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PREFACE

This edition of Principles of Semiconductor Devices maintains the main aims of the
previous edition—to offer a student-friendly text for senior undergraduate and graduate
students of electrical and computer engineering that provides a comprehensive introduction
to semiconductor devices. Related to the student-friendly aspect, the aim is to provide the
best explanations of the underlying physics, device operation principles, and mathematical
models used for device and circuit design and to support these explanations by intuitive
figures. The comprehensive character of the text emerges from the links that it establishes
between the underlying principles and modern practical applications, including the link to
the SPICE models and parameters that are commonly used during circuit design.

New to This Edition
The aim of linking device physics to modern applications sets the need for changes that
are made in this edition. The dimensions of modern semiconductor devices are reduced to
the point where electronic engineers have to question applicability of the basic concepts
and models presented in semiconductor textbooks. For example, the average number
of minority-current carriers is smaller than one carrier (N < 1) in almost all modern
semiconductor devices, which calls into question the concepts of continuous particle
concentration and continuous current as fundamental elements of standard semiconductor
theory. Further questions are due to increasing practical manifestations of quantum-
mechanical effects in nanoscale devices and potential applications of nanowires and
carbon nanotubes that exhibit one-dimensional transport. The answer to these questions
should not be to simply disregard well-established standard semiconductor theory and as a
consequence to disregard all the design tools and practices based on this theory that have
been developed over several decades. This edition of Principles of Semiconductor Devices
is the first textbook to address these questions by specifying the fundamental principles
and by logical application of these principles to upgrade the standard theory for proper
interpretation and modeling of the effects in modern devices.

Following is a summary of the new elements and main changes in this edition:

• A new chapter—the first in semiconductor textbooks—on the physics of nanoscale
devices, including the physics of single-carrier events, two-dimensional transport
in MOSFETs and HEMTs, and one-dimensional ohmic and ballistic transport in
nanowires and carbon nanotubes.

• Fully revised and upgraded material on crystals to introduce graphene and carbon
nanotubes as two-dimensional crystals and to link them to the standard three-
dimensional crystals through the underlying atomic-bond concepts.

• Revised P–N junction chapter to emphasize the current mechanisms that are relevant
in modern devices.

xvii



xviii Preface

• JFETs and MESFETs presented in a separate chapter.
• Revised chapter on the energy-band model.
• 57 new problems and 11 new examples.

Course Organization
The organization of the text is such that the core material is presented in Part I
(semiconductor physics) and Part II (fundamental device structures). This will be quite
sufficient for introductory undergraduate courses. Selected sections from Part III can be
used in courses that are focused on the core material in different ways: (1) as read-
only material, (2) as material for assignments, (3) as reference material, and (4) as
supporting material for computer and/or laboratory exercises. Many courses will require
full integration of selected sections from Part III. The order of the sections in the book does
not imply the sequence to be followed in these courses. Selected specific/advanced sections
can be read immediately after the relevant fundamental material. A typical example is
the electronics-oriented material, such as the equivalent circuits and SPICE parameter
measurements, presented in Chapter 11. To integrate the equivalent circuits into a course,
the sections on equivalent circuits of diodes can be used as extensions of the diode chapter,
the sections on equivalent circuits of MOSFETs can be used as extensions of the MOSFET
chapter, and the sections on equivalent circuits of BJTs can be used as extensions of the
BJT chapter. Similarly, if the IC technology sections from Chapter 16 are to be integrated,
they can be used as extensions of the diode, MOSFET, and BJT chapters. Another example
relates to the JFET and MESFET sections in Chapter 13. If these devices are an integral
part of a course, then these sections can be included after the MOSFET chapter to create
integrated coverage of FET devices. For courses that integrate photonic devices, the
specific material from Chapter 12 can be included after the diode chapter. Analogously,
for courses that need to address issues that are specific for power electronics, the sections
on power diodes and power MOSFETs from Chapter 14 can be used as extensions of the
diode and MOSFET chapters, respectively.
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1 Introduction to Crystals and Current
Carriers in Semiconductors:
The Atomic-Bond Model

Electric current in both metals and semiconductors is due to the flow of electrons, although
many electrons are tied to the parent atoms and are unable to contribute to the electric
current. The regular placement of atoms in metal and semiconductor crystals, shown in
Fig. 1.1 for the case of silicon crystal, provides the conditions for some electrons to be
shared by all the atoms in the crystal. It is these electrons that can make electric current and
are referred to as current carriers. The effects of regular atom placement on the essential
properties of the current carriers in semiconductors are progressively introduced in two
steps: (1) at the level of the atomic-bond model in this chapter and (2) at the level of the
energy-band model in the next chapter.

This chapter begins with a description of atomic bonds and then proceeds to the
important concepts related to spatial placement of atoms in both three-dimensional and
two-dimensional crystals (including graphene and carbon nanotubes). This chapter also

0.543 nm

Figure 1.1 Image of silicon crystal obtained by
transmission-electron microscopy.
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2 CHAPTER 1 INTRODUCTION TO CRYSTALS AND CURRENT CARRIERS IN SEMICONDUCTORS

introduces current carriers in semiconductors to the level that is possible with the atomic-
bond model. Although lacking certain important details, this level is a very important
initial step. The usual model of current conduction in metals has to be gradually upgraded
to introduce the model of conduction by carriers of two types: free electrons and holes
among bound electrons. It is the existence of two types of carrier that distinguishes
semiconductors from metals. Given that semiconductor devices utilize combinations of
layers with predominantly electron-based conduction (N-type layers) and layers with
predominantly hole-based conduction (P-type layers), the concepts and effects of N-type
and P-type doping are also introduced in this chapter. The effects of doping are essential
because semiconductors are distinguished from insulators by the ability to achieve N-type
and P-type layers. Finally, to round up the introduction to semiconductors at the atomic-
bond level, the last section briefly presents the basic techniques of crystal growth and
doping.

†1.1 INTRODUCTION TO CRYSTALS

1.1.1 Atomic Bonds
Certain atoms can pack spontaneously into an orderly pattern called a crystal lattice. If
this were not so, it would be practically impossible to create even one cubic millimeter
of a crystalline material, as this would require the placement of more than 1019 atoms in
almost perfect order. Clearly, there are natural forces that hold the atoms of a crystalline
material together. These forces are related to the stability of the electronic configuration of
individual atoms. For example, there are atoms with quite stable electronic configurations;
they are referred to as the noble gases, and they are chemically inert. Helium, the noble gas
element with the smallest number of electrons, has two electrons with spherical symmetry
and opposite spins. The next noble gas element, neon, has 10 electrons. In neon, two
electrons are in the first shell (as in the case of helium), which is usually denoted by
1s2 (1 indicates the first shell and s2 indicates the two electrons in the spherical orbital
labeled by s). The remaining eight electrons fill the second shell—one pair with spherical
symmetry (s2) and three pairs at p orbitals with x-, y-, and z-symmetries (p2

x p2
y p2

z = p6).
The shapes and symmetries of 2s and 2 p electron orbitals are illustrated in Fig. 1.2.
Accordingly, the complete electronic configuration of neon is expressed as 1s22s22 p6.
Sodium is the eleventh element, with the eleventh electron placed in the s orbital of the
third shell: 1s22s22 p63s1. To reach the stability of the electronic configuration found
in neon, sodium tends to give the eleventh electron away. On the other hand, chlorine,
the seventeenth, element, can reach the stability of argon (the next noble gas element)
by accepting an extra electron. Therefore, sodium and chlorine atoms relatively easily
exchange electrons, creating positive sodium ions and negative chlorine ions. The attractive
forces between the positive and negative ions (ionic bonds) hold the atoms of NaCl crystals
together.

†Sections marked by a dagger can be used as read-only sections.



1.1 Introduction to Crystals 3

2s 2px 2py 2pz

Figure 1.2 The shapes and symmetries of 2s and
2p electron orbitals.

The atoms in metal crystals are held together by another type of bond, the metallic
bond. In this case, the atoms simply give the extra electrons away to reach stable electronic
configurations. The extra electrons are shared by all the atoms (positive ions) in the crystal,
so that we can think of ions submerged in a sea of electrons. The sea of electrons holds the
crystal together; but because these electrons are shared by all the atoms, they move through
the crystal when an electric field is applied. Consequently, metals are excellent conductors
of electric current.

The atoms with half-filled shells can reach stable electronic configurations in two
symmetric ways: (1) by giving the electrons from the half-filled shell away or (2) by
accepting electrons from neighboring atoms to fill the half-empty shell. The first element
that exhibits a half-filled shell is hydrogen: it has one electron in the first shell that
can accommodate two electrons. Two hydrogen atoms form a hydrogen molecule, where
one of the hydrogen atoms gives its electron away (to eliminate the unstable electronic
configuration associated with a single electron) and the other hydrogen atom accepts the
electron (to reach the stable electronic configuration of helium). Because of the symmetry
of this situation, the hydrogen atom that gives and the hydrogen atom that accepts an
electron are indistinguishable. This type of bond, which is clearly different from both the
ionic and metallic bonds, is the covalent bond.

The next atom that has a half-filled shell is carbon. Carbon has six electrons: two
electrons completely fill the first shell, with the remaining four electrons appearing in
the second shell, which can accommodate eight electrons: 1s22s22 p2. The four valence
electrons in the second shell, which are the unstable or active electrons, make carbon the
first element in the fourth group of the periodic table of elements (as shown in Table 1.1). A
carbon atom can form four covalent bonds with four hydrogen atoms, which creates a stable
methane molecule (CH4). In a methane molecule, the carbon atom either gives away the
four valence electrons (to reach the stable electronic configuration of helium) or accepts the
four electrons from the four hydrogen atoms (to reach the stable electronic configuration
of neon). The four covalent bonds in a methane molecule are indistinguishable because
of the symmetry of this molecule, which is not consistent with the difference between the
two s electrons and the two p electrons in the 2s22 p2 configuration of the second shell
of a carbon atom. A carbon atom can form four symmetrical covalent bonds because the
2s, 2 px , 2 py , and 2 pz orbitals (Fig. 1.2) can be transformed into the four symmetrical
hybrid orbitals illustrated in Fig. 1.3a. This transformation is called hybridization, and
the four symmetric hybrid orbitals are called sp3 hybrid orbitals; the label sp3 indicates
that these orbitals are the result of hybridization of one s (2s) and three p (2 px , 2 py,
and 2 pz) orbitals. Figure 1.3b illustrates the interaction between the four sp3 orbitals of
the carbon atom and the 1s orbitals of the four hydrogen atoms in a methane molecule,
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TABLE 1.1 Semiconductor Related Elements
in the Periodic Table (with Atomic
Number and Atomic Weight)

III IV V

�4 �5�3

5 B 6 C 7 N
Boron Carbon Nitrogen
10.82 12.01 14.008

13 Al 14 Si 15 P
Aluminum Silicon Phosphorus

26.97 28.09 31.02

31 Ga 32 Ge 33 As
Gallium Germanium Arsenic

69.72 72.60 74.91

49 In 50 Sn 51 Sb
Indium Tin Antimony
114.8 118.7 121.8

H 
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H 

C 
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σ  bond 

Figure 1.3 Hybrid electronic configuration that enables four symmetrical covalent bonds of a carbon atom: (a) the shape
and tetrahedral symmetry of sp3 hybrid orbitals, (b) the interactions of the four sp3 orbitals with 1s orbitals of four hydrogen
atoms that form the four covalent bonds of a CH4 molecule, and (c) the three-dimensional atomic-bond model of the CH4

molecule.

whereas Fig. 1.3c shows the atomic-bond model of this molecule in three dimensions. As
indicated in Fig.1.3c, covalent atomic bonds of this type are called σ bonds.

Another important hybridization of the 2s, 2 px , 2 py, and 2 pz orbitals in carbon is
called sp2 hybridization. In this case, the s orbital and two p orbitals, say px and py,
are transformed into three sp2 orbitals with triangular planar symmetry (Fig. 1.4a); the
pz orbital remains unhybridized. Carbon atoms with sp2 hybrid orbitals form σ covalent
bonds with planar (two-dimensional) structures. The simplest structure from this class is
the ethylene molecule, C2H4. Figure 1.4b illustrates that the sp2 orbitals form σ bonds
(four bonds with the s orbitals of four hydrogen atoms and one bond between two sp2



1.1 Introduction to Crystals 5

(b)

π bond

σ bond

H

H
H

H

C C

(a)

sp2 sp2
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p
z

(c)
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H
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Figure 1.4 Hybrid electronic configuration of a carbon atom that results in triangular planar bonds:
(a) the shape and triangular symmetry of sp2 hybrid orbitals, (b) σ bond formed by two sp2 orbitals
and π bond formed by the unhybridized p orbitals of two carbon atoms in a C2H4 molecule, and (c)
the atomic-bond model of the C2H4 molecule.

orbitals of two carbon atoms), whereas the unhybridized p orbitals of the two carbon atoms
form a much weaker π bond.

Covalent bonds between carbon and hydrogen atoms result in molecules that form
hydrocarbon gases of different types. However, the situation is very different when covalent
bonding is limited to carbon atoms themselves. Consider sp3-hybridized carbon atoms (as
in Fig. 1.3a) and replace the four hydrogen atoms with identical, sp3-hybridized carbon
atoms. The carbon atom in the center of the tetrahedron will be stable owing to the four
σ covalent bonds with the four neighboring carbon atoms. As distinct from hydrogen
atoms in the corners of the tetrahedron, carbon atoms in the corners need to form three
extra covalent bonds each to be stable. This means that each of the corner carbon atoms
needs four carbon neighbors in analogous tetrahedral structures, so that each of these
atoms appears in the center of its own tetrahedron. This arrangement requires continuous
replication of the tetrahedral pattern, which is the basic or primitive cell, in all three
dimensions in space. Accordingly, sp3-hybridized carbon atoms form three-dimensional
crystals with the tetrahedral primitive cell, which is the diamond version (polytype) of
solid carbon. Silicon and germanium, as the second and third elements in the fourth
column of the periodic table, respectively, also form three-dimensional crystals with the
same diamond-type lattice. Section 1.1.2 considers the most important three-dimensional
crystals for device applications in more detail.

Consider now sp2-hybridized carbon atoms (as in Fig. 1.4a) and replace the four
hydrogen atoms with identical sp2-hybridized carbon atoms. The replacement of a
hydrogen atom by an sp2 carbon atom means that this atom will have to connect to
two additional sp2 carbon atoms to be stable, symmetrically to the carbon atoms in the
ethylene molecule. In this case, the triangular planar structure is replicated to form a
two-dimensional crystal known as graphene. Section 1.1.2 describes the two-dimensional
structure of graphene and the related carbon nanotubes.
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1.1.2 Three-Dimensional Crystals
Crystal Lattices

The atoms of a crystalline material are regularly placed in points that define a particular
crystal lattice. The regularity of the atom placement means that the pattern of a unit cell
is replicated to build the entire crystal. Figure 1.5 illustrates the unit cell of a cubic lattice,
which is the simplest three-dimensional crystal lattice. Important parameters of any crystal
lattice are the lengths of the unit cell edges. Cubic crystals have unit-cell edges of the same
length (a), which is called the crystal-lattice constant. In general, unit-cell edges can be
different (a �= b �= c). The unit cell fully defines the crystal lattice: a whole crystal can be
created by shifting the unit cell along the cell edges in steps that are equal to the cell edges.

Unit cell
a

Figure 1.5 Simple cubic lattice and its unit cell (a is the lattice
constant).

In addition to the simple cubic lattice, a number of more complex lattice structures
have cubic unit cells. Figure 1.6 illustrates two additional cases: body-centered cubic
(Fig. 1.6b) and face-centered cubic (Fig. 1.6c) unit cells. A body-centered cubic cell has

(a) (b) (c)

Figure 1.6 Three different types of cubic unit cell: (a) simple cubic (sc), (b) body-centered cubic
(bcc), and (c) face-centered cubic (fcc).
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a�4

a�2

(a) (b)

a

Figure 1.7 Diamond unit cell, illustrated in two ways
to show (a) the cubic unit cell and (b) the inherent
tetrahedral structure.

an additional atom in the center of the cube, whereas in a face-centered cubic cell, six
additional atoms are centered on the six faces.

As described in the preceding section, carbon, silicon, and germanium (elements of the
fourth column of the periodic table) form a tetrahedral primitive cell. The term primitive is
used rather unit because a primitive cell requires rotations, in addition to shifts along the
cell edges, to create the complete crystal lattice. Figure 1.7 shows the unit cell of diamond,
silicon, and germanium crystals (it is commonly referred to as the diamond unit cell). It
can be seen that each atom appears in the center of a tetrahedral primitive cell (analogous
to the tetrahedral structure of the methane molecule, illustrated in Fig. 1.3).

In addition to semiconductors with single elements from the fourth column of the
periodic table (diamond, silicon, and germanium), semiconductor crystals can be created
from two different fourth-column elements. These materials, such as SiC and SiGe, are
known as compound semiconductors. The diamond crystal lattice is the simplest crystal
lattice for compound semiconductors. In the case of cubic SiC (also labeled as 3C-SiC and
β-SiC), each silicon atom is connected to four carbon atoms in the corners of its tetrahedral
primitive cell, and each carbon atom is connected to four silicon atoms. SiC appears in
many other crystalline polytypes that are based on different hexagonal and rhomboidal unit
cells.

Compound semiconductors can also be formed by elements from the third and the
fifth columns of the periodic table (called III–V compound materials) and between the
second and sixth columns (called II–VI compound semiconductors). Although the two
different elements in compound materials contribute different number of electrons, a pair
of these elements has eight valence electrons. This means that covalent bonds stabilize the
electronic configurations of the atoms in these crystals. Examples of III–V semiconductors
are GaAs, GaP, GaN, AlP, AlAs, InP, and InAs, whereas examples of II–VI semiconductors
are ZnS, ZnSe, CdS, and CdTe. The unit cell of GaAs (and many other compound
semiconductors) is also cubic with the tetrahedral primitive cell (Fig. 1.7), where gallium
and arsenic atoms occupy alternating sites, so that each gallium atom is linked to four
arsenic atoms and vice versa. This type of lattice is also referred to as a zincblade lattice
structure.
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EXAMPLE 1.1 Atom-Packing Fraction

Assuming that the atoms are hard spheres that just touch the nearest neighbors in the crystal, find
the packing fraction (the fraction of unit-cell volume filled with atoms) of a simple cubic cell.

SOLUTION

The packing fraction can be obtained by dividing the volume of the atoms (spheres) that belong
to a unit cell by the volume of the unit cell:

PF = NatomsVatom

Vcell

where Vatom is the volume of each atom, and Natoms is the equivalent number of atoms inside
each cell. The volume of the unit cell is Vcell = a3, where a is the crystal-lattice constant (the
length of the cube side). Two nearest atoms appear in the cube corners, and if they are just
touching each other, the radius of each atom is r = a/2. This means the volume of each atom
is Vatom = 4

3πr3 = πa3/6. There are eight atoms (in each of the corners), but each of them is
shared between 8 unit cells. Because 1/8 of each of the eight spheres belongs to the considered
unit cell, Natoms = 8 × 1

8 = 1. Therefore,

PF = πa3/6

a3 = π/6

which means that the packing fraction is PF = 52.4%.

EXAMPLE 1.2 Crystal-Lattice Constant

The diameter of a silicon atom is d = 0.235 nm, under the assumption that silicon atoms are hard
spheres that just touch each other in the silicon crystal. Determine the crystal-lattice constant
(width of the unit cell, a).

SOLUTION

We saw in Fig. 1.7 that every silicon atom can be considered to be in the center of a tetrahedron,
its closest neighbors being the atoms in the tetrahedron corners. Figure 1.7 also shows that each
tetrahedron fits in a small cube with side of a/2, where the atom that is inside the tetrahedron
appears in the center of the small cube, whereas the corner atoms are in four corners of the
small cube. With this observation, we find that the distance between the centers of the atom in
the cube center and any of the corner atoms is equal to the half of the small-cube diagonal. If
the nearest atoms are just touching each other, their radii must be equal to a quarter of the small-
cube diagonal. Because the small-cube diagonal is D = √

3a/2, the atomic radius is r = √
3a/8.

From here, a = 8r/
√

3 = 0.543 nm.
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EXAMPLE 1.3 Volume, Area, and Mass Densities of Atoms

The crystal-lattice constant and atomic mass of silicon are 0.543 nm and 28.09 g/mol, respec-
tively. Avogadro’s number is 6.02 × 1023 atoms/mol. Determine:

(a) the atom concentration (volume density of atoms)
(b) the mass density
(c) the surface atom density if the crystal is terminated at the faces of unit cells defining a

single plane.

SOLUTION

(a) Referring to Fig. 1.7, we see that there are eight equivalent atoms in each unit cell:

Natoms = 8 × 1

8︸ ︷︷ ︸
corners

+ 6 × 1

2︸ ︷︷ ︸
faces

+ 4︸︷︷︸
inside

= 8

The volume of each cell is Vcell = a3. Therefore, the atom concentration is

NSi = 8/a3 = 49.97 nm−3 = 4.991 × 1022 cm−3

(b) Avogadro’s number expresses the number of particles (atoms) in a mole, and the atomic
mass is the total mass of all these particles (atoms). Therefore, the mass of each silicon
atom is mSi = 28.09/6.02 × 1023 = 4.67 × 10−23 g. If there are NSi atoms per unit
volume, then the mass density is ρSi = NSi mSi = 2.33 g/cm3.

(c) Again, referring to Fig. 1.7, we find that there are two equivalent silicon atoms in each
face of the unit-cell cube:

Natoms = 4 × 1

4︸ ︷︷ ︸
corners

+ 1︸︷︷︸
center

= 2

The area of each of these square faces is a2. Therefore, the number of atoms per unit
area is

N{100} = 2/a2 = 6.78 nm−2 = 6.78 × 1014 cm−2

Planes and Directions

It is convenient to express the positions of atoms and different crystallographic planes in
terms of the lengths of the unit-cell edges, a, b, and c. Any plane in space may be described
by the equation

h
x

a
+ k

y

b
+ l

z

c
= 1 (1.1)
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{100}
x

y

z

(0
10

)

(001)

{110}
x

y

z

{111}
x

y

z

Figure 1.8 Miller indices for the three most important planes in cubic crystals.
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z

(100) (110)
(111)

Figure 1.9 Important directions in cubic crystals.

where a/h, b/k, and c/ l are intercepts of the x-, y-, and z-axes, respectively. In general,
h, k, and l can take any value. For example, h = k = l = 1/2 defines the plane that
intersects the x-, y-, and z-axes at 2a, 2b, and 2c, respectively. However, this plane is
crystallographically identical to the plane that intersects the axes at a, b, and c, in which
case h = k = l = 1. For that reason, h, k, and l are defined as integers in the case
of crystals. Characteristic crystallographic planes are defined by a set of integers, (hkl),
known as Miller indices. In the case of negative intercepts, the minus sign is placed above
the corresponding Miller index—for example, (h̄kl).

Figure 1.8 illustrates three important planes in cubic crystals. The shaded plane labeled
as {100} intersects the x-axis at a, and it is parallel to the y- and z-axes (mathematically,
it intersects the y- and z-axes at infinity, as a/0 = ∞). Analogously, the plane (010)

intersects the y-axis at a and is parallel to the x- and z-axes. Because there is no
crystallographic difference between the (100), (010), and (001) planes, they are uniquely
labeled as {100}, where the braces {} indicate that the notation is for all the planes of
equivalent symmetry.

The second plane shown in Fig. 1.8, labeled as {110}, intersects two axes at a and is
parallel to the third axis. Finally, {111} plane intersects all the axes at a.

In addition to planes, it is necessary to describe directions in crystals. By convention,
the direction perpendicular to (hkl) plane is labeled as [hkl]. A set of equivalent directions
is labeled as 〈hkl〉; for example, 〈100〉 represents [100], [010], [001], [1̄00], and so on.
Figure 1.9 illustrates the most important directions in cubic crystals.
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EXAMPLE 1.4 Miller Indices

(a) Determine the Miller indices for the plane illustrated in Fig. 1.10.

2aa
x

y

z Figure 1.10 A plane in a cubic crystal.

(b) Looking along z-axis, which is the [001] direction, draw the intersection between the
(001) plane and the plane indicated in Fig. 1.10. Draw the direction perpendicular to the
indicated plane, and label it with the corresponding Miller indices.

SOLUTION

(a) The Miller indices can be determined by the following procedure:

1. Note where the plane intercepts the axes: a, 2a, and ∞ in this case.
2. Divide the intercepts by the unit-cell length(s) to normalize them, and invert the

normalized values: 1, 1
2 , and 1

∞ = 0.
3. Multiply the set of obtained numbers by an appropriate number to obtain the

corresponding set of the smallest possible whole numbers: multiplying by 2 in this
case, we obtain 2, 1, and 0.

The numbers obtained after step 3 are the Miller indices, so we enclose the set of these
numbers in brackets: (210).

(b) The drawing and the labels are shown in Fig. 1.11.

[210]

(210)

2a

a

y

x Figure 1.11 Solution of Example 1.4b.
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EXAMPLE 1.5 Angle and Distance Between Crystal Planes

KOH-based etching of silicon, through an appropriately oriented square window, produces an
inverted pyramid where the pyramid base is the {100} silicon surface and the four sides are {111}
planes.

(a) What is the angle between the pyramid base and its side?
(b) What is the distance between the closest {111} planes in silicon?

SOLUTION

(a) Figure 1.12 illustrates this angle. The intersection between {100} and {111} planes is
along the line labeled as AB. Lines DC and EC lie in planes {100} and {111}, respec-
tively, hitting the intersecting line AB at point C at right angles. The lines DC and EC
define the requested angle: � DC E = α. The points D, C , and E create a right-angled
triangle with sides DE = a and DC = √

2a/2. Because the length of the hypotenuse is

(a) (b)
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Figure 1.12 Illustrations
of the angle between {100}
and {111} planes (α) and
the distance between neigh-
boring {111} planes (d{111}).

EC =
√

a2 + a2/2 = √
3/2a, the angle α can be found as

α = arccos
DC

C E
= arccos

a
√

2/2

a
√

3/2
= arccos

(
1/

√
3
) = 54.74◦

(b) Figure 1.12b illustrates the distance between neighboring {111} planes (d{111}). It can
be seen that d{111} is the side of a right-angled triangle, opposite to the angle α. Because
the length of the hypotenuse is

√
2a (diagonal of a cube face), we find that

d{111} =
√

2a sin(α) = 0.627 nm

Crystal Defects

It is possible to grow regions of defect-free crystals much larger than that shown in Fig. 1.1.
Inevitably, however, the crystal region must be terminated and the atomic bonds disrupted
at the crystal surface; this creates crystal defects that can have a significant impact on device
operation. Frequently used materials in practice consist of multiple crystalline grains, as
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(1)

(2)

(3)

(4)

(b)(a)

(1) Dislocation
(2) Interstitial

(3) Vacancy
(4) Substitutional impurity

Figure 1.13 Schematic illustration of (a) polycrystalline material and (b) various crystal defects.

shown in Fig. 1.13a. This type of material is referred to as polycrystalline to distinguish
it from the monocrystalline structure of the individual grain. The electrical properties of
polycrystalline materials are dominated by the defects at the grain boundaries.

In addition to the inevitable surface termination of a three-dimensional crystal,
a number of other crystal defects may appear inside a monocrystalline region. As
illustrated in Fig. 1.13b, these defects can be dislocations of crystallographic planes,
vacancies (missing atoms), interstitial atoms, and interstitial and substitutional impurity
atoms. Although substitutional impurity atoms are crystal defects in principle, some
are deliberately introduced as a way of controlling the fundamental electrical properties
of semiconductor materials. This important concept, called semiconductor doping, is
described in Section 1.2.2.

1.1.3 Two-Dimensional Crystals: Graphene and Carbon Nanotubes
As distinct from sp3-hybridized carbon atoms that form three-dimensional diamond
crystals, sp2-hybridized carbon atoms form two-dimensional structures. As described in
Section 1.1.1, sp2 carbon atoms form the two-dimensional C2H4 molecule when combined
with hydrogen. Consider what happens when the four hydrogen atoms in a C2H4 molecule
(Fig. 1.4c) are replaced with identical sp2 carbon atoms. The replacement of a hydrogen
atom by an sp2 carbon atom means that this atom will have to connect to two additional
sp2 carbon atoms to be stable, symmetrically to the carbon atoms in the C2H4 molecule.
As shown in Fig. 1.14, this requirement leads to replication of the planar bond structure
of the carbon atoms, forming a two-dimensional crystal with a honeycomb structure. This
two-dimensional crystal is known as graphene.

The concept of graphene has been used for a long time, in particular to explain the
properties of graphite, which consists of loosely connected parallel sheets of graphene. It
is established that (1) the distance between the neighboring carbon atoms in graphene is
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Figure 1.14 The crystal structure
of graphene: a two-dimensional
crystal formed by sp2-hybridized
carbon atoms.

0.1421 nm; (b) the σ bonds between the carbon atoms within each layer are stronger than
those in diamond; and (3) the π bonds between the carbon atoms are distributed (similar
to metallic bonding), and this property is responsible for the good electrical conductivity
of graphite. Although it was believed that single layers of graphene could not be stable,
this was recently proved wrong by a successful exfoliation of films consisting of single
and few layers of graphene.1 Study of these graphene films—the thinnest material that
can be made out of atoms—revealed very high electrical conductivity and mechanical
strength. In addition, it was shown that the films’ electrical conductivity can be modulated
by applying an electric field. This field effect, which underpins the operation of the most
important semiconductor devices, is not possible in three-dimensional metals because
the abundance of free electrons in metals screens the electric field to atomic distances.
Although commercial graphene-based devices do not yet exist, the extraordinary electrical
and mechanical properties of the material have unleashed extensive research activities
with respect to many possible applications, including transistors, because of the very
high electrical conductivity and the ability to modulate it by electric field; gas sensors,
because electrical conductivity is affected by the smallest number of absorbed molecules;
inert coatings, because of graphene’s chemical resistance; and support membranes for
microscopy, because of the material’s mechanical strength.

Graphene sheets can spontaneously roll up to form microscopic tubes known as carbon
nanotubes. Carbon nanotubes have been under intensive research since the 1991 paper
by Iijima,2 well before the demonstration of graphene sheets themselves. Figure 1.15
illustrates a graphene sheet that would be obtained if a carbon nanotube were cut and
unfolded. The vectors a1 and a2 are the graphene lattice vectors: each node of the lattice
can be presented by a vector na1+ma2 ≡ (n, m), where n and m are integers. The vector ch
shown in Fig. 1.15 uniquely determines the diameter and the helicity of a carbon nanotube;
this vector connects crystallographically identical nodes in the carbon nanotube, meaning
that the nodes (0,0) and (5,2) in this example are identical when the tube is rolled up.

