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a b s t r a c t

The L1 norm has been applied in numerous variations of principal component analysis
(PCA). An L1-normPCA is an attractive alternative to traditional L2-based PCA because it can
impart robustness in the presence of outliers and is indicated for models where standard
Gaussian assumptions about the noise may not apply. Of all the previously-proposed
PCA schemes that recast PCA as an optimization problem involving the L1 norm, none
provide globally optimal solutions in polynomial time. This paper proposes an L1-normPCA
procedure based on the efficient calculation of the optimal solution of the L1-norm best-
fit hyperplane problem. We present a procedure called L1-PCA∗ based on the application
of this idea that fits data to subspaces of successively smaller dimension. The procedure
is implemented and tested on a diverse problem suite. Our tests show that L1-PCA∗ is the
indicated procedure in the presence of unbalanced outlier contamination.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a data analysis technique with various uses including dimensionality reduction,
quality control, extraction of interpretable derived variables, and outlier detection (Jolliffe, 2002). Traditional PCA, hereafter
referred to as L2-PCA, is based on the L2 norm. Principal component analysis using L2-PCA possesses several important
properties such as: the loadings vectors are the eigenvectors of the covariancematrix, the loadings vectors are the successive
orthogonal directions of maximum (or minimum) variation in data, and the principal components define the L2-norm best-
fit linear subspaces to the data (Jolliffe, 2002). The simultaneous occurrence of these properties is unique to L2-PCA, and is a
reason why it is widely used. The term ‘‘pure’’ in this paper is used to reflect the fact that the proposed L1-norm PCA shares
an analogous property to L2-PCA in that the principal components are defined by successive L1-norm best-fit subspaces.

L2-PCA is sensitive to outlier observations. This sensitivity is the principal reason for exploring alternative norms.
Procedures for PCA that involve the L1 norm have been developed to increase robustness (Galpin and Hawkins, 1987;
Baccini et al., 1996; Ke and Kanade, 2003; Agarwal et al., 2006; Choulakian, 2006; Ding et al., 2006; Gao, 2008; Kwak, 2008).
Galpin and Hawkins (1987) develop a robust L1 covariance estimation procedure. Others have considered robust measures
of dispersion for finding directions ofmaximumvariation (Croux and Ruiz-Gazen, 2005; Choulakian, 2006; Kwak, 2008). The
approaches in Croux and Ruiz-Gazen (2005) and Choulakian (2006) are based on the projection pursuit method introduced
in Li and Chen (1985).

Several previous works involve the L1 norm in subspace estimation with PCA. Baccini et al. (1996) and Ke and Kanade
(2003) consider the problem of finding a subspace such that the sum of L1 distances of points to the subspace is minimized,
and propose heuristic schemes that approximate the subspace. In light of the camera resectioning problem from computer
vision, Agarwal et al. (2006) formulate the problem of L1 projection as a fractional program and give a branch-and-bound
algorithm for finding solutions. Gao (2008) proposes a probabilistic Bayesian approach to estimating the best L1 subspace
under the assumption that the noise follows a Laplacian distribution.
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Measuring error for PCA using the L1 norm can impart desirable properties besides providing robustness to outlier
observations. For example, the L1 norm is the indicated measure in a noise model where the error follows a Laplace
distribution (Agarwal et al., 2006; Gao, 2008). In special applications such as cellular automata models, where translations
can only occur along unit directions, the fit of a subspace can be measured using the L1 norm (Brooks and Dulá, 2013; Kier
et al., 2005).

In this paper, we propose a new approach for robust PCA, L1-PCA∗, based on a ‘‘pure’’ application of the L1 norm in the
sense that it uses globally optimal subspaces that minimize the sum of L1 distances of points to their projections. L1-PCA∗

generates a sequence of subspaces, projecting data down one dimension at a time, in a manner analogous to L2-PCA. The
procedure makes use of a polynomial-time algorithm for projecting m-dimensional data into an L1-norm best-fit (m − 1)-
dimensional subspace. The algorithm is based on results concerning properties of L1 projection and best-fit hyperplanes
(Späth and Watson, 1987; Martini and Schöbel, 1998; Mangasarian, 1999; Brooks and Dulá, 2013). The provable optimality
of the projected subspace ensures that interesting properties are inherited. The polynomiality of the algorithm makes it
practical. We establish experimentally conditions under which the proposed procedure is preferred over L2-PCA and other
previously-investigated schemes for robust PCA.

2. L1 regression, geometry of the L1 norm, and best-fit subspaces

Linear regression models seek to find a hyperplane of the form

y = β0 + βTx

for a dependent variable y and independent variables x. In L2 regression, the hyperplane of best fit is determined for a given
dataset (yi, xi), i = 1, . . . , n by minimizing the residual sum of squared errors given by

n
i=1

(yi − (β0 + βTxi))2.

In L2 regression, the distance of points to the fitted hyperplane is given by the L2 norm. L1 linear regression is analogous to
L2 regression in that they both find a hyperplane that minimizes the sum of distances of points to their projections along
the unit direction defined by the dependent variable. In the case of L1 regression, the distances are measured using the L1
norm. The sum of absolute errors is minimized. A standard result about L1 regression is that the hyperplane can be found by
solving a linear program (LP) (Charnes et al., 1955; Wagner, 1959). The L1 regression LP is as follows.

min
β0,β,e+,e−

n
i=1

e+

i + e−

i , (R)

subject to

β0 + βTxi + e+

i − e−

i = yi, i = 1, . . . , n,

e+

i , e−

i ≥ 0, i = 1, . . . , n.

The input data are xi ∈ Rm, i = 1, . . . , n which are rows of the data matrix X ∈ Rn×m, and the dependent variable values
yi, i = 1, . . . , n. The vector β in (R) are the regression coefficients and the variable β0 is the level value that are to be
determined by the optimal solution to the LP. The variables e+

i and e−

i are the errors measured as the distance from either
side of the hyperplane to observation i. Note that at most one of each pair e+

i , e
−

i is positive at optimality, and the sum of
absolute errors is

n
i=1(e

+

i + e−

i ).
Given an m × q matrix A, the internal (linear combination of points) representation of a subspace defined by A is

the column space of A, given by C(A) = {z ∈ Rm
|Aλ = z for all λ ∈ Rq

}. The external (intersection of hyperplanes)
representation is C ′(A) = {z ∈ Rm

|AT z = 0}.
The projection of a point x ∈ Rm on a set S is the set of points P ⊆ S such that the distance between x and points in S is

minimized. Distance for PCA is usually measured using the L2 norm. The L2 norm of a vector x is

∥x∥2 =

 m
i=1

x2i .

