorem 34.2). The functions 
Kand K must be cl2 cl1 Kand cl1 cl2 K, respectively. II 
- COROLLAR y 34. 5.1. Let c and D be non-empty convex sets in Rm and Rn 
respectively, and let K be a finite concave-convex function on C X D. Then 
there exists one and only one equivalence class of closed proper concave
convex functions on R"' x Rn having as its kernel the restriction of K to the 
relative interior of C x D. 

PROOF. To see that an equivalence class with this kernel exists, one 
need only apply the theorem to the lower (or upper) simple extension of K 
to all of Rm x Rn. The class is unique by Theorem 34.4. II 



SECTION 35 

Continuity and D!fferentiability ef 
Saddle-Functions 

The purpose of this section is to show how the main results about 
regularity properties of convex functions, such as continuity and differ
entiability, can be extended to saddle-functions. The continuity and 
convergence theorems in §JO will be dealt with first. 

THEOREM 3 5.1. Let C and D be relatively open convex sets in Rm and Rn, 
respectively, and let K be a finite concave-convex function on C x D. Then 
K is continuous relative to C x D. In fact, K is Lipschitzian on every 
closed bounded subset of C x D. 

PROOF. It suffices to show that K is Lipschitzian on S x T, where S 
and Tare arbitrary closed bounded subsets of C and D, respectively. By 
Theorem IO. I, K(u, v) is in any case continuous in u EC for each v ED 
and continuous in v E D for each u E C. The collection of concave 
functions K(·, v), v E T, is therefore pointwise bounded on C, and hence 
by Theorem 10.6 it is equi-Lipschitzian on S. Thus there exists a non
negative real number rx1 such that 

IK(u', v) - K(u, v)I ~ rx1 lu' - ul, Vu', u ES, Vv ET. 

At the same time, the collection of convex functions K(u, ·), u ES, is 
pointwise bounded on T, so that there exists a non-negative real number 
rx2 such that 

IK(u, v') - K(u, v)I ~ rx2 Iv' - vi, Vv', v ET, Vu ES. 

Let rx = 2(rx1 + rx2). Given any two points (u, v) and (u', v') in S x T, we 
have 

IK(u', v') - K(u, v)I ~ IK(u', v') - K(u, v')I + IK(u, v') - K(u, v)I 

~ rx1 lu' - ul + rx2 Iv' - vi ~ rx(lu' - ul + Iv' - vl)/2 

~ rx(lu' - ul 2 +Iv' - vl 2) 112 = rx l(u', v') - (u, v)I. 

Thus K is Lipschitzian as claimed. 

370 
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THEOREM 3 5.2. Let C and D be relath·ely open convex sets in Rm and Rn, 
respectively, and let {K; I i El} be a collection of finite concave-convex 
functions on C X D. Suppose there exist subsets C' and D' of C and D, 
respectively, such that 

conv (cl (C' x D')) ::::i C x D 

and {K; I i E /} is pointwise bounded on C' x D'. Then, relative to every 
closed bounded subset of C X D, {K; I i E /}is uniformly bounded and equi
Lipschitzian. 

PROOF. It suffices to consider a closed bounded subset of C x D 
having the form S x T. For each u E C', the collection of convex functions 
{K;(u, ·)Ii E /}is pointwise bounded on D' and hence uniformly bounded 
on T by Theorem 10.6. The collection of concave functions 

{K;(·,v)liEl,vET} 

is therefore pointwise bounded on C', so that by Theorem 10.6 it is uni
formly bounded on S and there exists a non-negative real number rx1 

such that 

IK;(u', v) - K;(u, v)I ~ rx1 lu' - ul, Vu', u ES, Vv ET, Vi El. 

By a parallel argument, there exists a non-negative real number rx2 such 
that 

IK;(u, v') - K;(u, v)I ~ rx2 Iv' - vi, Vv', v ET, Vu ES, Vi El. 

Then for any (u, v) and (u', v') in S x Twe have 

IK;(u', v') - K;(u, v)I ~ rx l(u', v') - (u, v)I, Vi El, 

where rx = 2(rx1 + rx2), by the calculation in the proof of preceding 
theorem. II 

THEOREM 3 5.3. Let C and D be relatively open convex sets in Rm and Rn, 
respectively, and let T be any locally compact topological space. Let K be a 
real-valued function on C x D x T such that K(u, v, t) is concave in u for 
each v and t, convex in v for each u and t, and continuous in t for each u and v. 
Then K is continuous on C x D x T, i.e. jointly continuous in u, v and t. 

The conclusion remains valid zf the assumption about continuity in t is 
weakened to the following: there exist dense subsets C' and D' of C and D, 
respectively, such that K(u, v, ·) is a continuous function on T for each 
(u,v) EC' x D'. 

PROOF. The same as the proof fo Theorem 10. 7, except for changes of 
notation. Theorem 35.2 is invoked in place of Theorem 10.6. II 
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THEOREM 35.4. Let C and D be relatively open convex sets in R"' and Rn, 
respectively, and let Ki. K2 , • •• , be a sequence of finite concave-convex 
functions on C x D. Suppose that,for each (u, v) in a certain dense subset 
C' x D' of C X D, the limit of K1(u, v), K2(u, v), ... , exists and is 
finite. The limit then exists for every (u, v) EC X D, and the function K, 
where 

K(u, v) = Jim K;(u, v), 
i--+ 00 

is finite and concave-convex on C x D. Moreover, the sequence K 1 , K2 , ••• , 

converges to K uniformly on each closed bounded subset of C x D. 

PROOF. The same as the proof of Theorem 10.8, except for changes of 
notation. Again Theorem 35.2 is invoked in place of Theorem 10.6. II 

THEOREM 35.5. Let C and D be relatively open convex sets in R"' and 
Rn respectively, and let Ki. K2 , •• • , be a sequence of .finite concave-convex 
functions on C x D. Suppose that,for every (u, v) in a certain dense subset 
C' x D' of C x D, the sequence K1(u, v), K2(u, v), ... , is bounded. Then 
there exists a subsequence of Ki. K 2 , ••• , which converges uniformly 
on closed bounded subsets of C x D to some finite concave-convex func
tion K. 

PROOF. An imitation of the proof of Theorem 10.9, with Theorem 
35.4 invoked instead of Theorem 10.8. II 

We turn now to results about directional derivatives and subgradients 
of saddle-functions. 

Let K be a saddle-function on Rrn x Rn, and let (u, v) be a point where 
K is finite. The (one-sided) directional derivative of Kat (u, v) with respect 
to (u', v') is, of course, defined to be the limit 

K'(u, v; u', v') = Jim [K(u +Au', v + Jcv') - K(u, v)]/Jc, 
A) O 

if this limit exists. The directional derivatives 

K'(u, v; u', 0) =Jim [K(u + Jcu', v) - K(u, v)]/Jc, 
.. 1 0 

K'(u, v; 0, v') = Jim [K(u, v + Jcv') - K(u, v)]/Jc, 
.. 1 0 

certainly exist by Theorem 23.1, but the existence of K(u, v; u', v') is 
problematical. In most of what follows, we shall restrict ourselves, for 
the sake of simplicity, to the study of directional derivatives at interior 
points of dom K. 
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THEOREM 35.6. Let K be a concave-convex.function on Rm x Rn, and 
let C x D be an open convex set on which K is finite. Then, for each 
(u, v) EC x D, K'(u, v; u', v') exists and is a.finite positively homogeneous 
concave-convex function of (u', v') on Rm x Rn. In fact, 

K'(u, v; u', v') = K'(u, v; u', 0) + K'(u, v; 0, v'). 

PROOF. We know from §23 that, for each u E C and v E D, K' (u, v; 0, v') 
is a finite positively homogeneous convex function of v' and K' (u, v; u', 0) 
is a finite positively homogeneous concave function of u'. The properties 
claimed for K'(u, v; u', v') follow therefore from the equation in the 
theorem, and only this equation needs to be established. We shall show 
that 

Jim sup [K(u + Au', v + Jcv') - K(u, v)]/A 
.d 0 

~ K'(u, v; u', 0) + K'(u, v; 0, v'). 

By a dual argument, we will have 

Jim inf [K(u + Jcu', v + Jcv') - K(u, v)]/Jc 
.do 

~ K'(u, v; u', 0) + K'(u, v; 0, v'), 

and the existence of K'(u, v; u', v') and the equality in the theorem will 
both be proved. The difference quotient 

[K(u + Jcu', v + Jcv') - K(u, v)]/Jc 

can be expressed as 

([K(u + Jcu', v) - K(u, v)]/ Jc) 

+ ([K(u + Jcu', v + Jcv') - K(u + Jcu', v)]/Jc), 

where the first quotient has limit K' (u, v; u', 0) as A ! 0. We must show that 

Jim sup [K(u + Jcu', L' + Jcv') - K(u + Jcu', v)]/Jc ~ K'(u, v; 0, v') . 
. qo 

Given anyµ> K'(u, v; 0, v'), there exists an ex> 0 such that 

µ > [K(u, v + exv') - K(u, v)]/ex. 

Since K is continuous on C x D by Theorem 35.1, for all sufficiently 
small values of A, 0 < A < ex, we have 

µ > [K(u + },u', v + exv') - K(u + }cu', v)]/ex 

~ [K(u + Jcu',v + Jcv')- K(u + Jcu',v)]/Jc. 
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The "Jim sup" of the latter quotient thus cannot exceedµ, and the result 
follows. II 

The directional derivatives of saddle-functions correspond to certain 
"subgradients," much as in the case of purely convex or concave functions. 
Given any concave-convex function Kon Rm x Rn, we define 

i\K(u, v) = ouK(u, v) 

to be the set of all subgradients of the concave function K(", v) at u, i.e. the 
set of all vectors u* E Rm such that 

K(u', v) :::;; K(u, v) + (u*, u' - u), 

Similarly, we define 
o2K(u, v) = ovK(u, v) 

to be the set of all subgradients of the convex function K(u, ·) at v, i.e. the 
set of all vectors v* E Rn such that 

K(u, v') ~ K(u, v) + (v*, v' - v), 

The elements ( u*, v*) of the set 

oK(u, v) = o1K(u, v) x o2K(u, v) 

are then defined to be the subgradients of Kat (u, v), and the multivalued 
mapping 

oK: (u, v)-+ oK(u, v) 

is called the subdif.ferential of K. 
Note that oK(u, v) is a (possibly empty) closed convex subset of Rm x 

Rn for each (u, v) E Rm X Rn. By Theorem 23.2, if (u, v) is any point 
where K is finite, the closure of the convex function 

u'-+ -K'(u, v; -u', 0) 

is the support function of o1K(u, v), while the closure of the convex 
function 

v'-+ K'(u, v; 0, v') 

is the support function of o2K(u, v). If K is proper and (u, v) is an interior 
point of dom K, then u is an interior point of dom K(", v) and v is an 
interior point of dom K(u, ·), so that o1K(u, v) and o2K(u, v) are non
empty closed bounded convex sets by Theorem 23.4 and 

K'(u, v; u', 0) =inf { (u*, u') I u* E o1K(u, v)}, 

K' (u, v; 0, v') = sup { (v*, v') I v* E o2K(u, v)}. 

It follows in this case from Theorem 35.6 that K'(u, v; u', v') is a "minimax" 
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of the function 
(u*, v*)-+ (u*, u') + (v*, v') 

over oK(u, v). 
The theorems which follow concern the continuity and single-valuedness 

of oK. Certain other general results about oK will be stated in §37. 

THEOREM 35.7. Let K be a concave-convex function on Rm x Rn, and 
let C x D be an open convex set on which K is finite. Let Ki. K2 , ••• , be a 
sequence of concave-convex functions finite on C x D and converging 
pointwiseonC X DtoK.Let(u, v) EC x D,andlet(u;, v;),i =I, 2, ... , 
be a sequence in C x D converging to (u, v). Then 

Jim inf K;(u;, v;; u', 0) ~ K'(u, v; u', 0), 
i-+ 00 

Jim sup K;(u;, v;; 0, v') ~ K'(u, v; 0, v'), 
i-+ 00 

Moreover, given any s > 0, there exists an index i 0 such that 

oK;(ui, V;) c oK(u, v) + sB, 

where Bis the Euclidean unit ball of Rm X Rn = Rm+n. 

PROOF. All of this is immediate from Theorem 24.5 and the continuity 
properties of K(u, v). II 

COROLLARY 35. 7.1. Let C X D be an open convex set in Rm x Rn, and 
let K be a concave-convex function finite on C X D. Then, for each u', 
K' ( u, v; u', 0) is a lower semi-continuous function of ( u, v) on C x D and, 
for each v', K'(u, v; 0, v') is an upper semi-continuous function of (u, v) on 
C x D. Moreover, given any (u, v) in C X D and any s > 0, there exists a 
o > 0 such that 

oK(x,y) c oK(u, v) + sB, V(x,y) E [(u, v) + oB] 

(where Bis the Euclidean unit ball). 
PRooF. Take K; = K for all indices i. 

THEOREM 35.8. Let K be a concave-convex function R"' x Rn, and let 
(u, v) be a point where K is finite. If K is differentiable at (u, v), then 
\7 K(u, v) is the unique subgradient of Kat (u, v). Conversely, zf K has a 
unique subgradient at (u, v), then K is differentiable at x. 

PROOF. By definition, K has a unique subgradient at (u, v) if and only 
ifthe convex function K(u, ·)has a unique subgradient at v and the concave 
function K(-, v) has a unique subgradient at u. This situation is equivalent 
to Kbeing differentiable in its concave ahd convex arguments separately at 
(u, v), according to Theorem 25.1. The only question is whether separate 
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differentiability implies joint differentiability, i.e. whether 

I
. K(u + u', v + v') - K(u, v) - (u*, u') - (v*, v') 

0 Jill = 
(u',v')--+O (lu'l2 + lv'l2)1;2 

when u* = \\K(u, v) and v* = "V2K(u, v). This can be established by the 
following argument similar to the one in Theorem 25.1. For each A > 0, 
let h" be the concave-convex function on Rm x Rn defined by 

h;.,(x,y) = [K(u +Ax, v + Jcy) - K(u, v) - Jc(u*, x) - Jc(v*,y)]/A. 

Assuming that Kis separately differentiable at (u, v), one has in particular 

Jim h;. (x, y) = 0, Vx, Vy. 
AIO 

It follows from this by Theorem 35.4 that, as Jc decreases to 0, the func
tions h;., must actually converge to 0 uniformly on all bounded sets. Thus, 
given any s > 0, there exists a o > 0 such that, when 0 < Jc ~ o, one has 
lh;.,(x, y)I ~ s for all (x, y) with (lxl 2 + lyl 2)112 ~ I. Then 

I K(u + u', v + v') - K(u, v) - < u*, u' > - < v*, v' >I 
8 

(lu'l2 + lv'l2)1/2 ~ 
for every (u', v') such that 

0 < (lu'l 2 + lv'l 2)112 ~ o, 
as is seen by taking Jc= (lu'l 2 + lv'l 2)112 and (x,y) = Jc-1(u', v'). Since, 
given any s > 0, there exists a o > 0 with this property, K is jointly 
differentiable at (u, v) as claimed. II 

COROLLARY 35.8.1. Let K be a concave-convex function on Rm X Rn, 
and let (u, v) be a point at which K is finite. A necessary and sufficient 
condition for K to be differentiable at ( u, v) is that K be finite on a neighbor
hood of (u, v) and the directional derivative function K'(u, v; ·,·)be linear. 
Moreover, this condition is satisfied if merely the m + n two-sided partial 
derivatives of K exist and are finite. 

PROOF. This follows by Theorem 25.2. 

THEOREM 35.9. Let C X D be an open convex set in Rm X Rn, and let 
K be a concave-convex function finite on C x D. Let E be the subset of 
C x D where K is differentiable. Then E is dense in C x D. In fact the 
complement of E in C x D is a set of measure zero. The gradient mapping 
"V K is continuous from E to Rm X Rn. 

PROOF. Let EP be the subset of C x D where the finite two-sided 
partial derivative of K with respect to the pth of its m + n real arguments 
exists. Since E = E1 n · · · n Em+n by the preceding corollary, it suffices 
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to prove that the complement of E,, in C x D is of measure zero and that 
the partial derivative corresponding to E,, is continuous on E,,. For 
simplicity of exposition, we shall limit ourselves to the case where p = 
m + n. Let e = (0, ... , 0, I) E Rn. The set Erri+n consists of the points 
(u, v) E C X D such that 

-K'(u, v; 0, -e) = K'(u, v; 0, e). 

Since K'(u, v; 0, e) and K'(u, v; 0, -e) are both upper semi-continuous 
functions of (u, v) by Corollary 35.7.1, the (m + n)th partial derivative is 
simultaneously upper and lower semi-continuous on Em+m i.e. it is con
tinuous. Fork= I, 2, ... , let 

sk = {(u, v) E c x DI K'(u, v; 0, e) + K'(u, v; 0, -e) ~ l/k}. 