The helicity of a carbon nanotube depends on the angle between the lattice vector a1
and the roll-up vector ch. The dashed lines show the two extreme values for this angle:
0◦ for ch = (n, 0) and 30◦ for ch = (n, n). Carbon nanotubes are called zigzag when
ch = (n, 0), armchair when ch = (n, n), and chiral when the angle between ch and a1 is
between 0◦ and 30◦, as illustrated in Fig. 1.16.

1K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science, vol. 306,
pp. 666–669 (2004).
2S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, pp. 56–58 (1991).
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a1

a2

ch = (5, 2)

(n, 0)

(n, n)

Figure 1.15 Schematic presentation of a
two-dimensional graphene sheet obtained
by cutting a chiral carbon nanotube along
the dashed-dotted line.

(a)

(b)

(c)

Figure 1.16 Side and top views of (a) zig-
zag, (b) armchair, and (c) chiral carbon
nanotubes.

Carbon nanotubes can also be concentrically inserted into one another, like the rings
of a tree trunk, in which case they are called multiwall nanotubes to distinguish them
from the single-walled variety. The diameter of carbon nanotubes is usually in the order of
nanometers, whereas the length can be in the order of centimeters.

An inherent and very interesting property of carbon nanotubes is that they can provide
perfect crystalline structure between two electrical contacts at the tube ends without any
defects due to surface termination of the atomic bonds. Similar to graphene, carbon
nanotubes also exhibit very high electrical conductivity and mechanical strength, properties
that make them attractive for a number of different applications. In addition, carbon
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nanotubes can appear as either metallic or semiconductive, depending on the helicity.
Although this is a positive aspect in terms of possible applications, it has also been the
biggest issue in terms of practical use of carbon nanotubes because there is no method as
yet for controlling the helicity of nanotubes during their growth.

1.2 CURRENT CARRIERS

The general electronic properties of semiconductors can be explained by using a simplified
two–dimensional crystal model, as illustrated in Fig. 1.17. This representation shows
positively charged silicon cores (four charge units) with the four valence electrons forming
the covalent bonds in a simple quadratic structure.

1.2.1 Two Types of Current Carrier in Semiconductors
An important thing to note from Fig. 1.17 is that all the electrons are bound through
covalent bonds only at the temperature of 0 K. There can be a certain number of broken
covalent bonds at temperatures higher than 0 K. This happens when the heat energy
absorbed by a silicon atom is released through breakage of a covalent bond and release
of a free electron that carries the energy away. The energy needed to break a covalent bond
in silicon crystal is about 1.1 eV at room temperature, and it is slightly different at different
temperatures. Obviously, there will be more broken covalent bonds at higher temperatures
because the silicon atoms possess more thermal energy, which eventually destroys covalent

(a)

Valence
electrons

T � 0 K

Covalent
bonds

�4�4�4

�4�4�4

�4�4�4

(b)

Free
electron

Hole

T � 0 K

�4�4�4

�4�4�4

�4�4�4

Figure 1.17 Two-dimensional representation of silicon crystal: (a) all the electrons are bound at
0 K, whereas at temperatures >0 K there are broken bonds, creating free electron–hole pairs (b).
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bonds. When a silicon atom releases an electron, it becomes positively charged with a hole
in its bond structure, as illustrated in Fig. 1.17b.

The electrons released from covalent bonds broken by thermal energy (Fig.1.17) are
mobile charged particles, so they can flow through the crystal to create electric current.
Accordingly, we define the free electrons as current carriers.

In addition to the free electrons, it is necessary to consider what happens with the holes
in the bond structures of the silicon atoms that released the free electrons (Fig. 1.17). A
silicon atom with a hole in its bond structure is unstable, and it will “use” any opportunity
to “steal” an electron from a neighboring atom to rebuild its four covalent bonds. If there
is an electric field applied in the crystal, as shown in Fig. 1.18, the field would help this
atom to take an electron over from a neighboring atom, leaving the neighboring atom with
a hole in its bond structure. We can say that the hole has moved to the neighboring atom,
as illustrated in Fig. 1.18. Obviously, there is no reason why this new silicon atom should
stay with the hole for much longer than the first atom; it can equally well use the field’s
help to take an electron over from its neighbor. As a consequence, the hole has moved one
step further in the direction of the field direction, a process illustrated again in Fig. 1.18.
As this process continues, we get an impression of the hole as a positive charge moving in
the crystal in the direction of the electric field lines.

To simplify our presentation of current mechanisms in semiconductors, it is not
necessary to constantly keep in mind the details of the process of hole motion as just
described; we can simply treat the hole as a positively charged current carrier. Therefore,
we introduce the model of two types of current carriers in semiconductors: (1) negatively
charged free electrons and (2) positively charge holes, which represent the motion of the
bound electrons.

Quite obviously, the electrical properties of a semiconductor material directly depend
on the number of current carriers per unit volume, which is the concentration of carriers.
It may seem that the concentration of free electrons (n0) has to be always equal to the
concentration of holes ( p0), given that the process of covalent-bond breakage creates
the free electrons and holes in pairs (Fig. 1.17). This is certainly true for the case of
an intrinsic semiconductor, which is a semiconductor crystal containing only the native
atoms. Even though it is not possible in reality to obtain an ideally pure semiconductor,
the intrinsic-semiconductor model is very useful for explaining semiconductor properties.
The concentration of free electrons and holes in an intrinsic semiconductor is denoted by
ni and is called intrinsic carrier concentration. Therefore, in an intrinsic semiconductor
we have

n0 = p0 = ni (1.2)

The intrinsic carrier concentration ni is constant for a given semiconductor at a given
temperature. The room-temperature values for Si, GaAs, and Ge are given in Table 1.2.3 If
the temperature is increased, the atoms possess more thermal energy, because of which
more covalent bonds are destroyed; therefore, the concentration of free electrons and

3M. A. Green, Intrinsic concentration, effective densities of states, and effective mass in silicon, J.
Appl. Phys., vol. 67, pp. 2944–2954 (1990).



18 CHAPTER 1 INTRODUCTION TO CRYSTALS AND CURRENT CARRIERS IN SEMICONDUCTORS
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Figure 1.18 Model of hole as a mobile
carrier of positive charge.

holes (ni ) is higher. More detailed consideration of the dependence of the intrinsic carrier
concentration on temperature is a subject of Section 2.4. At this stage, it should be pointed
out that not only the temperature can destroy the covalent bonds (thereby creating free
electrons and holes), but other types of energy can do the job as well. An important example
is light. If the surface of a semiconductor is illuminated, the absorbed photons of the light
can transfer their energy to the electrons in the crystal, a process in which the covalent
bonds can be destroyed and pairs of free electrons and holes can be generated. This is the
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TABLE 1.2 Intrinsic Carrier
Concentrations @
300 K

Si 1.02 × 1010 cm−3

GaAs 2.1 × 106 cm−3

Ge 2.4 × 1013 cm−3

effect that makes the use of semiconductor-based devices as light detectors and solar cells
possible.

1.2.2 N-Type and P-Type Doping
To create useful microelectronic devices, the carrier concentration in semiconductors is
changed by technological means. Semiconductors with technologically changed concen-
trations of free electrons and/or holes are called doped semiconductors. In the process of
semiconductor doping, some silicon atoms are replaced by different types of atoms, which
are called doping atoms or impurity atoms. In a real silicon crystal there are many silicon
atom places that are occupied by impurity atoms. Useful properties are obtained when some
silicon atom places are taken by atoms from the third or the fifth column of the periodic
table (Table 1.1).

Consider first the case of a silicon atom replaced by an atom from the fifth column
of the periodic table, say phosphorus, as shown in Fig. 1.19a. The phosphorus atom has
five electrons in the outer orbit. To replace a silicon atom in the lattice, it will use four
electrons to form the four covalent bonds with the four neighboring silicon atoms, as

(a)

N-type doping

�4�4�4

�4�5�4

�4�4�4

(b)

Negative
ion

Positive
ion

Hole

P-type doping

�4�4�4

�4�3�4

�4�4�4

Free
electron

Figure 1.19 Effects of (a) N-type doping and (b) P-type doping.
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shown in Fig. 1.19a. The fifth electron does not fit into this structure; it would not be
able to find a comfortable place around the parent atom, and with a little help from thermal
energy it would leave the phosphorus atom “looking for a better place.” In other words, the
fifth phosphorus electron is easily liberated by the thermal energy, by which it becomes
a free electron. This electron cannot be distinguished from the free electrons produced
by covalent-bond breakage. Therefore, a replacement of a silicon atom by a phosphorus
atom produces a free electron, increasing the concentration of free electrons n0. This
process is called N-type doping. The elements from the fifth group of the periodic table
that can produce free electrons when inserted into the silicon crystal lattice are phosphorus,
arsenic, and antimony. These doping elements are called donors (they donate electrons). In
silicon, almost every donor atom produces a free electron at room temperature, but at low
temperatures and in the case of some semiconductors at room temperature, a significant
fraction of the doping atoms may remain inactive.4 The concentration of the donor atoms
that do produce free electrons will be denoted by ND .

Although the free electrons in N-type semiconductors are indistinguishable from
each other, we know that they can come from two independent sources: thermal gen-
eration and doping atoms. As shown in Table 1.2, thermal generation produces about
1010 electrons/cm3 in the intrinsic silicon. Doping can, however, introduce as many as
1021 electrons/cm3. In fact, the lowest concentration of electrons that can be introduced by
doping in a controllable way is not much smaller than 1014 electrons/cm3. These numbers
show that the concentration of thermally generated electrons is negligible when compared
to the concentration of doping induced electrons in an N-type semiconductor.

N-type doping does not produce free electrons only—generation of every free electron
in turn creates a positive ion. There is usually the same number of positive and negative
charges in a crystal, to preserve its overall electroneutrality. When a phosphorus atom
liberates its fifth electron, it remains positively charged, as illustrated in Fig.1.19a. There
is an important difference between this positive charge and the positive charge created
as a broken covalent bond (Fig. 1.17b). The positive charge of Fig. 1.17b is due to a
missing electron, or a hole in the bond structure of a silicon atom. There is no hole
in the bond structure that phosphorus (or another fifth-group element) creates with the
neighboring silicon atoms; the structure is stable as all four bonds are satisfied. The positive
charge created due to the absence of the fifth (extra) phosphorus electron will be neither
neutralized nor moved to a neighboring atom. This charge appears as a fixed positive ion.
The immobile positive ions are not current carriers because they do not contribute to a
current flow. They cannot be forgotten, however, because they create important effects in
semiconductor devices by their charge and the associated electric field. To distinguish from
holes and electrons, squares are used as symbols for the immobile ion charge.

A summary of the types of charges appearing in a semiconductor is given in Table 1.3.
P-type doping is obtained when a number of silicon atoms are replaced by atoms

from the third column of the periodic table, basically boron atoms. Boron atoms have
three electrons in the outer shell, which are taken to create three covalent bonds with the

4This effect will be considered in more detail in Chapter 2 (Examples 2.15 and 2.16).
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TABLE 1.3 Types of Charge in Doped Semiconductors

Current Carriers (Mobile Charge)

Free electrons (n0)
Holes (p0)

Fixed Charge

Positive donor ions (ND)
Negative acceptor ions (NA)

N Type P Type

Majority carriers: electrons Majority carriers: holes
Minority carriers: holes Minority carriers: electrons
(ND > NA) (NA > ND )

neighboring silicon atoms. Because an additional electron per boron atom is needed to
satisfy the fourth covalent bond, the boron atoms will capture thermally generated free
electrons (generated by breakage of covalent bonds of silicon atoms), creating in effect
excess holes as positive mobile charge (Fig. 1.19b).

The boron atoms that accept electrons to complete their covalent-bond structure with
the neighboring silicon atoms become negatively charged ions—that is, immobile charges
analogous to the positively charged donor atoms in the case of N-type doping. Boron
atoms, or, in general, P-type doping atoms, are called acceptors. Similarly to the case of
N-type doping, almost all boron (acceptor) atoms are ionized at room temperature, which
means they have taken electrons creating mobile holes. The concentration of acceptor ions
(acceptor atoms that create holes) will be denoted by NA .

1.2.3 Electroneutrality Equation
As Table 1.3 illustrates, the concentrations of the four types of charges in a semiconductor—
electrons, holes, positive donor ions, and negative acceptor ions—are labeled by n0, p0,
ND , and NA . In normal conditions, a semiconductor material is electroneutral, meaning
that the concentrations of the negative and the positive charges are fully balanced. This is
expressed by the electroneutrality equation:

p0 − n0 + ND − NA = 0 (1.3)

EXAMPLE 1.6 Simplified Electroneutrality Equation

(a) Identifying the terms in the electroneutrality equation that can be neglected, determine
the concentration of electrons in silicon doped with 1015 cm−3 donor atoms.

(b) Determine the concentration of holes if the silicon crystal considered in part (a) is
additionally doped with 1017 cm−3 acceptor atoms.
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SOLUTION

(a) As almost every donor atom is ionized (by giving an electron away), the concentration
of the donor ions is ND ≈ 1015 cm−3. There are no acceptor ions, so NA = 0. The
concentration of thermally induced holes in the intrinsic silicon is about 1010 cm−3.
This is already negligible in comparison to the positive donor ions, and in N-type silicon
the concentration of holes is below the intrinsic level (this effect will be explained in the
next section). Therefore,

p0︸︷︷︸
�ND

− n0 + ND − NA︸︷︷︸
=0

= 0

n ≈ ND = 1015cm−3

(b) In this case, NA  ND , ND can be neglected. The concentration of electrons is at about
the same level as ND , so n0 can be neglected as well:

p ≈ NA = 1017 cm−3

1.2.4 Electron and Hole Generation and Recombination
in Thermal Equilibrium5

The concentration of minority carriers is much smaller than to the concentration of
the majority carriers, and sometimes we can simply neglect their existence. However,
the minority carriers have opposite polarity from the majority carriers, so they may
produce effects that are different from the effects of the majority carriers. Because the
effects of the minority and the majority carriers are not always merged, it is sometimes
important to determine the concentrations of both types of carriers. We already know
that the concentration of majority carriers is basically set by their generation from the
doping atoms. A deeper consideration of the generation and the associated recombination
processes is needed to be able to determine the concentration of minority carriers.

Generation of free electrons and holes is a process in which bound electrons are given
enough energy to (1) liberate themselves from silicon atoms, creating electron–hole pairs
(Fig. 1.17), (2) liberate themselves from donor-type atoms, creating free electrons and
fixed positive charge (Fig. 1.19a), or (3) liberate themselves from silicon atoms to provide
only the fourth bond of acceptor-type atoms, creating mobile holes and negative fixed
charge (Fig. 1.19b). The doping-induced generation of electrons/holes is obviously limited
to the level of doping—no more electrons/holes can be generated once all the doping
atoms have been ionized. What does, however, limit the process of thermal generation

5For detailed description and modeling of recombination–generation processes, see Chapter 5.
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of electron–hole pairs due to breakage of covalent bonds? Would such created electrons
and holes accumulate in time to very high concentrations?

A free electron that carries energy taken from the crystal lattice can easily return
this energy to the lattice and bond itself again when it finds a silicon atom with a hole
in its bond structure. This process, called recombination, results in annihilation of free
electron–hole pairs. Obviously, if the concentration of free electrons is higher, it is more
likely that a hole will be “met” by an electron and recombined. Similarly, an increase in
the hole concentration also increases the recombination rate—that is, the concentration of
electron–hole pairs recombined per unit time. It is the recombination rate that balances the
generation rate, limiting the concentration of free electrons and holes to a certain level.
If the generation rate is increased—for example, by an increase in the temperature—the
resulting increase in concentration of free electrons and holes will automatically make
the recombination events more probable; therefore the recombination rate is automatically
increased to the level of the generation rate. In thermal equilibrium, the generation
rate is equal to the recombination rate. These rates are, however, different at different
temperatures. At 0 K they are both equal to 0, as is the concentration of free electrons
and holes; with increase in the temperature, the recombination and generation rates are
increased, which results in increased concentrations of free electrons and holes.

Doping influences the recombination and generation rates as well. Take as an example
an N-type semiconductor where the concentration of free electrons is increased by doping-
induced electrons. We have already concluded that an increased concentration means it
is more likely that a hole will be “met” by an electron and recombined. Consequently,
the concentration of holes in an N-type semiconductor is smaller than in an intrinsic
semiconductor, because the holes are recombined not only by the thermally generated
electrons but also, and much more, by the doping-induced electrons. Therefore, with an
increase in the concentration of electrons, the concentration of holes is reduced. This
dependence can be expressed as

p0 = C
1

n0
(1.4)

where the proportionality coefficient C is a temperature-dependent constant. This equation
is written for N-type semiconductors, but it can also be applied to P-type semiconductors,
as well as intrinsic semiconductors. It can be rewritten as n0 = C/p0 for P-type
semiconductors, but it is essentially the same equation. The constant C can be determined
if Eq. (1.4) is applied to the case of intrinsic semiconductor. Because n0 = p0 = ni in that
case, we see that the constant C is given as

C = n2
i (1.5)

Using the preceding value for the constant C , Eq. (1.4) becomes

n0 p0 = n2
i (1.6)

Equation (1.6), when combined with the electroneutrality equation, enables calcula-
tion of the concentration of minority carriers in doped semiconductors.
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EXAMPLE 1.7 Calculating the Concentration of Minority Carriers

The doping level of P-type silicon is NA = 5 × 1014 cm−3. Determine the concentrations of
holes and electrons at

(a) room temperature (ni = 1.02 × 1010 cm−3)
(b) T = 273◦C (ni = 5 × 1014 cm−3, the same as the doping level)

SOLUTION

(a) As n0 � NA at room temperature, the electroneutrality equation can be simplified to
(refer to Example 1.6)

p0 ≈ NA = 5 × 1014 cm−3

Once the concentration of the majority carriers is known, the concentration of the
minority carriers can be determined from the n0 p0 = n2

i relationship:

n0 = n2
i

p0
= 2.1 × 105 cm−3

(b) In this case we cannot assume that p0 ≈ NA , because the concentrations of the thermally
generated electrons and holes cannot be neglected. Both n0 and p0 have to appear in the
electroneutrality equation:

p0 = NA + n0

We have two unknown quantities (p0 and n0), but we have an additional equation that
relates them:

n0 p0 = n2
i

Therefore,

p0 = NA + n2
i /p0

p2
0 − NA p0 − n2

i = 0

p0−1,2 =
NA ±

√
N2

A + 4n2
i

2

We will select the plus sign in the above equation, because
√

N2
A + 4ni > NA and the

minus sign would give physically meaningless p0 < 0. Once the numerical value for p0
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has been determined, n0 is calculated as n0 = n2
i /p0. The following script can be used

to perform the calculations in MATLAB©R:

>>ni=5e14;
>>Na=5e14;
>>p=(Na+sqrt(Naˆ2+4∗niˆ2))/2
p =

8.0902e+014
>>n=niˆ2/p
n =

3.0902e+014

Therefore, p0 = 8.09 × 1014 cm−3, n0 = 3.09 × 1014 cm−3.

EXAMPLE 1.8 A Question Related to the Number of Minority Carriers

(a) P-type silicon can be doped in the range from 5 × 1014 cm−3 to 1020 cm−3. Determine
the maximum possible number of minority electrons in a neutral P-type region if the
device area is limited to AD = 1 cm × 1 cm and the thickness of the P-type region is
limited to tP = 100 μm. Assume room temperature and full acceptor ionization.

(b) Determine the number of minority electrons in the lowest- and highest-doped P-type
region (NA = 5 × 1014 cm−3 and NA = 1020 cm−3, respectively) if the area of the
P-type region is reduced to AD = 100 μm × 100 μm and the thickness is reduced to
tP = 10 μm.

SOLUTION

(a) The maximum concentration of minority carriers is obtained for the minimum doping
level:

n = n2
i

NA
= (1.02 × 1010)2

5 × 1014 = 2.1 × 105 cm−3 = 2.1 × 1011 m−3

The maximum volume is

V = ADtP = (0.01)2 × 100 × 10−6 = 10−8 m3

The maximum number of minority electrons in this volume is

N = nV = 2.1 × 103
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(b) The concentration of the minority electrons in the lowest-doped P-type region is the
same: n = 2.1 × 105 cm−3 = 2.1 × 1011 m−3. The volume of the P-type region is

V = ADtP = (100 × 10−6)2 × 10 × 10−6 = 10−13 m3

Therefore, the number of minority electrons in the lowest-doped P-type region is

N = nV = 2.1 × 1011 × 10−13 = 0.021 !?

The concentration of the minority electrons in the highest-doped P-type region is

n = n2
i

NA
= (1.02 × 1010)2

1020 = 1.04 cm−3 = 1.04 × 106 m−3

Therefore, the number of minority electrons in the highest-doped P-type region is

N = nV = 1.04 × 106 × 10−13 = 1.04 × 10−7 !?

What is the meaning of 0.021 and 10−7 electron? This question will be considered in
Section 10.1.

*1.3 BASICS OF CRYSTAL GROWTH AND DOPING TECHNIQUES

This is a read-only section that completes this chapter by providing brief descriptions of
the techniques for crystal growth and semiconductor doping.

1.3.1 Crystal-Growth Techniques
It was mentioned that certain atoms pack spontaneously into a regular pattern when proper
conditions are met. The reason for this was described as a tendency toward stability.
The same phenomenon is frequently explained in terms of energy, where the reason for
creating regular patterns is described as a tendency toward the minimum energy of the
system. As far as the necessary conditions are concerned, it is essential that many atoms
of the desired element be brought together; ideally, there should be no alien (impurity)
atoms. Further conditions relate to favorable ambient parameters, such as temperature. The
necessary conditions for growth of the common semiconductors do not appear naturally.
Therefore, crystal-growth techniques are needed to provide the conditions for the growth
of semiconductor crystals for commercial use.

∗Sections marked with an asterisk can be omitted without loss of continuity.
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Bulk Crystals and Wafers

Silicon, the most used semiconductor material, is the second most abundant element in
the earth’s crust. However, to create silicon crystals, silicon has to be separated from its
compounds, the most frequent of which is sand (impure SiO2, called silica). The separation
from oxygen (reduction) is achieved by heating the sand with carbon in an electric furnace.
At very high temperatures (≈ 1800◦C), SiO2 reacts with carbon to create CO, leaving
behind Si. This silicon is not pure enough for electronic applications, so it is reacted
with HCl to convert it into SiCl4 or SiHCl3. Both these compounds are liquids, enabling
distillation and other liquid purification procedures to be applied, to achieve ultrapure SiCl4
or SiHCl3. These compounds are then converted to high-purity silicon by reacting them
with H2:

2SiHCl3 + 2H2 → 2Si + 6HCl

SiCl4 + 2H2 → Si + 4HCl

Bulk silicon obtained in this way is in the polycrystalline form. To convert polycrys-
talline bulk silicon into single-crystal ingots or boules, the material is heated in an inert
atmosphere in a graphite crucible to create a silicon melt. A seed crystal (a small single
crystal) is carefully aligned along a desired direction (typically 〈100〉) and brought into
contact with the melt. As the temperature of the melt that is in contact with the seed is
reduced, the melt crystallizes following the pattern of the seed. The seed together with the
formed crystal is then slowly rotated and pulled out, creating the conditions for continuing
crystallization of the molten material. This technique for growing single-crystal materials
is called the Czochralski method. It results in cylindrical ingots, which in the case of silicon
can be 300 mm in diameter and over 1 m long.

If the concentration of the impurities in the ingot is too high, it can be further purified
by zone refining. The technique utilizes an effect called segregation. The effect is that there
is usually a difference between the concentrations of impurities in solid (CS) and liquid
(CL ) phases of certain material. If the ratio of these concentrations (called the segregation
coefficient) is <1, the impurities will tend to accumulate in the liquid layer, leaving behind
purified crystal.

To prepare a monocrystalline semiconductor for device and integrated-circuit fabrica-
tion, the ingot is mechanically shaped into a perfect cylinder and then sliced by a diamond
saw into wafers. The thickness of the wafers has to be sufficient to allow wafer handling.
The wafers are lapped and ground on both sides, and finally one side is mechanically and
chemically polished to prepare it for the fabrication process.

Monocrystalline and Polycrystalline Layers

Thin crystal layers can be grown on a wafer of the same material or different material
with a compatible crystal lattice. These layers are called epitaxial layers. There are
different reasons for growing epitaxial layers. Perhaps the most obvious is the creation
of structures consisting of layers of different semiconductor materials. Layers of different
semiconductors can be grown on one another if the crystal-lattice structure is compatible
and there is no large mismatch between the crystal-lattice constants. A typical example is
growing GaAs and AlGaAs films on each other to achieve useful effects by combining the
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properties of GaAs and AlGaAs. Another reason for growing epitaxial layers is to create
active layers with reduced concentration of defects or doping level. For many devices, it
is desirable to have highly doped substrate material with low-doped layers on the surface.
This is achieved by epitaxial growth.

The most frequent epitaxial technique is chemical-vapor deposition (CVD). In this
technique, the atoms or molecules of the desired material are chemically created inside a
processing chamber and then they fall down to coat the wafer(s). Obviously, this process
relies on an appropriate chemical reaction that is initiated by providing the reacting gases
and energy. In standard CVD, the energy is supplied in the form of heat, although the
reaction energy may also be supplied by plasma or optical excitation, in which case the
processes are referred to as plasma and rapid-thermal processing, respectively. Examples
of chemical reactions used to create silicon are

SiH4 → Si + 2H2 (1.7)

SiCl4 + 2H2 → Si + 4HCl (1.8)

Another technique for growing epitaxial layers is called molecular-beam epitaxy.
Molecular or atomic beams of different elements are created by evaporation from separate
cells. The beams are then directed to the surface of the wafer, which is held in very
high vacuum and at elevated temperature (400–800◦C). By selecting desired beams (using
shutters in front of the cells) and by controlling their intensity, abrupt changes in doping
levels or sharp transitions from one material to another can be achieved. For example, a
monolayer transition from GaAs to AlGaAs and vice versa can be achieved by molecular-
beam epitaxy.

The layer-deposition techniques—in particular, CVD—are also used to deposit non-
crystalline but still very useful layers. A frequent example is the deposition of insulating
layers, such as SiO2 and Si3N4. The following chemical reactions can be used to create
SiO2 and Si3N4 in the CVD chamber:

SiH4 + O2 → SiO2 + 2H2 (1.9)

3SiH4 + 4NH3 → Si3N4 + 12H2 (1.10)

If the CVD process is used to deposit silicon on these noncrystalline films, the
silicon layer takes polycrystalline form. Although this silicon film on an insulator is not
monocrystalline, it still has very useful properties. It is a commonly used film, and it is
usually called polysilicon.

1.3.2 Doping Techniques
Section 1.2.2 explained that doping is achieved by replacing some atoms of the native
crystal by impurity (doping) atoms. This can be achieved during crystal growth by simply
providing the impurity atoms to the melt or the gas that is used for the crystal growth. The
following text briefly describes the techniques that can be used to dope a semiconductor
crystal once it has been grown.
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Semiconductor crystal at high temperature (1000° C) 

Doping atoms Figure 1.20 Doping of a semiconductor
by diffusion.

Diffusion

As will be described in Chapter 4, the thermal random motion of particles causes
them to effectively flow from the points of higher toward the points of lower particle
concentrations. The tendency of diffusion is to reach uniform concentration of the particles.
Diffusion is not limited to gases; it happens in liquids and solids as well, although a
very high temperature is typically needed for diffusion of atoms to be clearly observed in
solids. The semiconductor crystal has to be heated to about 1000◦C, so that a sufficient
number of semiconductor atoms are released from their crystal-lattice positions, as
illustrated in Fig. 1.20. The semiconductor atoms that leave their crystal-lattice positions
are called interstitials, whereas the empty positions left behind are called vacancies.
The doping atoms that are provided at the surface of the semiconductor can diffuse
into the semiconductor at this high temperature and place themselves into the created
vacancies, thereby taking crystal-lattice positions. When the semiconductor is cooled down
to room temperature, the thermal motion of semiconductor and doping atoms becomes
insignificant; therefore, the doping atoms will stay “frozen” in their positions. The doped
semiconductor layer created in this way expands only to a certain depth and appears
roughly under the provided window in the diffusion-protective “wall.” By using diffusion
at a high temperature, a doped semiconductor layer having a desired depth, length, and
width can be created.

Diffusion of acceptors into N-type substrate, or donors into P-type substrate, will
create P–N junctions that surround the doped regions created by the diffusion. Assume that
the concentration of donor atoms in an N-type substrate is ND = 1016 cm−3, as illustrated
in Fig. 1.21 by the solid line. The concentration of the donors is uniform throughout the
substrate because this doping is performed while the crystal substrate is being grown. To
create a P-type region, boron diffusion is performed. The boron diffusion will create a
nonuniform doping profile, as most of the boron atoms incorporated by the diffusion in the
silicon will remain at the surface; going deeper into the substrate, a lower concentration of
boron atoms will be found (dashed line in Fig. 1.21). If a higher concentration of boron
atoms is achieved at the surface (say NA = 1018 cm−3), the acceptor-type doping atoms
will prevail and the surface of the silicon will appear as P type. Figure 1.21 shows that
there is a point where NA = ND . This point is called the P–N junction—on one side of the
junction the semiconductor is a P type, whereas on the other side of the junction it is an
N type.



30 CHAPTER 1 INTRODUCTION TO CRYSTALS AND CURRENT CARRIERS IN SEMICONDUCTORS

Depth, x (mm)
0 2 4

D
op

in
g 

co
nc

en
tr

at
io

n 
(c

m
�

3 ) 1019

1018

1017

1016

1015

1014

N typeP type

ND

NA(x)

xj

1 3

Figure 1.21 Diffusion of acceptors into N-type
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Figure 1.22 Ion implanter diagram.

Ion Implantation

The ion implanter diagram of Fig. 1.22 illustrates the ion-implantation process. The process
begins with gas ionization, which creates an ion mixture containing the ions of the doping
element. The desired ions are separated according to their atomic mass in a mass separator,
the ion beam is then focused, and the ions are accelerated to the desired energy (typically
between 10 keV and 200 keV). The ion beam is scanned across the wafer to achieve
uniform doping. When the ions of the doping element hit the wafer, they suffer many
collisions with the semiconductor atoms before eventually stopping at some depth beneath
the surface. As the target is grounded, to complete the electric circuit, the implanted ions
are neutralized by electrons flowing into the substrate.