When S is an affine set, the L2 projection of x is a unique point and the direction from P to x is orthogonal to S.
The L1 norm of a vector x is

∥x∥1 =

m
i=1

|xi|.

Using the L1 norm for measuring distance results in different projections. Fig. 1 illustrates this difference for the case
when x ∈ R2 and S is a line. The figure represents the level sets using the L1 and L2 norms. The L2 norm level sets in two
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Fig. 1. Level sets for the L1 and L2 norms.

dimensions are circles; the L1 norm level sets are diamonds. Notice that the L1 projection occurs along a horizontal direction.
The property that projections occur along a single unit direction generalizes to multiple dimensions (Mangasarian, 1999;
Brooks and Dulá, 2013). Further, the direction of a projection depends only on the orientation of the hyperplane and not
on the location of the point (Mangasarian, 1999). These two properties lead to the following result about L1-norm best-fit
hyperplanes; that is, hyperplanes for which the sum of L1 distances of points to their projections is minimized.

Lemma 1. Given a set of points xi ∈ Rm, i = 1, . . . , n, the projections into an L1-norm best-fit (m− 1)-dimensional hyperplane
occur along the same unit direction for all of the points.

Proof. See Mangasarian (1999). �

Lemma 1 implies that an L1-norm best-fit hyperplane is found by computing the m hyperplanes that minimize the sum
of absolute errors along each of the m dimensions and selecting the hyperplane with the smallest sum of absolute errors.
Identifying the hyperplane that minimizes the sum of absolute errors along a given dimension is the L1 linear regression
problem presented above where the dependent variable corresponds to the dimension along which measurements are
made. This discussion is the proof of the following Proposition 1.

Proposition 1. A best-fit hyperplane in Rm is found by computing m L1 linear regressions, where each variable takes a turn as
the dependent variable, and selecting the regression hyperplane with the smallest sum of absolute errors.

Recall that a hyperplane containing the origin is an (m − 1)-dimensional subspace. PCA assumes that data are centered
around the mean and fits subspaces accordingly. The analogy for the L1 measure is that the data are centered around the
median and that the fitted hyperplanes contain the origin. This assumption will be applied later in numerical experiments.

The L1-norm best-fit (m − 1)-dimensional subspace C ′(β∗) can be found by the following procedure.

Algorithm for finding a L1-norm best-fit subspace of dimensionm − 1.
Given a data matrix X ∈ Rn×m with full column rank.

1: Set j∗ = 0, R0(X) = ∞. /* Initialization. */
2: for (j = 1; j ≤ m; j = j + 1) do
3: Solve Rj(X) = min

β,e+,e−

n
i=1 e

+

i + e−

i , /*Find the L1 regression with variable j as the dependent variable.*/

subject to
βTxi + e+

i − e−

i = 0, i = 1, . . . , n,
βj = −1,

e+

i , e−

i ≥ 0, i = 1, . . . , n.
4: if if Rj(X) < Rj∗(X), /* if the fitted subspace for variable j is better than that for j∗*/

then
5: j∗ = j, β∗

= β. /* Update the coefficients defining the best fit subspace */
6: end if
7: end for

The procedure finds the L1-norm regression subspace (β0 = 0) where each variable in turn serves as the response, as
enforced by the constraint βj = −1. In Brooks and Dulá (2013), results concerning L1 projection on hyperplanes using the L1
norm are proved and an LP-based algorithm for finding the L1-norm best-fit hyperplane is presented. This paper adapts the
algorithm in Brooks and Dulá (2013) as a subroutine in the design of L1-PCA∗, explains correspondences between L1-PCA∗

and traditional PCA, and demonstrates the effectiveness of the procedure on simulated and real-world datasets.
The fitted subspace inherits the following well-known properties (Appa and Smith, 1973; Baccini et al., 1996; Agarwal

et al., 2006):

1. At least (m − 1) of the points lie in the fitted subspace;
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2. The subspace corresponds to a maximum likelihood estimate for a fixed effect model with noise following a joint
distribution ofm independent, identically distributed Laplace random variables.

In the development below, the normal vector of a best-fit (m − 1)-dimensional subspace for points in an m-dimensional
space is given by βm. We will employ the notation (I j∗)m to denote them×m identity matrix modified such that row j∗ has
entries

(I j
∗

j∗ℓ)
m

= βm
ℓ /∥βm

∥2 ℓ ≠ j∗,

(I j
∗

j∗j∗)
m

= 0.

In the next section, we apply these results to develop the new PCA procedure based on the optimality of the fitted
subspaces.

3. The L1-PCA∗ algorithm

Proposition 1 and the procedure for finding the L1-norm best-fit subspace motivate algorithm L1-PCA∗ where points are
iteratively projected down from the initial space Rm of the data, to an (m − 1)-dimensional subspace, then to an (m − 2)-
dimensional subspace, and so on.

The algorithm takes as input a data matrix X ∈ Rn×m and generates a sequence of subspaces, each one dimension less
than the previous one, defined by their orthogonal vectorsαk

∈ Rm, k = m,m−1, . . . , 1. The projection into the best (k−1)-
dimensional subspace is determined by applying the algorithm for finding the L1-norm best-fit subspace by finding the best
of k L1 regressions. The (k − 1)-dimensional subspace has an external representation given by C ′(βk). The vector βk

∈ Rk

is the optimal value of β returned by the algorithm above. The corresponding vector αk is the normalized representation of
βk in the originalm-dimensional space and is the kth principal component loadings vector.

Each subspace is determined by its normal vector βk. Applying βk to the current data matrix X k
∈ Rn×k produces the

projections in the (k − 1)-dimensional subspace. An internal representation of the subspace, needed for the next iteration,
requires a set of spanning vectors of the space containing the projections. The spanning vectors form the columns of the
projection matrix V k

∈ Rk×(k−1). Obtaining an internal representation can be done in any number of ways. Algorithm
L1-PCA∗ uses the singular value decomposition (SVD) of the projected points Zk

∈ Rn×k. The product of the (m−1)projection
matrices is the vector of loadings for the first principal component α1.

The pseudocode for the L1-PCA∗ algorithm is given next.