Since in general 
-K'(u, v; 0, -e) ~ K'(u, v; 0, e), 

the complement of Em+n in C x D is the union of the sets Si, S2 , ••• , 

each of which is closed by the upper semi-continuity of K'. Thus Em+n is 
measurable. For a given point (u, v), the values of A such that (u, v + Jee) E 

Sk are those where the right derivative of the convex function 

h(Jc) = K(u, v + Jee) 

jumps by at least as much as 1/k. Since the right derivative of a convex 
function is non-decreasing, there can be only finitely many jumps as large 
as 1/k in any bounded interval of A values. Thus, for a given k, each line 
parallel to the (m + n)th coordinate axis has at most finitely many points 
of Sk in any bounded interval and therefore meets Sk in a set of measure 
zero. It follows that Sk itself is of measure zero, and hence that the 
complement of Em+n in C X D is of measure zero. II 

THEOREM 35.10. Let C X D be an open convex set in Rm X Rn, and 
let K be a finite differentiable concave-convex function on C X D. Let K 1 , 

K2 , ••• , be a sequence of finite differentiable concave-convex functions on 
C X D such that Jim K;(u, v) = K(u, v)for every (u, v) EC X D. Then 

i-+ 00 

Jim \lK;(u, u) = \lK(u, v), V(u, v) EC X D. 
i--+ 00 

In fact, the mappings \7 K; converge uniformly to \7 Kon all closed bounded 
subsets of C x D. 

PROOF. It is enough to prove the convergence for each of the m + n 
partial derivatives, and this can be done exactly as in the case of Theorem 
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25. 7. The citations of Theorems 10.8 and 25.5 in the proofof Theorem 25.7 
are replaced by citations of Theorems 35.4 and 35.9. II 

It suffices actually, in the hypothesis of Theorem 35.10, if K;(u, v) 
converges to K(u, v) for every (u, v) in a certain dense subset C' x D' 
of C x D. This implies by Theorem 35.4 and the continuity of finite 
saddle-functions on C x D that K;(u, v) converges to K(u, v) for every 
(u, v) EC x D. 



SECTION 36 

Minimax Problems 

Minimax theory treats a class of extremum problems which involve, 
not simply minimization or maximization, but a combination of both. 
Let C and D be arbitrary non-empty sets, and let K be a function from 
C x D to [- oo, + oo ]. For each u EC, one can take the infimum of 
K(u, v) over v ED and then take the supremum of this infimum as a 
function on C. The quantity so obtained is 

sup inf K(u, v). 
uEC vED 

On the other hand, for each v ED one can take the supremum of K(u, v) 
over u E C and then take the infimum of this supremum as a function on 
D. This forms 

inf sup K(u, v). 
vED uEC 

If the "sup inf" and "inf sup" are equal, the common value is called the 
minimax or the saddle-value of K (with respect to maximizing over C and 
minimizing over D). 

One of the tasks of minimax theory is to furnish conditions under which 
the saddle-value exists and is attained in some suitable sense. In general, 
of course, the "sup inf" and the "inf sup" might not be equal, but a 
certain inequality is at least satisfied. 

LEMMA 36.1. If K is any function from a non-empty product set C x D 
to [-oo, +oo], then 

sup inf K(u, v) ~inf sup K(u, v). 
uEC 'VED vED uEC 

PROOF. Letf(u) =inf {K(u, v) Iv ED} for each u EC, and let 

ex = sup inf K(u, v). 
uEC vED 

For each v ED, one has K(u, v) '?.f(u) for every u EC, and consequently 

sup K(u, v) '?. supf(u) =ex. 
uEC uEC 

379 
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Since this relation holds for every v ED, one has 

inf sup K(u, v) ~ rx, 

and the lemma is proved. 
It is not entirely obvious what one should mean by a saddle-value being 

"attained." The proper concept is that of a saddle-point. By definition, a 
point (ti, v) is a saddle-point of K with respect to maximizing over C and 
minimizing over D if (ti, v) E C x D and 

K(u, v) ~ K(ti, v) ~ K(ti, v), Vu EC, Vv ED. 

This means that the function K(ti, ·)attains its infimum over D at v, while 
K(·, v) attains its supremum over Cat ti. The relationship between saddle
points and saddle-values is as follows. 

LEMMA 36.2. Let K be any function from a non-empty product set 
C x D to [-oo, + oo]. A point (ti, v) is a saddle-point ofK (with respect to 
maximizing over C and minimizing over D) if and only if the supremum in 
the expression 

sup inf K(u, v) 
UEC VED 

is attained at ti, the infimum in the expression 

inf sup K(u, v) 
!•ED UEC 

is attained at v, and these two extrema are equal. If (ti, v) is a saddle-point, 
the saddle-value of K is K(ti, v). 

PROOF. If (ti, v) is a saddle-point, we have 

K(ti, v) =inf K(ti, v) ~sup inf K(u, v), 
vED uEC vED 

K(ti, v) = sup K(u, v) ~ inf sup K(u, v). 
uEG vED uEC 

In view of the inequality in Lemma 36.1, these quantities must actually all 
be equal, so the three conditions in the lemma are satisfied. Conversely, 
if these conditions are satisfied, the saddle-value rx of K exists, and one has 

sup K(u, v) = rx = inf K( ti, v), 
uEC vED 

where the supremum is at least as great as K(ti, v) and the infimum is no 
greater than K(ti, v). Thus rx = K(ti, v), and (ti, v) is a saddle-point. II 

There is an elementary heuristic interpretation of saddle-values and 
saddle-points which is worth knowing for the sake of motivation. Given 
Kon C x D, we may think of the following game for two players I and 
II. At each play of the game, I selects a point u of C and II selects a 
point v of D. The players make their choices known to each other simul
taneously, and at that time II must pay K(u, v) units of money to I. (A 
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negative K(u, v) corresponds to a positive payment from I to II instead 
of from II to I.) For each u EC, inf {K(u, v) Iv ED} is the amount of 
winnings which I can guarantee for himself in selecting u. The highest 
amount of winnings which player I can guarantee in this way is 

sup inf K(u, v). 
uEC vED 

A point i1 for which the supremum is attained is an optimal strategy for I 
(according to the von Neumann minimax principle). On the other hand, 
consider the game from the point of view of II. For each v ED, 
sup {K(u, v) I u EC} is the most that II can possibly lose if he selects v. 
Thus 

inf sup K(u, v) 
vED uEC 

is the lowest ceiling which II can put on his losses. A point v for which the 
infimum is attained is an optimal strategy for II. 

When the lowest ceiling to the losses of II coincides with the highest 
floor to the winnings of I, the common level is the saddle-value of K. A 
saddle-point represents an "equilibrium" choice of points for I and II, in 
the sense that neither player can gain any advantage by unilaterally altering 
his choice. 

As already observed, the problem of minimizing a real-valued function 
f over a subset S of Rn can be expressed conveniently as the problem of 
minimizing/ over all of Rn, if one defines f(x) to be + oo for every x ¢: S. 
A similar technical device is useful in the study of minimax problems. 

Let C and D be non-empty sets in Rm and Rn, respectively, and let K 
be a real-valued function on C x D. Suppose that one extends K beyond 
C x D by setting 

{

+oo if uEC,vtf:D, 

K(u, v) = - oo if u ¢: C, v ED, 

any value in [- oo, + oo] if u ¢: C, v ¢: D. 

Then obviously 

inf K(u, v) = inf K(u, v) < + oo, 
vER

11 
vED 

where the infima are - oo if u ¢: C, and hence 

SUP. inf K(u, v) =sup inf K(u, v). 
uERm vER" uEC vED 

Similarly, 
sup K(u, v) = sup K(u, v) > - oo, 

uEnm uEC 



382 VII: SADDLE-FUNCTIONS AND MINIMAX THEORY 

where the suprema are + oo if v ¢: D, and hence 

inf sup K(u, v) = inf sup K(u, v). 
vER11 uERm vED uEC 

In particular, if either the saddle-value of K with respect to Rm x Rn or 
the saddle-value of Kwith respect to C X D exists, then both exist and are 
equal. Furthermore, the saddle-points of K with respect to Rm x Rn are 
the same as the saddle-points of Kwith respect to C x D (if any). Indeed, 
according to what we have just established, (u, v) satisfies the condition 

sup K(u, v) = K(u, v) = inf K(u, v) 
uERm vER11 

if and only if it satisfies 

sup K(u, v) = K(u, v) =inf K(il, v), 
uEC vED 

in which case one necessarily has (u, v) EC x D. (If u were not in C, the 
infimum would be - oo and hence could not possibly equal the supremum. 
Similarly, if v were not in D the supremum would be + oo and could not 
equal the infimum.) 

In what follows, we shall be concerned only with saddle-values and 
saddle-points of concave-convex (or convex-concave) functions on products 
of convex sets. It is to be understood always that the minimization takes 
place in the convex argument of the function, and that the maximization 
takes place in the concave argument. The observations above allow us to 
reduce almost everything to the case of concave-convex functions defined 
on all of Rm x Rn. The closedness of such functions is imposed as a 
natural (and essentially constructive) regularity condition. 

In general, minimax problems for closed proper saddle-functions on 
R"' x Rn correspond in the following way to minimax problems for certain 
finite saddle-functions on convex product sets. 

THEOREM 36.3. Let K be a closed proper concave-convex function on 
Rm X Rn, and let C = dom1 K and D = dom 2 K. Then 

sup inf K(u, v) = sup inf K(u, v), 
uERm vER11 uEC 11ED 

inf sup K(u, v) =inf sup K(u, v). 
vER11 

ttERm vED uEC 

The saddle-value and saddle-points of K with respect to Rm X Rn are the 
same as those with respect to C x D. 

PROOF. For a convex function/on Rn, one has 

inf {j(v) I v E Rn} = inf {j(v) I v ED} 
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for any set D containing ri (domf) (Corollary 7.3.1). Similarly in the case 
of the supremum of a concave function. The domain relations in Theorem 
34.3 imply therefore that 

inf K(u, v) =inf K(u, v) < + oo, 
vERn rED 

supm K(u, v) = sup K(u, v) > - oo, 
1.tER uEC 

where the inti.ma are - oo if u ¢: C and the suprema are + oo if v ¢: D. The 
desired conclusions follow from these facts exactly as in the discussion 
preceding the theorem. II 

COROLLARY 36.3.1. Let K be a closed proper saddle-function on R"' x 
Rn. If K has a saddle-point, this saddle-point lies in dam K, and the saddle
value of K is finite. 

PROOF. Let (ti, v) be a saddle-point of K (with respect to R"' x Rn). 
By the theorem, (ti, v) is also a saddle-point with respect to the set C x D = 

dom K, so that (ti, v) EC x D. The saddle-value of Kis K(ti, v) by Lemma 
36.2, and this is finite because K is finite on dom K. II 

In particular, according to Theorem 36.3, the minimax theory of closed 
proper saddle-functions on R"' x Rn includes as a special case (in view of 
Corollary 34.2.4) the minimax theory of continuous finite saddle-functions 
defined on non-empty products C x D, where C is a closed convex set in 
Rm and D is a closed convex set in Rn. 

Minimax problems for saddle-functions on R"' x Rn really correspond 
to equivalence classes of saddle-functions, rather than to individual 
saddle-functions: 

THEOREM 36.4. Equivalent saddle-functions on Rrn X Rn have the same 
saddle-value and saddle-points (zf any). 

PROOF. Let K and K' be equivalent concave-convex functions on 
R"' x Rn. By the definition of equivalence, cl1 K = cl1 K' and cl2 K = 
cl2 K'. Two convex functions with the same closure have the same infimum, 
and two concave functions with the same closure have the same supremum. 
Thus 

infv K(u, v) = infv K'(u, v), Vu, 

supu K(u, v) = supu K'(u, v), Vv. 

But the saddle-values and saddle-points of Kand K' depend only on these 
infimum and supremum functions. II 

According to the above, the natural objects of concave-convex minimax 
theory are the equivalence classes of closed proper concave-convex 
functions on R"' x Rn, each class corresponding to a single "regularized" 
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saddle-point problem. We shall now show that there is a one-to-one 
correspondence, in terms of Lagrangians, between such saddle-point 
problems and the generalized convex programs associated with closed 
proper convex bifunctions. 

If Fis any bi function from R"' to Rn, the inverse of Fis defined to be the 
bifunction 

F*:x-+ F*x:u-+ (F*x)(u) 

from Rn to Rm given by 

(F *x)(u) = -(Fu)(x), 

Note that F* is concave if F is convex, and vice versa. This notion of 
"inverse" generalizes the one for single-valued or multivalued mappings 
in the sense that, if F is the + oo indicator bifunction of a mapping A 
from R"' to Rn, then F* is the - oo indicator bifunction of A-1. 

The inverse operation F-+ F* clearly preserves closedness and proper
ness of convex or concave bifunctions, and it is involutory, i.e. 

Moreover, the inverse operation commutes with the adjoint operation for 
convex and concave bifunctions: 

(F *)* = (F*)*. 

To see this, suppose that Fis convex, so that F* is concave. Then by defini
tion (F*) * is given by 

((F*)*u*)(x*) =sup {(F*x)(u) - (u, u*) + (x, x*)} 
u,x 

= sup { -(Fu)(x) - (u, u*) + (x, x*)} 
u,x 

=-inf {(Fu)(x) - (x, x*) + (u, u*)} 
u,x 

= -(F*x*)(u*) = ((F*)*u*)(x*). 

(The argument is the same if Fis concave instead of convex, except that 
"inf" and "sup" are interchanged.) 

The relation (F,.J* = (F*)* may be regarded as a generalization of the 
fact that 

(A-1)* = (A*)-1 

for any non-singular linear transformation A. 
One may simply write FZin place of (F*)* or (F*)*. Of course, if Fis a 

convex bifunction from Rm to Rn, then F; is likewise a convex bi function 
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from R"' to Rn, and 

(F!)! = F** =cl F. 

By definition, the Lagrangian of the convex program (P) associated with 
a convex bifunction F from Rm to Rn is the function L on Rm X Rn given 
by 

L(u*, x) = infu {(u*, u) + (Fu)(x)}. 

In terms of F*, the formula for L becomes 

L(u*, x) = infu {(u*, u) - (F*x)(u)} 

= (u*, F*x). 

Therefore Lis a concave-convex function on R"' x Rn by Theorem 33.1, 
and we have the following characterization. 

THEOREM 36.5. In order that L be the Lagrangian of a convex program 
(P) associated with a closed convex bifunction F from Rm to Rn, it is 
necessary and sufficient that L be an upper closed concave-convex function 
on Rm x Rn. 

PROOF. This is immediate from Theorem 33.3. 
Given any upper closed concave-convex function L on Rm x Rn, the 

unique "closed" convex program (P) having Las its Lagrangian is easily 
determined from the correspondences in §33. Indeed, (P) is the convex 
program associated with F, where Fis the closed convex bifunction such 
that F*x is the (concave) conjugate of L(·, x) for each x, i.e. 

(Fu)(x) = -infu• {(u*, u) - L(u*, x)} 

= supu• {L(u*, x) - (u*, u)}. 

The objective function in (P) is thus the convex function 

SUPu• L(u*, ·), 

and the optimal value in (P) is 

inf"' supu• L(u*, x). 

At the same time, the adjoint of Fis given by 

(F*x*)(u*) = infu inf,, {(Fu)(x) - (x*, x) + (u*, u)} 

=inf"' {L(u*, x) - (x*, x)}, 

so that the objective function in the concave program (P*) dual to (P) 
is the concave function 

inf,, L(-, x), 
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and the optimal value in (P*) is 

SU Pu• inf"' L(u*, x). 

The saddle-points of L correspond to optimal solutions and Kuhn-Tucker 
vectors for (P) and (P*), as explained in Theorem 29.3 and Theorem 30.5. 

Each equivalence class of closed proper concave-convex functions on 
Rm x Rn contains a unique upper closed function L (Corollary 34.2.2). 
Thus the general "regularized" saddle-point problems which we arrived 
at by the natural considerations of minimax theory turn out to be 
precisely the Lagrangian problems corresponding to the (generalized) 
"closed proper" convex programs. 

It follows that the main results of (concave-convex) minimax theory 
concerning existence of saddle-values and saddle-points will essentially 
be corollaries to theorems already proved in §29 and §30. These results 
will be presented in §37 in terms of a conjugacy correspondence for 
saddle-functions. 

Since the Lagrangian L of a convex program (P) is a concave-convex 
function, the theory of su bgradients can be used to characterize the saddle
points of L. The condition 

L(u*, x):::;; L(ii*, x):::;; L(ii*, x), Vu*, Vx, 

holds if and only ifthe convex function L(ii*, ·)achieves its minimum at i, 
I.e. 

and the concave function L(·, i) achieves its maximum at ii*, i.e. 

But, by the definition in §35, 

Thus (ii*, i) is a saddle-point of L if and only if 

co, o) E oL(ii*, x). 