Although all the beam ions have the same energy, they do not stop at the same
distance, since the stopping process involves a series of random events. This is illustrated
in Fig. 1.23a. Therefore, the ion-implantation process leads to a bell-shaped profile of the
doping atoms, as shown in Fig. 1.23b.

As already explained, the doping atoms are electrically active only when they replace
semiconductor atoms from their positions in the crystal lattice. The implanted atoms
generally terminate in interstitial positions. Also, a number of semiconductor atoms will
be displaced from their positions, which results in damage to the semiconductor crystal.
Because of that, a post-implant anneal must be performed. This anneal should provide
sufficient energy to enable the silicon and doping atoms to rearrange themselves back
into the crystal structure. The change of the ion-implant profile during this annealing is
illustrated in Fig. 1.23c.
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Figure 1.23 (a) Accelerated ions of the doping element collide inside the semiconductor, stopping at scattered depths.
The doping profile immediately after ion implantation (b) and after annealing (c).

Two important parameters of the ion-implantation process are the implant energy
and the density of implanted ions (dose). The implant energy determines the depth of
the implanted ions. The dose (number of implanted ions per unit area) is determined by
the implant time and the current of the ion beam. The current of the ion beam can be
found by measuring the current of electrons flowing from the ground into the substrate to
neutralize the implanted ions. Integrating the measured current in time gives the charge
implanted into the substrate, which is divided by the unit charge q and the substrate area
to obtain the dose. In this way, the doping level achieved by the ion implantation can very
precisely be controlled. This has proved to be one of the most important advantages of
ion implantation compared to the diffusion technique. Added flexibility for doping-profile
engineering appears as an additional advantage of ion implantation. A disadvantage of ion
implantation is the complex equipment, which is reflected in the cost of the doping process.

SUMMARY

1. Crystals are solid materials with atoms appearing in a regular pattern. (It is the regular
placement of the atoms that enables electrons to flow in solid crystals.)

2. The bonds between atoms in a crystal enable increased stability of the electronic
structure of individual atoms; that is, the bonds reduce the energy of the system of
atoms. The most frequently encountered types of atomic bonds are ionic, metallic,
and covalent. Covalent bonds appear in molecules (H2, CH4, C2H2, . . .) in which atom
stability can be reached by a small number of atoms, and in insulator/semiconductor
crystals, where atom stability requires a periodically repeated atom or a group of
atoms.

3. Crystal lattice defines the positions of the atoms; it can be obtained by replicating
a unit cell. Many three-dimensional crystals have cubic unit cells, with the side of
the cube called the crystal-lattice constant. The most common cubic cells are the
simple, body-centered, face-centered, and diamond/zincblade unit cells. Each atom
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in a diamond/zincblade crystal structure appears in the center of a tetrahedron and
creates four identical bonds with the neighbors in the tetrahedron corners; there are
four tetrahedra in each unit cell. This crystal structure is due to sp3 hybridization,
which is also observed in the CH4 molecule.

4. The atom-packing fraction is the fraction of a unit-cell volume filled with atoms,
assuming that the atoms are hard spheres that just touch the nearest neighbors. Atomic
mass and volume are the mass and the volume of 1 mole of material, where 1 mole
of material consists of 6.02 × 1023 atoms or molecules (Avogadro’s number). Atom
concentration is the number of atoms per unit volume; surface atom density is the
number of atoms per unit area (of a specified plane); and mass density is the mass per
unit volume.

5. The equation for a plane in a cubic crystal, with lattice constant a, can be written as
h(x/a) + k(y/a) + l(z/a) = 1. The defining coefficients h, k, and l are called Miller
indices: (hkl) denotes a specific plane, whereas {hkl} denotes a set of equivalent
planes. The direction perpendicular to a given plane is also labeled by the same Miller
indices, where [hkl] is used for a specific direction, perpendicular to (hkl), whereas
〈hkl〉 is used for a set of equivalent directions.

6. As distinct from the sp3 hybridization, sp2 hybridization (observed in the C2H2
molecule) leads to two-dimensional graphene crystal and carbon nanotubes. Carbon
nanotubes can be thought of as cylinders rolled from two-dimensional graphene
sheets. Both graphene and carbon nanotubes exhibit excellent mechanical strength
owing to the strong atomic bonds and some unique electrical properties.

7. There are two types of current carriers in semiconductors: negatively charged free
electrons and positively charged holes (missing electrons in the bonding structure).
In an intrinsic semiconductor, the free electrons and holes are created in pairs, due
to breakage of covalent bonds; the concentrations of free electrons and holes are
equal, n0 = p0 = ni , where ni is the intrinsic-carrier concentration. The intrinsic-
carrier concentration is temperature-dependent constant for a given semiconductor
(ni increases with temperature, because more covalent bonds are broken at a higher
temperature).

8. Donor atoms have more valence electrons than are necessary to form the covalent
bonds when these atoms replace native atoms in the crystal structure. Given that
the extra electrons are easily released as free electrons, doping a semiconductor by
donor atoms (N-type doping) increases the concentration of free electrons. By N-type
doping, the concentration of electrons can technologically be set at n0 ≈ ND , where
ND is the concentration of ionized donors.

9. Acceptor atoms have fewer electrons than are necessary to form the covalent bonds,
so they create holes when they replace native atoms in a semiconductor crystal. This is
called P-type doping, and it can be used to set the concentration of holes at p0 ≈ NA ,
where NA is the concentration of ionized acceptor atoms.

10. In an N-type semiconductor (ND > NA), the electrons are majority carriers, whereas
the holes are minority carriers; usually, n0  p0. In a P-type semiconductor (NA >

ND ), the holes are majority and the free electrons are the minority carriers.
11. In an electroneutral semiconductor material, the charge of the negative free electrons

and positive holes is balanced by the charge of the fixed ions: positive donor ions and
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negative acceptor ions. This is expressed by the electroneutrality equation:

p0 − n0 + ND − NA = 0

12. The process of thermal generation of free electrons and holes (thermally induced
breakage of covalent bonds) is balanced by the opposite process of electron–hole
recombination. The recombination process leads to reduction of hole concentration
when the concentration of free electrons is increased by doping, and it leads to
reduction of electron concentration when the concentration of holes is increased. In
thermal equilibrium, the product of electron and hole concentrations is constant:

n0 p0 = n2
i

13. The Czochralski method (growth from a melt) is a common technique for growing
ingots (or boules) of monocrystalline silicon. The ingot is sliced into wafers that will
be used for the fabrication of devices and integrated circuits. Chemical-vapor deposi-
tion (CVD) or molecular-beam epitaxy (MBE) can be used to deposit monocrystalline
layers on semiconductor wafers (so-called epitaxial layers). When CVD is used to
deposit silicon on a noncrystalline substrate (such as a film of SiO2 or Si3N4), the
deposited film takes polycrystalline form and is called polysilicon.

14. At high temperature, diffusion of donor and acceptor atoms into a semiconductor
is significant and is used as a doping technique. Another doping technique is ion
implantation.

PROBLEMS

1.1 Find the packing fractions for

(a) body-centered
(b) face-centered A ∗
(c) diamond cubic cells

1.2 The crystal-lattice constant of GaAs is a = 0.565
nm. Calculate

(a) the distance between the centers of the nearest
Ga and As atoms A

(b) the distance between the centers of the nearest
Ga neighbors

1.3 The atom radius of copper is r = 0.1278 nm. Its
crystal structure has face-centered cubic cells.

(a) What is the crystal-lattice constant?
(b) What is the concentration of copper atoms?
(c) What is the atomic volume (the volume of 1 mol

of copper)? A

1.4 The crystal-lattice constant of GaAs is a = 0.565
nm, whereas the atomic masses of Ga and As
are 69.72 g/mol and 74.91 g/mol, respectively.
Determine the mass density of GaAs.

1.5 The atomic mass and the atomic volume of silver
are 107.87 g/mol and 10.3 cm3/mol, respectively.
Its crystal structure has face-centered cubic cells.

(a) What is the crystal-lattice constant?
(b) What is the mass density?

1.6 Assuming that the radii of silicon and carbon atoms
are rSi = 0.1175 nm and rC = 0.0712 nm, re-
spectively, determine the concentration of silicon
atoms in the zincblade SiC crystal (3C SiC).
A

1.7 A 5-kg silicon ingot is doped with 1016 cm−3 phos-
phorus atoms. What is the total mass of phosphorus

�Answers to selected problems are provided beginning on page 610. The problems are marked with A .
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in this ingot? The atomic masses of silicon and phos-
phorus are 28.09 g/mol and 31.02 g/mol, respect-
ively.

1.8 Identify the correct statement in the following list:

(1) (100): [100], [100], [010], [010], [001], [001]
(2) (100): {100}, {010}, {001}
(3) 〈100〉: [100], [100], [010], [010], [001], [001]
(4) 〈111〉 is perpendicular to {111}
(5) (110) and (101) are parallel
(6) [100] and [011] are opposite directions

1.9 What is the density of atoms at the surface of a
simple cubic crystal, if the crystal is terminated at

(a) {100} plane
(b) {110} plane
(c) {111} plane A

The crystal-lattice constant is a = 0.5 nm.

1.10 How many silicon atoms per unit area are found in

(a) {110} plane A
(b) {111} plane

1.11 Determine the Miller indices for a plane that
intersects the x-, y-, and z-axes at −a, 2a, and −3a,
respectively (a is the crystal-lattice constant).

1.12 At what distances from the origin does the plane
(012) intersect the x-, y-, and z-axes if the crystal-
lattice constant is 0.5 nm?

1.13 An atom in a simple cubic crystal has six neighbors
at distance a. Label the directions toward all the six
neighbors by Miller indices. A

1.14 There are four equivalent 〈110〉 directions that are
perpendicular to the z-axis: [110], [110], [110], and
[110]. Looking along the z-axis, draw a simple
cubic crystal and indicate the four directions that
are perpendicular to the z-axis. What is the total
number of equivalent 〈110〉 directions?

1.15 How many equivalent {111} planes and how many
equivalent 〈111〉 directions exist in a cubic lattice?

1.16 Looking down the [100] direction of a diamond
crystal lattice, draw the two-dimensional position of
the atoms. Indicate the crystal-lattice constant and
the bonds.

1.17 What is the angle between {100} and {110} planes
in silicon crystal? What is the distance between
neighboring {110} planes? The crystal-lattice
constant is a = 0.543 nm.

1.18 Determine the concentration of valence electrons
in

(a) Si (a = 0.543 nm) A
(b) GaAs (a = 0.565 nm)

1.19 One electron per crystalline atom in silver is free
to conduct electricity (it is shared by all the atoms
in the crystal). Determine the concentration of free
electrons, knowing that the atomic volume (volume
of 1 mol) of silver is 10.3 cm3/mol.

1.20 The doping level of a sample of N-type GaAs is
ND = 1016 cm−3.

(a) What is the concentration of electrons at 0 K?
(b) What is the concentration of holes at 0 K? A
(c) What is the net-charge concentration at 300 K?

The possible answers are

(1) 0
(2) 4.41 × 10−6 cm−3

(3) 10, 404 cm−3

(4) 2.1 × 106 cm−3

(5) 1.02 × 1010 cm−3

(6) 1016 cm−3

1.21 The concentration of donor atoms in an N-type
semiconductor is ND = 1016 cm−3. Calculate the
concentration of minority carriers at room tem-
perature if the semiconductor is

(a) Si
(b) GaAs A
(c) Ge

1.22 The doping level of a sample of N-type silicon is
ND = 1016 cm−3.

(a) List the types of charge that exist in this sample
and determine their concentrations.

(b) What is the net charge concentration?

1.23 Calculate the concentration of holes in a heavily
doped silicon having donor concentration ND =
1020 cm−3.

1.24 In a silicon crystal, ND = 1017 cm−3 and NA =
1016 cm−3. Find the concentrations of the minority
and the majority carriers.

1.25 For N-type semiconductor, doped at the level of
ND = 1016 cm−3, determine the average distance
between two holes if the semiconductor is

(a) Si
(b) 3C SiC (ni ≈ 10−1 cm−3)
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Assume that the holes are uniformly distributed in
space.

1.26 N-type Si, GaAs, and 4H SiC are all doped to the
level of ND = 1017 cm−3. Determine the volumes
of each of these semiconductors that will on average
contain 1 hole. The intrinsic carrier concentrations
are ni = 1.02 × 1010 cm−3, ni = 2.1 × 106 cm−3,
and ni ≈ 10−7 cm−3, respectively. ( A for GaAs)

1.27 The substrate concentration of an N-type semi-
conductor is ND = 1015 cm−3. The wafer is doped
with NA = 1.1 × 1015 cm−3, so that a very lightly
doped P-type region is created at the surface. What
is the concentration of electrons in the P-type region
if the semiconductor is

(a) Si
(b) Ge A

1.28 The concentration of thermally generated electrons
in N-type silicon increases with the temperature. At
certain temperature, it is equal to the concentration
of the doping-induced electrons (the concentration
of the thermally induced electrons is no longer
negligible).

(a) If the doping level is ND = 1015 cm−3, what
is the concentration of holes? A

(b) What is the intrinsic concentration (ni ) at this
temperature?

1.29 P-type silicon substrate, with NA = 5×1014 cm−3,
is doped by phosphorus. Determine the concen-
tration of electrons and holes at room temperature
if the doping level is ND = 1015 cm−3. What is
the concentration of electrons and holes at T =
273◦C, where the intrinsic concentration is ni =
5 × 1014 cm−3?

1.30 What concentration of acceptors should be added to
an N-type silicon crystal to reduce the effective dop-
ing concentration from 1018 cm−3 to 1015 cm−3?
How much should the concentration of acceptor
atoms change in order for the electron concentration
to change by |dn0/n0| = 0.01? Based on this result,
is it practical to reduce the doping concentration by
adding doping atoms of the opposite type?

1.31 It is found that n0 ≈ p0 ≈ ni at very high tempera-
tures and that n0 = 1016 cm−3, p0 � n0, and ni �
n0 at much lower temperatures. What are n0 and p0
at the medium temperature where ni = 1016 cm−3?

1.32 Consider a silicon wafer doped with ND =
1017 cm−3 and thickness tW = 0.5 mm. Calculate
the side of a square that is needed to enclose 1000
holes at room temperature.

1.33 Exposure of a silicon sample to light increases
the concentration of holes from 104 cm−3 to
1012 cm−3. What are the concentrations of electrons
before and after the exposure to light? Assume room
temperature.

1.34 Silicon is doped by boron atoms to the maximum
level of 4 × 1020 cm−3. Determine the percentage
of boron atoms in the silicon crystal.

1.35 Silicon is doped so that 1 in 10,000 Si atoms is
replaced by a phosphorus atom.

(a) Knowing that only 30% of these phosporus
atoms donate electrons at room temperature
(30% ionization), determine the effective
doping level and the electron concentration.

(b) Determine the average distances between the
phosphorus atoms and between the mobile
electrons.

REVIEW QUESTIONS

R-1.1 A simple cubic crystal lattice can be constructed by replicating two cubes with two sides
joined. Do the two cubes satisfy the definition of a unit cell?

R-1.2 The smallest unit cell is called the primitive cell. Identify the primitive cell in the diamond
lattice.

R-1.3 The primitive cell of the diamond lattice has to be shifted along the x-, y-, and z-axes
and rotated to construct the conventional unit cell (the cubic cell whose side is defined as
the crystal-lattice constant). Is there a need to rotate the conventional unit cell in order to
construct the diamond lattice?

R-1.4 Is diamond (carbon in crystalline form) a semiconductor?
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R-1.5 Both hydrogen and silicon atoms form covalent bonds to create hydrogen molecules and
silicon crystal, respectively. Why do hydrogen atoms create just molecules and silicon atoms
an entire crystal?

R-1.6 The valence electrons in a metal are shared by all atoms, whereas the valence electrons in a
semiconductor are shared by neighboring atoms. Is this related to the fact that metals conduct
electric current at 0 K and semiconductors do not?

R-1.7 Is the total concentration of free electrons (current carriers) in metals equal to the concentra-
tion of valence electrons?

R-1.8 Is the total concentration of current carriers (free electrons and holes) in a semiconductor
equal to the concentration of valence electrons?

R-1.9 There are two types of current carrier in semiconductors (free electrons and holes) and only
one type (free electrons) in metals, yet metals are much better conductors of electric current.
Is this because the currents of electrons and holes oppose each other? If not, what is the
reason?

R-1.10 The intrinsic carrier concentration is much higher in silicon than in GaAs. Does this mean
that more energy is needed to break a covalent bond in GaAs?

R-1.11 Can doping-induced and thermally generated holes be distinguished from each other?
R-1.12 Is there any positive charge in N-type semiconductors? If so, how many types of positive

charge are there?
R-1.13 Which type of positive charge dominates in terms of the concentration in N-type semicon-

ductors?
R-1.14 Does the dominant positive charge in N-type semiconductors contribute to the current flow?
R-1.15 A semiconductor has equal concentrations of donor and acceptor ions. Are the concentrations

of the current carriers equal? If so, are they equal to the intrinsic-carrier concentration?
R-1.16 Does an increase in the doping level influence the concentration of broken covalent bonds?

If so, is the concentration of broken covalent bonds increased or decreased?
R-1.17 An increase in temperature increases the carrier-generation rate (the concentration of broken

covalent bonds per unit time). Does it influence the recombination rate? If so, why?
R-1.18 Light can also break covalent bonds to generate current carriers (electron–hole pairs). Is the

recombination rate in an illuminated sample higher than the recombination rate in thermal
equilibrium?

R-1.19 Can the equation n0 p0 = n2
i be applied to the case of an illuminated sample?

R-1.20 After a period of illumination, the light is switched off and the generation rate drops
immediately to the equilibrium level. Does the recombination rate drop immediately to the
equilibrium level? If so, what reduces the carrier concentrations to their equilibrium levels?

R-1.21 Is a semiconductor crystal neutral after ion implantation?



2 The Energy-Band Model

It has been possible to use the atomic-bond model alone to define current carriers and to
introduce some of their fundamental properties. However, the operation of an electronic
device does not relate to electric current alone; the inseparable concept is voltage, that is,
electric-potential difference. The electric potential (ϕ) is directly related to potential energy
(E pot ) through the electron charge (−q), which is a constant: E pot = −qϕ. Since the
simple atomic-bond model does not express the energy state of the current carriers, it is not
sufficient for a proper understanding of semiconductor device operation. A commonly used
tool for descriptions of the phenomena observed in semiconductor devices is referred to as
the energy-band model. This powerful tool can provide intuition about and visualization
of abstract and complex phenomena, but only when clearly understood. The aim of this
chapter is to introduce the energy-band model, finalizing at the same time the introduction
to the fundamental properties of current carriers.

Electrons exhibit wave properties that combine with the regular placement of atoms
in crystals, which in turn leads to important effects in terms of the potential energy of
current carriers. The theory that accounts for the wave properties of small particles is
called quantum mechanics. The first two sections of this chapter introduce the quantum-
mechanical effects necessary to link the wave properties of electrons to the energy bands
in semiconductors. In the third section, the concepts of effective mass and density of
states are introduced to complete the incorporation of quantum-mechanical effects into
the particle model of electrons and holes as the current carriers in semiconductors. These
three sections can be considered as read-only sections that provide an insight into the
fundamental elements of the energy-band model: energy bands, energy gaps, effective
mass, and density of states. The solved examples in these sections provide a tool for deeper
study of selected effects. The last section introduces the essential link between the energy
bands and the concentration of electrons and holes, through the Fermi–Dirac distribution
and the Fermi level. The presentation of the energy-band model in this section is necessary
for proper understanding of semiconductor device operation.

37
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†2.1 ELECTRONS AS WAVES

2.1.1 De Broglie Relationship Between Particle
and Wave Properties

We as humans have developed considerable knowledge that distinguishes particles from
waves. This knowledge is important for many functions in human society, and it is
taught as what is now described as classical mechanics. Building on this knowledge, the
model of electrons as negatively charged particles was used in Chapter 1 to introduce
the fundamental properties of current carriers. This is justified, as the electrons possess
some undeniable particle properties. It is proved that an electron carries a unit of charge
(−q = −1.6 × 10−19 C) and that it can be released from an atom or captured by an atom
only as a whole—there is no such a thing as a half or a quarter of an electron. Also, each
electron has a specific mass, which is another important property that we associate with
particles. The mass of an electron at rest is m0 = 9.1 × 10−31 kg.

Notwithstanding the above-mentioned particle properties, electrons also exhibit wave
properties, such as diffraction and interference. The electron microscope quite successfully
exploits these wave properties of electrons. This fact does not mean that the simple particle
model used in the previous chapter was wrong. Also, it does not mean that the classical
concept and description of waves could not be used to describe and model the operation
of an electron microscope. However, it does mean that the concepts of particles and
waves from classical mechanics are not general. In the framework of classical mechanics,
we associate the wavelength (λ) with waves, whereas we associate the momentum (the
product of mass and velocity, p = mv) with particles. In classical mechanics these
quantities are unrelated to each other. However, there is a fundamental relationship
between them:

λp = h (2.1)

where h is the Planck constant (h = 6.626 × 10−34 J · s). It was suggested by de Broglie
that Eq. (2.1) could be applied to both waves and particles. This indicates that there are
no fundamental differences between particles and waves, a concept referred to as particle–
wave duality.

The existence of particle–wave duality does not mean something is wrong if we do
not observe wave properties in the case of large particles. The wavelength of a 1-kg
iron ball, moving with velocity v = 1 m/s, is λ = 6.626 × 10−34 m! This wavelength
is so much smaller than the iron atom’s that it loses any practical meaning. Likewise,
waves with large wavelengths have meaningless momenta. In these cases, the classical
particle and wave concepts work quite well. The particle–wave duality becomes important
for small objects. As mentioned earlier, the theory that describes the properties of small
objects is called quantum mechanics, the wave–particle duality being its central concept.
Quantum mechanics successfully describes many effects associated with electrons and
light (photons) that cannot be described by classical mechanics.

Our knowledge of many important principles is in terms of the classical concepts
of particles and waves. The most efficient way of incorporating the quantum-mechanical
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Figure 2.1 Illustration of the ψ(t) = A exp(−jωt) function, along
with its relationship to waves.

effects is to upgrade our classical picture. The upgrade will set the electrons perceived as
particles in a specific environment—energy bands.1

Consequently, we begin with a presentation of electrons as waves. This will lead to
definitions of energy levels and energy bands in Section 2.2. A continuous transition from
the wave presentation to the particle presentation will be made in Section 2.3 to define the
density of electron states. The introduction of the energy-band model will be completed in
Section 2.4 by the model for occupancy of the electron states, to link the energy bands to
the already familiar concentrations of current carriers.

2.1.2 Wave Function and Wave Packet
The wave function, labeled by ψ , is the usual mathematical description of the wave
properties of electrons. Figure 2.1 illustrates the simplest form of the wave function.
Imagine a point circulating in the complex plane. The rate of change of phase with time
(radians per second) is called angular frequency ω. Because the whole circle has 2π

radians, the angular frequency is

ω = 2π

T
(2.2)

where the period T is the time that it takes to complete a circle.

1The energy bands will involve the wave properties of electrons, but they cannot separate the wave
properties from the electrons, so we should never ignore them as we use the particle presentation.
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The position of any point in the complex plane can be expressed by a complex number
a + jb, where a and b are the real and imaginary parts, respectively, whereas j = √−1.
Alternatively, it can be expressed as A exp( jϕ), where the distance from the origin (A)
is called amplitude, and the angle with respect to the real axis (ϕ) is called phase. In our
case, ϕ = −ωt . Therefore, the position of the circulating point can be expressed by the
following complex function:

ψ(t) = Ae− jωt (2.3)

or, alternatively:

ψ(t) = A cos(ωt)︸ ︷︷ ︸
Re{ψ}

− j A sin(ωt)︸ ︷︷ ︸
Im{ψ}

(2.4)

Obviously, the real part of ψ is a cosine function of time.
Now, imagine that the point is attached to a membrane, causing it to follow the cosine

Re{ψ} oscillation. Imagine further that the membrane oscillations are transferred to air
particles, or any other set of particles. The push and pull of the membrane causes peaks
and valleys of particle concentration, which travel in the direction perpendicular to the
membrane, say the x-direction. If λ is the distance that a peak (or a valley) travels as the
oscillating point completes a whole circle (2π radians), then the rate of change of phase
with distance (radians per meter) is

k = 2π

λ
(2.5)

More frequently, k is referred to as the wave number or the wave vector in the case of
three-dimensional presentation (k).

In general, a traveled distance x is related to the change of phase as ϕ = kx (or ϕ = kr
in the three-dimensional case). Therefore, we obtain the following wave function of time t
and distance x :

ψ(x, t) = Ae− j (ωt−kx) (2.6)

The real part of this wave function,

Re{ψ(x, t)} = A cos(ωt − kx) (2.7)

is plotted in Fig. 2.2. Obviously, λ is the wavelength, and is related to the period T through
the wave velocity v:

λ = vT (2.8)
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Figure 2.2 Plot of Re{ψ(x,t)} = A cos(ωt − kx).
Illustration of a plane wave.

Equations (2.2), (2.5), and (2.8) show that the wave number and the angular frequency are
also related to each other through the wave velocity:

ω = vk (2.9)

Equation (2.5) is analogous to Eq. (2.2). It shows that the wave number is related
to inverse space analogously to the relationship between frequency and inverse time.
Eliminating the wavelength from Eqs. (2.1) and (2.5), the fundamental particle–wave link
can be expressed as a relationship between the momentum p and the wave number k:

p = h

2π︸︷︷︸
h̄

k = h̄k (2.10)

Equation (2.6) describes a wave that is not localized in space (x-direction). To illustrate
this point, let us say that the considered wave is sound, produced by the oscillating
membrane. Because the wave is not decaying in the x-direction, we will hear a constant
sound level at any point x . An analogous example can be made with light, which will
appear with constant intensity at any point x . Mathematically, the wave intensity is
expressed as ψ(x, t)ψ∗(x, t), where ψ∗ is the complex conjugate (the signs of j are
reversed). It is easy to show that the intensity of the wave given by Eq. (2.6) is indeed
time- and space-independent: ψ(x, t)ψ∗(x, t) = A2.

There is no apparent problem in applying the preceding result to sound and light.
However, how about electrons? It is correct that electron diffraction and interference
demonstrate beyond any doubt that electrons can behave as waves as much as the light does.
However, Eq. (2.6) does not properly describe electrons that are localized in space—for
example, electrons in semiconductor devices. Equation (2.6) appears too simple to account
for this case.

There is a way of making Eq. (2.6) complicated enough to obtain a wave function that
could describe a localized electron. The wave function given by Eq. (2.6) can be considered
as a single term (harmonic) of the Fourier series. With properly determined coefficients,
the Fourier series can closely match any shape that the wave function may take. Therefore,



42 CHAPTER 2 THE ENERGY-BAND MODEL

the needed function ψ(x, t) can be approximated by

ψ(x, t) ≈
N∑

n=−N

A�k f (kn)︸ ︷︷ ︸
An

e− j (ωnt−kn x) (2.11)

What is happening here is a superposition of cosine waves of different frequencies (wave
numbers) and amplitudes. In our analogy, this means we need a large number (2N)
of “cosine wave machines” described earlier (Figs. 2.1 and 2.2), operating at different
angular frequencies ωn and amplitudes An . In addition to that, we need to place all these
“machines” close to one another so that they have a perfectly blended effect on the air, or
any other set of particles.

A problem with the wave function ψ(x, t) obtained by Eq. (2.11) is that it remains
periodic. To remove this problem, we have to push N to ∞ and �k to dk.2 In this case, the
sum in Eq. (2.11) becomes an integral:

ψ(x, t) = A
∫ ∞

−∞
f (k)e− j (ωt−kx) dk (2.12)

The wave function ψ(x, t) expressed in this way is called a wave packet, where f (k)

is a spectral function specifying the amplitude of the harmonic wave with wave number k
and angular frequency ω = vk.

There are so many things naturally distributed according to the normal, or Gaussian,
distribution that it seems quite appropriate to take the normal distribution as an example of
the spectral function f (k):

f (k) = 1√
2πσk

exp

[
− (k − k0)

2

2σ 2
k

]
(2.13)

This is a bell-shaped function centered at k = k0 with width σk . In terms of our “cosine
wave machines,” this means that most of the “machines” would be producing waves with
frequencies close to ω0 = vk0, with the number of “machines” decaying as the frequency
difference from ω0 increases.

The integral in Eq. (2.12), with the normal distribution as the spectral function f (k),
can be explicitly performed, leading to the following form of the wave function:

ψ(x, t) = Ae−(
σ 2

k /2
)
(vt−x)2

e− j (ω0t−k0 x) (2.14)

The real part of this function,

Re{ψ(x, t)} = Ae−(
σ 2

k /2
)
(vt−x)2

cos(ω0t − k0x) (2.15)

is plotted in Fig. 2.3. We can see that our normally distributed “cosine wave machines”
produced a kind of localized wave packet that travels in the x-direction. If our membranes
were generating sound, this time we would not hear a constant sound level at any x point.

2Both N → ∞ and dk are mathematical abstractions with consequences discussed in Section 2.3.
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Figure 2.3 Illustration of a wave packet, traveling in the
x-direction.

If the wave packet was light, we would not see the same light intensity at any x point.
Standing at a single x point, we would hear or see the wave packet passing by us as a lump
of sound or light, traveling with velocity v.

Obviously, the concept of wave packet is much more general than the single harmonic
wave, and it appears as a tool that can model the wave–particle duality. We have used
oscillating membranes (“wave packet machines”) and sound to illustrate the wave packet.
If applied to sound, everything looks clear: (1) Eq. (2.14) is the complex wave function of
the sound packet, (2) Eq. (2.15) is the real instantaneous amplitude of the sound (plotted in
Fig. 2.3), and (3) the intensity of the sound is

|ψ(x, t)|2 = ψ(x, t)ψ∗(x, t) = A2 exp
[
−σ 2

k (vt − x)2
]

= A2 exp

[
− (vt − x)2

2σ 2
x

]
(2.16)

where σ 2
x = 1/(2σ 2

k ). It should be stressed that the complex wave function [Eq. (2.14)]
is a convenient mathematical abstraction. The real instantaneous amplitude [Eq. (2.15)]
can be related to physically real oscillations of air particles, but even this is an abstraction
as far as our sense of hearing is concerned. What is real for our sense of hearing is the
sound intensity [Eq. (2.16)]. Although the same mathematical apparatus can be applied to
different types of waves, the links to reality may be different.