Algorithm L1-PCA∗

Given a data matrix X ∈ Rn×m with full column rank.
1: Set Xm

= X ; set Vm+1
= I; set (I j∗)m+1

= I . /* Initialization. */
2: for (k = m; k > 1; k = k − 1) do
3: Set j∗ = argminjRj(X k) and βk

= β∗ using the algorithm for finding a L1-norm best-fit subspace of dimensionm − 1.
/* Find the best-fitting L1 subspace among subspaces derived with each variable j as the dependent variable. */

4: Set Zk
= (X k)((I j∗)k)T . /* Project points into a (k − 1)-dimensional subspace. */

5: Calculate the SVD of Zk, Zk
= UΛV T , and set V k to be equal to the (k − 1) columns of V corresponding to the largest

values in the diagonal matrix Λ. /* Find a basis for the (k − 1)-dimensional subspace. */
6: Set αk

=

k+1
ℓ=m+1 V

ℓ


βk/∥βk
∥2. /* Calculate the kth principal component. */

7: Set X (k−1)
= ZkV k. /* Calculate the projected points in terms of the new basis. */

8: end for
9: Set α1

=
2

ℓ=m+1 V
ℓ. /* Calculate the first principal component. */

Notes on L1-PCA∗

1. The algorithm generates a sequence of matrices Xm, . . . ,X1. Each of these matrices contains n rows, each row
corresponding to a point. All of the points in X k are in a k-dimensional space. The normal vectors of the successive
subspaces are mutually orthogonal.

2. The sequence of vectors αk in Step 6 represent the principal component loadings vectors. The vector αk is orthogonal to
the subspace C(V k).

3. Any (k − 1) vectors spanning the projected points can form the columns of V k. In this respect, the algorithm is
indeterminate. Different choices for this set will lead to different projections at successive iterations because the L1 norm
is not rotationally invariant (Ding et al., 2006). Oneway tomake the algorithm determinate is to always use singular value
decomposition to define a new coordinate system as in Step 5.
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Fig. 2. L1-PCA∗ implementation for a 3-dimensional example. (a) The point set in 3-D. (b) The L1 best-fit plane. (c) The projection in the best-fit plane with
best-fit line. (d) L1-PCA∗ results. (e) Comparison of L1-PCA∗ versus L2-PCA.

4. The solution of linear programs is the most computationally-intensive step in each iteration. A total of
m

k=1 k =
m(m+1)

2
linear programs are solved. Each linear program has 2n + k variables and n constraints. The algorithm has a worst-case
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Table 1
Correspondences between L1-PCA∗ and L2-PCA for estimating the k-dimensional best-fit subspace.

Concept Formula

1 kth principal component loadings vector αk , k = 2, . . . ,m (set α1 orthogonal to α2, . . . ,αm)
k+1

ℓ=m+1 V
ℓ


βkβk

2

2 Score of observation i (from Step 4 of algorithm L1-PCA∗) xki

3 Projection of point xi for observation i (in terms of original coordinates)
k+1

ℓ=m+1 V
ℓ

xki

4 Score of a new point xn+1

m+1
ℓ=k+1(V

ℓ)T (I j∗ )ℓ

xn+1

5 Projection of a new point xn+1 (in terms of original coordinates)
k+1

r=m+1 V
r
 m+1

ℓ=k+1(V
ℓ)T (I j∗ )ℓ


xn+1

running time of

O


m

k=1

kP (2n + k, n)


,

where P (r, s) is the complexity of solving a linear program with r variables and s constraints. Since the complexity of
linear programming is polynomial, the complexity of L1-PCA∗ is polynomial.

5. The algorithm produces an L1 best-fit subspace at each iteration. Accordingly, this procedure performs well for outlier-
contaminated data so long as the accrued effect of the L1 distances of the outliers does not force the optimal solution to
fit them directly.

The following three-dimensional example will help to illustrate L1-PCA∗. Consider the data matrix

(X3)T =


−1.17 0.53 −1.02 1.12 2.08 −1.61 1.17 2.00 3.00 3.00
1.20 0.24 0.40 1.36 −1.82 0.53 −1.52 −1.03 −2.00 3.00

−0.30 −1.00 1.11 −1.69 −0.76 0.99 0.71 −1.44 −1.00 3.00


.

These points are displayed in Fig. 2(a). The L1 best-fit plane obtained in Step 3 by applying Proposition 1 and after solving
three LPs is defined by β3x = 0 where β3

= (−0.80, −1.00, −0.39). The plane can be see in Fig. 2(b). This plane minimizes
the total sum of L1 distances of the points to their projections at 9.75. Notice that all projections occur along j∗ = 2 (y-axis).
The projected points Z3 from Steps 4 and 5 are

(Z3)T =


−1.17 0.53 −1.02 1.12 2.08 −1.61 1.17 2.00 3.00 3.00
1.05 −0.03 0.38 −0.22 −1.36 0.90 −1.21 −1.03 −2.00 −3.58

−0.30 −1.00 1.11 −1.69 −0.76 0.99 0.71 −1.44 −1.00 3.00


.

Notice that only the second component of each point changes. The singular value decomposition of Z3 is UΛV T , where

U T
=


−0.212 0.051 −0.130 0.124 0.325 −0.237 0.228 0.285 0.474 0.633
0.052 0.232 −0.264 0.397 0.200 −0.245 −0.144 0.352 0.266 −0.633
0.858 −0.267 −0.021 0.123 −0.092 0.200 −0.084 0.198 0.225 0.175


,

Λ =

7.46 0.00 0.00
0.00 4.59 0.00
0.00 0.00 0.00


, V =

 0.77 0.22 0.59
−0.63 0.20 0.75
0.05 −0.95 0.29


.

The first two columns of V span the plane and comprise the 3 by 2matrix V 3. The third principal component loadings vector
is α3

= (−0.59, −0.75, −0.29) using the formula in Step 6. Notice that α3 is orthogonal to the best-fit subspace, and that
for this first iteration, α3 points in the same direction as β3. The next iteration will use the dataset X2

= Z3V 3 which is
calculated in Step 7 and corresponds to a re-orientation of the axes so that the plane becomes the two-dimensional space
where the data resides:

(X2)T =


−1.58 0.38 −0.97 0.92 2.43 −1.77 1.70 2.13 3.54 4.73
0.24 1.07 −1.21 1.82 0.92 −1.13 −0.66 1.61 1.22 −2.91


.

Fig. 2(c) is a plot of the data points in the matrix X2, embedded in the two-dimensional best-fit subspace. The figure also
shows the resulting best-fit subspace found in the next iteration in terms of the new axes. Fig. 2(c) illustrates how our
method remains insensitive to outliers despite the use of SVD as a method for determining the basis for projected points
at each iteration. The choice of v1 and v2 by using SVD is adversely affected by the outlier; however, L1-PCA∗ overcomes
the poor choice of v1 and v2 and rotates the axes so that the blue and green lines are the principal components. Traditional
PCA would identify v1 and v2 as the principal component loadings vectors for the projected points. The line in the v1–v2
plane perpendicular to the line labeled β2 is the L1 best-fit subspace for the two-dimensional problem solved in the next
iteration and represents the projection of the first principal component in this plane. Notice that the presence of the outlier
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Table 2
Calculated values for numerical example using formulas from Table 1.