The latter relation will be called the Kuhn-Tucker condition for (P). It 
reduces to the Kuhn-Tucker conditions in Theorem 28.3 when (P) is an 
ordinary convex program, as is seen simply from the calculus of sub
gradients. On the other hand, it reduces to the Kuhn-Tucker conditions in 
Theorem 31.3 when (P) is a convex program of the type in Theorem 31.2, 
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since the Lagrangian of (P) in that case is of the form 

L(u*, x) = infu { (u*, u) + f(x) - g(Ax + u)} 

= {f(x) + g*(u*) - (u*, Ax) if x E domf, 

+ oo if x ¢. domf 
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The general Kuhn-Tucker Theorem for convex programs (Corollary 
29.3.1) may be restated as: 

THEOREM 36.6. Let (P) be the convex program associated with a closed 
proper convex bifunction F from Rm to Rn. Assume that (P) is strongly (or 
strictly) consistent, or that (P) is polyhedral and consistent. In order that a 
given vector i E Rn be an optimal solution to (P), it is necessary and sufficient 
that there exist a vector u* E Rm such that 

co, O) E oL(u*, x), 

where L is the Lagrangian of (P). The vectors u* satisfying this condition 
for a given i (if any) are precisely the Kuhn-Tucker vectors for (P). 



SECTION 37 

Conjugate Saddle-Functions and 

Minimax Theorems 

Questions about saddle-values and saddle-points of concave-convex 
functions can be reduced essentially to questions about (generalized) 
convex programs and their associated Lagrangian problems, as has been 
shown in §36. The main existence theorems will be presented here in terms 
of a conjugacy correspondence among concave-convex functions, much as 
the main theorems concerning the minimum of a convex function were 
presented in §27 in terms of the conjugacy correspondence for convex 
functions. 

The notion of the conjugate of a saddle-function is derived from 
properties of the inverse operation for convex bifunctions, which was 
introduced in the preceding section. Thus, as it turns out, the inverse 
operation is the natural foundation for minimax theory, just as the 
adjoint operation for convex bifunctions was the natural foundation for 
the duality theory of convex programs in §30. 

If Fis any convex bifunction from Rm to Rn, the inverse F* of Fis a 
concave bifunction from Rn to Rm, and hence (u*, F*x) is a concave
convex function of (u*, x) on Rm x Rn (Theorem 33.1). How is (u*, F*x) 
related to (Fu, x*), which similarly is concave-convex in (u, x*)? By 
definition, 

(u*, F *x) = (F *x)*(u*) 

= infu {(u, u*) - (F *x)(u)} 

= infu {(u, u*) + (Fu)(x)}. 

If Fis closed (or merely image-closed), we have 

(Fu)(x) =sup,,. {(x, x*) - (Fu, x*)} 

by Corollary 33.1.2 and consequently 

(u*, F*x) = infs'!p {(u, u*) + (x, x*) - (Fu, x*)}. 
" x 

388 
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This reasoning, applied also to the bifunctions F* and FZ, leads to the 
following basic result. 

THEOREM 37.1. Let F be a closed convex bifunctionfrom Rm to Rn, and 
let K be any one of the closed concave-convex functions in the equivalence 
class Q(F) corresponding to F, i.e. any concave-convex function on Rm x Rn 
such that 

(Fu, x*) ~ K(u, x*) ~ (u, F*x*), Vu, Vx*. 

Then, for every u* E Rm and x E Rn, 

inf sup {(u, u*) + (x, x*) - K(u, x*)} = (u*, F *x), 
u x* 

sup inf { (u, u*) + (x, x*) - K(u, x*)} = (Fiu*, x). 
x• u 

On the other hand, let K* be any one of the closed concave-convex functions 
in the equivalence class Q(F*) corresponding to F*, i.e. any concave-convex 
function on Rm X Rn such that 

(Fiu*, x) ~ K*(u*, x) ~ (u*, F*x), Vu*, Vx. 

Then, for every u ER"' and every x* E Rn, 

inf sup {(u, u*) + (x, x*) - K*(u*, x)} = (u, F*x*), . u x 

sup inf {(u, u*) + (x, x*) - K*(u*, x)} =(Fu, x*). 
x u• 

PROOF. This is immediate from the definition of the inverse operation 
and the properties of the equivalence class Q(F) in Theorem 34.2. II 

The saddle-function correspondence in Theorem 37.1 can be regarded as 
a generalization of the conjugacy correspondences for convex or concave 
functions. Let K be any concave-convex function on Rm x Rn. For each 
u* E Rm and v* E Rn, 

(u, u*) + (v, v*) - K(u, v) 

is a convex-concave function of (u, v), the sort of function one naturally 
minimizes in u and maximizes in v. We define the lower conjugate['!:.* of K 
by 

J'!:.*(u*, v*) =sup inf {(u, u*) + (v, v*) - K(u, v)} 
v u 

and the upper conjugate K* of K by 

K*(u*, v*) =inf sup {(u, u*) + (v, v*) - K(u, v)}. 
u v 

Of course, !'!:.* ~ K* by Lemma 36.1. 
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COROLLARY 37.1.1. Let K be any closed concave-convex function on 
Rm X Rn. The lower conjugate K.* of K is then a lower closed concave
convex function on R"' X Rn, and the upper conjugate K* of K is an upper 
closed concave-convex function on Rm X Rn. Moreover, K* and K* are 
equivalent, and they depend only on the equivalence class containing K. If 
K* is any closed concave-convex function equivalent to Ji* and K*, the 
lower and upper conjugates of K* are in turn equivalent to K. 

PROOF. By Theorem 34.2, the equivalence classes in Theorem 37.1 
are the most general equivalence classes of closed concave-convex functions. 
The fact that Ji* is lower closed and K* is upper closed is deduced by 
applying Theorem 33.3 to F* and F!, since for KE Q(F) one has 

by Theorem 37.1. 

K*(u*, v*) = (F!u*, z:*), 

K*(u*, v*) = (u*, F*v*), 

Any saddle-function K* which is equivalent to both the lower and upper 
conjugates of a given saddle-function K will simply be called a conjugate 
of K. In this terminology, Corollary 37.1.1 describes a conjugacy corre
spondence among closed saddle-functions which is symmetric and one-to
one up to equivalence. The constant functions + oo and - oo on Rm x Rn 
are closed saddle-functions conjugate to each other; since these are the 
only improper closed saddle-functions, a saddle-function conjugate to a 
closed proper saddle-function must be proper. In general, the equivalence 
class conjugate to the equivalence class Q(F), where Fis a closed convex 
or concave bifunction, is Q(F*) according to Theorem 37.1. 

The importance of Corollary 37.1.1 for minimax theory is that it reduces 
the possible discrepancies between "sup inf" and "inf sup" to the possible 
discrepancies between saddle-functions which are equivalent to each 
other. The fact that sometimes 

sup inf~ inf sup 

is thus (by the results in §34) precisely dual to the fact that in general 

cl2 cl1 ~ cl1 cl2, 

and the peculiar non-uniqueness of closures and infinity-valued extensions 
of saddle-functions turns out to have a natural dual significance. 

COROLLARY 37.1.2. The lower and upper conjugates Ji* and K* of a 
closed proper saddle-function K have the structural properties in Theorem 
34.3 with respect to a certain non-empty convex product set C* x D* (the 
effective domain of both Ji* and K*), and they satisfy the relations 
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In particular, one has 
E_*(u*, v*) = K*(u*, v*) 

if either u* E ri C* or v* E ri D*. 
PROOF. By Theorem 34.2 and Theorem 34.3. 
Since by definition 

~*(O, 0) =sup inf {(u, 0) + (v, 0) - K(u, v)}, 
v u 

K*(O, 0) =inf sup {(u, 0)+ (v, 0) - K(u, v)}. 
u v 

one has 

inf sup K(u, v) = -~*(O, 0), 
v u 

sup inf K(u, v) = -K*(O, 0). 
u v 

The existence of the saddle-value of K depends therefore on the position 
of (0, 0) relative to 

C* x D* = domK* = domK*. 

In particular, we have: 
COROLLARY 37.1.3. Let K be a closed proper concave-convex function on 

R"' x Rn, and let C* X D* be the common effective domain of the concave
convex functions conjugate to K. If either ri C* contains the origin of Rrn 
or ri D* contains the origin of Rn, then 

inf sup K(u, v) = sup inf K(u, v). 
v u u v 

If both conditions hold, this saddle-value must be finite. 
In order to get the most use out of the minimax criterion in Corollary 

37.1.3, we need a direct characterization of the sets C* and D* in terms of 
K. This is provided by the next theorem. 

THEOREM 37.2. Let K be a closed proper concave-convex function on 
Rm X Rn with effective domain C X D. Let C* X D* be the common 
effective domain of the concave-convex functions K* conjugate to K. The 
support functions of C* and D * are then given by the formulas 

o*(w / D*) = sup sup {K(u, v + w) - K(u, v)}, 
uEri C vED 

-o*(--z IC*)= inf inf {K(u + z, v) - K(u, v)}. 
VE1'i D UEC 

PROOF. Let F be the unique closed proper convex bifunction from 
Rm to Rn such that 

(cl2 K)(u, v) = (Fu, v), Vu, Vv 
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(see Theorem 34.2). We have C = dom F. Since the equivalence class of 
saddle-functions conjugate to K corresponds to F*, we have D* = dom F*. 
Let G be the effective domain of the graph function of F, i.e. 

G = {(u, x) I (Fu)(x) < +oo}. 
We have 

D* = {x I 3u, (u, x) E G} = U {dom Fu I u EC}. 

In fact, by Theorem 6.8 

ri D* = {x I 3u, (u, x) E ri G} = U {ri (dom Fu) I u E ri C}. 

Therefore 
o*(w ID*)= sup {(x, w) Ix E ri D*} 

=sup {(x, w) Ix E ri (dom Fu), u E ri C} 

= sup {o*(w I dom Fu) I u E ri C}. 

On the other hand, for each u E ri C, K(u, ·)is a closed proper convex 
function with effective domain D (Theorem 34.3), and hence it agrees with 
(cl2 K)(u, ·), which is the conjugate of the closed proper convex function 
Fu. The support function of dom Fu is the recession function of the 
conjugate of Fu, according to Theorem 13.3. Thus, for each u E ri C, 
o*(· I dom Fu) is the recession function of K(u, ·), and we have 

o*(w I dom Fu) = sup {K(u, v + w) - K(u, v) I v E D} 

by the first recession function formula in Theorem 8.5. This proves the 
formula for o*C· I D*). The proof of the formula for o*C· I C*) is 
similar. II 

COROLLARY 37.2.1. In the notation of the theorem, one has 0 E int D* 
if and only if the convex functions K(u, ·)for u E ri C have no common 
direction of recession. Similarly, one has 0 E int C* if and only if the convex 
functions -K(', v)for v E ri D have no common direction of recession. 

PROOF. One has 0 ¢.int D* if and only if there exists a vector w ~ 0 
such that o*(w I D*) ~ 0, i.e. (according to the preceding proof) 

K(u, v + w) - K(u, v) ~ 0, Vv ED, Vu E ri C. 

Since the effective domain of K(u, ·) is D for every u E ri C, the latter 
conditions means that w belongs to the recession cone of K(u, ·)for every 
u E ri C. The proof of the other part of the corollary is analogous. II 

The main theorem about the existence of saddle-values may now be 
stated. 

THEOREM 37.3. Let K be a closed proper concave-convex function on 
Rm X Rn with effective domain C X D. Then either of the following 
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conditions implies that the saddle-value of K exists. If both conditions hold, 
the saddle-value must be finite. 

(a) The convex functions K(u, ·)for u E ri C have no common direction of 
recession. 

(b) The convex functions -K(-, v)for v E ri D have no common direction 
of recession. 

PROOF. This simply combines Corollary 37.1.3 and Corollary 37.2.1. 
COROLLARY 37.3.1. Let K be a closed proper concave-convex function on 

Rm X Rn with effective domain C X D. If either C or D is bounded, the 
saddle-value of K exists. 

PROOF. The effective domain of K(u, ·) is D for every u E ri C by 
Theorem 34.3, so condition (a) is fulfilled when Dis bounded. Similarly, 
condition (b) is fulfilled when C is bounded. II 

The saddle-value of K with respect to Rm x Rn in Theorem 37.3 and 
Corollary 37.3.1 is of course the same as the saddle-value of K with respect 
to C x D, as explained in §36. To emphasize this, we state as a special 
case: 

COROLLARY 37.3.2. Let C and D be non-empty closed convex sets in 
R 111 and Rn, respectively, and let K be a continuous finite concave-convex 
function on C X D. If either C or D is bounded, one has 

inf sup K(u, v) = sup inf K(u, v). 
vED uEO uEO vED 

PROOF. Apply the preceding corollary to the lower (or upper) simple 
extension of K to all of Rm x Rn, which is a closed proper concave
convex function with effective domain C x D by Corollary 34.2.4. II 

We shall see below that, when both conditions hold in Theorem 37.3 
a saddle-point actually exists. This result will be obtained from properties 
of the subdifferential mappings oK defined in §35, where oK(u, v) is the 
closed convex set 

for each u and v, and 

dom oK = {(u, v) I oK(u, v) ~ 0}. 

THEOREM 37.4. Let K be a concave-convex function on Rm X Rn. For 
each (u, v), oK(u, v) consists of the pairs (u*, v*) such that the concave
convex function K - (", u*) - (-, v*) has (u, v) as a saddle-point. If K is 
closed and proper, one has 

ri (dom K) c dom oK c dom K. 

PROOF. The sets o1K(u, v) and o2K(u, v) are closed and convex in Rm 
and Rn respectively, so oK(u, v) is closed and convex. By definition, 
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(u*, v*) belongs to oK(u, v) if and only if 

K(u', v) - (u', u*) ~ K(u, v) - (u, u*), Vu', 

K(u, v') - (v', v*) ~ K(u, v) - (v, v*), Vv'. 

Setting K0 = K - (', u*) - (', v*), we can express these inequalities as 
the condition that 

K0(u', v) ~ K0(u, v) ~ K0(u, v'), Vu', Vv', 

which means that (u, v) is a saddle-point of K0• Assume now that K is 
closed and proper. Then K0 is closed and proper, and dom K0 = dom K. 
The saddle-points of K 0 all lie in dom K 0 , according to Corollary 36.3.1. 
The condition (u*' v*) E oK(u, v) therefore implies that (u, v) Edom K. 
In other words, dom oK is included in dom K. On the other hand, suppose 
that 

(u, v) E ri (dom K) = ri (dom1 K) x ri (dom2 K). 

Then v is in the relative interior of the effective domain of the convex 
function K(u, ·)(Theorem 34.3), and consequently K(u, ·)has at least one 
subgradientat v (Theorem 23.4). Thus o2K(u, v) ~ 0. Similarly o1K(u, v) ~ 
0, so that oK(u, v) ~ 0. 11 

COROLLARY 37.4.1. If K and L are equivalent saddle-functions on 
R"' x Rn then oK = oL. Moreover, the values of Kand L agree on the 
set dam oK = dom oL. 

PROOF. For any (u*, v*), the saddle-functions 

K0(u, v) = K(u, v) - (u, u*) - (v, v*), 

L 0 (u, v) = L(u, v) - (u, u*) - (v, v*), 

are equivalent like Kand L. According to the theorem, one has (u*, v*) E 
oK(u, v) ifand only if (u, v) is a saddle-point of K0 , in which case the saddle
value of K 0 is of course K 0(u, v). Since equivalent saddle-functions have the 
same saddle-value and saddle-points if any (Theorem 36.4), one has 
(u*, v*) E oK(u, v) if and only if (u*, v*) E oL(u, v), in which case 
K(u, v) = L(u, v). II 

The subdifferential ofa saddle-function depends only on the equivalence 
class containing the saddle-function, by Corollary 37.4.1. Thus we may 
speak of the subdifferential of an equivalence class. 

Of course, the equivalence classes of closed proper concave-convex 
functions on Rm x Rn correspond one-to-one with the closed proper 
convex bifunctions from Rm to Rn (Theorem 34.2), and the latter corre
spond one-to-one with the closed proper convex functions on Rm+n. The 
next theorem describes how subdifferentials behave under these corre
spondences. It asserts in particular that, for saddle-function equivalence 
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classes which are conjugate to each other, the associated subdifferentials 
are the inverses of each other in the sense of multivalued mappings, just 
as in the case of the subdifferentials of purely convex functions in 
Corollary 23.5.1. 

THEOREM 37.5. Let K be a closed proper concave-convex function on 
Rm x Rn, and let K* be one of the equivalent concave-convex functions 
conjugate to K. Let F be the (unique) closed proper convex bifunctionfrom 
Rm to Rn such that (cl2 K)(u, v) = (Fu, v), and let f be the graph function 
of Fon Rm+n, i.e. 

f(u, v*) = supv {(v, v*) - K(u, v)}. 

Then the following conditions on (u, v) and (u*, v*) are equivalent: 

(a) (u*, v*) E oK(u, v); 

(b) (u, v) E oK*(u*, v*); 

(c) (-u*, v) E of(u, v*); 

(d) (Fu)(v*) - (v, v*) = (F*v)(u*) - (u, u*). 

PROOF. We show first that (a) implies (d). By definition, v* E o2K(u, v) 
if and only if the supremum of the function (', v*) - K(u, ·) on Rn is 
attained at v. This supremum is (Fu)(v*), since the convex function Fu 
is conjugate to the closure of the convex function K(u, ·). Thus v* E 

o2K(u, v) if and only if 

(v, v*) - K(u, v) = (Fu)(v*). 