In the case of electrons, it is the wave intensity, |ψ(x, t)|2 = ψ(x, t)ψ∗(x, t), that
is real. The question is what the intensity of electron waves means. In the analogy of a
sound packet, the wave intensity is not too hard to understand: there are air particles that
vibrate within a localized domain, producing a sound packet with sound intensity as in
Fig. 2.4. In this example, |ψ(x, t)|2 is applied to an ensemble of particles. However, what
is the meaning of the intensity |ψ(x, t)|2 when applied to a single particle, such as a single
electron?

The answer to this question is in the relationship between the concepts of probability
and statistics. It appears perfectly meaningful to say there are 2 × 1019 cm−3 air particles.
Let us assume that an extremely good vacuum can be achieved, so good that there is only
one particle left in a room of 200 cm × 300 cm × 167 cm = 107 cm3. In this case, we
find that there is 1/107 = 0.0000001 particle/cm3. What does this mean? The answer
is: The probability of finding this particle in a specified volume of 1 cm3. Let us assume
that our membranes (“wave packet machines”) are installed in this room with the single
particle inside. This will affect the probability of finding the particle in our specified 1 cm3,
according to the specific wave function intensity |ψ(x, t)|2.
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Figure 2.4 Illustration of wave packet intensity.

If the wave function ψ(x, t) is to be a representation of a single particle (for example,
an electron perceived as a particle), then the intensity ψ(x, t)ψ∗(x, t) relates to the
probability of finding this particle (electron) at point x and time t.

2.1.3 Schrödinger Equation
We have used a specific wave function ψ(x, t) to introduce the concept of a wave packet.
Clearly, this specifically selected wave function [Eq. (2.14)] cannot be used for any object
in any situation. Obviously, we need to be able to find somehow the wave function that
would specifically model a particular object (say an electron) in specific conditions.

In 1926, Schrödinger postulated a differential equation that results in the needed
wave function when solved with appropriate boundary and/or initial conditions. The one-
dimensional form of the time-dependent Schrödinger equation is given as follows:

j h̄
∂ψ(x, t)

∂ t
= − h̄2

2m

∂2ψ(x, t)

∂x2 + Epot(x)ψ(x, t) (2.17)

where Epot(x) is the potential-energy function incorporating any influence of the envi-
ronment on the considered electron and h̄ = h/2π is the reduced Planck constant. The
wave function ψ(x, t) and its first derivative are finite, continuous, and single-valued. The
term h̄2/2m involves the mass of electrons, m, so it relates the wave function to particle
properties of electrons.

The three-dimensional form of the time-dependent Schrödinger equation can be
written as

j h̄
∂ψ

∂ t
= − h̄2

2m
∇2ψ + Epotψ (2.18)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , ψ = ψ(x, y, z, t), and Epot = Epot(x, y, z). In the following
text we will limit ourselves to the one-dimensional case.

The variables of the time-dependent Schrödinger equation [x and t in Eq. (2.17)] can
be separated if the following form of the wave function is used: ψ(x, t) = ψ(x)χ(t). In
this case, Eq. (2.17) can be transformed into

j
h̄

χ(t)

∂χ(t)

∂ t
= − h̄2

2mψ(x)

∂2ψ(x)

∂x2 + Epot(x) (2.19)



2.1 Electrons as Waves 45

The left-hand side of this equation is a function of time alone, whereas the right-hand
side is a function of position alone. This is possible only when the two sides are equal to a
constant. The constant is in the units of energy, and it actually represents the total energy E :

j
h̄

χ(t)

∂χ(t)

∂ t
= E

− h̄2

2mψ(x)

∂2ψ(x)

∂x2 + Epot(x) = E (2.20)

Obviously, the time-independent wave function ψ(x) has to satisfy the following time-
independent Schrödinger equation:

− h̄2

2m

d2ψ(x)

dx2 + Epot(x)ψ(x) = Eψ(x) (2.21)

EXAMPLE 2.1 E–k Diagram for a Free Electron

Solve the Schrödinger equation for a free electron to

(a) determine the general wave function for a free electron and
(b) determine and plot the E–k dependence, and relate this dependence to the classical

equation for kinetic energy of a particle (Ekin = mv2/2).

SOLUTION

(a) For the case of a free electron, Epot = 0, so the Schrödinger equation is

d2ψ(x)

dx2 + 2m

h̄2 Eψ(x) = 0

The solution of this type of differential equation can be expressed as

ψ(x) = A+es1x + A−es2x

where s1,2 are the roots of its characteristic equation:3

s2 + 2m

h̄2 E︸ ︷︷ ︸
k2

= 0 (2.22)

Given that the solutions of the characteristic equation s2 = −k2 are s1,2 = ± jk, the
general solution is expressed as

ψ(x) = A+e jkx + A−e− j kx (2.23)

3Here s2 represents the second derivative, d2ψ(x)

dx2 , whereas ψ(x) itself is represented by s0 = 1.
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Comparing this wave function to the time-independent part of Eq. (2.6), we can see that
it consists of two plane waves traveling in the opposite directions: (1) A+ exp( jkx),
traveling in the positive x-direction, and (2) A−exp(− jkx), traveling in the negative x-
direction. Equation (2.23) represents the general solution for the electron wave function
in free space (Epot = 0), as the superposition of the two plane waves can account for
any possible situation in terms of boundary conditions.
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4 Figure 2.5 E–k diagram for a free electron.

(b) As Eq. (2.22) shows, the wave function given by Eq. (2.23) satisfies the Schrödinger
equation when the dependence of the kinetic (and thus total) energy of a free electron is
given by

E = h̄2

2m
k2 (2.24)

This E–k dependence is plotted in Fig. 2.5.
To relate the obtained E–k dependence to the classical equation for Ekin, we notice

first that E = Ekin (given that a free electron has no potential energy). Then, we apply
the fundamental link between the wave number and momentum (p = h̄k) and convert
the momentum into velocity ( p = mv):

Ekin = h̄2

2m
k2 = p2

2m
= mv2

2

This equation shows that the E–k dependence of a free electron is identical to the
classical dependence of kinetic energy on velocity.

EXAMPLE 2.2 Electron in a Potential Well

The infinite potential well, illustrated in Fig. 2.6a, is mathematically defined as

Epot(x) =
{

0 for 0 < x < W

∞ for x ≤ 0 and x ≥ W
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For an electron inside the potential well, determine

(a) the possible energy values and
(b) the wave functions corresponding to the possible energy levels.

Energy

x

c(x) c1

c3 c2

xW

� �
Etot3

Etot2

Etot1

(a)

(b)

Figure 2.6 A particle in an infinite potential
well. The possible energy levels (a) corre-
spond to standing waves with integer half-
wavelength multiples (b).

SOLUTION

The Schrödinger equation for this case is

d2ψ(x)

dx2 + 2m

h̄2 Eψ(x) = 0 for 0 < x < W

ψ(x) = 0 for x ≤ 0 and x ≥ W
(2.25)

Mathematically, this problem is reduced to solving the Schrödinger equation for a free particle
(Epot = 0) with the following boundary conditions: ψ(0) = 0 and ψ(W ) = 0. Therefore, the
general solution is given by Eq. (2.23).

(a) In the case of an electron trapped between two walls, the plane waves moving in either
direction are relevant as the electron is reflected backward and forward by the walls.
Time-independent solutions (steady states) are still possible, but only in the form of
standing waves, as illustrated in Fig. 2.6b. Obviously, the standing waves are formed
only for specific values of k = 2π/λ that correspond to integer multiples of half-
wavelengths λ/2. Therefore,

n
λn

2
= W (n = 1, 2, 3, . . .)

kn = 2π

λn
= π

W
n
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Using the relationship between the total energy and the wave number from Eq. (2.22),

En = h̄2

2m
k2

n

we obtain

En = n2 π2h̄2

2mW 2 (n = 1, 2, 3, . . .) (2.26)

With this result the following important conclusion is reached: the electrons in a
potential well cannot have an arbitrary value of total energy. Only specific energy values
are possible (Fig. 2.6a). This effect is called energy quantization.

(b) The two constants in the general solution (2.23), A+ and A−, have to be determined so
as to obtain the particular wave function ψ(x) representing the specifically defined case
(electrons inside a potential well of width W and infinitely high walls). Applying the
boundary condition ψ(0) = 0, we find the following relationship between the constants
A+ and A−:

A+e0 + A−e0 = 0 ⇒ A+ = −A−

After this, Eq. (2.23) can be transformed as

ψ(x) = A+ cos(kx) + j A+ sin(kx) − A+ cos(−kx)︸ ︷︷ ︸
=cos(kx)

− j A+ sin(−kx)︸ ︷︷ ︸
=− sin(kx)

= 2 j A+︸ ︷︷ ︸
A

sin(kx)

(2.27)

where A is a new constant, involving the constant A+.
The second boundary condition is ψ(W ) = 0. With exception of the trivial case

A = 0, no other value for A in Eq. (2.27) can satisfy this boundary condition. However,
sin(kW ) can be zero for a number of kW values, which means that the possible solutions
are determined by specific (and discrete) k values. Because k is related to the total energy
[Eq. (2.22)], this means that the possible solutions are determined by specific (and
discrete) energy values. This is the same conclusion related to the energy quantization
effect, only it is reached in a different way. Given that sin(kW ) = 0 for kW = nπ ,
where n = 1, 2, 3, . . . , the possible energy levels are according to Eq. (2.26).

There is an additional condition that has to be satisfied by the wave function that
is to represent electrons in the potential well. It relates to the probability of finding an
electron at x : |ψ(x)|2 = ψ(x)ψ∗(x). If an electron is trapped inside the potential well,
then it has to be somewhere between 0 and W , which means∫ W

0
ψ(x)ψ∗(x)dx = 1
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This is called the normalization condition. The normalization condition determines a
specific value of the constant A, as

∫ W

0
A2

(
sin

nπ

W
x

)2

dx = 1 ⇒ A =
√

2

W

Therefore, the final solution is

ψn(x) =
√

2

W
sin

nπ

W
x (n = 1, 2, 3, . . .)

where ψ1(x), ψ2(x), ψ3(x), . . . (n = 1, 2, 3, . . .) represent different electron states
(electrons at different energy levels En). The wave functions ψ1(x), ψ2(x), and ψ3(x)

are illustrated in Fig. 2.6b.

EXAMPLE 2.3 Tunneling

Another important quantum-mechanical effect, observed in semiconductor devices, is tunneling.
To illustrate the effect of tunneling, determine the wave function ψ(x) for the case when electrons
are approaching a potential-energy barrier, as in Fig. 2.7. This potential barrier is mathematically
defined as

Epot(x) =

⎧⎪⎨
⎪⎩

0 for x < 0

Epot for 0 ≤ x ≤ W

0 for x > W

Consider both cases: (a) the electron energy is higher than the barrier height, E > Epot , and (b)
the electron energy is smaller than the barrier height, E < Epot.

SOLUTION

Writing the Schrödinger equation in the following forms:

d2ψ(x)

dx2 + 2m

h̄2 E︸ ︷︷ ︸
k2

ψ(x) = 0 for x < 0 and x > W



50 CHAPTER 2 THE ENERGY-BAND MODEL

Etot

W x

Energy

Epot

xW

�A��
2

�C��
2

�c(x)�
2

Figure 2.7 Illustration of tunneling.

and

d2ψ(x)

dx2 − 2m

h̄2 (Epot − E)︸ ︷︷ ︸
κ2

ψ(x) = 0 for 0 ≤ x ≤ W

the general solution can be expressed as

ψ(x) =

⎧⎪⎨
⎪⎩

A+e jkx + A−e− j kx for x < 0

B+eκx + B−e−κx for 0 ≤ x ≤ W

C+e jkx + C−e− j kx for x > W

(2.28)

Again, the electron wave function appears as a superposition of two plane waves traveling in
opposite directions when Epot = 0 [the first and third rows in Eq. (2.28)]. In the region where
Epot �= 0, two different cases have to be considered: E > Epot and E < Epot.

(a) E > Epot: In this case, classical mechanics predicts that a particle with energy E should
go over the lower barrier, Epot, without any interference. However, the wave function
inside the barrier region (B+eκx if we limit ourselves to the wave traveling in the positive
x direction) is different from the incident wave (A+e jkx ). Because κ2 = 2m

h̄2 (Epot − E)

is negative, κ can be expressed as κ = jkE , where kE =
√

2m
h̄2 (E − Epot) is the wave

number inside the barrier region. This means that the incident plane wave continues
to travel as a plane wave through the barrier region (B+e jkE x ), but with an increased
wavelength λE = 2π/kE (kE < k). In addition to that, the intensity of the wave (|B+|2)
is reduced because there is a finite probability (|A−|2) that the particle is reflected
by the barrier.

(b) E < Epot (Tunneling): Classical mechanics predicts that a particle cannot go over a
potential barrier that is higher than the total energy of the particle. However, the wave
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function of the particle does not suddenly vanish when it hits the barrier as B+eκx �= 0.4

This time, κ = −
√

2m
h̄2 (Epot − E) is a real number, and exp(κx) causes an exponential

decay of the wave-function intensity in the barrier region. This is illustrated in Fig. 2.7.
If the barrier is wide, so that W  1/|κ |, the wave function would practically drop
to zero inside the potential barrier. This means that C+ ≈ C− ≈ 0. However, if the
potential barrier is not as wide, the wave function will not drop to zero at the end of
the potential barrier (x = W ), which means that C+ �= 0. There is a finite probability
(|C+|2) that the particle will be found beyond the barrier (x >W ), which is the tunneling
effect. Probability |C+|2, normalized by the probability of a particle hitting the barrier
(|A+|2), defines the tunneling probability, also called the tunneling coefficient, which
can be approximated as

T = |C+|2
|A+|2 ≈ exp(2κW ) = exp

[
−2W

√
2m

h̄2 (E pot − E)

]

†2.2 ENERGY LEVELS IN ATOMS AND ENERGY BANDS IN CRYSTALS

2.2.1 Atomic Structure
The potential-well problem from the previous section introduced the quantization concept—
the fact that electrons can have discrete values of energy only when appearing inside a
potential well. This concept will be applied to the case of electrons in an atom and in a
crystal in the following text. To be able to describe how electrons populate these levels,
we need to know the fundamental properties of electrons. In addition to being negatively
charged, electrons possess intrinsic angular momentum called spin. The spin can take two
values, s = ±1/2 in the units of h̄. Another fundamental property of electrons is that
only two electrons, with different spins, can occupy the same energy level if their wave
functions overlap.5 This is known as the Pauli exclusion principle.

The electrons of an atom appear in a potential well created by the electric field of the
positive core. The potential energy has spherical symmetry:

Epot(r) = − Zq2

4πε0r
(2.29)

4In the specific case of Epot = ∞ (infinite barrier height), the wave function is equal to zero inside

the barrier region as κ = −
√

2m
h̄2 (Epot − E) = −∞ and exp(−∞x) = 0.

5When there is an overlap in the wave functions, we say that the electrons belong to the same system
(an atom, molecule, or crystal).
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where Z is the number of the positively charged protons in the core, ε0 is the permittivity
of vacuum, and r is the distance from the center of the atom. If plotted along a line,
the potential energy has a funnel shape. Although the shape of Epot(r) is different from
the infinite potential well of Fig. 2.6, the effect of the energy-level quantization can be
visualized in an analogous manner. An important difference is that we are now dealing
with a three-dimensional case. In this case, electrons create standing waves when the orbital
circumference is equal to an integral number n of the wavelength λ: 2πr = nλ. The number
n, expressing this quantization effect, is called the principal quantum number. The orbits
that these numbers relate to are also referred to as electron shells. The wave functions
corresponding to different values of n can be obtained by solving the Schrödinger equation
with Epot(r) as given by Eq. (2.29). Although it has the spherical symmetry, this is a
three-dimensional problem and the actual solving of the Schrödinger equation is beyond
the scope of this book. It is quite sufficient to discuss the number of solutions that exist
for n = 1, 2, 3, . . . so that we can relate the introduced quantum effects to the electron
structure in atoms.

For the case of n = 1, the wave function is spherically symmetrical. Only two
electrons in an atom, with different spins, can have this spherically symmetrical wave
function. This means the first shell, labeled 1s, is completely filled with two electrons.
The element with two electrons is helium, and its electronic structure is represented as 1s2.
For n = 2, one solution is also spherically symmetrical and is labeled as 2s. However,
there is an additional solution for n = 2 with x-, y-, or z-directional symmetry. This type
of wave function is labeled by p and it can accommodate six electrons: three space times
two spin directions. Therefore, the electronic structure of neon, 1s22s22 p6, shows that the
second shell is filled with eight electrons.

The value of the principal quantum number n shows how many different wave
functions exist for that shell. The existence of these different wave functions causes
splitting of the second shell into two subshells (s and p), splitting of the third shell into
three subshells (s, p, and d), and so on. The subshells are represented by the second
quantum number (also called angular quantum number). It is labeled by l, so we can
write l = s, p, d, f, g, . . . to express the values (types of wave function) that this quantum
number can take. The third quantum number is labeled by m and is called the magnetic
quantum number. It shows the number of space directions associated with each type of
wave function: one for s, three for p, five for d , seven for f , and so on. Finally, the spin
is the fourth quantum number with two possible values, ±1/2. Because two electrons
with different spins can have identical wave functions, each s, p, d , f, . . . subshell can
accommodate 2, 6, 10, 14, . . . electrons, respectively.

Silicon is the fourteenth element in the periodic table, with the following electronic
configuration: 1s22s22 p63s23 p2. It has four electrons in the s and p subshells of the
third shell. These are the valence electrons that combine through covalent bonding. As
described in Section 1.1.1, covalent bonding enables individual atoms in a silicon crystal to
share the four valence electrons with four neighbors so that they reach the stable electronic
configuration of either neon (the four valence electrons given to the neighbors) or argon
(four electrons taken from the neighbors). All other semiconductor elements also form
analogous covalent bonding. The atoms in a metal crystal, however, are bound by a metallic
bond. For example, copper is the twenty-ninth element in the periodic table, with the
following electronic configuration: 1s22s22 p63s23 p63d104s1. The individual atoms in a
copper crystal give away their valence (4s1) electrons. These electrons form an “electronic
cloud” shared by all the atoms in the crystal.
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2.2.2 Energy Bands in Metals
The funnel-like shape of the potential energy in an isolated atom is illustrated in Fig. 2.8a,
together with the energy level of a single valence electron. Although the potential well
is different from the one-dimensional, infinite, and rectangular potential well considered
in Example 2.2, the appearance of the discrete energy level for the valence electron is
analogous to the standing waves in Fig. 2.6b. The situation is significantly different when
there are atoms so close together that there is an overlap between the wave functions of
electrons from different atoms. Figure 2.8b illustrates how this would occur in a two-atom
molecule. We see that the shape of the potential-energy well is changed so that the standing
waves of the valence electrons are no longer confined within the potential wells of the
individual atoms. In this example, the two valence electrons are confined within the two-
atom system and are shared by both atoms. According to the Pauli exclusion principle,
both valence electrons can have the wave function corresponding to the lowest energy
level, provided they have different spins. Approximating the funnel-like potential wells
by square wells with infinite walls (Example 2.2 and Fig. 2.6), we can use Eq. (2.26) to
estimate the lowest energy levels for the electrons in a separated atom (Fig. 2.8a) and in a
molecule (Fig. 2.8b).6 To do so, we express the width of the potential well (W ) as W = Na,
where a is the distance between the atom’s centers (the potential-well width corresponding
to one atom), N = 1 represents a single atom, and N = 2 represents a molecule. With
this,

E1 = π2h̄2

2m(Na)2 (2.30)

Assuming a = 1 nm, the energy levels are E1(N = 1) = 0.377 eV and E1(N = 2) =
0.094 eV. We can see that there is a significant energy saving when two atoms share
the valence electrons. The drop of the allowed energy for these electrons is due to the
doubling of the potential-well width, which doubles the half-wavelength (λ1), halves the
wave number value (k1 = 2π/λ1), and reduces by factor of 4 the lowest energy level
(E1 = h̄2k2

1/2m).
If this consideration is extended to the case of a one-dimensional crystal with N atoms

in the chain (Fig. 2.8c), Eq. (2.30) predicts that E1 → 0 as N → ∞. It is also important
to estimate the highest energy level [n = N in Eq. (2.26)]:

EN = N2 π2h̄2

2m(Na)2 = π2h̄2

2ma2︸ ︷︷ ︸
E1(N=1)

(2.31)

We can see that EN does not depend on the number of atoms that are put together. For
the example of a = 1 nm, EN remains equal to 0.377 eV. Given that the number of
energy levels between E1 ≈ 0 and EN is equal to N , we can conclude that the differences
between two subsequent energy levels are negligibly small in a large crystal. To support this
conclusion, we note that the average difference between two subsequent energy levels in a

6The use of Eq. (2.26) also involves a shift from three-dimensional to one-dimensional potential
well—these are only estimates, which can be used to conveniently illustrate important effects.
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Figure 2.8 Splitting of an energy
level, (a) corresponding to a single
atom, into (b) two energy levels in
a two-atom molecule and (c) N
energy levels in a one-dimensional
crystal with N atoms.

150-atom crystal (2.5 meV) is already much smaller than the thermal energy (26 meV at
300 K). Because these differences are so small, the energy quantization is practically lost.
Accordingly, we can consider the set of energy levels between E1 and EN as an energy
band of width EN − E1. Referring again to Fig. 2.8, we can say that the single energy level
of the valence electron in an isolated atom corresponds to an energy band in a crystal.

The introduction of the concept of energy band does not remove the Pauli exclusion
principle. There can still be only two electrons (with different spins) at any energy level
that is available. At T ≈ 0 K, the electrons would take the lowest possible energy positions,
meaning that the energy band would be filled up to the level with the index n = N/2. This
energy level is called Fermi energy (EF0). The example of a one-dimensional crystal with
a square potential well illustrates that the Fermi energy does not depend on the size of the
crystal:

EF0 = EN/2 =
(

N

2

)2
π2h̄2

2m(Na)2 = π2h̄2

8ma2 (2.32)

By direct application of the definition of Fermi energy, we can say that the part of the
energy band below EF0 is filled whereas the part above EF0 is empty at T ≈ 0. If an elec-
tric field is applied to such a metal, some electrons will gain kinetic energy, moving to the
empty part of the band as they conduct the current due to the applied electric field. The ther-
mal energy at T > 0 K also increases the energy of some of the valence electrons in metals.

Using the analogy of electrons in a square well with a flat bottom at E1 = 0, we
are considering the valence electrons as free electrons inside the metal boundaries (inside
the boundaries of the potential well). This means the energy of these electrons obeys the
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parabolic relationship to the momentum and the wave number [Eq. (2.24) and Fig. 2.5]. To
summarize:

1. Approximating the E–k dependence for the valence electrons in metals by a
continuous parabola is equivalent to adopting the free-electron model.

2. The E–x diagram for the valence electrons in metals is a half-filled energy band;
the probability of finding any valence electron anywhere inside the metal is the
same—there is no localization of these electrons.

2.2.3 Energy Gap and Energy Bands in Semiconductors
and Insulators

The electrons creating the covalent bonds in semiconductors and insulators are neither free
nor trapped in the potential wells of single atoms.7 We cannot use calculations based on the
square potential well (the free-electron model from the previous section) to draw any valid
conclusions because that model assumes that the positive ions produce a uniform potential
(the flat bottom of the well). In semiconductors and insulators, there are strong interactions
between the valence electrons and the periodic potential due to the positive ions. These
interactions alter the parabolic E–k dependence of free electrons in a way that leads to the
appearance of holes as an additional type of current carriers.

Because we need to modify (or adapt) the free-electron model, it is best to analyze
how imagined free electrons would behave in a periodic potential (so-called nearly free
electron approach). As Eq. (2.23) shows, the general wave function of a free electron can
be represented as the sum of two waves traveling in the opposite directions. Electrons with
very low energies have small wave numbers (E = h̄2k2/2m) and long wavelengths (λ =
2π/k). As the electron energy is increased, the wavelength decreases and at some point
the half-wavelength becomes equal to the crystal-lattice constant: λ/2 = a. This condition
can also be expressed as k = π/a. An electron with this wavelength is reflected backward
and forward by the periodic potential, which creates a standing wave. Importantly, two
types of standing wave are possible at this situation. The first type has antinodes and the
second type has nodes at the lattice sites. These two possibilities correspond to two sets
of constants in the general solution [(Eq. (2.23)]: one for A+ = A− = A and the other
for A+ = −A− = A. With this, the two wave functions and their intensities can be
expressed as

ψ1(x) = A exp( jπx/a) + A exp(− jπx/a) = 2A cos(πx/a)
(2.33)

ψ2(x) = A exp( jπx/a) − A exp(− jπx/a) = 2 j A sin(πx/a)

|ψ1(x)|2 = 4A2 cos2(πx/a)
(2.34)

|ψ2(x)|2 = 4A2 sin2(πx/a)

7Refer to Sections 1.1.1 and 2.2.1 for descriptions of covalent bonds.
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For the case of ψ1(x), the maximum probability of finding an electron coincides with the
crystal-lattice sites, as x = ia (i = 0, 1, 2, . . .) leads to cos2(iπ) = 1 in Eq. (2.34).8

For the case of ψ2(x), the maximum probability of finding an electron appears halfway
between the atoms, as x = (2i−1)a/2 (i = 1, 2, 3, . . .) leads to sin2(iπ) = 1 in Eq. (2.34).
The energy of an electron centered at the potential well (x = ia) is lower than the energy
of an electron centered at the potential barrier (x = ia/2). The wave functions of both
electrons [ψ1(x) and ψ2(x)] correspond to the same wave number (k = π/a), yet they
correspond to two different energies. This means that an electron with the wave number
k = π/a can have the lower or the higher energy but nothing between the two energy
levels—there is an energy gap in the E–k dependence at k = π/a. A deviation from the
parabolic E–k dependence to include the appearance of an energy gap is illustrated in
Fig. 2.9a. Note that the E–k dependence for the negative values of k is just a reflection of
the part for positive values of k; no additional information is implied by the extension of
the graph, it is usually presented in this form for a mathematical convenience.

Standing waves, and accordingly energy gaps, appear for any kn = nπ/a (n =
1, 2, 3, . . .), because the crystal-lattice constant is equal to a whole number of half-
wavelengths: nλ/2 = a. This is also illustrated in Fig. 2.9a. The values of kn = nπ/a
are referred to as the boundaries between Brillouin zones, the first Brillouin zone being for
k < π/a, the second for π/a < k < 2π/a, and so on.

8It is assumed that x = 0 coincides with a lattice site (the center of an atom).
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Both wave functions [ψ1(x) and ψ2(x)] are periodic in space, repeating themselves
in each unit cell of the lattice. These wave functions are specific for kn = nπ/a, but the
periodic property is general—any wave function of an electron in a periodic potential is
periodic (Bloch theorem). As a result, the energy is a periodic function of k: E(k +2πa) =
E(k). The energy dependences from any Brillouin zone may be extended into other zones,
as illustrated in Fig. 2.9b. This means that the energy is a multivalued function of k in
general, not just for k = nπ/a. In other words, the appearance of energy gaps creates
multiple possible energy bands for any k. Given that E(k) is periodic, it is quite sufficient
to show it in the first Brillouin zone (it just repeats itself in the other zones). This most
common way of presenting the E–k dependencies is called the reduced-zone presentation
(Fig. 2.9c).

The E–k dependence shown in Fig. 2.9c may seem to be a significant modification
of the E–k dependence for a free electron, but it evolved from the simplest considerations
of how free electrons would behave when interacting with a periodic potential energy (the
nearly free electron model). The valence electrons in real semiconductors and insulators
are neither free nor localized within the potential wells of single atoms. Importantly,
the alternative approach (so-called tight binding theory) leads to the same qualitative
conclusions. In Section 2.3.1, new “features” will be added to the E–k dependence shown
in Fig. 2.9c to more realistically represent E–k diagrams of real semiconductors. At this
stage, it is important to consider the essential influence that the appearance of energy gap
has on the electrons as current carriers.

The levels of the valence electrons appear in two energy bands with the energy gap
between them in the case of semiconductors and insulators, as distinct from the case
of metals (described in Section 2.2.2). The two bands of importance are illustrated in
Fig. 2.10. The energy band below the gap is called valence band, whereas the energy band
above the gap is called conduction band.

An electron at the bottom of the conduction band (EC ) is a standing wave because of
the forward and backward reflections at the crystal-lattice sites. Because such an electron
does not move through the crystal, it is convenient to define a kinetic energy that is zero
for this electron (this means that the potential energy of this and all the other electrons
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in the conduction band has to be equal to EC ). The electrons at higher energy levels in
the conduction band will have kinetic energies according to the upper E–k branch, which
can be approximated by a parabola. As shown in Example 2.1, electrons with parabolic
E–k dependence appear as free electrons. Therefore, the electrons in the conduction band
are mobile particles. This is not surprising, given that there are many free levels that the
electrons can move on to when their energy is increased by electric field or temperature.

At T ≈ 0 K, there would be no broken covalent bonds, and all the electrons would be
in the valence band. Because half of the energy levels are in the valence band, this band
would be full at T ≈ 0 K (two electrons with different spins at each level). These electrons
cannot move if an electric field is applied because there are no unoccupied energy levels for
the electrons to move on to so that their energy can be increased. The lowest free levels are
in the conduction band, but for electric fields lower than the breakdown field, the kinetic
energy that the electrons could gain is lower than the energy gap. Therefore, the electrons
in the valence band are immobile—they are tied in the covalent bonds that are not broken.

When a covalent bond is broken because sufficient thermal energy has been delivered
to a valence electron, this electron jumps up into the conduction band, leaving behind a
hole. If an electric field is applied now, an electron from a lower-energy position in the
valence band can move to the upper empty position. Using the concept of hole as a current
carrier (Section 1.2.1), the equivalent presentation is that the hole moves to a lower-energy
position. Making an analogy with bubbles in liquid, we can see that the minimum energy
for the holes in the valence band is the top of the valence band (EV ). When an electric field
is applied, it can move the holes by pushing them deeper into the valence band. Figure 2.10
illustrates that the E–k dependence in the valence band looks like an inverted parabola,
meaning that it can represent the kinetic energy of the holes as current carriers.