(xn+1 = (−2.0, 3.0, 1.0))

Formula 1 k = 3 α3
= (−0.59, −0.75, −0.29)

Principal k = 2 α2
= (0.04, −0.40, 0.92)

Components k = 1 α1
= (0.80, −0.53, −0.27)

Formula 2

Scores k = 3 (X3)T =

−1.17 0.53 −1.02 1.12 2.08 −1.61 1.17 2.00 3.00 3.00
1.20 0.24 0.40 1.36 −1.82 0.53 −1.52 −1.03 −2.00 3.00

−0.30 −1.00 1.11 −1.69 −0.76 0.99 0.71 −1.44 −1.00 3.00


k = 2 (X2)T =


−1.58 0.38 −0.97 0.92 2.43 −1.77 1.70 2.13 3.54 4.73
0.24 1.07 −1.21 1.82 0.92 −1.13 −0.66 1.61 1.22 −2.91


k = 1 (X1)T =


−1.67 0.40 −1.03 0.98 2.57 −1.87 1.80 2.25 3.74 5.00


Formula 3

Projections k = 3

−1.17 0.53 −1.02 1.12 2.08 −1.61 1.17 2.00 3.00 3.00
1.20 0.24 0.40 1.36 −1.82 0.53 −1.52 −1.03 −2.00 3.00

−0.30 −1.00 1.11 −1.69 −0.76 0.99 0.71 −1.44 −1.00 3.00


k = 2

−1.17 0.53 −1.02 1.12 2.08 −1.61 1.17 2.00 3.00 3.00
1.05 −0.03 0.38 −0.22 −1.36 0.90 −1.21 −1.03 −2.00 −3.58

−0.30 −1.00 1.11 −1.69 −0.76 0.99 0.71 −1.44 −1.00 3.00


k = 1

−1.34 0.32 −0.83 0.78 2.06 −1.50 1.45 1.81 3.00 4.01
0.89 −0.22 0.55 −0.52 −1.37 1.00 −0.96 −1.20 −2.00 −2.67
0.45 −0.11 0.28 −0.26 −0.69 0.50 −0.48 −0.60 −1.00 −1.34


Formula 4 k = 3 (−2.00, 3.00, 1.00)
Scores k = 2 (−2.26, −1.16)
New point k = 1 −2.39

Formula 5 k = 3 (−2.00, 3.00, 1.00)
Projections k = 2 (−2.00, 1.20, 1.00)
New point k = 1 (−1.92, 1.28, 0.64)

L(0,10) L(0,1)clean
data

outliers L(0,1)

q p: outlier
dimensions

noise

Fig. 3. Dataset design for simulation experiments. Observations are represented by rows and variables are represented by columns. For each instance,
outliers comprise 10% of the dataset.

in the second quadrant does not significantly affect the fit. The line labeled β2 is the projection of the second L1 principal
component in this plane.

Fig. 2(d) depicts the two best-fit subspaces and the three principal component axes in terms of the original coordinates
of the data. The two subspaces are the red plane and the line labeled α1. The three principal component axes are the lines
labeled α1, α2, and α3.

Fig. 2(e) compares the plane defined by the first two principal component axes from L1-PCA∗ to that derived using
L2-PCA. The view is oriented so that the plane from L1-PCA∗ is orthogonal to the plane of the page. Most of the data points
are near the plane given by L1-PCA∗ indicating a good fit despite the presence of the outlier x10 = (3.0, 3.0, 3.0). The outlier
has clearly affected the location of the plane derived using L2-PCA and does not fit the rest of the data well. This comparison
between L1- and L2-based methods for PCA is formalized in the experiments below.
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(a) p = 1,m = 10: outlier magnitude. (b) p = 2,m = 10: outlier magnitude.
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(c) p = 3,m = 10: outlier magnitude. (d) p = 1,m = 100: outlier magnitude.
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(e) p = 2,m = 100: outlier magnitude. (f) p = 3,m = 100: outlier magnitude.

Fig. 4. Laplacian noise. The sum of errors, the sum of L1 distances of projected points in a 5-dimensional subspace to the ‘‘true’’ 5-dimensional subspace
of the data, versus outlier magnitude with Laplacian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The average sum of errors over 100
iterations is plotted. Error bars represent one standard deviation. The parameter p is the number of outlier-contaminated dimensions.

4. Correspondences between L1-PCA∗ and L2-PCA

When algorithm L1-PCA∗ is applied to a dataset, values analogous to those used in an application of L2-PCA are obtained.
These values permit an analysis with all the functionality of L2-PCA. Table 1 collects these results along with their explicit
formulas in L1-PCA∗. We include correspondences for principal components and scores, and projections of new points into
fitted subspaces. Belowwe explain how to obtain these correspondences. These are summarized in Table 1 and their results
using the numerical example are in Table 2.

Extracting principal components and scores. As algorithm L1-PCA∗ iteratively projects points into lower-dimensional
subspaces, we can collect the normal vectors as principal component loadings vectors. The vector that is orthogonal to
projected points is unique at each iteration k. This vector is precisely βk. Also, when the singular value decomposition of the
projected points is calculated in Step 5, Zk

= UΛV T , the principal component loadings vector βk/∥βk
∥ is the column of V

corresponding to the smallest value in the diagonal matrix Λ. This direction defined by βk is a k-dimensional vector in the
current subspace. Formula 1 in Table 1 presents αk, the kth L1 principal component loadings vector in terms of the original
m-dimensional space.
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(c) p = 3,m = 10: outlier magnitude. (d) p = 1,m = 100: outlier magnitude.

60
00

0
40

00
0

20
00

0
0

L
1 

D
is

ta
nc

e

60
00

0
40

00
0

20
00

0
0

L
1 

D
is

ta
nc

e

(e) p = 2,m = 100: outlier magnitude. (f) p = 3,m = 100: outlier magnitude.

Fig. 5. Gaussian noise. The sum of errors, the sum of L1 distances of projected points in a 5-dimensional subspace to the ‘‘true’’ 5-dimensional subspace
of the data, versus outlier magnitude with Gaussian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The average sum of errors over 100
iterations is plotted. Error bars represent one standard deviation. The parameter p is the number of outlier-contaminated dimensions.