By a dual argument, u* E o1K(u, v) if and only if 

(u, u*) - K(u, v) = (F*v)(u*). 

Thus (u*' v*) E oK(u, v) if and only if 

(v, v*) - (Fu)(v*) = K(u, v) = (u, u*) - (F*v)(u*). 

This condition implies ( d), and the reverse implication is also true because 
of the general inequality 

(v, v*) - (Fu)(v*) ~ (Fu, v) ~ K(u, v) 

~ (u, F*v) ~ (u, u*) - (F*v)(u*). 

Therefore (a) is equivalent to (d). Since K* corresponds to the inverse 
bifunctions F! and F* in the same way that K corresponds to F and F* 
(i.e. as in Theorem 37.1), it follows that (b) is equivalent to the condition 

(F!u*)(v) - (v, v*) = (F*v*)(u) - (u, u*). 
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This is identical to (d), because 

We have 

(F *v*)(u) = -(Fu)(v*) 

(F!u*)(v) = -(F*v)(u*). 

(F*v)(u*) = inf {(Fu)(v*) - (v, v*) + (u, u*)} 
n,v* 

= -sup {(u, -u*) + (v, v*) - f(u, v*)} = -f*(-u*, v) 
u,v* 

by definition, so that (d) can also be expressed by 

f(u, v*) + f*(-u*, v) = (u, -u*) + (v, v*). 

This condition is equivalent to (c) by Theorem 23.5. 
The equivalence of (a) and (b) in Theorem 37.5 means, according to 

Theorem 37.4, that the concave-convex function K - (', u*) - (', v*) 
has a saddle-point at (u, v) if and only if the concave-convex function 
K* - (u, ") - (v, ") has a saddle-point at (u*, v*). 

The equivalence of (a) and (c) shows that the multivalued mappings 
which are the subdifferentials of closed proper saddle-functions K can be 
obtained in a simple way by "partial inversion" of the subdifferentials of 
closed proper convex functions/ The results which have been established 
about the geometric nature of the mappings of therefore yield results 
about the mappings oK. 

COROLLARY 37.5.1. If K is a closed proper concave-convex function on 
R"' x R", the graph of oK is closed, and it is homeomorphic to Rm x Rn 
under the mapping 

(u, v, u*, v*)-+ (u - u*, v + v*). 

PROOF. This is immediate from Theorem 24.4 and Corollary 31.5.1. 
COROLLARY 37.5.2. If K is a closed proper concave-convex function on 

Rm x R", the mapping 

p: (u, v)-+ {(-u*, v*) I (u*, v*) E oK(u, v)} 

is a maximal monotone mapping from Rm x Rn to Rm x R". In particular, 
if K is everywhere finite and differentiable, 

is a maximal monotone mapping. 
PROOF. By the theorem, one has 

(u*, v*) E p(u, v) 
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if and only if 
(u*, v) E of(u, v*), 

where f is a certain closed proper convex function. The maximal mono
tonicity of p follows from the maximal monotonicity of of (Corollary 
31.5.2). II 

For the purpose of studying the existence of saddle-points, the following 
corollary is the most important fact embodied in Theorem 37.5. 

COROLLARY 37.5.3. Let K be a closed proper saddle-function on Rm x 
Rn, and let K* be one of the equivalent saddle-functions conjugate to K. Then 
oK*(O, 0) is the set of saddle-points of K. The saddle-points of K thus form 
a closed convex product set in Rm x Rn, and a saddle-point exists if and 
only if 

(0, 0) Edom oK*. 

In particular, K has a saddle-point if 
(0, 0) E ri (dom K*). 

PROOF. We have (u, v) E oK*(O, 0) if and only if (0, 0) E oK(u, v), 
i.e. if and only if (u, v) is a saddle-point of K. Apply Theorem 37.4 to 
K*. II 

To get an existence theorem for saddle-points, we need only translate 
the condition (0, 0) E ri (dom K*) in Corollary 37.5.3 into a convenient 
condition on K itself. This can easily be done using the formula in Theorem 
37.2 for the support functions of dom1 K* and dom2 K* in terms of K. 
For the sake of simplicity, we shall only state the general saddle-point 
theorem which corresponds to the condition 

(0, 0) E int ( dom K*) = int ( dom1 K*) x int ( dom2 K*). 

THEOREM 37.6. Let K be a closed proper concave-convex function on 
Rm x Rn with effective domain C X D. If conditions (a) and (b) of Theorem 
37.3 are both satisfied, K has a saddle-point (which necessarily lies in 
C x D). 

PROOF. The hypothesis implies by Corollary 37.2.1 that 0 E 
int (dom1 K*) and 0 E int (dom2 K*). In this case K has a saddle-point by 
Corollary 37.5.3. II 

COROLLARY 37.6.1. Let K be a closed proper coricave-convex function 
on Rm X Rn with effective domain C x D. If C and D are bounded, K 
has a saddle-point and a finite saddle-value. 

PROOF. As for Corollary 37.3.1. II 
COROLLARY 37.6.2. Let C and D be non-empty closed bounded convex 

sets in Rm and Rn, respectively, and let K be a continuous finite concave
convex function on C x D. Then K has a saddle-point with respect to 
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C x D, i.e. there exists some u EC and v ED such that 

K(u, v) ~ K(u, v) ~ K(u, v), Vu EC, Vv ED. 

PROOF. As for Corollary 37.3.2. 
More generally, given a finite saddle-function K on a non-empty 

relatively open convex product set C0 x D0 in Rm x Rn, one can always 
extend K to get a closed proper saddle-function on Rm x Rn such that 

C0 X D0 c dom K c cl ( C0 x D0) 

(Corollary 34.5.1). If C0 x D0 is bounded, the extended K has a saddle
point with respect to C x D = dom K by Corollary 37.6.1 and Theorem 
36.3. 



Part VIII · Convex Algebra 



SECTION 38 

The Algebra of Bijunctions 

The adjoint and inverse operations for convex and concave bifunctions 
generalize the adjoint and inverse operations for linear transformations 
in the following sense, as has already been pointed out. Let A be a linear 
transformation from Rm to Rn, and let F be the convex indicator 
bifunction of A, i.e. the closed proper convex bifunction from Rm to Rn 
defined by 

{

O if x =Au, 
(Fu)(x) = o(x I Au) = . 

+oo 1f x ~Au. 

The adjoint F* of Fis then the concave indicator bifunction of the adjoint 
linear transformation A*, 

(F*x*)(u*) = -o(u* I A*x*) = {

O if u* = A*x*, 

-oo if u* ~ A*x*, 
and we have 

(Fu, x*) = (Au, x*) = (u, A*x*) = (u, F*x*). 

If A is nonsingular, the inverse F* of Fis the concave indicator bifunction 
of A-1 , and FZ is the convex indicator bifunction of (A *)-1 = (A-1)*. 

Our purpose here will be to show how other familiar operations of 
linear algebra, such as addition and multiplication of linear trans
formations, can be generalized in a natural way to bifunctions, and to 
explain the behavior of these generalized operations with respect to taking 
adjoints. 

Given any proper convex bifunctions F1 and F2 from Rm to Rn, we 
define the bifunction F = F1 D F2 from Rm to Rn by intimal convolution 
of F1u and F2u for each u, i.e. 

This operation generalizes the addition of linear transformations, in the 
sense that F1 D F2 is the convex indicator bifunction of A1 + A 2 when 
F1 and F2 are the convex indicator bifunctions of linear transformations 

401 
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A1 and A 2 , respectively. For the concave bifunctions, the operation- D is 
defined in the same way, except that the infimum is replaced by a 
supremum. 

THEOREM 38.1. Let F1 and F2 be proper convex bi/unctions from Rm 
to Rn. Then F1 D F2 is a convex bi/unction from R"' to Rn, and 

dom (F1 D FJ = dom F1 n dam F2 • 

Furthermore, one has 

((F1 D F2)u, x*) = (F111, x*) + (F2u, x*), Vu, Vx*, 

if one sets oo - oo = - oo + oo = - oo. (Similarly for concave bi
/unctions, but with oo - oo = - oo + oo = + oo.) 

PROOF. The graph function of F 1 D F2 is obtained by partial infimal 
convolution of the graph functions of F1 and F2 , which are proper convex 
functions, and hence it is a convex function. Thus F1 D F2 is a convex 
bifunction. Ifu belongs to dom F1 n dam F2 , both F1u and F2u are proper 
convex functions on Rn. Then (F1 D F2)u is not identically + oo, so that 
u Edom (F1 D F2), and by Theorem 16.4 

((F1 D F2)u)* = (F1u D F2u)* = (F1u)* + (F2u)*. 

In inner product notation, this relation is 

If u does not belong to dom F1 n dam F2 , one of the functions F1u and 
F2u is identically + oo. Then (F1 D FJu is identically + oo, implying 
u ¢. dom (F1 D F2). The function ((F1 D F2)u, ') is then identically - oo, 
as is one of the functions (F1u, ') or (F2u, '), so that the inner product 
equation in the theorem holds if one takes oo - oo to be - oo. II 

The operation D is a commutative, associative operation in the class of 
convex bifunctions from Rm to Rn to the extent that it is defined, inasmuch 
as infimal convolution of convex functions has these properties. One can 
extend D to improper bifunctions using the "geometric" definition of 
infimal convolution of improper convex functions given in §5. The class 
of all convex bifunctions from Rm to Rn is then a commutative semigroup 
under D, with the indicator of the zero linear transformation as the identity 
element. 

The next theorem generalizes the familiar formula 

(A1 + A 2)*=A{ +A: 

for linear transformations to the case of bifunctions. 
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THEOREM 38.2. Let F1 and F2 be proper convex bifunctions from Rm 
to Rn. If ri (dom F1) and ri (dom F2) have a point in common, one has 

(F1 D F 2)* =Fi* D Fi. 

PROOF. For any x*, (F1 D F2)*x* is the conjugate of the concave 
function (", (F1 D F2)*x*), since (F1 D F2)*, being the adjoint of the 
convex bifunction F1 D F2 , is closed (Theorem 30.1) and hence in partic
ular image-closed. On the other hand, (-, (F1 D F2)*x*) is the closure of 
the concave function 

u-+ ((F1 D F2)u, x*) 

(Theorem33.2). ltfollows by the formula in Theorem 38.1 that (F1 D F2)*x* 
is the conjugate of g, where 

g(u) = (F1u, x*) + (F2u, x*) 

with oo - oo = - oo. Now (by Theorem 33.1 and the fact that the 
conjugate of Fiu has the value - oo at x* if and only if Fiu is identically 
+ oo, i.e. u ¢. dom Fi) the concave functions 

have dom F1 and dom F2 as their effective domains, respectively, and 
these sets have a relative interior point in common by hypothesis. If 

x* E dom (Fi D Fn = dom Fi n damn, 

g1 and g2 nowhere assume the value + oo, and we have 

g* = (g1 + g2)* = gi D g~ 

by (the concave version of) Theorem 16.4. Since gi = Ftx* and gri = 
Frix*, this relation says that 

(F1 D F2)*x* = (Fi D Fnx*. 

If x* is not in dom (Ft D Fi), then (Ft D Fi)x* and one of the concave 
functions Ftx* or Fix* must be identically - oo. One of the functions 
g1 or g2 must then take on + oo somewhere. A concave function which 
takes on + oo must actually have + oo throughout the relative interior of 
its effective domain (Theorem 7.2), so in this case g likewise takes on + oo 
somewhere. Then (F1 D F2)*x* = g* is identically - oo and coincides 
again with (Ft D Fi)x*. II 

COROLLARY 38.2.1. Let F1 and F2 be closed proper convex btfunctions 
from Rm to Rn. If ri (dom Ft) and ri (dom Fi) have a point in common, 
then F1 D F2 is closed and 

(F1 D F2)* = cl CFi D F:). 
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PROOF. The relative interior condition implies that 

(Fi* D F:)* =Fi* D F:*. 
But Fi** = Fi and Fi* = F2 , since Fi and F2 are closed. The adjoint of a 
convex or concave bifunction is always closed, so it follows that F1 D F2 

is closed and 

(Fi D F2)* = (Fi D F:)** = cl (Fi D Fn 

(Theorem 30.1 ). II 
In general, of course, Fi D F2 need not be closed. One does, however, 

have 
(cl (Fi D F2))u = cl (Fiu D F2u) 

by Theorem 29.4 for each u in the relative interior of dom (Fi D F2), and 
hence in particular for each 

u E ri (dom Fi) n ri (dom F2). 

Scalar multiples FA. are defined for A. > 0 by the formula (FA)u = (Fu)A., 
Le. 

((FA)u)(x) = A.(Fu)(A.-ix). 

This corresponds to scalar multiplication of linear transformations: if F 
is the convex indicator bifunction of the linear transformation A, then 
FA. is the convex indicator bifunction of A.A. 

THEOREM 38.3. Let F be a convex bifunction from Rm to Rn, and let 
A. > 0. Then FA. is a convex bifunction, closed or proper according as F 
itself is closed or proper, and one has 

((FA)u, x*) = A.(Fu, x*), Vu, Vx*. 

Moreover (FA)*= F*A.. 

PROOF. Let f be the graph function of F, i.e. f(u, x) = (Fu)(x). The 
epigraph of the graph function of FA. is the image of epif under the one-to
one linear transformation 

(u, x, µ)-+ (u, A.x, A.µ) 

from Rm+n+i onto itself, so the graph function of FA. is convex, and so 
forth. The inner product formula follows from the fact that 

((Fu)A.)* = A.(Fu)*, Vu 

(Theorem 16.1). The bifunctions (FA)* and F*A. are both closed (Theorem 
30.1), and by applying the inner product formula just established we have 

(u, (FA.)*x*) = clu ((FA)u, x*) = A clu (Fu, x*) 

= A.(u, F*x*) = (u, (F*A.)x*) 

(Theorem 33.2). Therefore (FA)* = F* A. (Theorem 33.3). 
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Let F be a proper convex bifunction from Rm to Rn. Given any convex 
function f on Rm which does not take on - oo, we define the function Ff, 
the image off under F, by the formula 

(Ff)(x) = infu {f(u) + (Fu)(x)} = inf (f - F *x). 

(Analogously when f and Fare concave instead of convex.) If Fis the 
indicator of a linear transformation A, then Ff= Af. 

THEOREM 38.4. Let F be a proper convex bifunction from Rm to Rn, and 
let f be a proper convex function on Rm. Then Ff is a convex function on Rn. 
If the sets ri ( domf) and ri ( dom F) have a point in common, one has 

(Ff)*= F!f* 

and the in.fimum in the definition of (F!f*)(x*) is attained for each x*. 

PROOF. Let h(u, x) = f(u) + (Fu)(x). Then h is a convex function on 
Rm+n, and Ff is the image of h under the projection (u, x)-+ x. Hence Ff 
is convex (Theorem 5.7). For any x* E Rn, we have 

(Ff)*(x*) =sup,, {(x, x*) - infu {f(u) + (Fu)(x)}} 

= sup {(x, x*) - (Fu)(x) - f(u)}. 
u,x 

The concave function 

g(u) = (Fu, x*) = supx { (x, x*) - (Fu)(x)} 

has dom Fas its effective domain and F*x* as its conjugate. Assume that 
ri ( domf) meets ri ( dom g) = ri ( dom F). If x* E dom F*, g is proper 
and by Fenchel's Duality Theorem (or more exactly by the result obtained 
when both sides of the equation in Theorem 31.1 are multiplied by -1) 
we have 

(Ff)*(x*) = supu {g(u) - f(u)} = infu• {f*(u*) - g*(u*)} 

= infu• {f*(u*) + (F!u*)(x*)} = (F!f*)(x*), 

where the infimum is attained. On the other hand, if x* ¢. dom F* the 
concave function g is improper and hence identically + oo on the relative 
interior of its effective domain. Then (Ff)*(x*) must be + oo. At the same 
time, F*x* is the constant function - oo, so that the infimum defining 
(F;f*)(x*) is + oo and trivially attained. II 

COROLLARY 38.4.1. Let F be a closed proper convex bifunction from 
Rm to Rn, and let f be a closed proper convex function on Rm. If ri ( domf*) 
meets ri ( dom F!), then Ff is closed, and the in.fimum in the definition of 
(Ff)(x) is attained for each x. Moreover, then (Ff)* = cl (F!f*). 
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PROOF. We have CF:)! = F and/** = f Apply the theorem to F: 
and/*. II 

The operation of taking the image of a function under a bifunction 
suggests the natural way to define the product of two bifunctions. Let F be 
a proper convex bifunction from Rm to Rn, and let G be a proper convex 
bifunction from Rn to RP. We define the bifunction GF from Rm to RP by 

(GF)u = G(Fu), 
or in other words 

((GF)u)(y) =inf,, {(Fu)(x) + (Gx)(y)} =inf {Fu - G*y}. 

When Fand Gare concave, one takes the supremuminsteadoftheinfimum. 
Obviously 

(GF)* = F *G*. 

Observe that, when F and G are the convex indicator bifunctions of 
linear transformations A and B respectively, GF is the indicator of BA. 