The existence of an energy gap distinguishes semiconductors and insulators from
metals. Figure 2.11a shows again that there is no energy gap in metals (the conduction
and the valence bands are merged). This makes all the electrons in the band conductive, as
they all can move to a number of empty states therefore, metals are good current conductors
even at temperatures very close to 0 K). The energy gap in semiconductors and insulators
(Fig. 2.11b) separates the available energy levels into valence and conduction bands, with
the valence electrons fully occupying the valence-band levels (assuming that no covalent
bonds are broken). The electrons in the valence band are not mobile particles because they
do not have empty states to move to; without electrons in the conduction band, intrinsic
semiconductors and insulators would not conduct any current. Electrons may appear in the
conduction band at high temperatures or at electric fields high enough to break the covalent

Metal

(a)

Intrinsic semiconductor or insulator

(b)

Energy gap, Eg

Conduction
band

Valence
band

Figure 2.11 Energy-band diagrams for (a) a metal
and (b) an intrinsic semiconductor or an insulator.
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TABLE 2.1 Energy-Gap Values
for Different
Materials at 300 K

Material Eg (eV)

Germanium 0.66
Silicon 1.12
Gallium arsenide 1.42
Silicon carbide (cubic) 2.4
Gallium nitride 3.4
Silicon nitride (Si3N4) 5
Diamond 5.5
Silicon dioxide (SiO2) 9

bonds. A broken covalent bond will manifest itself by the appearance of an electron in
the conduction band and a hole in the valence band; both these particles are mobile and
will contribute to electric current. In practice, however, the most frequent reason for low
conduction in insulators and intrinsic semiconductors is unintentional doping.

The energy-gap value is one of the most important parameters of semiconductors and
insulators. Table 2.1 gives the values of the energy gap Eg at room temperature for different
materials.

Semiconductors are distinguished from insulators by the possibility of increasing their
conductivity to quite high levels by either N-type or P-type doping. The effects of doping
are illustrated by the atomic-bond model in Fig. 1.19. An energy-band model presentation
of the effects of doping is given in Fig. 2.12. For the case of a donor atom (N-type doping),
four valence electrons play the role of the four valence electrons of the replaced silicon
atom, so their energy levels replace the corresponding energy levels in the valence and the
conduction bands. The wave function of the fifth electron in each donor atom does not
interfere with any of the neighboring silicon atoms, and the neighboring donor atoms are
too far from each other to permit any interference with the equivalent wave functions of
their fifth electrons. Consequently, these electrons have energy levels that are localized to
the parent atoms (they do not extend throughout the crystal). This is illustrated in Fig. 2.12,
which also shows that the energy level of the fifth electron is inside the energy gap but very
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Figure 2.12 Effects of (a) N-type (b) and
P-type doping of semiconductors in
energy-band model presentation.
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close to the bottom of the conduction band. This electron remains at its level in the energy
gap at very low temperatures; at room temperature, however, it gets enough energy to jump
into the conduction band, becoming a free electron. It leaves behind a positively charged
donor atom, which is immobile.

The effect of P-type doping is similarly expressed in Fig. 2.12b. In this case, the
acceptor atom introduces a localized energy level into the energy gap, which is close to the
top of the valence band. As a consequence, an electron from the valence band jumps onto
this level, leaving behind a mobile hole and creating a negatively charged and immobile
acceptor atom.

†2.3 ELECTRONS AND HOLES AS PARTICLES

Considering electrons as standing waves (Sections 2.1 and 2.2) provides an important
insight into the origin of energy bands and gap(s). However, the wave approach has its
limitations—it deals with perfect waves, which do not exist in reality. The wave function
of a free electron is perfectly periodic, from −∞ to ∞ in both space and time (Fig. 2.2).
This is a mathematical abstraction that does not perfectly match the fact that real electrons
are localized. The Fourier transform [Eq. (2.12)] can be used to obtain a localized wave
packet, but it employs another mathematical abstraction (integration of infinitely dense
spectrum) to remove the abstraction of perfectly periodic functions (that is, to achieve a
localization of the electron wave function).9

The unavoidable conclusion is that both the practical observations of particles and
the mathematical wave abstractions have limitations. Our options are to either adapt
the practical model of particles or adapt the mathematical model of waves. Kinetic
phenomena in semiconductor devices are much easier to explain and understand if the
already developed classical concepts, related to a gas of particles, are applied to the “free”
electrons (the electrons in the conduction band) and the holes. We refer to the free electrons
and the holes as the electron gas and the hole gas, or the carrier gas in general.

Electrons and holes are assumed and imagined as particles in this approach. However,
the concepts of mass and size of the free electrons and holes have to be adapted to include
the wave properties of electrons. This section addresses the questions of particle mass and
size in the carrier-gas model.

2.3.1 Effective Mass and Real E–k Diagrams
As shown in Example 2.1, the kinetic (and the total) energy of a free electron is related to
the velocity (�) and the wave vector (k) in the following way:

E = Ekin = m|�|2
2

= h̄2|k|2
2m

(2.35)

9Note that the finite Fourier series [Eq. (2.11)] produces periodic wave packets—it does not remove
the abstraction of a perfectly periodic function.
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This is a parabolic E–k dependence (plotted in Fig. 2.5) with one parameter: the mass
of the electron. Because of the parabolic dependence, the second derivative of the E–k
dependence is a constant that is directly related to the mass:

d2 E

dk2 = h̄2

m
(2.36)

Therefore, the electron mass is inversely proportional to the second derivative of the E–k
dependence:

m = h̄2

d2 E/dk2 (2.37)

The E–k dependence for the electrons in the conduction band of a semiconductor
can be approximated by a parabola (Fig. 2.10a). The second derivative of this parabola
can be used to calculate the mass of electrons, according to Eq. (2.37). In general, the
mass calculated in this way is different from the mass of a free electron in vacuum. To
express this difference, the mass of a free electron in vacuum is labeled by m0, whereas the
mass obtained from Eq. (2.37) is labeled by m∗ and called effective mass. The reason for
the difference between m0 and m∗ is the same as the reason for the specific shape of an E–k
dependence: interactions of the electron waves with the periodic potential of crystal atoms.
Importantly, this means that the effective mass includes the influence of crystal atoms on
the electrons in a conduction band. This enables us to model the electrons in a conduction
band as classical particles in a gas; all we need to do is replace m0 by m∗.

The E–k dependence for the electrons in a valence band can be approximated by
an inverted parabola (Fig. 2.10a). This means that the mass calculated by Eq. (2.37) will
have a negative value—a quantum-mechanical effect that is difficult to relate to classical
particles. However, in selecting the holes as the valence-band carriers, this difficulty can
be removed by applying the analogy with bubbles in a liquid (a hole gas). The minimum-
energy position for the bubbles corresponds to the highest possible level; accordingly, the
kinetic energy of holes is taken to be zero at the peak of the parabola. The kinetic energy of
a hole has to be increased in order to “push” it to a lower total-energy level, analogous to
the energy that is needed to push a bubble to a lower height in the liquid. With this model
of a hole gas, the effective mass of the holes is positive and inversely proportional to the
second derivative of the E–k dependence in a valence band. In general,

m∗
e,h = ± h̄2

d2 E/dk2 (2.38)

The actual effective-mass values for the electrons and holes in different semiconduc-
tors are different because the real E–k dependencies are different in different crystals. The
most significant branches of the real E–k diagram of GaAs are illustrated in Fig. 2.13a.
This E–k diagram represents the group of so-called direct semiconductors, because both
the bottom of the conduction band and the top of the valence band are centered at
k = 0 (the transitions between the valence and the conduction bands do not require a
change in the wave number). For small and moderate values of k, the E–k diagram is
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Figure 2.13 (a) E–k diagram
and (b) spherical constant-energy
surface for GaAs.

qualitatively the same as the ideal E–k diagram shown in Fig. 2.10a. This also means that
the diagram is spherically symmetrical, which allows a straightforward transition from the
one-dimensional presentation to three dimensions:

E = ± h̄2

2m∗
e,h

k2

︸ ︷︷ ︸
Ekin

+ EC,V (2.39)

The kinetic-energy term in Eq. (2.39) is a sphere in the kx–ky–kz coordinate system, as
illustrated in Fig. 2.13b. For GaAs, the electron and hole effective masses are m∗

e =
0.067m0 and mh = 0.45m0, respectively.

For high values of k, the minimum conduction-band energy is for k = 2π/a when the
electrons are moving along 111 direction (Fig. 2.13 a).10 The parabola centered at k = 0
is “sharper” than the parabola centered at k = 2π/a, which means the second derivative is
larger and the effective mass of the low-energy electrons (around k = 0) is smaller. When
the energy of an electron is increased to values corresponding to the parabola centered at
k = 2π/a, the effective mass of the electron increases as this parabola is “wider.” The low-
energy electrons in GaAs are referred to as the light, whereas the high-energy electrons are
referred to as the heavy electrons.

The real E–k diagram of Si is more complicated (Fig. 2.14a): it represents the group of
so-called indirect semiconductors, because the bottom of the conduction band and the top
of the valence band appear for different values of k. Figure 2.14a shows the E–k diagram
along two directions: [100] and [111]. It can be seen that the bottom of the conduction
band is along the [100] direction. In three dimensions, the constant-energy surface is an
ellipsoid:

Ekin = h̄2

2ml
kx

2 + h̄2

2mt
ky

2 + h̄2

2mt
kz

2 (2.40)

10The E–k diagrams are different in different directions because the distance between atoms varies
as the direction through the crystal changes.
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Figure 2.14 (a) E–k diagram of Si and (b) elliptical constant-energy surfaces in the conduction
band.

where kx coincides with a < 100 > direction, so that ml is the longitudinal effective
mass and mt is the transverse effective mass. Given that there are six equivalent <100>

directions ([100], [1̄00], [010] , . . .), there are six equivalent constant-energy ellipsoids, as
illustrated in Fig. 2.14b. The values of the longitudinal and the transversal effective masses
are ml = 0.98m0 and mt = 0.19m0, respectively.

The E–k diagram in the valence band is centered at k, however, it has two branches
with approximately parabolic shapes and closely placed maxima. The sharper parabola
corresponds to light holes, whereas the wider parabola corresponds to heavy holes. The
effective masses of the light and the heavy holes are m∗ = 0.16m0 and m∗ = 0.49m0,
respectively.

EXAMPLE 2.4 Conductivity Effective Mass

The kinetic energy of electrons in silicon is anisotropic with <100> symmetry, which can be
described as follows (refer to Fig. 2.14b): (1) one-third of the electrons move along the [100] and
[1̄00] directions with effective mass ml , but if scattered so that they start moving in a transverse
direction—for example, [010] or [001̄]—their effective mass is mt ; (2) the second third of the
electrons move along [010] and [01̄0] direction with the longitudinal mass ml and along the
four transverse directions with the transverse mass mt ; (3) the longitudinal effective mass, ml ,
of the final third of electrons appears for motion along [001] and [001̄] directions. Knowing that
longitudinal and transverse effective masses are ml = 0.98m0 and mt = 0.19m0, respectively,
determine the average-conductivity effective mass of electrons in silicon so that the isotropic
electron-gas model can be used.
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SOLUTION

The dependence of kinetic energy on electron momentum for the case of isotropic electron gas
is given by

Ekin = h̄2k2

2m∗ = p2

2m∗ = p2
x

2m∗ + p2
y

2m∗ + p2
z

2m∗

The dependence of kinetic energy on momentum in the case of silicon can be written as

Ekin =1

3

(
p2

[100],
[
100

]/2ml + p2
[010],

[
010

]/2mt + p2
[001],

[
001

]/2mt
)

+ 1

3

(
p2

[100],
[
100

]/2mt + p2
[010],

[
010

]/2ml + p2
[001],

[
001

]/2mt
)

+ 1

3

(
p2

[100],
[
100

]/2mt + p2
[010],

[
010

]/2mt + p2
[001],

[
001

]/2ml
)

Taking into account the existing symmetry, we can compress the preceding equation as follows:

Ekin = p2
l

2ml
+ p2

t

2mt
+ p2

t

2mt
= p2

l

2ml
+ 2

(
p2

t

2mt

)

The kinetic energy for the case of isotropic model is equal to the kinetic energy given by the
previous equation if

3

m∗ = 1

ml
+ 2

mt

Therefore,

m∗ = 3

1/ml + 2/mt
= 3

1/0.98 + 2/0.19
m0 = 0.26m0

2.3.2 The Question of Electron Size: The Uncertainty Principle
The classical view of particles involves the concept of particle size. We used the concept
of atom radius to calculate the number of atoms per unit volume (the concentration) or
per unit area (the area density) in crystalline materials. The concentration and/or the area
density of current carriers are essential components of the carrier-gas model. This raises
the question of carrier size.
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When considered as standing waves (superpositions of two plane waves traveling in
the opposite directions), electrons lack any localization. Although this does not mean that
an electron is everywhere in a given crystal, it certainly implies that it can be everywhere
in that crystal at any instant of time. This model is adequate for metals, but it does not
match observed phenomena in semiconductors. A good example is the Haynes–Shockley
experiment. A flash of light illuminates a semiconductor bar through a narrow slit to
generate free electrons and holes in a very narrow region (�x) for a very short time interval
(�t); an electric field is applied to drive the electrons to one end of the semiconductor bar
and through an ammeter, but no electric current is detected until t  �t . The fact that
no current is detected immediately after the generation of free electrons shows that the
electrons were localized for at least a considerable time interval.

In the framework of the wave approach, the Fourier transform [Eq. (2.12)] is used to
generate wave packets that provide some localization. By adjusting the spectral function
f (k), wave packets of different shapes can be achieved. This is nicely illustrated by the
case of normal distribution for f (k). The intensity of the wave packet obtained in this way
is a normal distribution in x , as shown by Eq. (2.16). The relationship between the standard
deviations of the spectral function (σk) and the wave packet intensity (σx ) is

σx = 1√
2σk

(2.41)

The wave packets obtained from Eq. (2.16) provide the smallest product σxσk . However,
an electron represented by these wave packets has to be spread from x = −∞ to x =
∞, according to the normal distribution. This means that the wave packets obtained from
Eq. (2.16) can be used as approximative models at best. In other words, the mathematical
precision of the wave approach does not mean that this approach provides the perfect
match to reality. This problem remains even if a different spectral function f (k) is used
in the Fourier transform to properly limit the size of a wave packet—the wave number
remains unlimited, extending from k = −∞ to k = ∞. This leads to a problem when the
wave number is related to the particle momentum (p = h̄k) as the wave theory is applied to
reality, because a real particle cannot exhibit infinite momentum. On the other hand, if the
range for the wave number is limited in Eq. (2.12), the result is a wave packet that extends
from x = −∞ to x = ∞.

This wave–particle issue can be summarized as follows: neither the mathematical
wave abstractions nor the classical observations of particles are precise enough to describe
electrons. The wave approach leads to the result that either the size or the momentum
of every electron can be infinitely large; in spite of the inherent mathematical precision,
the abstraction of infinite size/momentum cannot be applied without an alteration of
this mathematically precise approach. On the other hand, the model of classical particles
cannot explain experimentally observed phenomena such as diffraction and interference of
electrons. Perfectly defined particles do not exist: no particle has a precisely determined
momentum and a precisely determined size. This general fact, applicable to any object, is
known as the Heisenberg uncertainty principle. The minimum possible uncertainties in the
size and the momentum of a particle are related to each other so that their product is equal
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to Planck’s constant:11

�x�px ≥ h (2.42)

A wide range of considerations unavoidably lead to the uncertainty principle in
general, and specifically to Eq. (2.42). Staying with the wave packets, we observe that a
wave packet is made up by a superposition of plane sinusoidal waves with the wavelengths
distributed around a central wavelength (λ0). If the size (the width) of the wave packet is
�x , then it consists of n wavelengths, where

n = �x

λ0
(2.43)

Outside �x , the superimposing sinusoids have to add up to zero, which is possible only if
they have varying wavelengths. Then, there are some sinusoids with shorter wavelengths
so that at least n + 1 wavelengths fit in �x , and there are some sinusoids with longer
wavelengths so that no more than n − 1 wavelengths fit in �x :

�x

λ0 − �λ
≥ n + 1

(2.44)

�x

λ0 + �λ
≤ n − 1

Combined with Eq. (2.43), this leads to

�x�λ

λ2
0

≥ 1

1 + 1/n
�x�λ

λ2
0

≥ 1

1 − 1/n

(2.45)

For large n (so that 1/n � 1), the considerations of both the longer and the shorter
wavelengths lead to the following common result:

�x�λ

λ2
0

≥ 1 (2.46)

We can use the relationship between the wavelength and the wave number (k = 2π/λ) to
move from the uncertainty in the wavelength (�λ) to uncertainty in the wave number (�k).

11W. Heisenberg, The Physical Principles of the Quantum Theory, Dover, New York, 1949, p. 14.
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed., Oxford University Press, Oxford,
1958, p. 98. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics:
Quantum Mechanics, Vol. III, Addison-Wesley, Reading, MA, 1965, p. 2–3.
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As dk/dλ = −2π/λ2, and given that the minus sign has no importance when considering
uncertainties, the following relationship is established:

�kx = 2π
�λ

λ2
0

(2.47)

With this, the following condition is obtained:

�x�kx ≥ 2π (2.48)

This result is derived without any quantum-mechanical or particle-related considerations—
it simply shows the relationship between the uncertainties in the width (�x) and the wave
number (�k) of an abstract wave packet. To apply it to a particle, we relate the wave
number to the momentum of the particle (px = h̄kx ), which leads to the Heisenberg
uncertainty relationship: �x�px ≥ h.

There is no need to rely on the concept of wave packet (and the associated Fourier
transform) to arrive at the result expressed by Eq. (2.48). In its simplest form, the standing-
wave approach (the model of free electrons in a metal, used in Section 2.2.2) suggests
uncertainty in the electron positions that is equal to the size of the crystal. However, this
uncertainty can be significantly reduced if we take into account that the wave functions of
electrons in a periodic potential are periodic (Section 2.2.3). One way of interpreting this
result is to say that all the valence electrons, with their periodic wave functions, extend
through the whole crystal. Another way is to say that an electron is localized within a
cube �x�y�z in three dimensions, or just within an interval �x for one-dimensional
considerations. This would have to mean that a segment of a wave function that is repeated
in the remaining �x intervals corresponds to totally symmetrical electrons inside those
intervals. The smallest �x that we can take is equal to one period of the wave functions,
which is equal to the crystal-lattice constant. For any valid �x , a periodic wave function
has to satisfy the following boundary condition:

ψ(x + �x, t) = ψ(x, t) (2.49)

It is not difficult to show that the wave function for a free electron [Eq. (2.6)] satisfies this
condition if kx is restricted to the following values:

kx = nx (2π/�x) (nx = 1, 2, 3, . . .) (2.50)

The difference between the closest kx values is �kx = (2π/�x), which is the minimum
uncertainty according to Eq. (2.48).

Another demonstration of the uncertainty principle relates to an attempt to arbitrarily
limit the x size of electrons that have no uncertainty regarding the px momentum (px =
�px = 0), because they are moving in the y-direction. The condition of px = 0 is satisfied
by a plane wave moving in the y-direction, and for as long as �px remains zero, there is no
localization in the x-direction: �x → ∞. To reduce �x to a finite value, the electrons are
made to pass through a slit of a small width, equal to �x . As experimentally confirmed,
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electrons will experience diffraction, so that the beam of electrons beyond the slit has a
finite angle of divergence (α). By the laws of optics,

sin α ≈ λ

�x
(2.51)

where λ is the wavelength of the electrons. The divergence of electrons in the x-direction
leads to a spread of the px momentum,

�px = p sin α (2.52)

where p is the total momentum. Given that p = h/λ, Eqs. (2.51) and (2.52) lead to
�x�px ≈ h.

2.3.3 Density of Electron States
The uncertainty about the size of electrons opens the question of how to determine how
many of them can fit into a unit of volume.

Given that the size uncertainty is linked to the momentum uncertainty, a solution is to
define a six-dimensional x-y-z-px-py-pz space. The “volume” of a minimum cell of this
space is

�V �Vp = �x�y�z�px�py�pz = �x�px︸ ︷︷ ︸
h

�y�py︸ ︷︷ ︸
h

�z�pz︸ ︷︷ ︸
h

= h3 (2.53)

Because two electrons (with different spins) can fit into a cell like this, the maximum
number of electrons per unit “volume” of the six-dimensional space is 2/(�V �Vp) =
2/h3. This means the maximum concentration of electrons (the maximum number of
electrons per unit of space volume �V ) is

C = 2

�V
= 2

h3 �Vp (2.54)

We note that C depends on �Vp = �px�py�pz. This dependence can be converted
into a dependence on �Ekin, using the relationship between the kinetic energy and
the momentum (Ekin = |p|2/2m∗ for an isotropic electron gas). Having this in mind,
we can discuss the meaning of the maximum concentration C . The maximum electron
concentration corresponds to the case of every electron state being occupied. At T ≈ 0 K,
all the states up to the Fermi energy level are occupied, and all the states above are empty.
At T > 0 K, there is a temperature-dependent distribution of state occupancy. At this
stage we do not know this distribution (it is the subject of Section 2.4). Nonetheless, if we
think of C as the concentration of states that may or may not be occupied by electrons,
rather than maximum concentration of electrons, then C is relevant for any occupancy
distribution. Given the dependence of C on �Vp [Eq. (2.54)], its consequent dependence
on kinetic energy will take the following form:

C = D(Ekin)�Ekin ≈ D(Ekin) d Ekin (2.55)
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The function D(Ekin) is referred to as the density of electron states, its meaning being
the number of states per unit volume and unit energy. Note that �Ekin is the smallest
possible difference between two discrete energy levels; in its usual meaning, d Ekin is an
infinitesimal energy interval in the sense that there are no variations of D(Ekin) within
d Ekin, but d Ekin  �Ekin so that the discrete energy levels can be approximated by the
continuous function D(Ekin).

Analogous considerations apply for a hole gas, the analogous concept being the density
of hole states.

EXAMPLE 2.5 Density of Electron States

Determine the density of states for a three-dimensional and isotropic electron gas, taking into
account that the relationship between the kinetic energy and the momentum is given by

Ekin = p2

2m∗

SOLUTION

Given that

(�x�px)(�y�py)(�z�pz) = h3

we can define the volume of a double electron state (“double” to include the spin factor) as:

�V = �x�y�z = h3

�px�py�pz
= h3

�Vp

where �px�py�pz = �Vp is by analogy the momentum volume of a double electron state; we
will refer to this concept as the unit of momentum volume. Given that there can be two electrons
per volume �V , the number of electron states per unit volume is

C = 2

�V
= 2

h3 �Vp

We need to determine the number of states per unit volume and unit energy, thus D = C/�Ekin.
This task requires us to express �Vp in terms of �Ekin. The unit of momentum volume (�Vp)
can be imagined as a cube whose sides are �px , �py, and �pz. This model, however, does not
include the special relationship that exists between the momentum as a vector and the energy
as a scalar: Ekin = p2/2m∗ = |p|2/2m∗. The important thing is that a single-energy value
relates to all the combinations of px , py , and pz that satisfy the condition |p|2 = p2

x + p2
y + p2

z .
This constant-energy situation can be visualized as a sphere with radius |p| = p: as long as the
position of a (px, py, pz) point is on the sphere, the energy remains constant. The energy does
change if the radius is changed by �p. Therefore, the suitable unit of momentum volume can be
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visualized as a sphere with radius p and thickness �p, meaning that �Vp is the difference of the
volumes of spheres with radii p + �p and p, respectively: �Vp = Vp+�p − Vp . This enables
Vp and �Vp to be related to Ekin and �Ekin in a straightforward way:

Vp = 4

3
πp3

Ekin = p2

2m∗ ⇒ p = (2m∗Ekin)
1/2

Vp = 4

3
π(2m∗Ekin)

3/2

dVp

d Ekin
= 4

√
2π(m∗)3/2 E1/2

kin

�Vp = 4
√

2π(m∗)3/2 E1/2
kin �Ekin

Therefore, the number of electron states per unit volume is

C = 2

h3 �Vp = 8
√

2π

h3 (m∗)3/2 E1/2
kin �Ekin

whereas the number of electron states per unit volume and unit energy (the density of electron
states) is

D = C

�Ekin
= 8

√
2π

h3 (m∗)3/2 E1/2
kin

EXAMPLE 2.6 Density-of-States Effective Mass

As described in Example 2.4, the kinetic energy of electrons in silicon is anisotropic:

Ekin = p2
x

2ml
+ p2

y

2mt
+ p2

z

2mt

with 〈100〉 symmetry, meaning that the equation applies to all the six equivalent directions (x-
axis aligned to [100], [1̄00], [010], [01̄0], [001], and [001̄]). More descriptively, the constant-
momentum sphere (|p|) is converted into six constant-energy ellipsoids with the elongations
aligned to each of the six equivalent 〈100〉 directions (refer to Fig. 2.14b). Knowing that
longitudinal and transverse effective masses are ml = 0.98m0 and mt = 0.19m0, respectively,
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determine the density-of-state effective mass of electrons in silicon, so that the density-of-states
equation derived in Example 2.5 can be used. Plot the density-of-state dependence on energy in
the energy range 0 to 1 eV, taking the energy values in steps of 0.01 eV.

SOLUTION

The general equation of an ellipsoid in the (px, py, pz) coordinate system is

p2
x

a2 + p2
y

b2 + p2
z

c2 = 1

where a, b, and c are the semiaxes of the ellipsoid, and (4π/3)abc is the volume of the ellipsoid.
Dividing the kinetic-energy equation by Ekin:

p2
x

2ml Ekin
+ p2

y

2mt Ekin
+ p2

z

2mt Ekin
= 1

we find that the semiaxes of the ellipsoid are: a = √
2ml Ekin and b = c = √

2mt Ekin. Therefore,
the unit of momentum volume, �Vp, can be determined as follows:

Vp = 4

3
πabc = 8

√
2π

3
(mlmt mt )

1/2 E3/2
kin

�Vp = 4
√

2π(mlmt mt )
1/2 E1/2

kin �Ekin

Given that there are M = 6 equivalent ellipsoids, the number of states per unit volume is

C = M
2

h3 �Vp = 8
√

2π

h3 M(mlmt mt )
1/2 E1/2

kin �Ekin

and the number of states per unit volume and unit energy (the density of states) is

D = 8
√

2π

h3 M(mlmt mt )
1/2︸ ︷︷ ︸

(m∗)3/2

E1/2
kin

which is identical to the isotropic equation when the density-of-states effective mass is defined as

m∗ = M2/3(mlmt mt )
1/3

For the case of silicon:

m∗ = 62/3 (0.98 × 0.19 × 0.19)1/3︸ ︷︷ ︸
0.328

m0 = 1.08m0
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Figure 2.15 The MATLAB plot for
Example 2.6.

The following MATLAB©R script will generate the data, perform the plotting, and label the axes
(the plot is given in Fig. 2.15):

>>h=6.626e-34;
>>meff=1.08∗9.1e-31;
>>q=1.6e-19;
>>Ekin=[0:0.01:1]∗q;
>>D=(8∗sqrt(2)∗pi/hˆ3)∗meffˆ(3/2)∗Ekin.ˆ(1/2);
>>plot(Ekin/q,D∗q)
>>xlabel('Kinetic Energy (eV)')
>>ylabel('Density of States (eVˆ{-1}mˆ{-3})')

2.4 POPULATION OF ELECTRON STATES: CONCENTRATIONS
OF ELECTRONS AND HOLES

To convert the density of electron states (the number of states per unit volume and unit
energy) into the number of electrons per unit volume and unit energy, we have to multiply
the density of states by the probability that each of the states is occupied by an electron,
f (E). To obtain the total concentration of free electrons, regardless of what their kinetic
energy may be, the product f (E)D(Ekin) has to be integrated across the entire range of
kinetic energies:

n0 =
∫ ∞

0
f (E)D(Ekin) d Ekin (2.56)
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The probability that an electron state (corresponding to an energy level E) is
occupied by an electron is an energy-dependent probability-density function, referred to
as the Fermi–Dirac distribution. This function is general: it incorporates the minimum-
energy principle12 and the Pauli exclusion principle,13 and is independent of the material
containing the considered electrons. The properties of a specific material are taken into
account by D(Ekin) when Eq. (2.56) is used to determine the concentration of free
electrons.

2.4.1 Fermi–Dirac Distribution
The aim of this section is to demonstrate how the Fermi–Dirac distribution incorporates
the minimum-energy and Pauli exclusion principles.

The minimum-energy principle has to be considered in the context of thermal
equilibrium. This means that the electrons would occupy the states corresponding to the
lowest possible energy levels at T = 0 K; but at higher temperatures, the free electrons (the
electrons in the electron gas) share the thermal energy of the crystal. The state of thermal
equilibrium is established and maintained by continuous exchanges of thermal energy
between the electrons and the crystal lattice, and to some extent between the electrons
themselves. This means that the free electrons continuously gain and give away thermal
energy, jumping up and falling down in terms of energy levels corresponding to the states
they occupy. Let us consider the transitions between two electron states, labeled by 1 and
2 so that E2 > E1 (E1 and E2 are the energy levels corresponding to the states 1 and
2, respectively). The probability for the transition of an electron from state 1 to state 2 is
smaller than the probability for the transition from state 2 to state 1 (P12 < P21). Moreover,
P12 decays with an increase in the energy difference (E2− E1), but increases as the thermal
energy (kT ) increases. Assuming exponential dependencies, P12 can be expressed as

P12 = P21 exp

(
− E2 − E1

kT

)
(2.57)

where k is the Boltzmann constant and T is the absolute temperature (temperature
expressed in Kelvins).14 This equation shows that it is increasingly less likely that an
electron will make a transition from state 1 to state 2 when the temperature is decreased or
the energy difference E2 − E1 is increased.