The rows of the matrix X k, xki in Table 1, are the principal component scores. These are the projected points in the
projected coordinate system. For an observation i, the projection into the k-dimensional subspace in terms of the original
coordinates is calculated using Formula 3.
Projecting newpoints. Theprincipal component loadings obtainedwith Formula 1 of Table 1 define the subspace(s) intowhich
observations are projected. In L2-PCA, the matrix the columns of which are the first k principal component loadings vectors
is the rotation matrix and is used to project points into the k-dimensional fitted subspace. The projection of a point using
L1-PCA∗ depends on the sequence of intermediate subspaces so that the matrix of principal component loadings vectors
should not be used as a projection matrix. L1-PCA∗ projects optimally one dimension at a time in a unit direction that may
not coincide with the normal vector βk.

For a new point xn+1, the projection into the best-fit (m− 1)-dimensional subspace is given by (I j∗)mxn+1. The projected
point in terms of the original coordinates is given by Vm(I j∗)mxn+1. To project the point into a k-dimensional subspace, use
Formulas 4 and 5.

Table 2 applies the formulas from Table 1 to the numerical example from the previous section for three subspaces: (1) for
k = 3, the space R3 where the original data reside, (2) for k = 2, the fitted plane in Fig. 2(b), and (3) for k = 1, the line
labeled α1 in Fig. 2(d).
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(a) Milk data. (b) McDonald and Schwing data.

Fig. 6. Sum of residuals of non-outlier observations versus the dimension of the fitted subspace for (a) theMilk dataset and (b) theMcDonald and Schwing
dataset.

5. Computational results

L1-PCA∗ is implemented and its performance on simulated and real-world data is compared to L2-PCA, pcaPP, and
L1-PCA. The R package pcaPP is a publicly-available implementation of the L1-norm-based PCA procedure developed by
Croux and Ruiz-Gazen (2005). The approach implemented in pcaPP maximizes an L1 measure of dispersion in the data to
find successive locally-optimal directions of maximum dispersion. We implemented L1-PCA, an algorithm developed by
Ke and Kanade (2003) that approximates L1-norm best-fit subspaces directly which stands in contrast to the successive
approaches L1-PCA∗ and pcaPP.

L1-PCA∗ is implemented in a C program that uses ILOG CPLEX 11.1 Callable Library (ILOG, 2009) for the solution of the
linear programs required for Step 3. The singular value decomposition in Step 5 is calculated using the function dgesvd in
LAPACK (Anderson et al., 1999). The L2-PCA and pcaPP implementations are publicly available in the stats (R Development
Core Team, 2008) and pcaPP (Filzmozer et al., 2009) packages for the R language for statistical computing (R Development
Core Team, 2008). The function used for L2-PCA is prcomp. L1-PCA is implemented as part of an R package that will be
released at a later date (Jot, 2011). All experiments are performed on machines with 2.6 GHz Opteron processors and at
least 4 GB RAM.
Tests with simulated data. The implementations are tested on simulated data. Simulated data provide a controlled setting
for comparison of data analysis algorithms and reveal trends that help make generalizable conclusions. The objectives for
the data are to explore the impact of outliers on the procedures by varying the dimensionality and magnitude of outlier
contamination. The data are generated such that a predetermined subspace contains most of the dispersion. The dimension
of this ‘‘true’’ subspace is varied to assess the dependence on this data characteristic.

Each dataset consists of n = 1000 observations with m dimensions. The first q dimensions define the predetermined
subspace and the remaining dimensions contain noise. The first qdimensions are sampled froma Laplace(0, 10)distribution;
the remaining dimensions are sampled froma Laplace(0, 1)distribution. Outliers are introduced in the dataset by generating
additional points where the first q dimensions are sampled from a Laplace(0, 10) distribution, the next p dimensions are
sampled froma Laplace(µ, 0.01)distribution so that the outliers are on the same side of the true subspace, and the remaining
m − p − q dimensions are sampled from a Laplace(0, 1) distribution. The problem suite also includes control datasets
(p = 0, µ = 0) without outlier observations. Outlier observations comprise ten percent of each dataset. We refer to the
parameter p as the number of outlier-contaminated dimensions and the parameterµ as the outlier magnitude. Datasets are
also generated by replacing distribution Laplace(0, 10) with N(0, 10), replacing Laplace(0, 1) with N(0, 1), and replacing
Laplace(µ, 0.01) with N(µ, 0.01). Fig. 3 is a schematic of the roles of the data components in the simulated data.

Tests are conducted for the configurations that result when m = 10, 100; q = 2, 5; p = 1, 2, 3; and µ = 25, 50, 75; in
addition to the control datasets; for a total of 60 configurations. We define the error for an observation as the L1 distance
from its projected point in the best-fitting q-dimensional subspace determined by the four methods to the predetermined
q-dimensional subspace.

The problem suite is processed by the L1-PCA∗, L2-PCA, pcaPP, and L1-PCA implementations. The results for Laplacian
noise are reported in Tables 3–4 and Figs. 4 and 7 and the results for Gaussian noise are reported in Tables 5–6 and Figs. 5
and 8. These tables contain the mean and standard deviation of the sum of errors for 100 replications of each configuration.

Our experiments include eight controls (m = 10, 100, q = 2, 5, Laplacian and Gaussian noise) when µ = 0 and p = 0
for each distribution of noise. In these datasets, there are no outliers. L2-PCA outperforms L1-PCA∗ in seven of the eight con-
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trol experiments. As expected, L2-PCA outperforms L1-PCA∗ in the control experiments when the noise is Gaussian. In the
presence of Laplacian noise, L1-PCA∗ performs better than L2-PCA when the dimension of the underlying subspace is higher
(q = 5) and the dimension of the original data is lower (m = 10). The explanation is that the fitted subspaces of successively
smaller dimension derived by L1-PCA∗ are optimal with respect to the projected data at each iteration and do not necessarily
coincidewith the L1 best-fit subspacewith respect to the original data points. Therefore, there is a degradation in the perfor-
mance of L1-PCA∗ as the dimension of the true subspace decreases. L1-PCA approximates subspaces directly, and performs
best in the control experiments in the presence of Laplacian noise. For the control experiments, pcaPP is not competitive.