THEOREM 38.5. Let F be a proper convex bi/unction from Rm to Rn, 
and let G be a proper convex bifunctionfrom Rn to RP. Then GF is a convex 
bifuriction from Rm to RP. If ri ( dom F*) and ri ( dom G) have a point in 
common, one has 

(GF)* = F*G*, 

and the supremum in the definition of ((F*G*)y*)(u*) is attained for each 
u* E Rm and y* ERP. 

PROOF. Let 
h(u, x, y) = (Fu)(x) + (Gx)(y). 

Then his a convex function on Rm+n+P. The graph function of GF is the 
image of h under the linear transformation (u, x, y)-+ (u, y), and hence 
it is convex (Theorem 5.7). For any u* E Rm and y* ERP, we have 

((GF)*y*)(u*) =inf inf {(Fu)(x) + (Gx)(y) - (y, y*) + (u, u*)} 
U,Y X 

=inf {(u, u*) - (F*x)(u) - (y, y*) + (Gx)(y)}. 
x,u,y 

The concave function 

g(x) = (Gx, y*) = sup
11 

{ (y, y*) - (Gx)(y)} 

has dom G as its effective domain and G*y* as its conjugate. The convex 
function 

f(x) = (u*, F *x) = infu { (u, u*) - (F *x)(u)} 

has dom F* as its effective domain and F!u* as its conjugate. Assume that 
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dom G and dom F* have a relative interior point in common. If y* E 
dom G* and u* Edom F!, g and fare proper and by Fenchel's Duality 
Theorem we have 

((GF)*y*)(u*) =inf., {j(x) - g(x)} = sup,,. {g*(x*) - f*(x*)} 

=sup,,. {(G*y*)(x*) + (F*x*)(u*)} = ((F*G*)y*)(u*), 

where the supremum is attained. 
If y* ¢. dom G*, g is improper and hence identically+ oo on the relative 

interior of its effective domain.Then, for any x in ri (dom F*) n ri (dom G) 
and any u such that (F*x)(u) is finite, we have 

infv { (u, u*) - (F *x)(u) - (y, y*) + (Gx)(y)} = - oo 

and hence ((GF)*y*)(u*) = - oo. At the same time, y* ¢. dom G* 
implies that G*y* is the constant function - oo, so that the supremum 
defining ((F*G*)y*)(u*) is - oo and trivially attained. Thus 

((GF)*y*)(u*) = ((F*G*)y*)(u*) 

whenever y* ¢. dom G*. A similar argument covers the case where 
u* ¢. dom F!. II 

COROLLARY 38.5.1. Let F be a closed proper convex bifunction from 
Rm to Rn, and let G be a closed proper convex bifunction from Rn to RP. If 
ri ( dom F*) and ri ( dom Gn have a point in common, then G Fis closed and 
the in.fimum in the definition of ((GF)u)(y) is always attained. Moreover, 
then (GF)* =cl (F*G*). 

PROOF. Apply the theorem to F* and G*. Since Fand Gare closed, we 
have F** = F, G** = G, and hence (F*G*)* = GF. As the adjoint of 
something, G Fis closed. II 

The convex set dom F* in Theorem 38.5 is, of course, the image of the 
effective domain of the graph function f(u, x) = (Fu)(x) under the 
projection (u, x)-+ x (whereas dom F is the image under (u, x)-+ u). 
Thus dom F* is the union of all the sets dom Fu. Moreover ri ( dom F*) 
is the image of ri ( domf) under (u, x)-+ x (Theorem 6.6), so 

ri (dom F *) = U {ri (dom Fu) I u E ri (dom F)} 

by Theorem 6.8. The condition in Theorem 38.5 that ri (dom F*) and 
ri (dom G) have a point in common can therefore be stated equivalently 
as the condition that there exist some u E ri (dom F) such that ri (dom Fu) 
meets ri (dom G). It is not difficult to show that, when such vectors u 
exist, they form ri (dom (GF)). Of course, in general, dom GF itself con
sists of the vectors u Edom F such that dom Fu meets dom G. 

Multiplication of convex bifunctions is plainly associative to the extent 
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that it is defined, i.e. one has 

H(GF) = (HG)F 

when F, G, H, GF and HG are proper. The associative law is valid even 
for improper convex bifunctions, if one extends the definition of G F to the 
improper case simply by invoking the rule oo - oo = + oo to interpret 
(Fu)(x) + (Gx)(y) where necessary. Under the extended definition of 
multiplication, the class of all convex bifunctions from R" to itself is a 
(non-commutative) semigroup having as identity element the indicator 
of the identity linear transformation. Products F 2 = FF, F3 = FFF, ... , 
may be studied, etc. 

A more general notion of inner product is helpful in describing the 
properties of expressions like ((GF)u, y*). Let f be a proper convex 
function on Rn, and let g be a proper concave function on Rn. Let C = 
dom/ and D = dom g. If the quantity 

sup inf {(x, y) - f(x) - g(y)} =sup {g*(x) - f(x)} 
xEC YED x 

and the quantity 

inf sup {(x, y) - f(x) - g(y)} =inf {f*(y) - g(y)} 
yED xEC !I 

are equal, we call the common extremum the inner product off and g and 
denote it by <f, g). (If the quantities are not equal, <J, g) is undefined.) 
According to Fenchel's Duality Theorem, <f, g) exists in particular when 
g is closed and ri (domf) meets ri (domg*), or when f is closed and 
ri (domg) meets ri (dom/*). For instance, a simple condition which 
ensures the existence of <f, g) is that f and g be closed and either C or D 
be bounded. (If C is bounded, dom/ * is all of Rn by Corollary 13.3.1. 
Similarly, if D is bounded, dom g* is all of R".) 

When f and g are the indicators of points a and b, i.e. f(x) = o(x I a) 
and g(y) = -o(y I b), one has <f, g) equal to the ordinary inner product 
(a, b). 

The new definition of inner product agrees with the notation <f, x*) 
for f*(x*) introduced in §33, in the sense that <f, g) = <f, x*) when 
g(y) = -o<y 1 x*). 

as 
The two extrema in the definition of <J, g) can equally well be expressed 

sup {g*(x) - f(x) Ix E (domg* n dom/)}, 

inf {j*(y) - g(y) I y E (dom/* n dam g)}. 

These expressions are unambiguous even when for g is improper, and 
they therefore allow us to extend the definition of (j, g) to the case of 



§38. THE ALGEBRA OF BIFUNCTIONS 409 

improper convex and concave functions. It can be verified without 
difficulty that the relative interior conditions cited above also suffice for 
the existence of <f, g) in the improper case. 

LEMMA 38.6. Let f be a convex function on Rn, and let g be a concave 
function on Rn. {f <f, g) exists, then <f*, g*) exists and 

<!*' g*) = -<J, g). 

Moreover, then (elf, cl g) exists and coincides with <J, g). 
PROOF. Given any vector x such that/* *(x) < + oo and g*(x) > - oo, 

and given any vector y such that g**(y) > - oo and f*(y) < + oo, we 
have 

+ oo > f**(x) + f*(y) ~ (x, y) ~ g*(x) + g**(y) > - oo 

by Fenchel's Inequality, and consequent! y 

f**(x) - g*(x) ~ g**(y) - f*(y). 

Since/** ~f and g** ~ g, it follows that 

inf {j(x) - g*(x) Ix E (dom/ n domg*)} 

~inf {f**(x) - g*(x) Ix E (dom/** n domg*)} 

~ sup {g**(y) - f*(y) I y E (dom g** n dom/*)} 

~sup {g(y) ·-f*(y) I y E (domg n dom/*)}. 

The two middle extrema give <f*, g*) when they are equal. If (j, g) exists, 
the first and last extrema equal -<J, g), so that all four extrema coincide. 
The existence of <f*, g*) implies in turn that the inner product 
<f**, g**) = (elf, cl g) exists and equals -(j*, g*). Thus (elf, cl g) = 
<f,g). II 

THEOREM 38.7. Let F be a proper convex bifunctionfrom Rm to Rn. Let 
f be a proper convex function on Rm, and let g be a proper concave function 
on Rn. Assume there exists at least one u in ri (dom/) n ri (dom F) such 
that ri (dom Fu) meets ri (domg). Then the following equation holds 
(where in particular all four inner products exist): 

(Ff, g*) = (f, F*g*> = -<f*, F *g) = -(F:J*, g). 

PROOF. Let C and D be the convex sets defined by 

C = {(u, x) I u ER"', x E Rn, (Fu)(x) < + oo}, 

D = {(u, x) I u ER»', x E Rn,f(u) < + oo}. 

The image of C n D under the linear transformation (u, x)-+ xis dom Ff, 
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and hence the image of ri (C n D) is ri (dom Ff) (Theorem 6.6). We have 

ri C = {(u, x) I u E ri (dom F), x E ri (dom Fu)} 

according to Theorem 6.8. Since ri (domf) n ri (dom F) is non-empty by 
hypothesis, ri C n ri Dis non-empty, so that 

ri (C n D) = ri C n ri D 

(Theorem 6.5). Thus ri (dom Ff) is the image of ri C n ri D under 
(u, x)-+ x, and we have 

ri (dom Ff)= U {ri (dom Fu) I u E ri (domf) n ri (dom F)}. 

The latter set meets ri (domg) by hypothesis. Hence ri (dom Ff) meets 
ri (domg**) and (Ff, g*) exists. Similarly, ri (dom (Ff)**) meets 
ri (domg) and ((Ff)*, g) exists. By Theorem 38.4, (Ff)*= FZf*. 
Therefore (F,:f*, g) exists, and from Lemma 38.6 we have 

(Fif*, g) =((Ff)*, g) =-(cl (Ff), g*) = -(Ff, g*). 

A dual argument can now be applied to the inverse bifunction F*. The 
formula 

ri C = {(u, x) / x E ri (dom F *), u E ri (dom F *x)} 

holds by Theorem 6.8. Our hypothesis about relative interiors can there
fore be expressed equivalent! y as follows: there exists at least one x in 
ri(domg) nri(domF*) such that ri(domF*x) meets ri(domf). Of 
course, (F*)! = F*. Thus by the reasoning above (j*, F*g) exists, 
<f, F*g*) exists and 

(f, F*g*) = -<f*, F *g). 
By definition, 

<f, F*g*) = inf {f*(u*) - (F*g*)(u*) / u* E (domf* n dam F*g*)] 

= inf {f*(u*) - g*(x*) - (F*x*)(u*)}. . . u .x 

On the other hand, 

(F:J*, g) =sup {g*(x*) - (F!J*)(x*) Ix* E(domg* n domF:J*)} 

= s.uP. {g*(x*) - f*(u*) - (F!u*)(x*)}. 
x .u 

Therefore 

(Fif*, g) = -<f, F*g*) 

and the proof is complete. 
COROLLARY 38.7.1. Let F be a proper convex bifunctionfrom Rm to Rn. 

Let f be a proper convex function on Rm such that ri ( domf) meets 
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ri ( dom F). Then <f, F* x*) exists for every x* E Rn, and 

(Ff, x*) = <f, F*x*). 

PROOF. Given any x*, apply the theorem with g = (", x*). 
Corollary 38.7.2. Let F be a proper convex bifunctionfrom Rm to Rn, 

and let G be a proper convex bifunction from Rn to RP. Assume that 
ri (dom F*) and ri (dom G) have a point in common. Then, for each 
u E ri (dom GF), (Fu, G*y*) exists for every y* ERP and 

(GFu, y*) = (Fu, G*y*) = (u, F*G*y*). 

PROOF. The first and last of these inner products are equal simply by 
Corollary 33.2.1, since F*G* = (GF)* by Theorem 38.5. On the other 
hand, the first equality is valid by the preceding corollary if ri (dom Fu) 
meets ri ( dom G). It suffices therefore to show that 

ri (dom GF) = {u E ri (dom F) I ri (dom Fu) n ri (dom G) ~ 0} 

under the hypothesis that 

ri (dom F *) n ri (dom G) ~ 0. 

We leave this to the reader as a pithy exercise in the calculus of relative 
interiors (cf. the remarks following Corollary 38.5.1). II 

The results above take on an especially nice form when the bifunctions 
are co-finite. A convex (or concave) bifunction F from Rm to Rn is said to 
be co-finite if, for every u E Rm, the convex (or concave) function Fu is 
co-finite (i.e. closed, proper and without any non-vertical half-lines in its 
epigraph). This condition implies that dom F = Rm, and that Fis closed 
and proper (Theorem 29.4). 

Since the co-finite convex (or concave) functions are precisely the 
conjugates of the finite convex (or concave) functions (Corollary 13.3.1 ), 
F (closed) is co-finite if and only if (Fu, x*) is finite for all u and x*. The co
finite convex (or concave) bifunctions F from Rm to Rn are thus in one
to-one correspondence with the finite saddle-functions on Rm x Rn 
(Corollary 33.1.2). It follows that the adjoint F* of a co-finite F is co
finite and satisfies 

(Fu, x*) = (u, F*x*), Vu, V x* 

(Corollary 33.2. l ). It follows further that a closed convex bifunction F 
from Rm to Rn is co-finite if and only if dom F = Rm and dom F* = Rn 
(Theorem 34.2). 

The indicator bifunctions of linear transformations from Rm to Rn are, 
of course, examples of co-finite bifunctions. They correspond to the saddle
functions which are bilinear functions on R"' x Rn. 
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If F1 and F2 are co-finite convex bifunctions from Rm to Rn, then 
F1 D F2 is co-finite and 

(F1 D F 2)* = F1* D Fi. 

This is immediate from Corollary 38.2.1 and the inner product formula in 
Theorem 38.1. The operation F-+ FA., A > 0, likewise preserves co
finiteness. 

If Fis a co-finite convex bifunction from Rm to Rn and G is a co-finite 
convex bifunction from Rn to RP, then GF is a co-finite convex bifunction 
from Rm to RP and 

(QF)* = F*G* 

(Theorem 38.5 and Corollary 38.5.1). The co-finite convex bifunctions 
from Rn to itself thus form a non-commutative semigroup under 
multiplication. 

The inner product equation 

(Ff, g*) = <f, F*g*) 

is always valid when F,.f and g* are co-finite (Theorem 38.7). 
Most of the results in this section can be sharpened in the case of 

polyhedral bifunctions. However, we shall leave this to the reader. 



SECTION 39 

Convex Processes 

The notion of a convex process is intermediate between that of a linear 
transformation and that of a convex bifunction. Convex processes form an 
algebra of multivalued mappings with many interesting duality properties. 
These properties can be deduced from theorems already established for 
bifunctions, which they help to illuminate. 

A convex process from Rm to Rn is a multivalued mapping A :u-+ Au 
such that 

(a) A(u1 + u2) ::::i Au1 + Au2 , Vu1 , Vu2, 

(b) A(J.u) = J.Au, Vu, V }, > 0, 
(c) 0EA0. 

Condition (c) means that the set 

graph A= {(u, x) I u ER"', x E Rn, x E Au} 

contains the origin of R"'+n. Condition (a) is equivalent to the condition 
that 

V(u1, X1) E graph A, 

while (b) is equivalent to 

J.(u, x) E graph A, V(u, x) E graph A, VA> 0. 

Thus a multivalued mapping A from Rm to Rn is a convex process if and 
on! y if its graph is a non-empty subset of Rm+n closed under addition and 
non-negative scalar multiplication, i.e. a convex cone in Rm+n containing 
the origin. 

Various elementary properties of convex processes are immediate from 
the definition. If A is a convex process from Rm to Rn, Au is a convex set 
in Rn. The set AO is a convex cone containing the origin, and it consists 
precise! y of the vectors y such that 

Au+ y c Au, Vu. 

The domain of A, which is defined of course by 

dom A = {u I Au ~ 0}, 
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is a convex cone in Rm containing the origin, and the range of A, 

range A = U {Au I u E Rm}, 

is a convex cone in Rn containing the origin. 
The inverse A-1 of A, where 

A-1x = {u Ix EAu}, Vx, 

is a convex process from Rn to Rm such that 

dom A-1 = range A 

range A-1 = dom A. 

The convex cone A-10 consists of the vectors v with the property that 

A(u + v) ::::i Au, Vu. 

If A is a single-valued mapping with dom A = Rm, condition (a) in the 
definition of "convex process" reduces simply to 

A(u1 + u2) = Au1 + Au2• 

Linear transformations are therefore special cases of convex processes. 
They are the only convex processes A such that Au is a non-empty bounded 
set for every u, as the following theorem shows. 

THEOREM 39.1. If A is a convex process from Rm to Rn such that 
dom A = Rm and AO is bounded, then A is a linear transformation. 

PROOF. Since AO is a convex cone containing the origin, boundedness 
implies that AO consists of the origin alone. The relation 

Au+ A(-u) c AO 

then implies that Au consists of a single vector (also denoted by Au) for 
each u, and A(-u) = -Au. In this case A(u1 + u2) = Au1 + Au2 for 
every u1 and u2 as pointed out above, and A(Au) = J.Au for every A ER 
by condition (b) in the definition of"convex process." Thus A is linear. II 

A good example of a convex process which is not a linear transformation 
is the mapping A defined by 

{

{x Ix ~ Bu} if u ~ 0, 
Au= 

0 if u ~ 0, 

where B is a linear transformation from Rm to Rn. Note that 

A-1x = {u I u ~ 0, Bu ~ x}, V x. 