Importantly, the probabilities P12 and P21 are for specific cases. It is inherently
assumed that state 1 is occupied and state 2 is empty when the transition from state 1

12The minimum-energy principle is analogous to the maximum entropy principle, used later in this
section (Example 2.9) to derive the Fermi–Dirac distribution.
13Particles obeying the Pauli exclusion principle, and consequently the Fermi–Dirac distribution,
are called fermions. Other types of particles, such as photons, follow different types of energy
distribution.
14The exponential dependence for the decrease with E2 − E1 and the increase with kT appears the
most logical. In Example 2.9, the Fermi–Dirac distribution is derived without this kind of intuitive
assumption.
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to state 2 is considered (P12). Quite clearly, there can be no electron transition from state
1 if state 1 is empty. In addition, there can be no transition to state 2 if state 2 is occupied.
This is because of the Pauli exclusion principle: if an electron state is occupied, no other
electron can move to this state. Introducing the probabilities that state 1 is occupied ( f1)
and that state 2 is empty (1− f2), the probability for the transition of an electron from state
1 to state 2 can be generalized as follows:

P
′
12 = P12 f1(1 − f2) (2.58)

Likewise, the probability that an electron will move from state 2 to state 1 is equal to the
probability that state 2 is occupied ( f2), times the probability that state 1 is empty (1− f1),
and times the probability for this transition when the conditions of occupied state 2 and
empty state 1 are satisfied (P21):

P
′
21 = P21 f2(1 − f1) (2.59)

In thermal equilibrium, the average occupancies of states 1 and 2 do not change over
time. This is possible if the number of transitions from state 1 to 2 is equal to the number
of transitions from state 2 to 1, P

′
12 = P

′
21:

P12 f1(1 − f2) = P21 f2(1 − f1) (2.60)

At this stage we see that f1(1− f2) has to be larger than f2(1− f1) to compensate the lower
probability for transition from state 1 to state 2 (P12 < P21). The condition f1(1 − f2) >

f2(1 − f1) means that f1 > f2—a state corresponding to a lower energy level is more
likely to be occupied by an electron.

From Eqs. (2.57) and (2.60), we obtain

f1

1 − f1
exp(E1/kT ) = f2

1 − f2
exp(E2/kT ) (2.61)

According to this result, the probability f that an arbitrary state, corresponding to energy
level E , is occupied by an electron is given by

f

1 − f
exp(E/kT ) = A (2.62)

where A is a constant. Therefore,

f = 1

1 + (1/A) exp(E/kT )
(2.63)

This equation shows that the probability f decreases with energy. The decrease, however,
is more complex than the simple exp(−E/kT ) dependence [Eq. (2.57)] due to the
involvement of the Pauli exclusion principle in Eqs. (2.58) and (2.59). The constant A
can be determined so that f = 0.5 for E = EF , where EF is the maximum energy level
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Figure 2.16 Fermi–Dirac distributions
for electrons (solid lines) and holes
(dashed lines), plotted on (a) linear and
(b) logarithmic axes.

corresponding to filled electron states at T = 0 K. We will refer to EF as the Fermi level.15

It can easily be seen from Eq. (2.62) that A = exp(EF/kT ) for f = 0.5 and E = EF .
With this value for A, Eq. (2.63) takes the final form of the Fermi–Dirac distribution:

f = 1

1 + e(E−EF )/kT
(2.64)

The Fermi–Dirac distribution for the holes, current carriers of the second type, can be
obtained as the probability that an electron state is empty:

fh = 1 − f = 1

1 + e(EF −E)/kT
(2.65)

Equations (2.64) and (2.65) are plotted with solid and dashed lines, respectively, in
Fig. 2.16. It can be seen that the electron and hole probabilities are completely symmetrical,
always giving 1 when added to each other. The solid line for 0 K shows that f is equal to
1 for E < EF and is equal to 0 for E > EF . Because f should express that at 0 K the
probability of having an electron in the conduction band is equal to 0, while it is equal to 1
for the valence band, it is obvious that EF has to be somewhere between the conduction and
the valence bands, therefore in the energy gap. This is not in a contradiction with the fact
that there are no allowed energy states in the energy gap, as EF is a reference energy level
only. In spite of the fact that f = 0.5 at E = EF , there will be no electrons with E = EF

because the electron concentration is obtained when the probability f is multiplied by the
density of states [Eq. (2.56)], which is zero in the energy gap.

15Conceptually, the Fermi level EF is not different from the Fermi energy EF0, used in Eq. (2.32).
The differences in the definitions and the values of EF and EF0 are due to different reference levels.
The Fermi level is defined with respect to the energy of a free electron in vacuum; therefore, EF < 0
for electrons in solids, because these electrons need to gain energy to reach the zero level (free
electrons in vacuum). The Fermi energy EF0 > 0 is defined with respect to the bottom of a potential
well that models the trapping of free electrons in a solid material.
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EXAMPLE 2.7 Probabilities of Finding Electrons and Holes at EC and EV
(a) Assuming that the Fermi level is at the midgap in the intrinsic silicon, calculate the

probability of finding an electron at the bottom of the conduction band (E = EC ) for
three different temperatures: 0 K, 20◦C, and 100◦C.

(b) How are these probabilities related to the probabilities of finding a hole at E = EV ,
which is the top of the valence band?

SOLUTION

(a) To calculate these probabilities, the Fermi–Dirac distribution is used:

f (EC) = 1/
[
1 + e(EC−EF )/kT ]

where EC − EF = 0.56 eV, which is half the value of the energy gap Eg = 1.12 eV. For
the case of 0 K, f (EC) = 1/

[
1 + e∞] = 0. For 20◦C the following result is obtained:

f (EC) = 1/
[
1 + e0.56/(8.62×10−5(20+273.15))

] = 2.3744692 × 10−10

In a similar way, f (EC) is determined for 100◦C, the result being 2.7476309 × 10−8.
(b) The probability of finding a hole at E = EV is equal to the probability of finding an

electron at EC in the case of an intrinsic semiconductor (based on the assumption from
the text of the example that EF is at the midgap).

EXAMPLE 2.8 Two-Dimensional Electron Gas (2DEG)

The density of states in two-dimensional systems (such as the channel in high-electron-mobility
transistors) is given by (Problem 2.15):

D = 4π

h2 m∗

Determine the dependence of the number of free electrons per unit area (n2D) on the Fermi-level
position with respect to the bottom of the two-dimensional subband (E1).

SOLUTION

This example enables a straightforward application of Eq. (2.56), adapted for the areal density of
electrons. The free electrons are those at the energy levels E > E1, where E − E1 is their kinetic
energy. Therefore,

n2D =
∫ ∞

0
D f (E) d Ekin = D

∫ ∞

0

d Ekin

1 + e(Ekin+E1−EF )/kT

n2D = DkT ln
[
1 + e(EF −E1/kT )

]
= 4πm∗kT

h2 ln
[
1 + e(EF −E1)/kT

]
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*EXAMPLE 2.9 Derivation of Fermi–Dirac Distribution
from the Maximum-Entropy Principle

Entropy is a quantity that characterizes the degree of uncertainty of random events, such as
population of electron states. Labeling a specific electron state by i , the probability that the state
is occupied by pi,1 = fi , and the probability that the state is empty by pi,2 = (1 − fi ), the
entropy (Si ) of this set of events is given by

Si =
2∑

j=1

pi, j ln pi, j = fi ln fi + (1 − fi ) ln(1 − fi ) (2.66)

If we consider a system of M electron states, the entropy of this system is the sum of the entropies
of the individual states:

S =
M∑

i=1

Si =
M∑

i=1

fi ln fi + (1 − fi ) ln(1 − fi ) (2.67)

Spontaneous events occur in a way that maximizes the entropy of a system (this maximum-
entropy principle is analogous to the minimum-energy principle). Occupancy of electron states
is spontaneous with some restrictions (conditions): (1) no more than one electron can occupy a
single state (this is the Pauli exclusion principle, where the factor of electron spin is taken into
account in the count of the number of states), (2) the number of electrons (N) is fixed, and (3)
the energy of the system of electrons (Esystem) is fixed. These conditions can be expressed by the
following two equations:

N =
M∑

i=1

fi (2.68)

Esystem =
M∑

i=1

Ei fi (2.69)

where Ei is the energy level corresponding to the i th state.
Obtain the distribution of electron occupancy ( fi ) so that the entropy S is maximum under

the conditions given by Eqs. (2.68) and (2.69).

SOLUTION

The method of Lagrange multipliers can be used to find the maximum of a function under
specified conditions. According to this method, the conditions are incorporated in a newly defined
function, H ( f ):

H ( f ) =
M∑

i=1

[ fi ln fi + (1 − fi ) ln(1 − fi )] − λ1

M∑
i=1

fi − λ2

M∑
i=1

Ei fi =
M∑

i=1

hi ( fi )
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where λ1 and λ2 are constants to be determined from the conditions given by Eqs. (2.68) and
(2.69). With this, the problem is reduced to maximizing H ( f ). It is known from the calculus
of variations that the function f has to satisfy the Euler–Ostrogradski equation so that the first-
order variation of H ( f ) is zero [H ( f ) has either maximum or minimum]. In this simple case,
the Euler–Ostrogradski equation is simple: the first derivative of hi ( fi ) equal to zero,

d

d fi
[ fi ln fi + (1 − fi ) ln(1 − fi ) − λ1 fi − λ2 Ei fi ] = 0 ⇒ fi = 1

1 + exp(λ1 + λ2 Ei )

The Lagrange constants λ1 and λ2 should be determined so that the function fi satisfies the con-
ditions given by Eqs. (2.68) and (2.69). Constants λ1 and λ2 can be transformed into a different
set of mathematical constants that have physical meaning:

λ1 = − EF

kT

λ2 = − 1

kT

where EF is the Fermi level, and kT is the thermal energy. With this, the function fi becomes

fi = 1

1 + exp [(Ei − EF )/kT ]
(2.70)

whereas the conditions [Eqs. (2.68) and (2.69)] take the following forms:

N =
M∑

i=1

1

1 + exp [(Ei − EF )/kT ]
(2.71)

Esystem =
M∑

i=1

Ei

1 + exp [(Ei − EF )/kT ]
(2.72)

Equation (2.70) is the Fermi–Dirac distribution function. Equation (2.71) shows that the Fermi
level is (mathematically) a Lagrange constant that is set by the number of electrons in the
considered system. Equation (2.72) shows that the thermal energy is related to the total energy
of the system of N electrons.

2.4.2 Maxwell–Boltzmann Approximation
and Effective Density of States

The logarithmic plots of f and fh , given in Fig. 2.16b by the solid and dashed lines,
respectively, more clearly express the electron probabilities for E > EF (toward the
conduction band) and the hole probabilities for E < EF (toward the valence band).



2.4 Population of Electron States 79

The linear segments in these semilogarithmic plots indicate the regions of practically
exponential energy dependencies of f and fh . For the case of electrons, the region of
exponential energy dependence is for energies above the Fermi level. This is so because
the condition E − EF  kT leads to exp [(E − EF )/kT ]  1, and by neglecting 1 in the
denominator of Eq. (2.64) we obtain

f (E) ≈ e−(E−EF )/kT (2.73)

The removal of 1 from the denominator of the Fermi–Dirac distribution effectively means
that the Pauli exclusion principle is removed. So, in the region where 1 can be neglected,
the Pauli exclusion principle is not pronounced. This region is for E − EF  kT , where
most of the electron states are unoccupied, so there is almost no “competition” for electron
states—the action of the Pauli principle is avoided. Because Eq. (2.73) does not involve
the Pauli exclusion principle, it applies to classical particles and is known as the Maxwell–
Boltzmann distribution.

Analogously, the Fermi–Dirac distribution for holes can be approximated by the
Maxwell–Boltzmann distribution for EF−E  kT . In this region, exp [(EF − E)/kT  1],
so Eq. (2.65) can be approximated by

fh(E) ≈ e−(EF −E)/kT (2.74)

The simplification achieved by the Maxwell–Boltzmann approximation may not seem
significant, but its full importance becomes obvious when the distribution function is
combined with the density of states to solve the integral in Eq. (2.56) for the electron
concentration. For the case of three-dimensional density of states, there is no primitive
function for the integral in Eq. (2.56) if the Fermi–Dirac distribution is used.16 However,
this integral can be solved with the Maxwell–Boltzmann distribution. Noting that E =
EC + Ekin,17 and inserting D(Ekin) from Example 2.5 and f (E) = f (EC + Ekin) as given
by Eq. (2.73), we obtain

n0 =
∫ ∞

0
f (EC + Ekin)D(Ekin) d Ekin

= 8
√

2π(m∗)3/2

h3 e−(EC−EF )/kT
∫ ∞

0
E1/2

kin e−Ekin/kT d Ekin︸ ︷︷ ︸√
π(kT )3/2/2

(2.75)

Therefore, the concentration of free electrons can be expressed in the following simple
way:

n0 = NC e−(EC−EF )/kT (2.76)

16This is the reason for using the two-dimensional density of states for the straightforward illustration
in Example 2.8.
17Refer to Section 2.2.3 for the relationship between the total energy (E) and the kinetic energy
(Ekin) of electrons in the conduction band.



80 CHAPTER 2 THE ENERGY-BAND MODEL

where NC is a temperature-dependent material constant,

NC = 4
√

2(πm∗kT )3/2

h3 (2.77)

The term exp [−(EC − EF )/kT ] in Eq. (2.76) represents the probability of finding an
electron at the bottom of the conduction band (EC ) according to the Maxwell–Boltzmann
distribution. If we assume that the density of states at (and close to) the bottom of the
conduction band is NC , then the concentration of electrons at (and close to) the bottom of
the conduction band is equal to the density of states times the probability that each of these
states is occupied:

n0 = NC f (EC) = NC e−(EC−EF )/kT (2.78)

which is identical result to the one given by Eq. (2.76). This gives a specific meaning to
the constant NC in Eq. (2.76). NC is an effective density of states, allowing us to assume
that all the electrons in the conduction band are at energy levels that are very close to the
bottom of the conduction band.

Analogously, the effective density of states in the valence band is labeled by NV .
Given that the probability of finding a hole at E = EV is equal to exp [−(EF − EV )/kT ],
according to Eq. (2.74), the concentration of holes is obtained as

p0 = NV e−(EF −EV )/kT (2.79)

As can be seen from Eq. (2.77), the effective density of states NC and NV are
temperature-dependent parameters for a given semiconductor. Their room-temperature
values for the three most common semiconductors are given in Table 2.2. The room-
temperature value for NC in silicon is 2.86 × 1019 cm−3, which means the probability
of finding an electron at the bottom of the conduction band in the intrinsic silicon is
ni/NC = 1.02 × 1010/2.86 × 1019 = 3.6 × 10−10. In the case of a moderately doped
N-type silicon (say, n0 = ND = 2.86 × 1016 cm−3), the probability of finding an electron
at the bottom of the conduction band is n0/NC = 0.001. One in a thousand may seem to be
a small probability in everyday life, but it is very significant in terms of the electron-state
occupancy in semiconductors.

It should be stressed again that Eqs. (2.76) and (2.79) are based on the Maxwell–
Boltzmann approximation of the Fermi–Dirac distribution. In the case of electrons, the
approximation can be used for E − EF  kT . For the electrons at the bottom of the
conduction band, this means EC − EF  kT . In other words, Eq. (2.76) can be used when
the Fermi level (EF ) is well below the bottom of the conduction band. In the case of holes,
Eq. (2.79) can be used when EF is well above the top of the valence band. These conditions
are not satisfied in heavily doped semiconductors when there are so many carriers in the
bands that they start competing for empty states (the action of the Pauli exclusion principle
becomes pronounced). Heavily doped semiconductors, where the Maxwell–Boltzmann
approximation cannot be used, are also referred to as degenerate semiconductors. Suitable
approximations for the concentration of electrons in a heavily doped semiconductor are
derived in Example 2.11.
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TABLE 2.2 Effective Density of States at 300 K

Effective Density of States (cm−3)

Conduction Band Valence Band
Semiconductor NC = ACT 3/2 NV = AVT 3/2

Silicon 2.86 × 1019 3.10 × 1019

Gallium arsenide 4.7 × 1017 7.0 × 1018

Germanium 1.0 × 1019 6.0 × 1018

EXAMPLE 2.10 Energy Distribution of Electron Concentration

As shown in Example 2.5, the density of states in the conduction band of silicon is given by

D = 8
√

2π

h3 (m∗)3/2 E1/2
kin

where Ekin = E − EC and m∗ = 1.08m0 (refer to Example 2.6 for the value of the
density-of-state effective mass). Plot the energy distributions of electron concentration for the
following two positions of the Fermi level EF : EC − EF = 5kT and EC − EF = 0. Assume
room temperature (kT = 0.02585 eV) and use both the Fermi–Dirac distribution and the
Maxwell–Boltzmann approximation for the probability of state occupancy. Take the energy
range between 0 and 200 meV and plot the energy distribution of electron concentration on a
logarithmic axis.

SOLUTION

The energy distribution of electron concentration shows how the value of the fraction of electron
concentration (dn0), that is within a narrow energy range (d E), changes when the narrow energy
range is centered at different energy levels E . We will label it by g(E) = dn0/d E because it
expresses the concentration of electrons per unit energy. It is closely related to the density of
states (D), so let us compare the definitions for g = dn0/d E and D:

1. D, the density (concentration) of electron states per unit energy,
2. g = dn0/d E , the concentration of electrons (occupied states) per unit energy.

Therefore, D is multiplied by the occupancy probability ( f ) to obtain dn0/d E :18

dn0

d E
= D(E) f (E)

18Mathematically, this result can be obtained by a direct differentiation of Eq. (2.56).
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Figure 2.17 The MATLAB plot
for Example 2.10.

where

f (E) =
{

1/
[
1 + e(E−EF )/kT

]
Fermi–Dirac distribution

e−(E−EF )/kT Maxwell–Boltzmann approximation

Taking into account the fact that the total energy E is the sum of the potential energy at the
bottom of the conduction band (EC ) and the kinetic energy (Ekin), the occupancy-probability
functions can be expressed as

f (E) =
{

1/
[
1 + e(Ekin+EC −EF )/kT

]
Fermi–Dirac distribution

e−(Ekin+EC −EF )/kT Maxwell–Boltzmann approximation

Now we can perform the calculations and the plotting (the plot is given in Fig. 2.17):

>>q=1.6e-19;
>>h=6.626e-34;
>>kT=0.02585;
>>meff=1.08∗9.1e-31;
>>Ekin=[0:0.004:0.2]∗q;
>>D=(8∗sqrt(2)∗pi/hˆ3)∗meffˆ(3/2)∗Ekin.ˆ(1/2);
>>g1mb=D.∗exp(-(Ekin/q+5∗kT)/kT);
>>g1fd=D./(1+exp((Ekin/q+5∗kT)/kT));
>>g2fd=D./(1+exp((Ekin/q+0)/kT));
>>g2mb=D.∗exp(-(Ekin/q+0)/kT);
>>hold on;
>>plot(Ekin/q,g1fd∗q,'-b')
>>plot(Ekin/q,g1mb∗q,'ob')
>>plot(Ekin/q,g2fd∗q,'--k')
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>>plot(Ekin/q,g2mb∗q,'squarek')
>>hold off;
>>set(gca,'YScale','log')
>>xlabel('Kinetic Energy (eV)')
>>ylabel('g(E)=dn/dE (eVˆ{-1}mˆ{-3})')

The lower curves in Fig. 2.17 are for the case of EC − EF = 5kT . We can see that there
is no observable difference between the calculations based on the Fermi–Dirac and Maxwell–
Boltzmann distributions. The upper curves are for EC − EF = 0, and we can see that
the Maxwell–Boltzmann distribution (the square symbols) overestimates the concentration of
electrons. In general, the distribution of electron concentration starts from zero at Ekin = 0
(because the density of states in a 3D system is zero at EC ) and then rises rapidly; after reaching
its maximum value, it starts dropping exponentially (straight-line segments of the semilog plots)
because of approximately exponential dependence of f (E).

EXAMPLE 2.11 Heavily Doped Semiconductors

In heavily doped semiconductors, the Fermi level is very close to the energy levels in the bands
and the state-occupancy approximation by the Maxwell–Boltzmann distribution is no longer
accurate. For an N-type semiconductor, this occurs when the condition exp [(E − EF )/kT ]  1
is no longer satisfied because the bottom of the conduction band is too close to the Fermi level
(EC − EF is comparable to kT ). In this case, the Fermi–Dirac distribution has to be used:

n0 =
∫ ∞

0
D(Ekin) f (E) d Ekin = 8

√
2π

h3 (m∗)3/2
∫ ∞

0

E1/2
kin d Ekin

1 + exp [(Ekin + EC − EF )/kT ]

(a) Express the electron concentration n0 in terms of the effective density of states NC and
the Fermi integral, given by

F1/2(η) =
∫ ∞

0

x1/2 dx

1 + ex−η

(b) Derive the electron-concentration equation for heavily doped semiconductors using the
following approximation for the Fermi integral F1/2:

F1/2 ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
π

2
eη for −∞ < η ≤ −1

√
π

2

1

1/4 + e−η
for −1 < η < 5

2

3
η3/2 for 5 ≤ η < ∞
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SOLUTION

(a) Taking x = Ekin/kT , dx = d Ekin/kT , and η = (EF − EC)/kT , we obtain

n0 =
∫ ∞

0
D(Ekin) f (E) d Ekin = 8

√
2π

h3 (m∗kT )3/2
∫ ∞

0

x1/2 dx

1 + ex−η︸ ︷︷ ︸
F1/2

NC is given by Eq. (2.77). Therefore,

n0 = 2√
π

NC F1/2

(b)

n0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

NC e−(EC−EF )/kT for
EF − EC

kT
≤ −1

NC

1/4 + e−(EF −EC )/kT
for −1 <

EF − EC

kT
< 5

4

3
√

π
NC

(
EF − EC

kT

)3/2

for
EF − EC

kT
≥ 5

2.4.3 Fermi Potential and Doping
Equations (2.76) and (2.79) clearly account for the influence of temperature on the
concentration of free electrons and holes. It is less obvious how these equations take into
account the influence of doping level, which is even more important because doping is
used to control the concentration of electrons and holes in semiconductors. As explained in
Section 1.2.2, in an N-type semiconductor, the concentration of electrons is approximately
equal to the donor-atom concentration (n0 ≈ ND), and similarly p0 ≈ NA in P-type
semiconductors. The fact that n0 is much higher in an N-type semiconductor than in the
intrinsic semiconductor means that the occupancy of the states in the conduction band
has to be higher. Figure 2.18a and 2.18b shows that this is possible if EC is closer to the
Fermi level than in the case of intrinsic semiconductor. Indeed, if EC − EF in Eq. (2.76)
is smaller than in the intrinsic semiconductor, then the concentration n0 would exceed
the intrinsic concentration. Analogously, EV moves closer to the Fermi level to express a
higher occupancy of the valence band by holes in a P-type semiconductor (Fig. 2.18c). The
position of the energy bands (EC and EV ) with respect to the Fermi level in the equations
for electron and hole concentrations expresses the doping type and level.

Using the fact that n0 ≈ ND in N-type semiconductors and p0 ≈ NA in P-type semi-
conductors, the position of EC and EV with respect to the Fermi level is obtained from
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Figure 2.18 Position of the Fermi level expresses doping type and level. (a) Intrinsic
semiconductor. (b) N-type semiconductor. (c) P-type semiconductor.

Eqs. (2.76) and (2.79) as

EC − EF = kT ln
NC

ND
N type (2.80)

EV − EF = −kT ln
NV

NA
P type (2.81)

Equations (2.80) and (2.81) are correct for doping levels that are lower than the effective
density of states; that is, ND < NC and NA < NV . When ND > NC , EC approaches the
Fermi level and the exponential approximation given by Eq. (2.73) is no longer good, so
the complete Fermi–Dirac distribution has to be used; the electron gas becomes degenerate.
Analogously, the hole gas becomes degenerate when NA exceeds the density of states NV .
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The semilogarithm plots of Fig. 2.18b show that the increase in the occupancy of the
conduction-band levels by electrons (EC closer to EF ) is accompanied by a reduction in
the occupancy of the valence-band levels by holes (EV further from EF ). This is due to the
effect of electron and hole recombination discussed in Section 1.2.4. Using Eqs. (2.76) and
(2.79), we can now easily show that the product of electron and hole concentrations np is
indeed a constant, thus independent of the doping level (position of the bands with respect
to the Fermi level):

n0 p0 = NC NV e−(EC−EV )/kT (2.82)

Moreover, knowing that n0 p0 = n2
i [Eq. (1.6)], we can now express the intrinsic carrier

concentration ni in terms of the energy gap of the material Eg = EC − EV :

ni =
√

NC NV e−Eg/2kT (2.83)

Equation (2.83) shows in its own way that the materials with large energy gaps Eg appear
as insulators (Fig. 2.11), because the intrinsic concentration of the carriers is fairly small.

Equations (2.80) and (2.81) and Fig. 2.18 show how the doping level sets the position
of EC (with respect to the Fermi level) in the case of N-type doping and the position of EV

in the case of P-type doping. It will prove very useful to define the position of the energy
bands by an energy level that is the same for both N-type and P-type doping. The position
of the Fermi level in the intrinsic semiconductor is the best choice. Labeling the intrinsic
Fermi-level position by Ei , we can express its position with respect to the Fermi level
position in a doped semiconductor by the Fermi potential qφF , defined as

qφF = Ei − EF (2.84)

This way, qφF = 0 for the intrinsic case, qφF < 0 for N-type doping, and qφF > 0 for
P-type doping (Fig. 2.19). Note that qφF is in the units of energy (eV) whereas φF is in
the units of voltage (V).

Equations (2.76) and (2.79) can be transformed to express the electron and hole
concentrations in terms of the Fermi potential:

n0 = NC e−(EC−EF )/kT = NC e−(EC −Ei )/kT︸ ︷︷ ︸
n0=ni

e−(Ei −EF )/kT = ni e
−qφF /kT (2.85)

p0 = NV e−(EF −EV )/kT = NV e−(Ei−EV )/kT︸ ︷︷ ︸
p0=ni

e(Ei−EF )/kT = ni e
qφF /kT (2.86)

EC

EF

Ei

EV

(a)

qfF 
 0

EC

Ei

EF
EV

(b)

qfF � 0

Figure 2.19 Fermi potential (qφF) in (a) N-type and
(b) P-type semiconductors.
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When the Fermi-level position is set by N-type doping, the condition n0 ≈ ND and
Eq. (2.85) can be used to determine the Fermi potential

qφF = −kT ln
ND

ni
(2.87)

In the case of P-type doping, the Fermi potential can be calculated from the analogous
equation:

qφF = +kT ln
NA

ni
(2.88)

EXAMPLE 2.12 Intrinsic Fermi-Level Position

The energy gap of GaAs is Eg = 1.42 eV, and experimental values for the effective densities of
states at room temperature are NC = 4.7 × 1017 cm−3 and NV = 7.08 × 1018 cm−3. Determine
the room-temperature position of the Fermi level with respect to EV in intrinsic GaAs.

SOLUTION

The intrinsic concentrations of electrons and holes are equal,

n0 = p0 = ni

where n0 and p0 are determined by the effective density of states in the conduction and valence
bands, respectively, and the position of the Fermi level [Eqs. (2.76) and (2.79)]:

n0 = NC e−(EC−EF )/kT

p0 = NV e−(EF −EV )/kT

If NC and NV were equal, the midgap position of the Fermi level would provide the condition for
n = p. However, NV > NC in GaAs, so the intrinsic position of the Fermi level will be closer to
the conduction band to compensate for the lower density of states in the conduction band:

NC e−(EC−EF )/kT = NV e−(EF −EV )/kT

NC

NV
= e(EC+EV −2EF )/kT

EC + EV − 2EF = kT ln
NC

NV

Eg = EC − EV

Eg − 2(EF − EV ) = kT ln
NC

NV

EF − EV = Eg − kT ln(NC /NV )

2

EF − EV = 0.745 eV > Eg/2
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EXAMPLE 2.13 Doping and Fermi Level

If the donor concentration in N-type silicon is ND = 1015 cm−3, calculate the probability of
finding an electron at E = EC and determine the probability of finding a hole at E = EV at
20◦C. Compare these results to the results of Example 2.7.

SOLUTION

As the doping shifts the bands, it is important to first determine the position of EC with respect
to EF . Using Eq. (2.80), one obtains

EC − EF = kT ln(NC /ND) = 8.62 × 10−5(20 + 273.15) ln(2.86 × 1019/1015) = 0.259 eV

When this value is used in the Fermi–Dirac distribution, the following result is obtained:
f (EC) = 3.5 × 10−5. The probability of finding a hole at E = EV is

fh(EV ) = 1 − 1/
[
1 + e(EV −EF )/kT ] = 1/

[
1 + e(EF −EV )/kT ]

EF − EV is determined in the following way:

EF − EV = EC − EV − (EC − EF ) = Eg − (EC − EF ) = 1.12 − 0.259 = 0.861 eV

Using this result, the probability of finding a hole at E = EV is calculated as fh(EV ) = 1.6 ×
10−15.

Comparing these results to the results obtained in Example 2.7 for the case of the intrinsic
silicon, we see that the probability of having electrons in the conduction band is much higher in
the N-type semiconductor (3.5×10−5/2.4×10−10 = 145, 833 times). The probability of having
holes in the valence band, however, is much smaller.

EXAMPLE 2.14 Work Function and Doping

For metals, the work function is defined as the energy needed to liberate an average electron—
in other words, the energy needed to bring an electron from the Fermi level to the level of
a free electron in vacuum (vacuum level). Generalizing this definition for semiconductors,
with no electrons at the Fermi level when it appears in the energy gap, the work function
can be defined as the negative value of the Fermi-level position with respect to the vacuum
level. Determine the work functions of N-type and P-type silicon samples with equal doping
levels: ND = NA = 1016 cm−3. The difference between the vacuum level and the bottom
of the conduction band (the electron affinity) in silicon is qχs = 4.05 eV, the energy gap is
Eg = 1.12 eV, and the effective densities of states in the conduction and valence bands are
NC = 2.86 × 1019 cm−3 and NV = 3.1 × 1019 cm−3.
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SOLUTION

For the case of N-type silicon,

ND = NC e−(EC−EF )/kT

EC − EF = kT ln
NC

ND
= 0.21 eV

qφs = qχs + (EC − EF ) = 4.05 + 0.21 = 4.26 eV

For the case of P-type silicon,

NA = NV e−(EF −EV )/kT

EF − EV = kT ln
NV

NA
= 0.21 eV

qφs = qχs + Eg − (EF − EC) = 4.05 + 1.12 − 0.21 = 4.96 eV

EXAMPLE 2.15 Occupancy of Doping States

When applied to the energy levels of donors and acceptors (ED and E A), the Fermi–Dirac
distribution function involves a degeneracy factor g:

f = 1

1 + 1

g
e(ED,A−EF )/kT

A commonly used value for the degeneracy factor for electrons at the donor levels is g = 2,
whereas the degeneracy factor for the electrons at the acceptor states is normally taken as g =
1/4. The reason for the appearance of the degeneracy factor in the Fermi–Dirac distribution is
explained in Section 10.1.5.

(a) Derive equations for the fraction of donor states occupied by electrons and the fraction
of acceptor states occupied by holes.