Fig. 4 illustrates the results for q = 5 and Laplacian noise. The figure compares the performance of the four implementa-
tions with respect to outlier magnitude µ, number of outlier-contaminated dimensions p, and number of total dimensions
m. For small contamination (µ = 25 and p = 1), there is little discernible difference among L1-PCA∗, L1-PCA, and L2-PCA, and
these threemethods outperform pcaPP. For moderate levels of contamination (µ = 50), L1-PCA∗ provides a clear advantage
in the presence of outliers. The other methods fit the outlier observations, while L1-PCA∗ ignores them and fits the clean
data. In the cases with extreme outlier contamination (µ = 75 and p ≥ 2), all of the methods break down and fit the outlier
observations with the exception of pcaPP whenm = 10,µ = 75, and p = 3. This advantage for pcaPP forµ = 75 and p = 3
is not present when m = 100. This adverse reaction of pcaPP to an increase in dimension can be explained by a dimen-
sionality curse effect since the algorithm relies on a grid search procedure. Similar patterns are observed in the experiments
when the noise are Gaussian, except that the increased noise in the data causes each method to break down sooner (Fig. 5).

For each method, as µ and p are increased, the breakdown point is reached where the methods begin to fit the outlier
observations better than the non-contaminated data. For Laplacian noise and for p = 1, 2, 3, L1-PCA∗ does not break down,
even as µ is increased to 50, while significant increases in the sum of errors are seen for L2-PCA, pcaPP, and L1-PCA. The
approach of the breakdown point for L1-PCA∗ and L2-PCA as p and µ increase is signaled in Tables 3–6 by an increase in the
standard deviations of the sumof errors. For the configurationswith large standard deviations; such asm = 10, q = 2, p = 3,
and µ = 50 for L1-PCA∗; the methods fit the non-contaminated data for some samples and fit the outlier observations for
other sampleswhich result in drastically different sums of errors. The standard deviations of the sums of errors for pcaPP are
larger than those for the othermethods for almost every configuration, an indication that pcaPP is sensitive to small changes
in the data. For q = 5 and Laplacian noise, we can see in Fig. 4 that L1-PCA∗ is less susceptible to breakdown and only breaks
down when p ≥ 2 and µ = 75. In summary, L1-PCA∗ is competitive with other methods in the presence of low outlier
contamination and provides substantial benefits in the presence of moderate outlier contamination. Our experiments show
that L1-PCA∗ is the indicated procedure in the presence of unbalanced outlier contamination. These experiments validate
the intuition that L1-PCA∗ is robust to outliers because of the underlying reliance on optimally-fitted L1 subspaces.
Tests with real data. The four implementations; L1-PCA∗, L2-PCA, pcaPP, and L1-PCA; are applied to real-world data that
are known to contain outliers. The ‘‘Milk’’ dataset is introduced by Daudin et al. (1988) and used by Choulakian (2006) for
tests with an L1 projection-pursuit algorithm for PCA. The ‘‘McDonald and Schwing’’ dataset is introduced byMcDonald and
Schwing (1973) and is used by Croux and Ruiz-Gazen (2005) for tests with an L1 projection-pursuit algorithm for PCA. For
each dataset, the data are centered by subtracting the attribute medians.

Fig. 6 contains plots of the sum of residuals of non-outlier observations against the dimension of the fitted subspace for
the two datasets. The residual for an observation ismeasured as the L1 distance from the original point to the projected point
in the fitted subspace. If a method is properly ignoring the outlier observations and fitting the non-contaminated data, then
the plotted values should be small.

Fig. 6(a) contains the results for the Milk dataset. Observations 17, 47, and 70 are identified as outliers in previous analy-
ses (see Choulakian (2006)). When the outliers are removed the correlation of variables 4 and 6, 4 and 7, 5 and 6, and 5 and
7 increase by more than 0.3 each when outliers are removed, indicating that the outlier contamination is present in more
than one dimension. The sum of residuals for the non-outlier observations for L1-PCA∗ and pcaPP are almost identical and
are less than that for L2-PCA and L1-PCA for two and three dimensions.

The residuals for the non-outliers in the McDonald and Schwing dataset are depicted in Fig. 6(b). Observations 29 and
48 are identified as outliers in previous analyses (see Croux and Ruiz-Gazen (2005)). When the outliers are removed, the
correlation of variables 5 and 12, 5 and 13, 12 and 15, 13 and 14, 13 and 16 increase by at least 0.3 each, indicating that the
outlier contamination is present in more than one dimension. The sum of residuals for non-outlier observations for pcaPP is
larger for smaller-dimensional fitted subspaces when compared to L1-PCA∗, L2-PCA, and L1-PCA. Procedure pcaPP appears
to be pushing the fitted subspace away from the outlier observations at the expense of the fit of non-outlier observations.

The expectation that L1-PCA∗ performs well in the presence of outliers is validated for these datasets. For the two real
datasets, Fig. 6 shows that L1-PCA∗ generates subspaces that are competitive in terms of having low residuals for non-
outliers. The diminished advantage of using L1-PCA∗ for these real datasets when compared to the simulated data can be
attributed to the fact that the outliers in the real data are more balanced in that they are not located on one side of the best-
fitting subspace for the non-contaminated data. Real data with outlier contamination are likely to have some imbalance in
the location of the outliers. L1-PCA∗ is well-suited in these situations.

6. Conclusions

This paper proposes a new procedure for PCA based on finding successive L1-norm best-fit subspaces. The result is a pure
L1 PCA procedure in the sense that it uses the globally optimal solution of an optimization problem where the sum of L1
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distances isminimized. Several ‘‘pure’’ L1 PCAs are possible by taking any one of the properties of traditional L2 PCA and using
the L1 norm.We describe a complete PCA procedure, L1-PCA∗, based on this result, and include formulas for correspondences
with familiar L2-PCA outputs. The procedure is tested on simulated and real data. The results for simulated data indicate that
the procedure can bemore robust than L2-PCA and competing L1-based procedures, pcaPP and L1-PCA, for unbalanced outlier
contamination and for a wide range of outlier magnitudes. Experiments with real data confirm that L1-PCA∗ is competitive
in datasets with outliers. L1-PCA∗ represents an alternative tool for the numerous applications of PCA.

Acknowledgments

The first author was supported in part by NIH-NIAID awards UH2AI083263-01 and UH3AI08326-01, and NASA award
NNX09AR44A. The authorswould also like to acknowledge the Center for High Performance Computing at VCU for providing
computational infrastructure and support.

Appendix A

Table 3
Average (standard deviation) of L1 distance to true subspace for m = 10 Laplacian noise/error 100
replications for each configuration.