The convex process A-1 thus expresses the dependence upon x of the set of 
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solutions to a certain linear inequality system having x as its "vector of 
constants." 

A convex process is said to be polyhedral if its graph is a polyhedral 
convex cone. The convex processes A and A-1 in the preceding paragraph 
are polyhedral, as are of course all linear transformations. The results 
below which involve conditions on closures and relative interiors can be 
stated much more simply in the case where the convex processes are 
polyhedral, although we shall not pursue this point. 

Let A be a convex process from Rm to Rn. The closure of the graph of A 
is a convex cone in Rm+n containing the origin, and hence it is the graph 
of a certain convex process. We call this convex process the closure of 
A and denote it by cl A. Obviously x E (cl A)u if and only if there exist 
sequences u1 , u2 , • •• , and x1 , x 2, ••• , such that u; converges to u, X; E Au; 
and X; converges to x. We say that A is closed if cl A = A. Clearly, cl A 
is itself closed, and 

cl (A-1) = (cl A)-1 . 

If A is a closed convex process, all the sets Au for u Edom A are closed, 
and they all have the same recession cone, namely AO. (The latter is 
apparent from the fact that the sets Au correspond to the "parallel" 
cross-sections 

Lu n graph A, 

where L,, is the affine set in Rm+n consisting of all of the pairs (u, x), 
x E Rn. The recession cone of Lu n (graph A) is L 0 for every u by Corollary 
8.3.3.) 

Scalar multiples AA of a convex process A from Rm to Rn are defined for 
every A ER by 

(J.A)u = }.(Au). 

These scalar multiples are obviously convex processes. 
If A and B are convex processes from Rm to Rn, the sum A + B is 

defined by 
(A + B)u = Au + Bu. 

It follows immediately from the definitions that A + B is another convex 
process, and 

dom (A+ B) = domA n domB. 

Addition is a commutative, associative operation under which the 
collection of all convex processes from Rm to Rn is a semigroup with an 
identity element (the zero linear transformation). 

If C is a convex set in Rm and A is a convex process from R"' to Rn, the 
image of C under A is defined as 

AC = U {Au I u EC}. 



416 VIII: CONVEX ALGEBRA 

This image is a convex set in R", because, for 0 < A < 1, 

(1 - J.)AC + J.AC = A((l - }.)C) 

+ A(J.C) c A((l - J.)C + J.C) c AC. 

The image Af of a convex function f on Rm under a convex process A 
from Rm to R" is defined by 

(Af)(x) = inf {j(u) I u E A-1x}. 

It is easy to verify that Af is a convex function on R". 
The product BA of a convex process A from R'" to R" and a convex 

process B from R" to RP is defined by 

One has 
(BA)u = B(Au) = U {Bx I x E Au}. 

BA(u1 + u2) ::::i B(Au1 + Au2) ::::i BAu1 + BAu2 , 

BA(J.u) = B(AAu) = J.(BAu), VA > 0, 

0 E B(AO) = (BA)O, 

so that BA is a convex process from R"' to RP. Clearly 

(BA)-1 = A-1B-1• 

Note that A-1 A is generally a multivalued mapping and not just the 
identity transformation. Multiplication of convex processes is an associ
ative operation. The collection of all convex processes from R" to itself 
is a (non-commutative) semigroup under multiplication, with the identity 
linear transformation I acting as the identity element. 

The distributive law does not generally hold between addition and 
multi plication. Instead one has distributive inequalities: 

A(A1 + A2) ::::i AA1 + AA2 , 

(A1 + A 2)A c A 1 A + A 2A. 

Inclusion here is in the sense of graphs, i.e. in the sense that A ::::i B if and 
only if Au ::::i Bu for every u. 

The collection of all convex processes from Rm to R" is, of course, a 
complete lattice under the partial ordering defined by inclusion (inasmuch 
as the collection of all convex cones containing the origin in Rm+n is a 
complete lattice under inclusion). 

In order to develop a sound duality theory for convex processes, one 
needs to introduce a concept of orientation which reflects the convexity
concavity dualism in the theory of bifunctions. A convex set C can be 
treated as a special case of a convex function by identifying it with its 
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convex indicator function o(· I C), or as a special case ofa concave function 
by identifying it with -oC· I C). When the first identification is made we 
speak of C as having a supremum orientation and define 

(C,x*) = (x*,C) = sup{(x,x*)lxEC},Vx*, 

while when the second identification is made we speak of C as having an 
in.ftmum orientation and define 

(C, x*) = (x*, C) =inf {(x, x*) Ix EC}, 'Ix*. 

(Strictly speaking, we should say that an oriented convex set is a pair 
consisting of a convex set and one of the words "supremum" or "infimum." 
This word is the "orientation" of the set, and it specifies how the set is to 
be manipulated in various formulas below.) For a supremum oriented 
convex set, (C,-) is the support function of C, the convex conjugate of 
o(· I C), while for an infimum oriented convex set one has 

(C, x*) = -o*(-x* I C), 

i.e. (C,-) is the concave conjugate of -oC· I C). 
A supremum oriented convex process is a convex process A with Au 

supremum oriented for every u; similarly for an in.ftmum oriented convex 
process. The inverse of an oriented convex process is given the opposite 
orientation. The sum or product, etc., of convex processes with like 
orientation is given this same orientation. (Only sums and products of 
convex processes with like orientation are considered below.) 

The indicator bifunction F of a supremum oriented convex process A 
from Rm to Rn is the bifunction from Rm to Rn defined by 

(Fu)(x) = o(x I Au). 

Clearly Fis convex and proper, since the graph function of Fis the indicator 
function of a non-empty convex cone in Rm+n, namely the graph of A. 
Also, Fis closed if and only if A is closed. One has 

domF= domA. 

If A is infimum oriented, instead of supremum oriented, the indicator 
bifunction of A is concave, instead of convex, and it is defined by 

(Fu)(x) = -o(x I Au). 

The algebraic operations for convex processes correspond to operations 
introduced for bifunctions in the preceding section. For example, if Ai 
and A 2 are supremum oriented convex processes from Rm to Rn with 
indicator bifunctions Fi and F2 respectively, then the indicator bifunction 
of Ai + A 2 is Fi D F2• If A is a supremum oriented convex process from 
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Rm to Rn with indicator bifunction F, and B is a supremum oriented 
convex process from Rn to RP with indicator function G, then the indicator 
function of BA is GF. 

Adjoints of convex processes can be defined unambiguously by con
sistent use of orientations. Given a supremum oriented convex process A 
from Rm to Rn, we take the adjoint of A to be the infimum oriented mapping 
A* (actually a convex process, as will be shown below) defined by 

A*x* = {u* I (u, u*) ~ (x, x*), Vx E Au, Vu} 

= {u* I (u, u*) ~ (Au, x*), Vu}. 

The adjoint of an infimum oriented convex process is defined in the same 
way, except that it is supremum oriented and the inequality in the 
definition is reversed. Evidently 

(A *)-1 = (A-1)*. 

Note that, when A is a linear transformation, the adjoint of A as a 
convex process (given either orientation) is the adjoint linear transforma
tion. Indeed, the condition 

(u, u*) ~ (Au, x*), Vu, 
implies that 

(u, u*) = (Au, x*), Vu, 

i.e. that u* is the image of x* under the adjoint linear transformation. 

THEOREM 39.2. Let A be an oriented convex process from Rm to Rn. 
Then A* is a closed convex process from Rn to Rm having the opposite 
orientation, and A** =cl A. The adjoint of the indicator bi/unction of 
A is the indicator bzfunction of A*. 

PROOF. Suppose that A is supremum oriented. Let K = graph A, 
and let f be the graph function of the indicator bifunction F of A, i.e. 
f= o(· I K). The conjugate/* of/is o(· I K 0

), where K 0 is the polar of K 
(see §14), whereas 

(F*x*)(u*) = -f*(-u*, x*) 

by definition. The graph of A* consists of the vectors z* = (u*, x*) in 
Rm+n such that (z, z*) ~ 0 for every z in the graph of A, where z* = 
(-u*, x*). Thus 

graph A* = {(u*, x*) I (-u*, x*) E K 0
}. 

It follows that the graph of A* is a closed convex cone in Rm+n containing 
the origin, and hence that A* is a closed convex process. In fact, we have 

(F*x*)(u*) = -o(u* I A*x*). 

Thus F* is the indicator bifunction of A*. 
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The case of an infimum oriented convex process is argued similarly. 
The relation A**= cl A follows from F** =cl F (Theorem 30.1), or 
equivalently from K 00 = cl K. II 

If A is an oriented convex process with indicator bifunction F, we have 

(Au, x*) =(Fu, x*), Vu, Vx*, 

by definition. The general theorems about inner products involving convex 
and concave bifunctions can be specialized in this way to theorems about 
inner products involving convex processes. 

THEOREM 39.3. If A is a supremum oriented convex process from Rm 
to Rn, then (Au, x*) is a positively homogeneous closed convex function of 
x* for each u and a positively homogeneous concave function ofufor each x*. 
Likewise when A is infimum oriented, except that then convexity and 
concavity are reversed. In either case, 

(u, A *x*) = clu (Au, x*). 

If A is closed, one also has 

(Au, x*) =cl.,. (u, A*x*). 

Indeed, if A is closed, 

(Au, x*) = (u, A *x*) 

whenever u E ri (dom A) or x* E ri (dom A*). 

PROOF. The positive homogeneity in x* follows from the fact that 
(Au,") is the support function of A, while the positive homogeneity in u 
follows from condition (b) in the definition of "convex process." Every
thing else is just a special case of Theorem 33.1, Theorem 33.2 and 
Corollary 33.2.1. II 

THEOREM 39.4. The relations 

K(u, x*) = (Au, x*), 

Au = {xi (x, x*) ~ K(u, x*), Vx*}, 

define a one-to-one correspondence between the lower closed concave-convex 
functions Kon Rm X Rn such that K(O, 0) = 0 and 

K(A.u, x*) = A.K(u, x*) = K(u, A.x*), VA.> 0, Vu, Vx*, 

and the supremum oriented closed convex processes A from Rm to Rn. 
(Similarly for upper closed convex-concave functions and infimum oriented 
convex processes.) 
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PROOF. This specializes Theorem 33.3. It is an easy exercise to show 
that Fis the indicator bifunction of a convex process in Theorem 33.3 if 
and only if K has the additional properties cited here. II 

We would like to emphasize that the relation 

(Au, x*) = (u, A *x*), 

which "usually" holds according to the last statement in Theorem 39.3, 
expresses a duality between two extremum problems, as has already been 
pointed out in the more general context of bifunction following Corollary 
33.2.2. If A is a supremum oriented convex process, A* is infimum oriented 
and for each fixed u and x* we have 

(Au, x*) =sup {(x, x*) Ix E Au}, 

(u, A*x*) =inf {(u, u*) I u* E A*x*}. 

Thus (Au, x*) is obtained by maximizing the linear function (·, x*) over 
a certain convex set Au, whereas (u, A*x*) is obtained by minimizing the 
linear function (u, ') over a certain convex set A *x*. If A is polyhedral, 
implying by Theorems 39.2 and 30.1 that A* too is polyhedral, the sets 
Au and A*x* are polyhedral, as is easy to see, so that these two extremum 
problems can be expressed by linear programs. 

For instance, suppose as in the example described earlier in this 
section that 

{

{x I x :-:;; Bu} if u ~ 0, 
Au= 

0 if u d: 0, 

A-1x = {u I u ~ 0, Bu~ x}, 

where B is a linear transformation from Rm to Rn. Let A be supremum 
oriented, so that A-1 is infimum oriented. We then have 

{

(Bu, x*) if u ~ 0, x* ~ 0, 

(Au, x*) = + oo if u ~ 0, x* d: 0, 

- 00 if u d: 0. 

Closing (Au, x*) as a concave function of u for each x* yields (u, A *x*) 
according to Theorem 39.3. Thus r B'x') 

if u ~ 0, x* ~ 0, 

(u, A *x*) = -'oo if u d: 0, x* ~ 0, 

+ro if x* d: 0. 
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{

{u* I u* ~ B*x*} if x* ~ 0, 
A*x* = 

0 if x* d: 0, 

(A-1)*u* = A*-iu* = {x* Ix*~ 0, B*x* ~ u*}, 
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where A* is infimum oriented and (A-1)* = A*-i is supremum oriented. 
For each fixed x and u*, we have 

(u*, A-ix>= inf {(u, u*> I u ~ 0, Bu~ x}, 

((A-1)*u*, x) =sup {(x, x*> Ix*~ 0, B*x* ~ u*}. 

The fact that these two extrema are usually equal has already been 
encountered following the proof of Theorem 30.4 as the Gale-Kuhn
Tucker Duality Theorem for linear programs. 

Results about sums and products of convex processes can be obtained 
simply by specializing the results in the preceding section to indicator 
bifunctions. 

THEOREM 39.5. Let Ai and A 2 be convex processes from Rm to Rn with 
the same orientation. If ri ( dom Ai) and ri ( dom A2) have a point in common, 
one has 

(Ai + A2)* = A! + A:, 
If Ai and A2 are closed and ri (dom A~') and ri (dom A:) have a point in 
common, then Ai + A2 is closed and (Ai + A 2)* is the closure of Ai + A:. 

PROOF. This is a special case of Theorem 38.2 and Corollary 38.2.1. 

THEOREM 39.6. For any oriented convex process A, one has (AA)* = AA* 
for every A > 0. 

PROOF. This is a special case of Theorem 38.3. 

THEOREM 39.7. Let A be a supremum oriented convex process from Rm 
to Rn, and let f be a proper convex function on Rm. If ri ( domf) meets 
ri (dom A), one has 

(Af)* = A*-1[*, 

and the infimum in the definition of (A *-1/*)(x*) is attained for each x*. 
If A and fare closed and ri (domf*) meets ri (dom A*-1

), then Af is 
closed and the infimum ir1 the definition of (Af)(x) is attained for each x. 
Moreover, then (Af)* is the closure of A*-1[*. 

PROOF. This specializes Theorem 38.4 and Corollary 38.4. l. 
COROLLARY 39.7.1. Let A be a closed convex process from Rm to Rn, 

and let C be a non-empty closed convex set in Rm. If no non-zero vector in 
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A-10 belongs to the recession cone of C (which is true in particular if C is 
bounded), then AC is closed in Rn. 

PROOF. Make A supremum oriented, and apply the theorem with 
f = o(· I C). The set K = domf* is the barrier cone of C, and its polar is 
the recession cone of C (Corollary 14.2.1 ). If the convex cones Kand 

dom A*-1 =range A* 

have relative interior points in common, Af is closed by the theorem, and 
since Af is the indicator function of AC it follows that AC is closed. On 
the other hand, if these cones had no relative interior points in common 
they could be separated properly by some hyperplane. Thus there would 
exist some non-zero v E Rm such that (v, u*) ~ 0 for every u* EK and 
(v, u*) ~ 0 for every u* in the range of A*. Then v E K 0 and (inasmuch 
as A**= A) v E A-10. But this case is excluded by hypothesis. II 

THEOREM 39.8. Let A be a convex process from Rm to Rn, let B be a 
convex process from Rn to RP, and let A and B have the same orientation. 
/f ri (range A) meets ri (dom B), one has 

(BA)*= A*B*. 

If A and B are closed and ri (range B*) meets ri (dom A*), then BA is 
closed and (BA)* is the closure of A*B*. 

PROOF. This specializes Theorem 38.5 and Corollary 38.5.1. 
Let C and D be non-empty convex sets in Rn such that C is supremum 

oriented and D is infimum oriented. If the quantity 

sup inf (x, y) = sup (x, D) 
XEC YED XEC 

and the quantity 
inf sup (x, y) = inf (C, y) 
YED :rEC YED 

are equal, we call this the inner product of C and D and denote it by 
(C, D) (or by (D, C)). This definition agrees with that of the inner product 
of a convex and concave function in §38, in the sense that (C, D) = <J, g) 
when f = o(· IC) and g = -o(· I D). Note that (C, D) always exists 
when C and D are both closed and either C or D is bounded (Corollary 
37.3.2). 

If h is a proper concave function on Rn, we naturally define (C, h) = 
<J, h), where/= o(· IC). Thus 

(C, h) =sup {h*(x) Ix EC}= infv {(C,y) - h(y)} 

when these two extrema are equal, and otherwise (C, h) is undefined. 
Similarly, if h is a proper convex function on Rn the inner product of h 
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with the infimum oriented set D is defined as 

(h, D) = inf {h*(y) I y ED} = sup,, { (x, D) - h(x)} 

when these extrema are equal, and otherwise it is undefined. 
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If C and C' are supremum oriented non-empty convex sets in Rn and 
D and D' are infimum oriented non-empty convex sets in Rn, the following 
laws hold (to the extent that all the inner products in question exist and 
oo - oo is not involved): 

(),C, D) = A(C, D) = (C, AD), 'r/ A> 0, 

(C + C', D) ~ (C, D) + (C', D), 

(C + C',y) = (C,y) + (C',y), 'r/yERn, 

(C, D + D') ~ (C, D) + (C, D'), 

(x, D + D') = (x, D) + (x, D'), 'r/x E Rn. 