(b) Given that the doping level of phosphorus in silicon is 0.045 eV below the bottom of
the conduction band, calculate the percentage of ionized phosphorus atoms at 300 K
if the phosphorus concentration is ND = 1015 cm−3. Based on the result, comment
on the validity of the approximation that practically all donors are ionized at room
temperature. Assume that EC − EF  kT and ED − EF  kT . The effective density
of states in the conduction band is NC = 2.86 × 1019 cm−3.
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SOLUTION

(a) The donor atoms are assumed to be sufficiently apart from each other that they all have
the same energy level (the electrons associated with the donor states are isolated from
each other). The Fermi–Dirac distribution f applied to the level ED gives the probability
that a state with this energy level is occupied by an electron. This probability can also
be expressed as nD/ND , where nD is the concentration of donor states occupied by
electrons and ND is the total concentration of the donor states (equal to the concentration
of donor atoms). Therefore,

nD

ND
= 1

1 + 1

2
e(ED−EF )/kT

Analogous equation for the case of holes occupying acceptor levels is

pA

NA
= fh

where fh is the probability that an acceptor state is occupied by a hole:

fh = 1 − f = 1 − 1

1 + 1

g
e(E A−EF )/kT

= 1

1 + ge(EF −E A)/kT

Therefore,

pA

NA
= 1

1 + ge(EF −E A)/kT

(b) Neglecting the thermally generated electrons, we can write

ND = n0 + nD

where n0 is the concentration of electrons in the conduction band:

n0 = NC e−(EC −EF )/kT

and nD is the concentration of electrons remaining on the donor levels:

nD = ND

1 + 1

2
e(ED−EF )/kT

≈ 2NDe−(ED−EF )/kT
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The percentage of the ionized donors is 100 × n0/ND = 100 × n0/(n0 + nD):

n0

ND
= NC e−(EC−EF )/kT

NC e−(EC−EF )/kT + 2NDe−(ED−EF )/kT
= 1

1 + 2
ND

NC
e(EC−ED)/kT

= 0.9996

100 × n0/ND = 99.96%. The error of the assumption that all the donor atoms are
ionized is less than 0.05% in this case.

EXAMPLE 2.16 Partial Doping Ionization

(a) Express the fraction of the ionized donors (n0/ND) as a function of the donor depth
(EC − ED) without the assumption ED − EF  kT (this is a more general case that
applies to both shallow and deep donors at different temperatures, which is not the case
with the equation derived in Example 2.15), while maintaining the assumption of a
nondegenerate semiconductor (EC − EF  kT ).

(b) Based on the derived equation, find the condition that corresponds to 100% ionization.
(c) Simplify the derived equation for deep donor levels and/or low temperatures.
(d) Calculate the percentage of ionized phosphorus atoms in silicon at 300 K for the doping

level of ND = 5 × 1018 cm−3. The donor level of phosphorus in silicon is 0.045 eV
below the bottom of the conduction band.

SOLUTION

(a) Labeling the concentration of occupied (neutral) donors by nD and noting that the con-
centration of ionized donors is equal to the electron concentration n0=NC exp [− (EC−
EF )/kT ], we have

nD = ND

1 + (1/g)e(ED−EF )/kT

n0

ND
= n0

n0 + nD
= n0

n0 + ND
1+(1/g) exp[(ED−EF )/kT ]

= n0 + (n0/g)e(ED−EF )/kT

n0 + (n0/g)e(ED−EF )/kT + ND

= ge−(ED−EF )/kT + 1

ge−(ED−EF )/kT + 1 + g(ND/n0)e−(ED−EF )/kT

= 1 + ge−(ED−EF )/kT

1 + g(1 + ND/n0)e−(ED−EF )/kT
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= 1 + ge(EC−ED)/kT e−(EC−EF )/kT

1 + g(1 + ND/n0)e(EC−ED)/kT e−(EC−EF )/kT

= 1 + g(n0/NC )e(EC−ED)/kT

1 + g(1 + ND/n0)(n0/NC )e(EC−ED)/kT

=
NC
ND

+ g n0
ND

e(EC−ED)/kT

NC
ND

+ g n0
ND

e(EC−ED)/kT + ge(EC−ED)/kT

n0

ND

NC

ND
+ g

(
n0

ND

)2

e(EC−ED)/kT + g
n0

ND
e(EC−ED)/kT − NC

ND
− g

n0

ND
e(EC−ED)/kT = 0

ge(EC−ED)/kT
(

n0

ND

)2

+ NC

ND

n0

ND
− NC

ND
= 0

g
ND

NC
e(EC−ED)/kT

(
n0

ND

)2

+ n0

ND
− 1 = 0

n0

ND
=

−1 +
√

1 + 4g ND
NC

e(EC−ED)/kT

2g ND
NC

e(EC−ED)/kT

(b) Consider the following condition:

x = 4g
ND

NC
e(EC−ED)/kT � 1

Taking into account that
√

1 + x ≈ 1 + x/2 for small x , we obtain

n0

ND
≈

−1 + 1 + 2g ND
NC

e(EC−ED)/kT

2g NC
ND

e(EC−ED)/kT
= 1

The ionization fraction is 100% for x � 1, which corresponds to shallow donor levels
(small EC − ED), high temperatures, and low/moderate doping levels.

(c) For the case of deep levels or low temperatures,

x = 4g
ND

NC
e(EC−ED)/kT  1

n0

ND
=

√
4g ND

NC
e(EC−ED)/kT

2g ND
NC

e(EC−ED)/kT
≈

√
NC

gND
e−(EC−ED)/2kT
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In this case, the ionization fraction increases exponentially with the temperature, the
activation energy being E A = (EC − ED)/2. This means that if the activation energy
for the increase of the free-electron concentration is measured, the depth of the donor
level can be calculated as EC − ED = 2E A.

(d) In this case,

x = 4g
ND

NC
e(EC−ED)/kT = 4 × 2 × 5 × 1018

2.86 × 1019 e0.045/0.02585 = 7.97

n0

ND
= −1 + √

1 + x

x/2
= 0.500

The ionization fraction is 50.0%.

2.4.4 Nonequilibrium Carrier Concentrations
and Quasi-Fermi Levels

The Fermi–Dirac distribution [Eq. (2.64)] was derived for a system in thermal equilibrium.
Accordingly, the considerations of electron-state occupancy and all the related equations
are for a semiconductor in thermal equilibrium. This includes the Fermi level and its
relationships to the electron and hole concentrations. The concept of Fermi level as
a reference energy of the Fermi–Dirac distribution is meaningless for nonequilibrium
cases. Yet, nonequilibrium concentrations of electrons and holes appear quite frequently
in semiconductor devices. It will be very useful to establish relationships between
nonequilibrium concentrations of electrons and holes and representative energy levels in
the energy-band diagrams. This is possible by defining quasi-Fermi levels for electrons
(EFn) and holes (EFp), to be used instead of the Fermi level (EF ) in Eqs. (2.76) and
(2.79):

n = n0 + δn = NC e−(EC−EFn )/kT

p = p0 + δp = NV e−(EFp−EV )/kT
(2.89)

By extending the relationship between n0 and EF (the equilibrium case) to n and EFn (a
nonequilibrium case), we enable the presentation of nonequilibrium cases by energy-band
diagrams. As in the equilibrium cases, the position of the quasi-Fermi level for electrons
indicates the electron concentration. The difference in nonequilibrium cases is that the
concentration of holes is related to a different energy level, the quasi-Fermi level for
holes. If the positions of the quasi-Fermi levels for electrons and holes are expressed with
reference to the equilibrium Fermi level in the intrinsic semiconductor (Ei ), Eqs. (2.89)
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take the following forms:

n = ni e(EFn−Ei )/kT

p = ni e(Ei−EFp )/kT
(2.90)

In nonequilibrium conditions, the product of electron and hole concentrations is

np = n2
i e(EFn−EFp )/kT (2.91)

This shows again that the product of electron and hole concentrations is equal to a constant
(n2

i ) only in the case of thermal equilibrium. In nonequilibrium conditions, np can either be
higher or lower than n2

i , depending on whether EFn − EFp is larger or smaller than zero.
This is so because external conditions can lead to either excess or deficiency of current
carriers in a considered region of a semiconductor device.

EXAMPLE 2.17 Quasi-Fermi Levels

Determine EFn and EFp , with respect to the bottom of the conduction band and the top of the
valence band, respectively, if a slab of N-type silicon (ND = 1016 cm−3) is illuminated so that
the steady-state concentration of the additional electron–hole pairs is δn = 2 ×1016 cm−3. What
is the difference between the quasi-Fermi levels?

SOLUTION

Given that the nonequilibrium concentrations are n ≈ ND + δn = 3 × 1016 cm−3 and p ≈ δp =
2 × 1016 cm−3, we find that

EC − EFn = kT ln(NC/n) = 0.02585 × ln(2.86 × 1019/3 × 1016) = 0.178 eV

EFp − EV = kT ln(NV /p) = 0.02585 × ln(3.1 × 1019/2 × 1016) = 0.190 eV

The difference between the quasi-Fermi levels is

EFn − EFp = Eg − [
(EC − EFn) + (EFp − EV )

] = 1.12 − (0.178 + 0.190) = 0.752 eV

SUMMARY

1. Quantum mechanics establishes a fundamental link between the wavelength (the main
parameter of waves) and the momentum (the main parameter of particles):

λp = h

where h = 6.626 × 10−34 J · s is the Planck constant.
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2. A perfect sinusoidal wave, propagating along the x-direction, can be represented by
the following complex wave function

ψ(x, t) = Ae− j (ωt−kx)

where ω = 2π/T is the rate of change of phase with time and k = 2π/λ is the rate
of change of phase with distance. The wave velocity (v) relates the wavelength (λ) to
the period (T ), and the angular frequency (ω) to the wave number (k): λ = vT , and
ω = vk. If the wave number is used as the wave parameter instead of the wavelength
(k = 2π/λ), the fundamental λp = h relationship becomes p = h̄k, where h̄ = h/2π .

3. There are no perfect waves in reality because no wave can extend from −∞ to ∞ in
terms of either time or space. The finite size of waves is modeled by wave packets
obtained as the infinite sum (integral) of perfect sinusoids with different frequencies
and wave numbers (the integral is the Fourier transform and the individual sinusoids
are different harmonics). The wave packet, represented by its complex wave function
ψ(x, t), is an abstraction. What relates to reality is the intensity of the wave function:
ψ(x, t)ψ∗(x, t). The intensity of the wave function can be comprehended as the
probability of finding the object modeled by the wave function at point x and time t .

4. The Schrödinger equation can be used to obtain the wave function that models a
particular object in specific conditions. The time-independent form of the Schrödinger
equation is given by

− h̄2

2m

d2ψ(x)

dx2 + Epot(x)ψ(x) = Eψ(x)

The wave function and its first derivative have to be finite, continuous, and single-
valued. In addition, a specific wave function has to satisfy specific boundary and initial
conditions.

• The solution of the Schrödinger equation for a totally free electron (an
abstraction) is the wave function of the perfect sinusoid. As this electron
wave propagates in space, it possesses a kinetic energy that is related to the
wave number: E = (h̄2/2m)k2.

• The solution of the Schrödinger equation for an electron inside an energy
well with infinite walls shows that the electron can exist only as a standing
wave. The largest possible wavelength (when a single half-wavelength
is equal to the width of the potential well) corresponds to the lowest
possible energy: E = (h̄2/2m)k2 = (h2/2m)/λ2. The next possible energy
corresponds to the wavelength that is equal to the width of the potential
well. Discretization in the possible wavelengths leads to energy-level quan-
tization.

• Solving the Schrödinger equation for an electron approaching a potential-
energy barrier can establish the probability that the electron will pass
through the barrier (tunneling coefficient) or be reflected by the barrier
(reflection coefficient).
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5. The potential-energy well, created by the attractive force of a positively charged atom
core, confines the electrons belonging to that atom. In a crystal, the potential-energy
barriers between neighboring atoms are reduced, so some of the electrons are shared
by all the atoms (these are the valence electrons creating the atomic bonds). In metals,
the valence electrons can be considered as standing waves in a potential well with
space dimensions equal to the crystal size (free-electron model). The large crystal size
enables the existence of “free electrons” with large wavelengths, and therefore small
kinetic energies, as well as small differences between subsequent energy levels. The
set of a large number of very close energy levels is modeled as energy band.

6. In semiconductors, there is a significant interaction between the valence electrons
and the periodic potential of the crystal atoms. The valence electrons with the wave
numbers kn = n(2π/a), where n = 1, 2, 3, . . . and a is the crystal-lattice constant,
form standing waves, as they are reflected backward and forward by the energy
barriers between neighboring atoms. There are two standing waves, with different
energies, for each kn: one with the nodes and the other with the antinodes at the
crystal-lattice sites. The difference between these two energy levels is referred to as
the energy gap, given that there are no electron–wave functions that would correspond
to the energy values inside the energy gap. The continuous parabolic E–k dependence
of “free” electrons in metals is split into many energy bands, separated by energy gaps.
The two bands of interest in semiconductors are those that are neither completely filled
nor completely empty. They are referred to as the valence band and the conduction
band.

7. The E–k dependence in the conduction band can be approximated by a parabola, E =
(h̄2/2m∗)k2. The parameter of the parabola (m∗) can be considered as the effective
mass (or apparent mass) of the electrons in the conduction band to allow to model
these electrons as “free” electrons. The E–k dependence in the valence band is an
inverted parabola, allowing us to use the model of “free” holes in the valence band.
With this model, the kinetic energy of an electron at the bottom of the conduction
band (EC ) is zero, and the kinetic energy of a hole at the top of the valence band
(EV ) is zero. The kinetic energies of electrons increase above EC , whereas the kinetic
energies of holes increase below EV (according to the inverter E–k parabola).

8. With the model of “free” electrons, along with the concept of effective mass, the
electrons in the conduction band can be considered as a gas of negatively charged
particles (the electron-gas model). Likewise, the holes in the valence band can be
considered as a gas of positively charged particles. To complete the carrier-gas model,
the concentration of carriers (the number of carriers/particles per unit volume) needs
to be established. There are two steps toward this aim: (1) determining the maximum
possible concentration of electrons/holes (the density of electron/hole states) and
(2) determining the occupancy of the possible electron/hole states.

9. In the classical particle model, the “maximum possible particle concentration” can
be determined from the particle size. The concept of particle size, however, has it
limits: particles just do not have precisely defined sizes. According to the Heisenberg
uncertainty principle, the minimum possible uncertainties in the particle size and
momentum are related so that their product is equal to Planck’s constant:

�x�px ≥ h
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10. Although the minimum size in x space cannot be determined, the Heisenberg
uncertainty relation enables us to determine the minimum size in x– px space. The
minimum volume of a cell in the six-dimensional x–y–z– px– py– pz space is

�x�y�z︸ ︷︷ ︸
�V

�px�py�pz︸ ︷︷ ︸
�Vp

= h3

Given that two electrons (with different spins) can fit into the elementary volume
�V �Vp, the maximum concentration of electrons can be defined, but remains
dependent on �Vp:

C = 2

�V
= 2

h3 �Vp

Given the kinetic-energy dependence on momentum [Ekin = (h̄2/2m∗)k2 = p2/2m∗],
�Vp can be converted into �Ekin to express the maximum concentration of electrons
as

C = D(Ekin)�Ekin

where

D(Ekin) = 8
√

2π

h3 (m∗)3/2 E1/2
kin

D(Ekin) is referred to as the density of electron states. The density of electron
states gives the concentration of electron states per unit energy, so that the electron
concentration can be determined as

n0 =
∫ ∞

0
f (E)D(Ekin) d Ekin

where f (E) is the probability that the electron state corresponding to the energy level
E is occupied by an electron.

11. The probability f (E) is given by the Fermi–Dirac distribution:

f (E) = 1

1 + e(E−EF )/kT

The probability that an electron state, corresponding to an energy level E , is empty is
equal to the probability that this state is occupied by a hole:

fh(E) = 1 − f (E) = 1

1 + e(EF −E)/kT
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The occupancy probability f (E) is different from the classical Maxwell–Boltzmann
distribution,

f (E) = e−(E−EF )/kT

because it includes the Pauli exclusion principle (in addition to the minimum-energy
principle). Nonetheless, the Fermi–Dirac distribution can be approximated by the
Maxwell–Boltzmann distribution when E − EF  kT . This is the case when there
are plenty of unoccupied states in the conduction band, so that the effects of the Pauli
exclusion principle are not pronounced (nondegenerate electron gas).

12. With the Maxwell–Boltzmann approximation for f (E), the integration of f (E)D(Ekin)

leads to

n0 = NC e−(EC−EF )/kT

where

NC = 4
√

2(πm∗kT )3/2

h3

is called the effective density of states for the conduction band. Analogously,

p0 = NV e−(EF −EV )/kT

where NV is the effective density of states for the valence band.
13. The reference energy EF in the Fermi–Dirac distribution and in the equations for the

concentrations of electrons and holes is called Fermi level. From the Fermi–Dirac
distribution, it can be defined as the energy level of the state whose occupancy by
an electron (or hole) is equal to 1/2. From the equations for the electron and hole
concentrations, it can be seen that the positions of EC and EV with respect to EF

correspond to the concentrations of electrons and holes. As EC approaches EF , n0
increases and p0 decreases (and vice versa). When the concentration of electrons or
holes is set by donor or acceptor doping, we say that the position of the bands is set by
the doping type and level. EF above its intrinsic position (Ei ) corresponds to N-type
doping, whereas EF below Ei corresponds to P-type doping. The difference between
Ei and EF (called Fermi potential) corresponds to the doping level:

φF = Ei − EF

q
= ∓Vt ln(ND,A/ni )

where Vt = kT/q is the thermal voltage.
14. The product between the electron and hole concentrations does not depend on the

Fermi level position, but it depends on the energy gap:

n0 p0 = n2
i = NC NV e−(EC −EV )/kT

ni =
√

NC NV e−Eg/2kT
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15. Quasi-Fermi levels for electrons (EFn) and holes (EFp) are introduced to express the
concentrations of electrons and holes under nonequilibrium conditions:

n = NC e−(EC −EFn )/kT = ni e
(EFn−Ei )/kT

p = NV e−(EFp−EV )/kT = ni e
(Ei−EFp)/kT

Nonequilibrium conditions can be due to either excess (np > n2
i ) or deficiency (np <

n2
i ) of current carriers.

PROBLEMS

2.1 The wavelength of a monochromatic red light is
λ = 440 nm. Determine the velocity of an electron
moving in free space, if the wavelength of the
electron is the same: 440 nm. Are the electron and
light (photon) momenta equal?

2.2 The wavelength of green light is λ = 550 nm.
Determine the wave number, the angular frequency,
and the period of this wave. The speed of light is
3 × 108 m/s.

2.3 Find the wave number, the wavelength, the angular
frequency, and the period of an electron wave that
corresponds to an electron moving in free space by
velocity

(a) v1 = 5 × 105 m/s
(b) v2 = 5 × 107 m/s A

2.4 Electrons in solids have negative potential energies
with respect to the energy of a free electron (this
means that these electrons need to gain energy to
liberate themselves from the solid). Determine and
plot the E–k dependence for an electron in a field
of constant potential energy Epot = −10 eV. For
plotting, use values for k between −1010 m−1 and
1010 m−1.

2.5 (a) An electron leaves a heated cathode and enters
the free space with kinetic energy Ekin = 1 eV.
Determine the velocity, the wave number, the
wavelength, and the period of this electron
wave.

(b) Repeat the calculations for the case of an
electron that enters the free space after being
accelerated to the energy of 1000 eV. A

2.6 Show that the following relationship between the
energy and the period is valid for a free electron:

E T = h

2

2.7 An electron is confined inside a potential well with
infinite walls. The width of the well is W = 5 nm.
What is the probability of finding the electron within
1 nm from either wall, if the electron is at

(a) the lowest energy level
(b) the second-lowest energy level A

2.8 The probability that an electron with energy E will
tunnel through a rectangular energy barrier with
height Epot and width W can be approximated by

T ≈ 16

(
E

Epot

)(
1 − E

Epot

)
exp(−2κW )

where κ =
√

2m
h̄2 (Epot − E).

(a) Calculate the tunneling probability if E =
0.1 eV, Epot = 1 eV, and W = 1 nm.

(b) If the tunneling current is 1 mA, how many
electrons hit the barrier each second?

2.9 A rectangular barrier is narrowed by 0.2 nm. Deter-
mine how many times the tunneling probability is
increased if the electron energy is 26 meV and the
barrier height is 0.3 eV.

2.10 There is an approximation method, known as the
Wentzel–Kramers–Brillouin (WKB) method, that
can be used to determine the tunneling probability
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for the case of an arbitrary barrier. An arbitrary
energy barrier Epot(x) is represented by

κ(x)=
√

2m

h̄2

[
Epot(x) −E

]
for E < Epot, a ≤x ≤b

where a and b are the points at which the particle
energy E intersect the tunneling barrier Epot(x).
According to the WKB approximation, the tunneling
probability is

T ≈ exp

(
−2

∫ b

a
κ(x) dx

)

(a) Using the WKB approximation, determine the
tunneling probability for the case considered in
Problem 2.8a (E = 0.1 eV and a rectangular
barrier with Epot = 1 eV and W = 1 nm).
Compare the results. A

(b) Determine the tunneling probability for a
triangular barrier with the same parameters: the
electron energy E = 0.1 eV, the barrier height
EH = 1 eV, and the barrier width at the energy
level of the electron W = 1 nm.

2.11 The valence electrons in a 10-cm metal wire are
modeled as free electrons in a square-well box.
Determine the longest wavelength and the smallest
velocity an electron can have in this wire.

2.12 Analogously to the one-dimensional illustration
[Eq. (2.32)], the Fermi energy in real metals (3D)
does not depend on the size of the crystal and is
given by

EF0 = h̄2

2m
(3π2n)2/3

where n is the concentration of valence electrons.

(a) Determine the highest electron velocity in a
copper crystal (n = 8.45 × 1022 cm−3) that
is cooled down to T ≈ 0 K.

(b) What is the corresponding wavelength? A

2.13 There is no pronounced anisotropy associated with
the kinetic energy of holes in silicon; however,
the kinetic-energy dependence on the momentum is
split, giving rise to the appearance of light and heavy
holes. The kinetic energy of holes in silicon can be

expressed in the following way:

Ekin = p2

2m0

(
A ±

√
B2 + C2

5

)

where A, B, and C are dimensionless constants ap-
proximately equal to 4.1, 1.6, and 3.3, respectively,
whereas the plus/minus signs relate to the light and
heavy holes. Determine the effective masses of the
light and heavy holes. A

2.14 There is no pronounced anisotropy associated with
the kinetic energy of electrons in GaAs, so that the
effective mass is a scalar: m∗ = 0.067m0. Given
that the average kinetic energy of the free electrons
at room temperature is Ekin = 38.8 meV, determine
the average electron momentum. If the electrons
move, on average, for 0.1 ps between two scattering
events, determine the average distance they travel
without scattering.

2.15 Many semiconductor devices (such as MOSFET and
HEMT) confine the motion of free electrons in two
dimensions. Derive the dependence of the density
of states on kinetic energy for a two-dimensional
gas. For the case of GaAs (effective mass m∗ =
0.067m0), determine the number of states per unit
area that are in the energy range between 0 and
2kT ≈ 0.052 eV.

2.16 Derive the equation for the density of states for a
one-dimensional electron gas (a “quantum wire”)
and plot the dependence on kinetic energy for the
case of GaAs (effective mass m∗ = 0.067m0). Take
the energy range between 0 and 1 eV. Note: Make
sure to include the fact that a single energy level
Ekin corresponds to two momentum levels p: Ekin =
(±p)2/2m∗; in other words, the density of states is
twice as high as the value obtained by ignoring this
effect. A

2.17 There is no pronounced anisotropy associated with
the kinetic energy of holes in silicon; however, there
are light and heavy holes with effective masses as
determined in Problem 2.13.

(a) Determine the density-of-state effective mass
so that the density-of-state equation for a three-
dimensional uniform-particle gas

D = 8
√

2π

h3 (m∗)3/2E1/2
kin
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can be applied to the holes in silicon.
(b) What are the density-of-state effective masses

for two-dimensional and one-dimensional hole
gases in silicon? A

2.18 The kinetic energy of electrons in germanium has
longitudinal–transverse anisotropy and such 〈111〉
symmetry that the elongations of four constant-
energy ellipsoids are aligned along the following
directions: (1) [111]–[1̄1̄1̄], (2) [1̄11]–[11̄1̄], (3)
[11̄1]–[1̄11̄], and (4) [111̄]–[1̄1̄1]. Knowing that the
longitudinal and transverse are ml = 1.64m0 and
mt = 0.082m0, respectively, determine the density-
of-state effective mass.

2.19 Select an answer for each of the following ques-
tions:

(a) What is the value of the Fermi–Dirac function
at EF ?

(b) What is the probability of finding a hole at EF ?
(c) What is the probability of finding an electron at

EV at room temperature?
(d) What is the probability of finding a hole at EV

at room temperature?
(e) What is the probability of finding an electron at

EC at 0 K?
(f) What is the probability of finding a hole at EV

at 0 K?

The available answers are
(1) 0 (2) 0.25 (3) 0.5

(4) 0.56 (5) 1
(6) something between 0 and 1

2.20 The Fermi level in the channel of a GaAs HEMT is
at the bottom of a two-dimensional subband. What
is the areal density of electrons in the channel?
At what position, with respect to the bottom of
the subband, is the Fermi level when the electron
density is increased 100 times? The effective mass
of electrons is m∗ = 0.067m0.

2.21 For the case of a Fermi level deep inside a two-
dimensional subband, the areal electron density
(n2D) can be obtained by assuming that all the
energy levels below EF are filled and all the energy
levels above EF are empty. Starting from the density
of states given in Example 2.8, obtain the electron
density (n2D) in this approximation. Can you
determine the mathematical condition that would
convert the general solution from Example 2.8 into

the form identical to the solution obtained in this
problem?

2.22 The position of the Fermi level in a silicon sample
is 0.3 eV above the bottom of the valence band.
For a 3D hole gas, the concentration of holes first
increases and then decreases as the total energy is
reduced from the top of the valence band—there is
a distribution of the hole concentration along energy
in the valence band.

(a) Determine the values of the kinetic energy cor-
responding to the maxima of the distributions
of hole concentrations at the following three
temperatures: 280 K, 300 K, and 320 K.

(b) Plot the distributions for these three
temperatures. Use the energy range between
0 and 200 meV. The density-of-state effective
mass is m∗ = 0.54m0.

2.23 Assuming that the effective mass of electrons
in the conduction band of GaAs is temperature
independent and equal to m∗ = 0.067m0, determine
the effective density of states NC at Tl = 77 K,
Tr = 300 K, and Th = 450 K. Given that the density
of state distribution (Example 2.5) is temperature-
independent, explain the origin of the temperature
dependence of the effective density of states.

2.24 The hole gas in many semiconductors consists of
two types of holes: holes with light and heavy
effective masses. Determine the room-temperature
effective density of states in the valence band for

(a) Si: ml = 0.16m0, mh = 0.49m0
(b) GaAs: ml = 0.082m0, mh = 0.45m0 A

2.25 Express the hole concentration in a degenerate
semiconductor in terms of the effective density of
states NV and the Fermi integral F1/2:

F1/2(η) =
∫ ∞

0

x1/2 dx

1 + ex−η

2.26 The doping level of N-type semiconductor is ND =
5×1019 cm−3. Determine the room-temperature po-
sition of the Fermi level (with respect to the bottom
of the conduction band) if the semiconductor is

(a) Si (NC = 2.86 × 1019 cm−3)
(b) GaAs (NC = 7 × 1018 cm−3) A

What would be the relative errors (expressed in
percent) if a Maxwell–Boltzmann distribution was
assumed?
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2.27 If (EF − EC )/kT = −1 is taken as the upper
limit for the applicability of approximations based
on the Maxwell–Boltzmann distribution, determine
the corresponding upper-limit doping levels for
N-type silicon. What is the corresponding doping
level for P-type silicon (NC = 2.86 × 1019 cm−3,
NV = 3.10 × 1019 cm−3)?

2.28 A heavily doped N-type semiconductor, with the
Fermi level deep in the conduction band (EF −
EC ≥ 5kT ) resembles a metal. In that case, the
electron concentration can be obtained by assuming
that all the energy levels below EF are filled and
all the energy levels above EF are empty (a step
approximation for the Fermi–Dirac distribution).
Starting from the equation for the density of states

D(Ekin) = 8
√

2π

h3 (m∗)3/2E1/2
kin

express the electron concentration in terms of the
effective density of states (NC ) and the Fermi-level
position (EF − EC ). Compare the result to the one
obtained in Example 2.11.

2.29 The energy gap of GaAs is Eg = 1.42 eV and
experimental values for the effective densities of
states at room temperature are NC = 4.7 ×
1017 cm−3 and NV = 7.08×1018 cm−3. Assuming
T 3/2 dependencies for NC and NV (Example 2.10
and Table 2.2) and temperature-independent energy
gap, determine the intrinsic position of the Fermi
level (with respect to the top of the valence band) at
200◦C. What is the intrinsic carrier concentration at
that temperature?

2.30 The probability that an energy state in the
conduction band is occupied by an electron is 0.001.
Is this N-type, P-type, or intrinsic silicon? A

2.31 Find the room-temperature position of the Fermi
level with respect to the top of the valence band for
N-type silicon doped with ND = 1016 cm−3 donor
atoms. Is it closer to the top of the valence band, or
to the bottom of the conduction band?

2.32 Calculate the electron concentration in a doped
silicon if the Fermi level is as close to the top of
the valence band as to the midgap. What is the hole
concentration? Is this N-type or P-type silicon?

2.33 Determine the doping type and level if the Fermi
potential in a silicon sample is
(a) qφF = −0.35 eV (b) qφF = 0.30 eV A

2.34 Two silicon samples are doped with ND =
1015 cm−3 and NA = 1017 cm−3, respectively.
What is the difference between the Fermi potentials
in these samples at
(a) room temperature (b) T = 200◦C

2.35 An aluminum layer having the work function
qφm = 4.1 eV is to be deposited onto 6H SiC
substrate.

(a) Determine the doping type and level so that
the work function of the SiC substrate matches
the work function of the aluminum layer at
room temperature. The electron affinity of 6H
SiC is qχs = 3.9 eV, the energy gap is Eg =
3.0 eV, and the effective densities of states
in the conduction and valence bands are
NC = NV = 2.51 × 1019 cm−3.