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

2 0 0 339.8 (66.0) 329.1 (60.2) 4600.2 (978.6) 244.5 (46.2)
2 1 25 328.5 (60.0) 640.7 (185.9) 5556.0 (1216.1) 253.1 (48.7)
2 2 25 371.5 (73.7) 1515.7 (681.4) 7456.1 (1711.5) 253.9 (47.1)
2 3 25 872.4 (427.8) 8974.9 (3298.1) 9145.1 (1852.6) 5520.1 (4965.3)
2 1 50 358.4 (75.6) 6521.5 (393.8) 8085.5 (1045.0) 6211.4 (248.6)
2 2 50 337.4 (60.4) 11,637.9 (111.2) 10,010.6 (1091.2) 11,611.9 (107.5)
2 3 50 3644.8 (6662.5) 16,912.9 (80.8) 11,097.6 (1090.0) 16,850.1 (63.8)
2 1 75 329.3 (61.8) 8698.4 (88.5) 8835.1 (940.1) 8606.3 (58.0)
2 2 75 16,599.0 (75.1) 16,584.4 (71.7) 9940.4 (1130.2) 16,538.7 (75.5)
2 3 75 24,372.2 (61.9) 24,371.8 (68.2) 10,288.8 (1297.9) 24,329.6 (56.6)
5 0 0 347.5 (51.8) 370.4 (56.0) 4555.6 (716.1) 273.3 (39.4)
5 1 25 330.1 (50.2) 884.1 (191.1) 5819.6 (986.1) 271.3 (40.9)
5 2 25 386.3 (72.1) 2503.5 (785.3) 8258.3 (1549.5) 286.0 (44.6)
5 3 25 1644.9 (947.7) 11,485.5 (1308.1) 10,510.0 (1727.2) 9581.7 (3963.4)
5 1 50 395.5 (75.8) 6447.3 (308.8) 9985.7 (1142.8) 6379.1 (269.2)
5 2 50 326.1 (52.5) 11,636.4 (129.0) 14,075.7 (1017.2) 11,629.6 (110.4)
5 3 50 3944.9 (6881.0) 16,882.8 (65.8) 16,555.9 (1136.5) 16,845.3 (78.1)
5 1 75 325.3 (55.1) 8719.7 (76.3) 11,983.1 (996.1) 8659.6 (85.6)
5 2 75 16,554.3 (60.0) 16,584.5 (63.3) 15,153.7 (1198.3) 16,546.4 (67.5)
5 3 75 24,330.9 (64.1) 24,351.5 (56.6) 16,541.6 (1179.0) 24,327.3 (59.0)

q: dimension of ‘‘true’’ underlying subspace.
p: number of outlier-contaminated dimensions.
µ: outlier magnitude.

Table 4
Average (standard deviation) of L1 distance to true subspace for m = 100 Laplacian noise/error 100
replications for each configuration.

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

2 0 0 5012.0 (294.1) 4054.7 (223.0) 42,876.7 (2733.3) 2965.2 (167.5)
2 1 25 5079.1 (306.8) 4379.2 (276.9) 43,127.7 (2088.2) 2991.8 (164.3)
2 2 25 5055.7 (272.7) 5210.7 (754.1) 45,059.6 (2644.3) 3001.6 (161.7)
2 3 25 6069.4 (727.1) 13,567.6 (2811.4) 46,975.9 (2926.5) 8774.4 (4563.1)
2 1 50 5127.4 (295.5) 9842.0 (500.7) 46,602.8 (2507.1) 8628.0 (453.7)
2 2 50 5052.1 (305.0) 14,850.5 (237.8) 49,793.2 (2478.7) 13,998.4 (339.3)
2 3 50 6668.7 (4793.3) 20,106.7 (217.6) 52,352.1 (2922.9) 19,140.3 (144.6)
2 1 75 5036.1 (260.9) 11,868.0 (213.0) 49,244.6 (2666.6) 10,923.4 (165.8)
2 2 75 20,649.4 (262.5) 19,790.3 (217.9) 52,503.2 (2703.2) 18,913.6 (155.2)
2 3 75 28,369.1 (262.8) 27,549.7 (211.9) 54,090.3 (3307.9) 26,720.3 (436.8)
5 0 0 8590.3 (278.1) 6933.6 (202.9) 70,283.2 (3071.5) 5182.5 (187.5)
5 1 25 8603.1 (285.1) 7451.2 (326.7) 71,539.1 (3933.4) 5178.2 (171.3)
5 2 25 8663.4 (314.3) 9014.1 (712.9) 73,553.8 (3275.1) 5194.2 (213.9)

(continued on next page)
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Table 4 (continued)

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

5 3 25 10,326.2 (922.5) 18,144.2 (1251.5) 76,066.9 (3690.2) 15,035.6 (2951.7)
5 1 50 8682.2 (291.9) 12,879.5 (439.0) 75,432.8 (3286.9) 11,186.4 (420.0)
5 2 50 8623.1 (306.7) 18,030.7 (251.3) 82,312.4 (3241.5) 16,459.9 (242.5)
5 3 50 12,340.6 (6879.0) 23,276.8 (257.7) 86,927.0 (4196.8) 21,677.5 (231.0)
5 1 75 8564.1 (287.2) 15,107.4 (213.0) 81,899.0 (3897.0) 13,488.4 (192.7)
5 2 75 24,608.9 (292.8) 22,979.6 (216.2) 87,993.7 (3899.2) 21,373.5 (203.4)
5 3 75 32,371.0 (299.4) 30,743.9 (242.8) 90,029.9 (3800.5) 29,097.8 (194.9)

q: dimension of ‘‘true’’ underlying subspace.
p: number of outlier-contaminated dimensions.
µ: outlier magnitude.

Table 5
Average (standard deviation) of L1 distance to true subspace for m = 10 Gaussian noise/error 100
replications for each configuration.