These laws are all elementary consequences of the definitions. 
Using this expanded inner product notation, Theorem 38.7 and its 

corollaries can be specialized in the obvious way to the case of oriented 
convex processes and oriented convex sets. 

The set of all convex processes A from Rn to itself is a non-commutative 
semigroup under multiplication, and it includes the semigroup of all 
linear transformations from Rn to itself. The structure of an individual A 
may be analyzed in terms of the powers A 2 , A 3 , ••• , and more generally 
in terms of convex processes given by expressions such as A - AI or 

I+ cx1A + cx2A2 + · · · + cxkAk. 

Eigensets of A, i.e. convex sets C such that 

AC= AC 

for some A, may also be studied. 



Comments and References 

Part I: Basic Concepts 

The foundations of the general theory of convex sets and functions 
were laid around the turn of the century, chiefly by Minkowski [l, 2]. 
For a survey of the progress of the subject up to 1933, at least in those 
aspects pertinent to geometry, see the book of Bonnesen-Fenchel [l]. 
For the history of the role of convex functions in the theory of inequalities 
up to 1948, consult Beckenbach [l]. 

Modern expositions of convexity in Rn have been written by Fenchel 
[2], Eggleston [l], Berge [l] and Valentine [l], among others. Valentine's 
book treats infinite-dimensional spaces to some extent, as well as Rn; 
material on infinite-dimensional convexity can also be found in almost 
any text on functional analysis, such as Bourbaki [l]. The 1967 lecture 
notes of Moreau [17] provide an excellent reference for the theory of 
convex functions in topological vector spaces of arbitrary dimension; the 
reader should turn to these notes for generalizations of various results 
about conjugate convex functions which have been presented in this book 
in the finite-dimensional case only. 

The matrix representations of affine sets referred to as Tucker represen
tations in §1 have been used extensively by Tucker [4, 5, 6] in developing 
the theory of linear programs. 

Our approach to the theory of convex functions in §4 and §5 is based on 
that of Fenchel [2], except that Fenchel handled everything in terms of 
pairs (C ,f) rather than infinity-valued functions. In particular, the idea of 
identifying convex sets with certain "degenerate" convex functions (their 
indicator functions) originates with Fenchel, as does the important 
operation of infimal convolution. For discussions of the arithmetic of± oo 
and of infimal convolution with respect to convex cones, see Moreau 
[3, 6, 7, 8]. 

Part II: Topological Properties 

The results about relative interiors of convex sets in §6 are almost all 
classical; see especially the paper of Steinitz [l ]. The theory of the closure 
operation for convex functions in §7 is due to Fenchel [l, 2]. 
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Unbounded convex sets were first studied systematically by Steinitz [I], 
who proved most of the basic facts about recession cones, such as Theorem 
8.3. Recession cones have been used to prove closedness theorems, such 
as those in §9, by Fenchel [2] and later by Choquet [I] and Rockafellar 
[I, 6]. Theorems about the closedness of sums and projections of convex 
sets have also been established by Klee [IO] and Gale-Klee [I]. 

Theorems I0.2 and 10.3 stem from Gale-Klee-Rockafellar [I], but all 
the other continuity and convergence theorems in §I 0 must be regarded as 
classical, even though some of them do not seem to have been stated 
explicitly anywhere in the literature. Similar theorems in a more geometric 
formulation appear in the theory of convex surfaces; see Bonnesen
Fenchel [I], Alexandroff [2] and Busemann [I]. The continuity of various 
operations with respect to convergence of convex sets and functions has 
been studied recently by Wijsman [I, 2] and Walkup-Wets [I]. 

Part III: Duality Correspondences 

Separation theorems were first investigated by Minkowski. The tradi
tional proofs in Rn rely on nearest-point arguments; see for instance the 
exposition of Botts [I]. The approach taken in §I I, however, is the ap
proach typical of functional analysis, where Theorem I I .2 corresponds to 
the Hahn-Banach Theorem. Theorem I 1.3 was first proved in its full 
generality by Fenchel [2]. For other results on separation, both in finite
and infinite-dimensional spaces, we refer the reader to the definitive papers 
of Klee [I, 2, 3, 4, 5, I5]. 

The general conjugacy correspondence for convex functions was 
discovered by Fenchel [I], although conjugates of functions of a single
variable were considered earlier by Mandelbrojt [l ]. Monotone conjugacy 
on R has a long history beginning with the work of Young [I] and 
Birnbaum-Orlicz [l]; see the book of Krasnosel'skii-Rutickii [I]. 
Monotone conjugacy of n-dimensional non-decreasing concave functions 
has been studied by Bellman-Karush [3]. See Moreau [2, 4] and 
Brnndsted [I] for the generalization of Fenchel's correspondence to 
infinite-dimensional spaces. 

Support functions, originally defined by Minkowski for bounded 
convex sets, have been studied for general convex sets by Fenchel [I, 2] 
and in infinite-dimensional spaces by Hormander [I]. Theorems I 3.3 and 
13.5 are from Rockafellar [l, 6]; however, see Klee [7] for an earlier 
proof that f* is finite everywhere when domf is bounded. Theorem 13.4 
has been proved by Brnndsted [I]. 

Steinitz [I] invented the polarity correspondence for convex cones, but 
polars of bounded convex sets were considered earlier by Minkowski, as 
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were the correspondences between gauge functions and support functions 
described in §15, at least in the case of dual norms. For the theorems 
relating polarity to conjugacy, see Rockafellar [6]. Theorem 14.7 should 
be credited to Moreau [9, 11]; special cases are also known in the theory 
of Orlicz spaces, see Krasnosel'skii-Rutickii [1]. Theorem 15.3 in its 
general form comes from Aggeri-Lescarret [1 ], but Corollary 15.3.2 was 
developed earlier in terms of the Legendre transformation by Lorch [1]. 
The general polarity correspondence for non-negative convex functions 
vanishing at the origin is defined here for the first time. 

The duality results in §16 are virtually all contained in the lecture notes 
of Fenchel [2]. The duality between infimal convolution and addition has 
been used by Bellman-Karush [I, 2, 3, 4, 5] to solve certain recursive 
functional relations. 

Part IV: Representation and Inequalities 

For an account of Caratheodory's Theorem and some of its extensions, 
see the 1965 monograph of Reay [1]. 

Our presentation of the theory of extremal structure of convex sets in 
§18 is based on the work of Klee [2, 6, 7, 8]. The fact that a compact 
convex set in Rn is the convex hull of its extreme points (Corollary 18.5.1) 
was first proved by Minkowski. More famous, however, is an infinite
dimensional generalization by Krein-Milman [l], to the effect that a 
compact convex set in a locally convex Hausdorff topological vector space 
is the closure of the convex hull of its extreme points. Related results for 
convex functions have been formulated by Aggeri [1] and Brnndsted 
[2]. Theorems 18.6 and 18. 7 were first established for bounded convex 
sets by Straszewicz [1 ]. 

Theorem 19.1 is a celebrated result attributable primarily to Minkowski 
[1] and Wey! [1]. The early history of polyhedral convexity can be found 
in the book of Motzkin [1]. As excellent sources for further information 
about polyhedral convexity, we recommend Griinbaum [1 ], Klee [8, 13] and 
the 1956 collection of papers edited by Kuhn-Tucker [2]. Theorem 20.1 
is new. Theorems 20.2 and 20.3 seem to be stated here for the first time, 
but a broader result, from which Theorem 20.2 could be deduced, has 
been proved by Klee [15, Theorem 4(i)]. Theorems 20.4 and 20.5 are 
classical. 

Theorem 21.1 and its proof are due to Fan-Glicksberg-Hoffman [1]. 
A different proof of Theorem 21.2 in the case where C = Rn is given in 
the book of Berge-Ghouila-Houri [1]. Fenchel [2] originated the version 
of Helly's Theorem involving recession cones which we have stated as 
Corollary 21.3.3, as well as Theorem 21.3 itself in the special case where C 
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and the effective domains of the functions f; have no common direction 
of recession. For an earlier proof of Theorem 21.3 in the case where C is 
compact, see Bohnenblust-Karlin-Shapley [l]. Theorems 21.4 and 21.5 
stem from Rockafellar [4]. Theorem 21.6 is one of the forms of Helly's 
Theorem due to Helly [l] himself. A thorough review of the literature on 
Helly's Theorem up to 1963 has been put together by Danzer-Griinbaum
Klee [l]. Some further results about infinite systems of inequalities may 
be found in papers of Fan [3, 4]. 

For other expositions of the classical results in §22 about the consistency 
of linear inequalities, along with historical comments, we refer the reader 
to Tucker [2], and also to Kuhn [l]. Theorem 22.6 is a recent outgrowth of 
graph-theoretic investigations and should be credited mainly to Camion 
[!],although the proof is based on an earlier argument of Ghouila-Houri. 
Consult Rockafellar [13] for a different proof of Theorem 22.6 and an 
explanation of the relationship with earlier results of Minty [l] concerning 
flows in networks. 

Part V: Differential Theory 

The existence of one-sided derivatives of convex functions was noted as 
early as 1893 by Stoltz [l ]. The properties of such derivatives received much 
attention in the beginning decades of this century in connection with the 
theory of convex bodies and convex surfaces; cf. Bonnesen-Fenchel [l], 
Alexandroff [2] and Busemann [l ]. Most of the results in §24 and §25 
concerning differentiability and differential continuity or convergence may 
be said to date from this period, although it is difficult to give explicit 
references apart from Fenchel's 1951 exposition, the older context being 
one of geometry rather than analysis. The explicit development of the 
theory of multivalued subdifferential mappings is comparatively recent; 
the reader should refer to Moreau [16, 17] for a general review of the 
literature. 

Theorems 23.1 through 23.5 are essentially contained in the lecture notes 
of Fenchel [2] (and to a certain extent in Bonnesen-Fenchel [l]). Theorems 
23.6, 23.8, 23.9, 24.8 and 24.9 are from Rockafellar [l, 7], while Theorems 
24.6 and 25.6 are new. Complete non-decreasing curves in R2 were first 
studied in their full generality by Minty [l ]. 

The nature of the set of points where a convex function is not differ
entiable is known in much greater detail than indicated in Theorem 25.5; 
see Anderson-Klee [l]. Much is also known about the second derivative 
of convex functions; see Alexandroff [l], Busemann-Feller [l] and 
Busemann [l ]. 
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The relationship between the Legendre transformation and conjugacy 
was noted by Fenchel [l]. Some classical applications of the Legendre 
transformation are described in Courant-Hilbert [l ]. 

Part VI: Constrained Extremum Problems 

The constrained minimization of convex functions is a subject which 
has attracted a great deal of attention since about 1950. For some of the 
computational aspects, see Dantzig [l], Goldstein [l] and Wolfe [2, 3]. 
For some of the applications to mathematical economics, see Karlin [l]. 

The theory of ordinary convex programs is historically an outgrowth of 
the paper of Kuhn-Tucker [l ]. Although Lagrange multiplier conditions 
closely related to the Kuhn-Tucker conditions were derived earlier for 
general (differentiable) inequality constraints by John [l], it was Kuhn 
and Tucker who discovered the connection between Lagrange multipliers 
and saddle-points and who focused attention on the role of convexity. 
This is why we have called the special Lagrange multiplier values corre
sponding to saddle-values of Lagrangian functions Kuhn-Tucker coeffi
cients. (In most of the literature, the term "Lagrange multiplier" is used, 
not only as we have used it to refer to the coefficients A; as variables, but 
also, perhaps confusingly, to refer to the particular values of these 
variables which satisfy certain relations such as the Kuhn-Tucker con
ditions. In non-convex programming such values of the A/s do not 
necessarily correspond to saddle-points of the Lagrangian. On the other 
hand, Kuhn-Tucker coefficients are well-defined even in programs in 
which, due to the lack of an optimal solution x, the Kuhn-Tucker con
ditions cannot be satisfied.) 

The original theorems of Kuhn and Tucker relied on the differential 
calculus, but it was foreseen by those authors and soon verified by others 
that, in the case of convex functions, gradient conditions could be replaced 
by something not involving differentiability. Slater [l] seems to have been 
the first to substitute for the constraint qualification condition of Kuhn
Tucker [l] a hypothesis like the one in Theorem 28.2 about the existence 
of a feasible solution satisfying the inequality constraints with strict 
inequality. Theorem 28.2 (and hence the Kuhn-Tucker Theorem) has 
previously been proved by Fan-Glicksberg-Hoffman [l] in the case 
where there are no equality constraints, and by Uzawa (see Arrow
Hurwicz-Uzawa [l, p. 36]) in the case where there are (linear) equality 
constraints, C is the non-negative orthant of Rn, and the functions f; 
are all finite throughout Rn. 

The decomposition principle was first discovered in the case of linear 
programs by Dantzig and Wolfe; see Dantzig [l] for a thorough treatment 
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in that case. Our more general exposition is based to some extent on 
Falk [l]. 

The theory of generalized convex programs in §29 has never been 
presented before, but it owes very much to a paper of Gale [l] in which, 
in effect, generalized convex programs are considered in the context of 
economics, and Theorem 29.1 and some of its corollaries are demonstrated 
(although not in terms of "perturbations" or bifunctions). The Lagrangian 
theory in §29 and the general duality theory in §30 are both new. However, 
duality has a long history in the study of ordinary convex programs and 
other types of problems, such as those in §31. 

The basic duality result which has served as a model for all subsequent 
developments is the theorem of Gale-Kuhn-Tucker [l] for linear pro
grams, discovered around 1948. The duality theorem of Fenchel [2] in §31 
dates from 1951. Duals of ordinary convex programs have been defined in 
terms of the differential calculus by Dorn [2] (linear constraints), Dennis 
[l] (linear constraints) and Wolfe [l]. Wolfe's dual problem, which has 
stimulated work of Huard [l, 2], Mangasarian [l] and many others, 
corresponds in our notation to maximizing 

in x and u* subject to u* ~ 0 and 

\lf0(x) + vj\lf1(x) + · · · + v!,\lfm(x) = 0. 

The connection between this and the dual program (P*) in §30 is explained 
following Corollary 30.5.1. A closely related generalization of Wolfe's 
dual problem has been given by Falk [l]. In the logarithmic example at the 
very end of §30, program (R) is equivalent to the standard "geometric 
program" of Duffin-Peterson [l], whereas the dual program (R*) is the 
so-called general chemical equilibrium problem when n0 = 1; see Duffin
Peterson-Zener [l, Appendix C] and the references given there. 

A general duality theory in which constrained minimization or 
maximization problems are derived from Lagrangian minimax problems, 
rather than the other way around, has been developed by Dantzig
Eisenberg-Cottle [l], Stoer [l, 2] and Mangasarian-Ponstein [l]. It can 
be shown that the pairs of mutually dual problems considered by these 
authors can essentially be expressed in the form 
(I) minimize <p(x) = sup {L(u*, x) I u*E A} subject to x E B0 , 

(II) maximize '!jJ(u*) = inf {L(u*, x) I x EB} subject to u* E A 0 , 

where A and B are given non-empty closed convex sets in Rm and Rn, 
respectively, Lis a given continuous real-valued concave-convex function 
on A X B satisfying certain regularity conditions, and A 0 and B0 are 
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certain subsets of A and B (e.g. the sets of points for which the supremum 
in (I) and the infimum in (II) are attained, respectively). Such pairs of 
problems can be viewed as restricted versions of the problems in §30 
according to the discussion in §36 following Theorem 36.5. 

The original version of Fenchel's Duality Theorem did not include the 
final assertion of Theorem 31.1 concerning polyhedral convexity. The 
extensions of the theorem to take advantage of polyhedral convexity, and 
to include a linear transformation A as in Theorem 3 J .2, were carried out 
by Rockafellar [I, 2, 9]; see also Berge-Ghouila-Houri [I] and Eisenberg 
[I] for special cases. 

As remarked, Corollary 31.4.1 yields the Gale-Kuhn-Tucker theorem 
for linear programs when f is taken to be a partial affine function, as can 
be seen by giving f any Tucker representation. The various Tucker 
representations which are possible correspond to the various "tableaus" 
which may be encountered in the course of solving a given linear program 
by the well-known simplex algorithm ofDantzig. Similarly, it can be shown 
that Corollary 31.4.1 yields the duality theorem of Cottle [I] for quadratic 
programs when/is taken to be a partial quadratic function; cf. Rockafellar 
[12]. For some additional duality results which may be viewed as special 
cases of Corollary 31.4.2, although they are developed in terms of the 
Legendre transformation rather than Fenchel's conjugacy operation, see 
Dennis [I] and Duffin [2]. Corollary 31.4.2 can be sharpened in the case 
where f is separable, a very important case for many applications, e.g. to 
extremum problems involving flows and potentials in networks; see 
Minty [I], Camion [2], Rockafellar [IO]. 

The theory of proximations, including Theorem 31.5 and its corollaries, 
has been developed by Moreau [13]. 

Theorem 32.3 may be found in Hirsch-Hoffman [!]; see also 
Bauer [I]. 

Part VII: Saddle-Functions and Minimax Theory 

Proofs of most of the results in §33 and §34 have already been given 
elsewhere by Rockafellar [3, 12], but not in terms of bifunctions. The 
results in §35 are new, as are Theorems 36.5, 36.6, 37.2 and Corollaries 
37.5.1, 37.5.2. 

Minimax theorems have been investigated by many authors, starting 
with von Neumann; in particular, the result stated as Corollary 37.6.2 
was first proved by Kakutani [I]. For an excellent summary of the 
literature up to J 958, see Sion [2]. The sharpest results described in the 
Sion paper generally require something less than the concavity-convexity of 
K(u, v) but require the compactness of C or D. In contrast, Theorems 37.3 
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and 37.6 (which come from Rockafellar [3]; see also Moreau [12]) 
require concavity-convexity but something less than compactness. 

For the original development of the conjugacy correspondence for 
saddle-functions, see Rockafellar [3, 12]. 

Part VIII: Convex Algebra 

The theory in §38 and §39 is new. However, see Rockafellar [14] for a 
generalization of some of the theory of non-negative matrices to a special 
class of convex processes arising in mathematical economics. 
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addition of convex sets 16-17, 49, 74-

75, 146, 175, 183; of convex cones 
22; of convex functions 33, 77, 145, 
176, 179-80, 223, 263; of convex 
processes 415, 421; of epigraphs 34; 
of saddle-functions 402 

adjoint of a linear transformation 3, 9, 
310; of a bifunction 309-26, 330, 
353-58, 401-12; of a convex process 
417ff 

aff, see affine hull 
affine functions 23, 25, 27, 102-103; 

partial 70, 107, 431 
affine hull 6, 45, 154; characterization 

113; of convex cone 15 
affine independence 6-7, 15 4 
affine sets 3-9; closed halves 165-66; 
representation 4-8 

affine transformations 7-8, 44--45 
alternative system of inequalities 201 
asymptotic cone 61 

ball 43 
barrier cone 15, 113, 123 
barycenter 12 
barycentric coordinates 7 
bi-affine functions 302 
bifunction 29lff. See also convex bi

functions 
bilinear functions 351-52, 411 
boundedness conditions 54, 64, 68-69, 

88, 123 

Caratheodory's Theorem 153-57, 427 
chemical equilibrium problem 430 
circulations 204, 208, 272, 337-38 
cl, see closure 
closed bifunction 293 
closed concave function 308 
closed convex function 52. See also 

closure 
closed saddle-function 363. See also 

closure 
closure of a convex set 43-50, 72-81, 

112, 421-22; of a bifunction 293, 

305-306, 310, 403, 407; of a concave 
function 307-308; of a convex func
tion 51-59, 72-81, 102-104, 218-19, 
425; of a convex process 415; of an 
epigraph 52; of a saddle-function 
359-69, 390 

co-finite 116, 259-60, 411-12 
complete non-decreasing curves 232, 

338,428 
composition of convex functions 32; of 

a convex function and a linear trans
formation 38, 78; of convex processes 
416, 422-23 

concave bifunctions 308ff 
concave closure of a saddle-function 

350-53 
concave-convex functions 349ff 
concave functions 25, 307-308, 426; 

monotone conjugates 110 
concave programs 308ff 
cone 13 
conjugacy correspondence 104, 123-24; 

for saddle-functions 389ff 
conjugate concave functions 111, 308 
conjugate convex functions 104--11, 

113-18, 121-24, 133-37, 140-50, 
173, 179-80, 263-64, 405, 421, 425-
26; definition 104; subgradients 218 

conjugate saddle-functions 390-91, 395, 
432 

consequence 199 
consistency 185, 295, 309, 315 
constancy space 69 
continuity of convex functions 82-89, 

426; of derivatives 227-38; of gra
dient mappings 246, 376-77; joint 
89; of saddle-functions 370-71; uni
form 86-87 

continuous extensions 85 
conv, see convex hull 
convergence of convex functions 90-91, 

426; of gradients 248-49; of saddle
functions 372, 375-78; of subgradi
ents 233-36 

convex bifunctions 293-306, 309-11, 
350-58, 384-89, 401-12, 417-18 
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convex closure of a saddle-function 
350-53 

convex combinations 11-12; of points 
and directions 154 

convex-concave functions 349ff 
convex cones 13-15, 22, 50; generation 

78, 122, 126, 156, 178; polar 121-25; 
polyhedral 170, 178; separation 100-
101 

convex function 23; co-finite 259; dif
ferential conditions for convexity 26-
27; finitely generated 172-73; inter
polation properties 25; Legendre type 
258; partial quadratic 109, 431; poly
hedral 172-177; polynomial 268; 
quadratic 27, 108; separable 270-71, 
285-90, 337-38; symmetric 109-10 

convex hull 12, 177, 427; of a bounded 
set 158; of a collection of convex 
functions 37, 81, 149, 156; of a col
lection of convex sets 18, 80, 156-
57; of a non-convex function 36, 103, 
157-58; relative interior 50; of a set 
of points and directions 153-55; of 
two convex cones 22 

convex processes 413-23, 432; poly
hedral 415 

convex programs, generalized 291-326, 
355-56, 385-87; normal 316-19; or
dinary 273-91, 293-94, 296, 298, 300, 
320-26, 429; polyhedral 301-303 

convex set 10; as a cross-section of a 
cone 15; finitely generated 170-71; 
polyhedral 11; symmetric 16 

cyclically monotone mappings 238-40 

decomposition principle 285-90, 312-
13, 429 

derivatives, directional 213-21, 226, 
244-45, 264, 299-301, 372-77; par
tial 241, 244, 376; right and left 214, 
216, 227-32 

differentiability 241-46, 428; of saddle
functions 375-76 

dim, see dimension 
dimension of an affine set 4; of a con

vex function 23, 71; of a convex set 
12-13, 45-46, 126 

direct sums 19, 49 
directed graphs 204, 208, 272, 337-38 

direction 60; of affinity 70; of constancy 
69; of linearity 65; of recession 61, 
69, 264-70 

directional derivatives 213-21, 226, 
244-45, 264, 299-301, 372-77 

distance function 28, 34 
distributive inequalities 416 
dom, see effective domain 
dual programs 310-38, 355-56, 429ff 
dual systems of inequalities 201 

effective domain of a convex function 
23, 25, 122; of a bifunction 293; of a 
concave function 307; of a convex 
process 413; relative interior 54; of 
a saddle-function 362, 366, 391-92 

eigensets 423 
elementary vectors 203-208, 272, 428 
epi, see epigraph 
epigraph 23, 307; closure 52; relative 

interior 54; support function of 119 
equicontinuity 88 
equilibrium prices 276-77, 280, 299-

300 
equi-Lipschitzian 87-88 
equivalent saddle-functions 363-69, 383, 

394 
essentially smooth function 251-58 
essentially strictly convex function 253-

60 
Euclidean metric 43 
exposed directions 163, 168 
exposed faces 162-63 
exposed points 162-63, 167-68, 243, 

427 
exposed rays 163, 169 
extensions of saddle-functions 349, 358, 

363, 366, 369 
extreme directions 162-66, 172 
extreme points 162-67, 172, 344-45, 

427; at infinity 162 
extreme rays 162, 167 

faces 162-65, 171, 427; exposed 162-
63 

Farkas' Lemma 200-201 
feasible solutions 274, 295, 308, 315 
Fenchel's Duality Theorem 327ff, 408, 

430 
Fenchel's inequality 105, 218 
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finitely generated convex function 172-

73 
finitely generated convex set 170-71 
flat 3 
flows 204, 208, 272, 337-38 
fully closed saddle-function 356, 365 

Gale-Kuhn-Tucker Theorem 317, 337, 
421, 430-31 

gauge 28, 35, 79, 124-25, 128-31, 427 
gauge-like functions 133 
generalized convex programs 291-326, 

355-56, 385-87 
generalized polytope 171 
generalized simplex 154-55 
generators 170 
geometric mean 27, 29 
geometric programming 324-26, 430 
gradients 213, 241-50, 300, 375-78, 396 
graph domain 293 
graph function 292 

half-spaces 10, 99, 112, 160; homo
geneous 101; tangent 169; upper 102; 
vertical 102; in Rn+1 102 

Helly's Theorem 191-97, 206, 267, 427-
28 

Hessian matrix 27 
hyperplanes 5; in Rn+ 1 102; representa

tion 5; supporting 100; tangent 169; 
vertical 102 

image-closed bifunction 352-53 
image of a convex set 19, 48, 73, 143, 

174, 414-15, 421-22; of a convex 
function 38, 75, 142, 175, 255, 405, 
409-12, 416, 421 

improper convex function 24, 34, 52-53 
improper saddle-function 366 
incidence matrix 204, 208 
inconsistency 185, 315 
indicator bifunction 292-93, 310, 355, 

417 
indicator function 28, 33, 425; conju

gate 113-14 
inequalities 129-30, 425, 428; be

tween functions, 38, 104; between 
vectors 13; consistent 185;. convex 
29, 55, 58, 185-97; homogeneous 14; 

linear 10--11, 13-14, 62, 65, 113, 122, 
170, 185, 198-209 

infimal convolution 34, 38, 76-77, 145, 
175, 179-81, 254, 425, 427; of bi
functions 401-404; partial 39 

inner product equation 355, 409-12, 
419-21 

inner product of two vectors 3; of two 
functions 408-12; of two sets 422-23; 
of a vector and a function 350; of a 
vector and a set 417 

int, see interior 
interior 43-44, 47, 112 
intersections of convex sets 10, 64, 145; 

of convex cones 13, 22; relative in
teriors 47 

interval 202 
inverse addition 21; of epigraphs 40 
inverse bifunction 384-85, 388-89, 401, 

405-406 
inverse image of a convex set 19, 49, 

64, 143, 174; of a convex function 
38, 78, 141, 225 

inverse process 414, 418 

kernel of a saddle-function 367-69 
Kuhn-Tucker coefficients 274-77, 280, 

429 
Kuhn-Tucker conditions 282-84, 304, 

333-38, 386-87, 429 
Kuhn-Tucker Theorem 283, 387 
Kuhn-Tucker vectors 274-90, 295-306, 

309, 387 

Lagrange multipliers 273-74, 280, 283, 
429 

Lagrangian function 280-90, 296-98, 
302-305, 309, 314, 385-87 

lattice of convex sets 18; of convex 
functions 38; of convex processes 416 

Legendre conjugate 256-60 
Legendre transformation 251, 256, 427, 

429 
level sets 28-29, 55, 58-59, 70, 123, 

127, 222, 263-65; of support func
tions 118 

line 3-4 
lineality 65, 126; of a convex function 

70, 117 
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lineality space 65, 70, 117, 126 
linear combinations, positive and non

negative 14; convex 11; of convex 
functions 33; of convex sets 17-18 

linear programs 301-302, 311-12, 317, 
332, 334-35, 337, 425 

linear variety 3 
line segment 10, 12 
Lipschitz conditions 116, 237, 370-71 
Lipschitzian 86 
locally simplicial sets 84-85, 184 
lower boundary 33 
lower closed saddle-function 365 
lower closure 357-59, 368 
lower conjugate 389-91 
lower semi-continuity 51-52, 72, 77. 

See also closure 
lower semi-continuous hull 52, 54 
lower simple extension 349, 358 

maximum of a convex function 342-46 
minimax 379, 391-93, 397-98, 431 
minimum set 263-66; of a convex func-

tion 263ff 
Minkowski metric 132 
monotone conjugacy 111, 426 
monotone mappings 240, 340, 396 
monotonicity 68-69, 77, 85-86 
Moreau's Theorem 338 
multiplication of bi functions 409-12; 

of convex processes 422-23 

network programming 272, 337-38, 431 
non-decreasing curves 232, 338 
non-decreasing functions 68-69, 77, 85-

86, 232, 338 
non-negative orthant 13, 122, 226 
norm 129-32, 136, 427; Euclidean 28, 

115, 130; polar 131; polyhedral 173; 
Tchebycheff 36, 147, 173, 176, 215 

normal cone 15, 215, 222-24 
normal program 316-19 
normal vector 15, 100, 215; to a hyper

plane 5 

objective function 274, 295, 308, 314 
obverse 138 
one-to-one mapping 251 
optimal solutions 274-75, 295, 308 

optimal value 274, 295, 308, 315-17 
ordinary convex programs 273-91, 293-

94, 296, 298, 300, 320-26, 429 
orientations of convex processes 416ff 
orthant, non-negative 13, 122, 226; gen

eralized 154; positive 13 
orthogonal complement 5, 121, 203, 

336-38; Tucker representation 9 

parallelism 4 
partial addition 20; of epigraphs 39 
partial affine functions 70, 107, 431 
partial conjugacy 352 
partial derivatives 241, 244, 376 
partial infimal convolution 39, 402 
partial quadratic functions 109, 431 
penumbra 22 
perturbation function 276, 280, 295-

306, 308, 314, 331 
perturbations 276-77, 280, 294-98, 

301-302, 311-13, 316, 320-26, 331 
points at infinity 61 
pointwise boundedness 87 
pointwise supremum 35, 78 
polar of a convex cone 121-25, 146, 

206, 219, 335, 426; of a convex func
tion 136-39; of a convex set 124-27, 
136, 174, 426; of a gauge 128-30; of 
a norm 131, 135 

polyhedral bifunctions 301-303, 354 
polyhedral convex programs 301-303 
polyhedral convex sets 11, 170-78, 181-

84, 345, 427 
polynomial convex functions 172-77, 

179-81, 22~ 268, 272 
polytope 12; generalized 171 
positive orthant 13 
positive semi-definiteness 27 
positively homogeneous functions 30-

31, 66-67, 114, 121; of degree p 

135; generation 35, 79, 118, 157 
products of bifunctions 409-12; of con-

vex processes 422-23 
projection of a convex set 19; of a con-

vex function 38-39, 144, 255-56 
proper concave function 307 
proper convex bifunction 293 
proper convex function 24 
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proper saddle-function 362 
proximations 339-40, 431 

quadratic convex functions 27, 108; par
tial 109, 431 

rank 65, 71, 118, 126 
rays 15 
recede 61, 69 
recession cone 61-65, 73-81, 126, 176, 

264-70, 426; of a convex function 
69-70, 122-23 

recession function 66-70, 75-81, 87 
relative boundary 44, 100 
relative interior 43-50, 425; behavior 

under operations 47-50; characteriza
tions 47, 49, 112; of a convex cone 
50; of an epigraph 54 

relatively open sets 44, 49, 59, 164 
ri, see relative interior 

saddle-functions 349ff 
saddle-points 281, 283, 380-83, 386, 

393, 396-98 
saddle-value 379-83, 386, 391-93, 397-

98 
scalar multiplication of convex sets 16-

18, 48, 141, 176; of bifunctions 404; 
of convex functions 33-35, 140, 177, 
222; of convex processes 421; left 
33-34, 140; right 35, 140; of saddle
functions 404 

Schwarz inequality 130 
semi-continuity 51-52 
separable convex functions 270-71, 

285-90, 337-38 
separation 95-101, 175, 181-83, 426 
simple extensions 349, 358 
simple saddle-function 368 
simplex 12; generalized 154-55 
simplex algorithm 431 
single-valued mapping 251 
smooth function 251 
strictly consistent 300-301, 306, 309 
strictly convex function 253-60 
strongly consistent 309 
subdifferentiability 215-17, 226; of 

saddle-functions 393 

subdifferential 215-27, 232-40, 242, 
246; of a concave function 308; of a 
saddle-function 374-75, 393-97 

subdifferential mappings 105, 254, 270-
72, 340, 396, 428 

subgradient inequality 214 
subgradients 214-27, 232-40, 242, 246, 

264, 270-72, 298, 332-33, 338-41;of 
concave functions 308; of saddle-func
tions 374-75, 393-97 

sums, see addition 
support functions 28, 36, 112-20, 125, 

129, 140, 143, 146, 150, 173, 216, 
219, 417, 426-27; effective domain 
116; level sets 118 

support of a vector 203 
supporting half-space 99; hyperplane 

100 
supremum of a collection of convex 

functions 35, 78 
symmetric convex function 110 
symmetric convex set 16 

tangent half-space 169 
tangent hyperplane 169 
Tchebycheff approximation 147, 176 
Tchebycheff norm 173, 215 
tensions 205, 208, 272, 337-38 
totally ordered sets 2 3 2 
translate of a set 4; of a function 34, 

140 
triangulation 84 
Tucker representations 9, 108, 425, 431 
Tucker's Complementarity Theorem 

208-209 

umbra 22 
uniform boundedness 88 
uniform continuity 86-87 
uniform equicontinuity 88 
unit ball 43 
upper closed saddle-function 365 
upper closure 359-60, 368 
upper conjugate 389-91 
upper semi-continuity 51, 82 
upper simple extension 349, 358 

vertex 12; at infinity 154 
vertical 102 