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

2 0 0 313.8 (61.6) 253.1 (50.6) 3312.2 (637.9) 323.9 (64.9)
2 1 25 342.2 (64.0) 921.6 (408.7) 4104.5 (870.0) 323.4 (58.4)
2 2 25 368.2 (75.4) 6540.2 (373.4) 5663.8 (1261.7) 6675.4 (347.8)
2 3 25 315.2 (56.2) 9014.0 (161.8) 7188.9 (1276.1) 9019.2 (157.6)
2 1 50 327.5 (66.1) 5945.0 (60.8) 6342.9 (923.5) 5979.1 (68.3)
2 2 50 4569.8 (5343.7) 11,188.4 (53.3) 7725.0 (887.7) 11,262.7 (72.0)
2 3 50 16,428.7 (55.0) 16,400.3 (48.2) 8622.2 (991.6) 16,433.2 (54.6)
2 1 75 8464.7 (55.3) 8420.7 (43.4) 6804.2 (847.4) 8470.5 (64.4)
2 2 75 16,217.4 (58.2) 16,181.2 (50.1) 7650.8 (774.2) 16,230.9 (60.9)
2 3 75 23,914.2 (54.6) 23,886.2 (46.1) 7743.1 (837.0) 23,923.6 (51.1)
5 0 0 342.9 (43.3) 272.7 (37.2) 3323.9 (525.1) 337.0 (46.9)
5 1 25 378.1 (53.4) 1381.1 (337.0) 4747.7 (837.0) 340.8 (51.2)
5 2 25 416.6 (72.6) 6544.6 (390.3) 7142.7 (1021.1) 6751.3 (402.9)
5 3 25 309.7 (48.3) 8961.2 (166.0) 9876.1 (1164.5) 9023.1 (155.9)
5 1 50 340.6 (56.7) 5963.8 (59.9) 8629.7 (645.3) 6030.6 (79.1)
5 2 50 10,909.0 (1875.4) 11,189.1 (46.9) 11,456.6 (699.8) 11,262.6 (58.8)
5 3 50 16,383.4 (49.1) 16,357.3 (37.6) 12,814.8 (705.6) 16,392.5 (53.4)
5 1 75 8495.9 (48.2) 8438.6 (40.6) 9399.0 (755.7) 8501.7 (52.6)
5 2 75 16,221.3 (49.0) 16,178.6 (39.4) 11,348.0 (1056.0) 16,229.8 (47.0)
5 3 75 23,878.3 (38.5) 23,854.2 (37.3) 11,995.8 (871.1) 23,884.5 (45.6)

q: dimension of ‘‘true’’ underlying subspace.
p: number of outlier-contaminated dimensions.
µ: outlier magnitude.

Table 6
Average (standard deviation) of L1 distance to true subspace for m = 100 Gaussian noise/error 100
replications for each configuration.

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

2 0 0 3941.4 (242.1) 3130.7 (171.0) 30,524.2 (1520.4) 3873.4 (222.0)
2 1 25 3995.1 (221.7) 3841.3 (404.3) 31,296.6 (1782.1) 3919.1 (205.5)
2 2 25 4007.9 (236.1) 8910.4 (421.6) 33,394.3 (2204.3) 9657.8 (342.9)
2 3 25 3969.2 (229.6) 11,418.2 (228.3) 35,798.6 (2353.9) 11,982.3 (244.1)
2 1 50 3948.1 (208.7) 8348.5 (145.6) 35,591.2 (2142.0) 8964.0 (184.5)
2 2 50 7585.4 (4947.6) 13,599.2 (155.6) 38,132.4 (2254.6) 14,294.2 (174.5)
2 3 50 19,447.2 (190.7) 18,787.3 (148.9) 39,397.2 (2142.2) 19,504.4 (545.8)
2 1 75 11,435.0 (780.0) 10,826.2 (144.5) 37,157.3 (2191.3) 11,465.6 (209.1)
2 2 75 19,260.1 (197.1) 18,565.4 (135.0) 39,185.0 (2395.3) 19,254.7 (202.4)
2 3 75 26,936.7 (169.2) 26,268.0 (149.6) 39,902.9 (2575.0) 26,891.1 (178.7)
5 0 0 6513.4 (215.0) 5153.2 (184.8) 49,849.0 (3663.3) 6399.8 (215.9)
5 1 25 6556.8 (224.8) 6252.6 (417.5) 51,223.5 (5684.2) 6408.6 (208.2)
5 2 25 6624.2 (247.0) 11,230.7 (358.5) 54,312.2 (3270.9) 12,712.2 (399.8)
5 3 25 6474.8 (197.4) 13,683.9 (217.7) 57,664.4 (3355.7) 14,944.9 (270.4)
5 1 50 6465.6 (240.3) 10,696.2 (188.0) 58,066.3 (2745.5) 11,983.2 (310.2)
5 2 50 16,971.2 (1523.5) 15,931.6 (159.6) 63,716.0 (2714.6) 17,261.5 (201.8)

(continued on next page)
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Table 6 (continued)

q p µ L1-PCA∗ L2-PCA pcaPP L1-PCA

5 3 50 22,360.3 (227.1) 21,095.7 (161.0) 66,299.2 (2812.8) 22,370.1 (231.8)
5 1 75 14,467.8 (219.5) 13,184.2 (174.3) 61,481.8 (3534.9) 14,444.7 (259.4)
5 2 75 22,192.6 (233.2) 20,917.8 (174.6) 65,874.3 (3126.6) 22,254.4 (316.3)
5 3 75 29,864.4 (226.1) 28,586.3 (177.4) 67,072.6 (2599.8) 29,877.5 (226.1)

q: dimension of ‘‘true’’ underlying subspace.
p: number of outlier-contaminated dimensions.
µ: outlier magnitude.

Legend
L1 - PCA*

L1 - PCA
pcaPP
L2 - PCA

L
1 

D
is

ta
nc

e

25
00

0
15

00
0

50
00

0

L
1 

D
is

ta
nc

e

25
00

0
15

00
0

50
00

0

(a) p = 1,m = 10: outlier magnitude. (b) p = 2,m = 10: outlier magnitude.
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(c) p = 3,m = 10: outlier magnitude. (d) p = 1,m = 100: outlier magnitude.
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(e) p = 2,m = 100: outlier magnitude. (f) p = 3,m = 100: outlier magnitude.

Fig. 7. Laplacian noise. The sum of errors, the sum of L1 distances of projected points in a 2-dimensional subspace to the ‘‘true’’ 2-dimensional subspace
of the data, versus outlier magnitude with Laplacian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The average sum of errors over 100
iterations is plotted. Error bars represent one standard deviation. The parameter p is the number of outlier-contaminated dimensions.
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(a) p = 1,m = 10: outlier magnitude. (b) p = 2,m = 10: outlier magnitude.
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(c) p = 3,m = 10: outlier magnitude. (d) p = 1,m = 100: outlier magnitude.
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(e) p = 2,m = 100: outlier magnitude. (f) p = 3,m = 100: outlier magnitude.

Fig. 8. Gaussian noise. The sum of errors, the sum of L1 distances of projected points in a 2-dimensional subspace to the ‘‘true’’ 2-dimensional subspace
of the data, versus outlier magnitude with Gaussian noise, for dimensions m = 10 and m = 100, and p = 1, 2, 3. The average sum of errors over 100
iterations is plotted. Error bars represent one standard deviation. The parameter p is the number of outlier-contaminated dimensions.

Appendix B. Supplementary data

At the URL http://www.people.vcu.edu/~jpbrooks/l1pcastar are a script for L1-PCA∗ for R (R Development Core Team,
2008), data for the numerical example of Sections 3 and 4, and simulated data for the experiments in Section 5.
Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2012.11.007.
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