(b) What is the work function at 150◦C? A

2.36 NC and NV equations given in Table 2.2 show that
the effective density of states depends on temper-
ature. The energy gap is also slightly temperature-
dependent; in the case of silicon, this dependence
can be fitted by Eg [eV] = 1.17 − 7.02 ×
10−4T 2/(T [K] + 1108). Find the intrinsic carrier
concentration of silicon at T = 300◦C. Compare
this value to the doping level of ND = 1016 cm−3.

2.37 Repeat Problem 2.36 for 6H silicon carbide (Eg =
3 eV) to see the importance of the energy-gap
value for high-temperature applications. The room-
temperature densities of states are NC = NV =
2.51×1019 cm−3, while the Eg(T ) dependence can
be fitted by Eg [eV] = 3.0 − 3.3 × 10−4(T [K] −
300). A

2.38 N-type silicon is doped with ND = 5 × 1015 cm−3.
Calculate the concentration of holes at 300◦C
(Eg [eV] = 1.17−7.02×10−4T 2/(T [K]+1108)).

2.39 Including the effect of partial ionization, determine
the room-temperature electron concentration in
silicon doped by 2 × 1018 cm−3 phosphorus atoms.
Explain why the ionization is significantly below
100%. The doping level of phosphorus in silicon is
0.045 eV below the bottom of the conduction band,
and the effective density of states in the conduction
band is NC = 2.86 × 1019 cm−3.

2.40 For the case of ND = 2 × 1018 cm−3, determine
EC − EF for the following cases:

(a) total ionization is assumed A
(b) the effect of partial ionization is included A
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2.41 Including the effects of partial ionization, calculate
the concentration of electrons in silicon doped by
2 × 1018 cm−3 phosphorus atoms if the speci-
fied operating temperature of the device is
85◦C. Determine the relative change in electron
concentration if the operating temperature increases
by 10%. Assume constant effective density of
states of NC = 2.86 × 1019 cm−3, donor level
of 0.045 eV below the conduction band, and de-
generacy factor of g = 2.

2.42 At sufficiently low temperatures, the ionization frac-
tion drops exponentially with temperature reduction
(the semiconductor is under carrier freezeout condi-
tions). Assuming constant effective density of states
(NC = 2.86 × 1019 cm−3), determine the temper-
ature that corresponds to ionization fraction of 10%
in silicon doped with 1015 cm−3 phosphorus atoms.

2.43 Silicon is doped with 1016 cm−3 boron atoms.
Determine the carrier freezeout temperature range if
the freezeout boundary is defined as the temperature
at which the ionization of the doping atoms is 90%.
The doping level of boron in silicon is 0.045 eV,
and the degeneracy factor is g = 1/4. Assume
constant effective density of states in the valence
band, NV = 3.10 × 1019 cm−3.

2.44 P-type SiC is doped with NA = 1018 cm−3 of
aluminum atoms. The ionization fraction is 4.7% at

room temperature and 12.2% at 125◦C. Determine
the aluminum energy level with respect to the top of
the valence band (E A − EV ).

2.45 It is possible to bring a low-doped germanium sam-
ple to the state of n ≈ p = 1017 cm−3 in two ways:

(a) by illumination at room temperature
(b) by heating

What are the quasi–Fermi level positions with
respect to the midgap in each of these situations?
Take the T 3/2 temperature dependency of the
effective density of states in both the conduction
and the valence bands, and take the following room-
temperature values: NC = 1.0 × 1019 cm−3 and
NV = 6.0 × 1018 cm−3. Assume a constant energy
gap of Eg = 0.66 eV.

2.46 The quasi-Fermi levels EFn and EFp in an
illuminated Si sample are such that EC − EFn ≈
EC −EF = 150 meV and EFp −EV = 0.300 meV,
where EC , EV , and EF are the bottom of the
conduction band, the top of the valence band, and
the equilibrium Fermi level, respectively.

(a) Calculate the excess carrier concentration in
this sample.

(b) Determine EC − EFn if the light intensity is
increased so that EFp − EV becomes equal to
150 meV.

REVIEW QUESTIONS

R-2.1 Does the relationship λp = h mean that a wave with wavelength λ has the momentum of
p = h/λ and that a particle with momentum p has the wavelength of λ = p/h? If so, what
is the fundamental difference between a wave and a particle.

R-2.2 Is the relationship λp = h applicable only to small things?
R-2.3 Do large particles possess wavelike properties? Can they be observed (like “diffraction of a

soccer ball”)?
R-2.4 In what units is the wave number (wave vector) expressed? Is it meaningful to say that the

wave number is related to the wavelength in the same way that the angular frequency is
related to the period?

R-2.5 What complex wave function is used to express the perfect wave with angular frequency ω,
propagating in the x-direction in space? What is the ratio of the angular frequency to the
wave number?

R-2.6 The complex wave function is a mathematical abstraction. What is the link to reality when
applying the wave-function concept to electrons?

R-2.7 Is the intensity of the wave function ψ(x, t) = A exp [− j (ωt − kx)] constant for ∞ < x <

∞ and −∞ < t < ∞? If so, can we make use of this wave function to describe real objects
that are not uniformly spread in space and time?

R-2.8 What is a single harmonic in the Fourier transform, used as a wave packet model?



104 CHAPTER 2 THE ENERGY-BAND MODEL

R-2.9 What is the physical interpretation of the wave packet intensity?
R-2.10 Solving the Schrödinger equation, one obtains the electron wave function. Is this the function

that describes the “shape” of the wave packet?
R-2.11 What is the wave function good for in semiconductor-device electronics? Can it help

determine the electron concentration?
R-2.12 Does solving the Schrödinger equation provide any other information about the electrons,

such as the electron energy?
R-2.13 Can an electron, trapped inside a potential well, have arbitrary energy? Is the energy of this

electron related to the possible wavelength values? Can we use the “perfect-wave” concept
and wave function to describe an electron in a potential well with infinite walls?

R-2.14 The probability that an electron wave will be reflected by an energy barrier is 0.9. What is
the remaining probability of 0.1?

R-2.15 Is the electron wave function related to the tunneling probability?
R-2.16 Are the wavelengths of the valence electrons related to the width of the potential well that

confines them? If so, what are the effects of the much wider potential well of crystals,
compared to single atoms, on the wavelength and the energy of valence electrons?

R-2.17 Is the shape of the E–k dependence of a valence electron in a metal different from the
E–k dependence of a free electron in vacuum? How about the energy position of the E–
k dependence?

R-2.18 Is there any space localization of the valence electrons in metals?
R-2.19 A valence electron in semiconductors can appear as a standing wave with either the nodes

or the antinodes at the crystal-lattice sites. Does this mean that a single wavelength can
correspond to two different energy levels? If so, can standing-wave electrons take energy
values between the two different energy levels?

R-2.20 How does the appearance of energy gap in semiconductors influence the parabolic E–k
dependence corresponding to free electrons in metals?

R-2.21 What are the two bands, important for the properties of semiconductors and insulators,
called?

R-2.22 Where do the mobile electrons appear (in the conduction band or in the valence band)?
R-2.23 Are there electrons in the valence band? Where do the mobile holes appear?
R-2.24 Can the electron-gas model be applied to the electrons in the conduction band of a

semiconductor? If so, what adjustment needs to be made?
R-2.25 In the carrier-gas model, what is the kinetic energy of an electron at the bottom of the

conduction band? What is the kinetic energy of a hole at the top of the valence band?
R-2.26 The E–k dependence in the valence band of a semiconductor can be approximated as an

“inverted” parabola. Does this mean that a higher kinetic energy of a hole corresponds to a
lower energy position on the E–k diagram?

R-2.27 The bottom of the conduction band in silicon appears for k �= 0. Does this mean that the
conduction-band electrons are distributed over several equivalent conduction-band minima?
If yes, how many and why?

R-2.28 A spectrum of sinusoidal wave functions, with distributed wave numbers, can be integrated
to create a wave packet that is “localized” in space. Is the degree of space localization
independent of the width of the wave number distribution. If not, describe the dependence.

R-2.29 One way of expressing the Heisenberg uncertainty principle is that we cannot measure the
position of an electron with better accuracy than �x = h/�p if the momentum is determined
with precision �p. Is this a fundamental limitation of our measurement techniques, or is it
simply the way the small things are?

R-2.30 The number of electrons per unit “volume” of the six-dimensional x–y–z–px –py–pz space
is limited by the uncertainty principle to what value?
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R-2.31 What is the difference between the density of electron states [D(Ekin)] and the number of
electrons per unit volume and unit energy?

R-2.32 How does the density of electron state relate to electron concentration?
R-2.33 What fundamental principle is included in the Fermi–Dirac distribution of the electron-

state occupancy that is not involved by the classical Maxwell–Boltzmann (exponential)
distribution?

R-2.34 What mathematical condition has to be satisfied to be able to approximate the electron-state
occupancy by the Maxwell–Boltzmann distribution? Under this condition, why is there no
problem with the fundamental principles that the Maxwell–Boltzmann distribution does not
include?

R-2.35 What is the difference between the density of electron states D(Ekin) and the effective density
of states in the conduction band NC ?

R-2.36 Does the electron concentration change with energy E , where E ≥ EC ?
R-2.37 What is the Fermi level EF ?
R-2.38 How is the doping expressed in an energy-band diagram?
R-2.39 What is the Fermi potential φF ?



3 Drift

Following the introduction of carrier properties in Chapters 1 and 2, this chapter begins the
descriptions of carrier-related phenomena. The fundamental effect is that a current carrier
in electric field E experiences force F = ±qE, where the plus sign is for the positively
charged holes and the minus sign is for the negatively charged electrons. This force leads
to carrier motion and consequently to electric current. An electron in constant field and free
space would move with a constant acceleration due to the electric-field force (F = m0a).
In crystals, however, electrons collide with the crystal imperfections (including the thermal
vibrations of crystal atoms, the doping atoms, and the mobile electrons themselves). These
collisions lead to a constant average velocity, as distinct from the constant acceleration that
would cause ever increasing velocity. This type of carrier motion is called drift, the average
carrier velocity is called drift velocity, and the associated electric current is called drift
current. It is important to mention at this stage that the drift (described in this chapter) is
not the only way of creating electric current in semiconductors. Another important current
mechanism, diffusion, is considered in Chapter 4.

3.1 ENERGY BANDS WITH APPLIED ELECTRIC FIELD

As described in Section 2.2.3 (Fig. 2.10), the bottom of the conduction band (EC ) and the
top of the valence band (EV ) correspond to the potential energies of electrons and holes,
respectively. Furthermore, the potential energy (E pot ) is linked to the electric potential (ϕ)
by the following fundamental relation:

E pot = −qϕ (3.1)

where q is the unit of charge (q = +1.6 × 10−19 C). If the potential energy is expressed in
eV, then the electric potential and the potential energy have the same numerical values with

106
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different signs. This means that if a voltage of V = ϕ1 − ϕ0 = −1 V is applied across a
slab of a semiconductor, the difference between the potential energies of electrons/holes at
the ends of the slab will be 1 eV. If the electric potential changes linearly from ϕ0 to ϕ1, the
potential energies of both electrons and holes (which means both EC and EV ) also change
linearly from −qϕ0 to −qϕ1. Given that the negative gradient of electric potential is equal
to the electric field (E = −dϕ/dx), the electric field in a semiconductor is expressed by
the positive gradient of EC or EV :

E = 1

q

dEC,V

dx
(3.2)

This means that the case of zero electric field can be visualized as flat bands (EC and EV

do not change with x), whereas the sign and the strength of a nonzero electric field can
be visualized as the slope of EC and EV . Of course, the slope and any spatial changes are
equal for both EC and EV; the difference between EC and EV is equal to Eg everywhere in
the semiconductor and is independent of the value of any applied electric field. Therefore,
the E–x diagram shown in Fig. 2.10 is for the special case of zero electric field; in general,
an E–x diagram shows parallel EC and EV lines that are changing to correspond to any
changes in the electric potential.

3.1.1 Energy-Band Presentation of Drift Current
Any application of nonzero electric field causes motion of the electrons and holes in the
semiconductor. The momentum that the electrons and holes gain due to the action of the
electric-field force corresponds to their kinetic energy Ekin = p2/2m∗. As explained
in Section 2.2.3, the total-energy level of electrons (holes) with nonzero kinetic energy
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Figure 3.1 The relationship between E–k and
E–x diagrams with applied electric field.
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is above EC (below EV ) for the value of the kinetic energy. Figure 3.1 shows how the
parabolic E–k diagrams are related to the E–x diagrams for the case of nonzero electric
field. It also illustrates the positions of electrons and holes with zero and nonzero kinetic
energies. The arrows illustrate that the total energies of a moving electron or hole do not
change. What happens is that an electron starting from the bottom of the conduction band
(zero kinetic energy) gains kinetic energy as it moves in the direction of falling potential
energy (falling level of EC ). Analogously, an increase in the potential energy sets a moving
hole at a level below EV , the difference being exactly equal to the gained kinetic energy.
No energy loss or gain is illustrated in Fig. 3.1.

The effective carrier mass takes into account the periodic potential of the crystal lattice,
so a carrier should move through the crystal as through a free space (just with a different
mass). This would be the case in a perfect crystal, and Fig. 3.1 would be the complete
presentation of the carrier motion. At temperatures T > 0 K, however, the lattice atoms
vibrate around the lattice sites, causing disturbances in the periodic potential of the lattice.
These disturbances (thermal vibrations of crystal atoms) can be modeled as particles, in
which case they are called phonons. The phonons can scatter moving carriers. Carriers can
also be scattered by other crystal imperfections, in particular by the charged doping atoms;
this type of scattering is referred to as the Coulomb scattering. Similar to the scattering of
molecules in a classical gas, carrier–carrier scattering is also possible, although it is much
less pronounced than the phonon and Coulomb scattering.

Carrier scattering can be elastic (change in the carrier direction but no exchange of
energy), or it can involve energy exchange. As the moving carriers gain kinetic energy
from the electric field that is above the average thermal energy, they are likely to give
the excess energy to the scattering centers. Figure 3.2 illustrates that an electron giving
its kinetic energy as a result of a scattering event falls down toward the bottom of the
conduction band. As this electron moves further in the direction of decreasing EC, it gains
kinetic energy again, only to lose it again in some of the forthcoming scattering events.
The situation with holes is analogous: they bubble up, toward the top of the valence band,
as they give their kinetic energy to the scattering centers.

The energy-band diagrams (E–x) with applied field enable the introduction of a very
illustrative model for the drift current. The conduction band can be considered as a vessel
containing electrons that tend to roll down when the bottom of the conduction band is

Ekin�

qV

I

EC

EV

EC

EV
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�

Figure 3.2 Energy-band (E–x) diagram with
applied electric field, illustrating the rolling
down of electrons and bubbling up of holes.
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tilted. Analogously, the valence band can be considered as a vessel containing a liquid and
bubbles (holes) in it. When the top of the valence band is tilted due to appearance of electric
field, the holes tend to bubble up along the top of the valence band, moving effectively in
the direction of the electric field applied. This model is very useful for illustration of the
principle of operation of semiconductor devices.

3.1.2 Resistance and Power Dissipation Due to Carrier Scattering
The carrier scattering is manifested as resistance to the flow of current carriers, limiting
the electric current. Because of the scattering, the energy that the carriers gain from an
applied electric field is converted to thermal energy, increasing the crystal temperature (the
vibration of the crystal atoms). The rate of this conversion to thermal energy is called power
dissipation.

EXAMPLE 3.1 Resistance and Power Dissipation

The voltage across an N-type semiconductor slab, conducting 10 mA of current, is equal to 1 V.
How much energy is delivered to the crystal by every electron that passes through the slab?
Relate this energy to the dissipated power.

SOLUTION

If the potential energy at one end of the slab is taken as the reference energy (zero), the potential
energy of the electrons at the other end is qV , where V is the voltage across the slab. Every
electron flowing through this slab gains energy qV from the applied voltage and delivers it to
the crystal lattice through the collisions that bring the energy (temperature) of the electrons to
thermal equilibrium with the crystal lattice. Given that the voltage across the track is 1 V, the
energy delivered by every electron is qV = 1 eV. If there are N electrons, the total energy will
be qVN . The dissipated power is the energy delivered to the crystal per unit time; therefore,

P = qVN/t = q N

t︸︷︷︸
I

V = IV

where I = q N/t is the electric current flowing through the track. The value of the dissipated
power is P = I V = 10 mW.

3.2 OHM’S LAW, SHEET RESISTANCE, AND CONDUCTIVITY

If an electric-potential difference (V = ϕ1 − ϕ0) is established between two points in a
semiconductor, a limited current (I ) will flow through the semiconductor. The actual value
of the current will depend on (1) how large the potential difference is and (2) how large
the resistance (R) of the semiconductor is. An increase in the potential difference (applied
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voltage) increases the current; an increase in the resistance, however, reduces the current.
Assuming constant resistance, the current dependencies on the voltage and resistance are
expressed by the widely used Ohm’s law:

I = V

R
(3.3)

The assumption of constant resistance holds very well in the cases of metals, carbon-based
resistors, and the whole variety of thick- and thin-film resistors. It also works well for the
case of semiconductor-based integrated-circuit resistors. In some important semiconductor
devices, however, the current flowing through a resistive body does not depend linearly on
the voltage applied; in other words, the resistance in Eq. (3.3) is not a constant but depends
on the value of the current. This effect will be considered in Section 3.3. The aim of this
section is to introduce the concepts related to design of integrated-circuit resistors and to
relate the integral form of Ohm’s law [Eq. (3.3)] to its differential form that is suitable for
modeling of effects inside semiconductor devices.

3.2.1 Designing Integrated-Circuit Resistors
Resistors in integrated circuits are made of a resistive body surrounded by an insulating
medium and contacted at the ends by conductive tracks, as shown in Fig. 3.3. The resistance
of the resistor depends on the resistive property of the body, called resistivity (ρ), and its
dimensions in the following way: (1) an increase in the length of the resistor, L, increases
its resistance as the carriers making the current have to travel a longer distance; (2) an
increase in the cross-sectional area, A = x j W , decreases the resistance as more current
carriers can flow in parallel. Therefore, the resistance can be expressed as

R = ρ
L

x j W
(3.4)

Note that the curved ends of the resistive body are neglected and the resistor shape is
considered as a rectangular prism with dimensions L, W , and x j .

Substrate (an IC chip)

Insulating medium

L

Conductive stripe

W

xj

y

x

Resistive body

(a)

(b)

Insulator

Figure 3.3 Integrated-circuit resistor: (a) top view and (b) cross section.
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The reciprocal value of the resistivity, called conductivity, is more frequently used to
characterize the resistive/conductive properties of semiconductor layers. The conductivity
is denoted by σ ; thus

σ = 1

ρ
(3.5)

When designing an integrated-circuit layout, the designer sets L and W of each
resistor individually. Taking into account that there is a minimum dimension achievable
by the selected technology, the designer determines the ratio L/W to achieve the desired
resistance, and it determines the actual L and W values to minimize the area of the
resistor. The conductivity (σ ) and the thickness of the resistive layer (x j ) are technological
parameters, and they have the same values for all the resistors made with one type
of resistive layer. There will be only a few different types of layers (with different
conductivities and thicknesses) available for making resistors. The term ρ/x j = 1/(σ x j )

in Eq. (3.4), which brings together the technological parameters, is frequently expressed as
one variable called the sheet resistance, RS :

RS = 1

σ x j
= ρ

x j
(3.6)

The sheet resistance is a quantity that can be measured more easily than the
conductivity σ and the layer thickness x j . If the resistance of a test resistor with known
L and W is measured, the sheet resistance of the associated layer can easily be calculated
from the following equation:

R = RS
L

W
(3.7)

Equation (3.7) is obviously obtained after replacement of ρ/x j in Eq. (3.4) by RS . The unit
of the sheet resistance is essentially �; however, it is typically expressed as �/�, indicating
that it represents the resistance of a squared resistor (L = W ).

The difference and relationship between the resistance R and resistivity ρ needs a
more careful consideration. We can assign a resistivity value to any point in the resistive
body. If the resistive body is a homogeneous one, then the resistivity will be the same
throughout the body; but if it is not homogeneous, the resistivity will have different values
at different points. Typically, the resistivity is not uniform in integrated-circuit resistors,
but is smallest at the surface, increasing inside the material. Equivalently, the conductivity
is highest at the surface, reducing inside the material, as illustrated in Fig. 3.4. Because of
this property, the conductivity and the resistivity are called local or differential quantities.
Differential quantities are needed to describe the internal structure (sometimes called
microstructure) of semiconductor devices. Information on the conductivity at different
points of a resistive body, however, cannot be used to directly determine to what value will
the resistor limit the terminal current (I ) when a certain terminal voltage (V ) is applied.
That is why it is necessary to determine the overall resistance, or integral resistance R,
after which Ohm’s law (Eq. 3.3) can directly be applied. Therefore, the integral quantities
are needed to describe the terminal, or integral, characteristics of semiconductor devices.
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Figure 3.4 A typical variation of conductivity
from the surface into the bulk of an integrated-
circuit resistor (solid line) and the uniform-
conductivity approximation (dashed line); in
the example, σ (0)=10 (� · cm)−1, and
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The relationships between the resistance R as an integral quantity and the conductivity
σ as a differential quantity [Eqs. (3.4), (3.6), and (3.7)] appear very simple, but this
is because they are simplified to account for only the simplest case of uniform (or
homogeneous) resistive bodies. In the case of the resistive layer illustrated in Fig. 3.4, we
see that Eq. (3.6) cannot be directly used to calculate the sheet resistance RS . To be able
to use Eq. (3.6), it is necessary to find a single value for the conductivity that will provide
the most suitable uniform-conductivity approximation of the real conductivity dependence.
Typically, the average value of the conductivity is used as the best uniform-conductivity
approximation, as shown in Fig. 3.4 by the dashed lines. The average conductivity, σ , can
be found by equating the rectangular area σ x j defined by the dashed lines in Fig. 3.4
with the area enclosed between the real conductivity curve and x- and y-axes, which is
calculated as ∫ x j

0
σ(x) dx ≈

∫ ∞

0
σ(x) dx (3.8)

Therefore,

σ ≈ 1

x j

∫ ∞

0
σ(x) dx (3.9)

The average value of the conductivity determined in this way can now be used to calculate
the sheet resistance by Eq. (3.6): RS = 1/(σ x j ).

The preceding approach to calculating the sheet resistance enables a satisfactory
estimation of the overall resistance, and its result can be used to determine the terminal
voltage and current using Ohm’s law. This agreement is due to the fact that the terminal
current is an integral quantity, integrating any possible current flow through the resistive
body in a similar way to what Eq. (3.9) does with the conductivity. It is not difficult
to imagine that a larger portion of the terminal (integral) current I will flow close
to the surface, due to the higher conductivity, than through the lower part of the
resistor where the conductivity is low, and that all these larger and smaller current
streams integrate into the terminal current I at the resistor terminals. However, the use
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of the approach of averaging the conductivity to find the terminal current does not give
quantitative information on how the current flow is distributed inside the resistive body.

EXAMPLE 3.2 Resistance, Sheet Resistance, and Resistivity

The thickness of a copper layer, deposited to create the interconnecting tracks in an IC, is 100 nm.
The copper resistivity is given in Table 3.1.

(a) What is the sheet resistance of the copper layer at 27◦C (room temperature)?
(b) The minimum width of the interconnecting tracks is set at 0.5 μm. What is the maximum

resistance per unit length?
(c) The length of a minimum-width track, connecting two components, is 300 μm. What is

the resistance of this track?
(d) What is the resistance of the track at 75◦C?

SOLUTION

(a) The sheet resistance incorporates the resistivity ρ and the layer thickness x j [Eq. (3.6)]:

RS = ρ/x j = 0.17 �/�

(b) According to Eq. (3.7), the resistance is R = RS L/W , which means that the resistance
per unit length is

R

L
= RS

W
= 3.4 × 105 �/m = 0.34 �/μm

TABLE 3.1 Resistivities and Temperature
Coefficients for Selected Metals

ρ at 27◦C α = �ρ/ρ
�T

Metal (μ� · cm) (◦C−1)

Aluminum 2.82 0.0039
Copper 1.7 0.0039
Gold 2.44 0.0045
Iron 9.7 0.0050
Lead 22 0.0039
Molybdenum 5.2 0.0040
Nichrome (Ni–Cr) 150 0.0004
Nickel 6.9 0.0038
Platinum 11 0.00392
Silver 1.59 0.0038
Tungsten 5.6 0.0045
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(c) The total resistance is

R = RS
L

W
= 102 �

(d) We can see from Table 3.1 that the temperature coefficient of resistivity α is given by

α = �ρ/ρ

�T

The resistivity ρ is the only temperature-dependent quantity in Eq. (3.4). This means
that the temperature coefficient α can also be expressed as

α = �R/R

�T

A mathematical proof for this is as follows:

d R

dT
= d

[
ρL/(x j W )

]
dT

= L

x j W

dρ

dT
= ρL

x j W︸ ︷︷ ︸
R

1

ρ

dρ

dT

1

R

d R

dT
= 1

ρ

dρ

dT

�T and �R can be expressed as T1 − T0 and R1 − R0, where T0 = 27◦C, T1 = 75◦C,
R0 is the resistance at T0, and R1 is the resistance at T1. Therefore, we can establish the
following equation for the resistance R1:

α = (R1 − R0)/R0

T1 − T0

R1 − R0 = R0α(T1 − T0)

R1 = R0 [1 + α(T1 − T0)] = 121 �

EXAMPLE 3.3 Design for a Minimum Integrated-Circuit Area

(a) Design a resistor of 3.5 k� using a layer with sheet resistance of 200 �/�. The minimum
dimension achievable by the particular technology is 1 μm.

(b) An additional resistor with the resistance of 0.5 k� is needed. There are four layers
available with the following sheet resistances: RS1 = 5 �/�, RS2 = 200 �/�, RS3 =
1.5 k�/�, RS4 = 4 k�/�. Which one of the four layers would you use?
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SOLUTION

(a) From Eq. (3.7) we find

L

W
= R

RS
= 3500

200
= 17.5

Any combination of L and W that gives the ratio of L/W = 17.5 will provide the
needed resistor of 3.5 k�. However, the performance of integrated circuits is maximized
if the integrated-circuit area is minimized. Because of that, the optimum solution is
W = 1 μm, and L = 17.5 μm.

(b) The value of the resistor is closest to the sheet resistance of the second layer (200 �/�);
therefore the smallest resistor (in terms of area L × W ) can be obtained with this layer.
It is easy to find that L/W = 2.5.

EXAMPLE 3.4 Average Conductivity

(a) Find the average conductivity for the layer shown in Fig. 3.4.
(b) Design a 100-k� resistor using this layer, if it is known that the minimum dimension

achievable by the particular technology is 1 μm.

SOLUTION

(a) Putting the conductivity function as given in Fig. 3.4 into the integral of Eq. (3.9), one
obtains

σ = 10

x j

∫ ∞

0
e−x2/2 dx

where x j = 3.0 μm. It is known from mathematics that the solution of this integral
(Laplace integral) is ∫ ∞

0
e−x2/2 dx =

√
π/2 μm

The solution of the integral is expressed in μm as x and x0 = √
2 are given in μm.

Therefore, the average conductivity is

σ = 10 (� · cm)−1

3 μm

√
π/2 μm = 4.18 (� · cm)−1



116 CHAPTER 3 DRIFT

(b) Calculate first the sheet resistance:

RS = 1

σ x j
= 1

4.18 × 3 × 10−4 = 797.4 �/�

Thus, the number of squares needed is

L

W
= R

RS
= 100,000

797.4
= 125

As W = 1 μm, the length of the resistor needs to be L = 125 μm.

3.2.2 Differential Form of Ohm’s Law
The approach of averaging the conductivity of semiconductor layers, described in the
previous section, enables someone to design resistors without knowing much of what is
happening inside the resistor. Can you imagine, however, the feeling of the designer if it
happens that a proudly designed resistor does not show a linear current-to-voltage (I–V )
characteristic but rather a saturating-type curve? There must have been a limitation the
designer was not aware of! Was that a new effect? Could it be exploited for something
useful? Was the effect reproducible? The answers to all these questions lie in the knowledge
of what is happening inside the resistor. The integral form of Ohm’s law links integral
(terminal) voltages and currents, so it cannot be used to describe any current distribution or
electric-potential variations inside a resistive body. What is needed is the differential form
of Ohm’s law that can be applied to a single point inside the resistive body.

To illustrate the link between the two forms of Ohm’s law, consider the simplest
(even though rarely realistic) case of a homogeneous resistive body with the length L
and the cross-sectional area A (can be A = W x j as in Fig. 3.3). Let us transform the
integral quantities from the integral form of Ohm’s law [Eq. (3.3)] into their differential
counterparts. We already know that for this simple case we can easily transform the
resistance R into the conductivity σ using Eqs. (3.6) and (3.7). The differential counterpart
for the terminal current I is the current density. In this chapter, we will use the symbol jdr

for the current density to specifically indicate that we are dealing with drift current. The
current density in a homogeneous resistive body has the same value at any point of the
resistor cross section, which is simply calculated as

jdr = I

A
(3.10)

The differential counterpart of the terminal voltage is electric field, denoted by E . If the
electric field has a constant value in the considered domain, as is the case for our example,
then the electric field can be calculated as

E = V

L
(3.11)
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Replacing I , V , and R in the integral form of Ohm’s law (Eq. 3.3) by jdr , E , and σ as given
in Eqs. (3.6), (3.7), (3.10), and (3.11), the differential form of Ohm’s law is obtained:

jdr = σ E (3.12)

The differential form of Ohm’s law is said to be more general than the integral form because
the former can also be applied in the case of nonhomogeneous resistive bodies when the
current density is not uniformly distributed over the resistor cross section.

The differential form of Ohm’s law as given by Eq. (3.12) is applicable in the case in
which the current flows in one direction only, which is basically the direction of the electric
field. In the example of our resistor (Fig. 3.4), this one-dimensional form of Ohm’s law can
be applied to the central part of the resistor where the current flow is parallel to the surface
and an axis, say y-axis, can be placed along the current path. The one-dimensional form
of Ohm’s law, however, is not useful if we want to study the corner effects, because two
dimensions are needed to express the circle-like current paths in these regions. That is why
in the most general case the current density is considered to be a vector quantity, expressing
not only the value of the current density at a certain point of the resistive body, but also the
direction of the current flow. Note that the current density can in general take any direction
in space, unlike the terminal current, whose direction is successfully expressed by making
the current value positive or negative depending on the direction. The electric current takes
no other path but the one traced by the electric-field lines, which means that the direction of
the current-density vector and the electric-field vector are the same. Expressing the current
density and the electric field as vectors, jdr and E, the most general form of Ohm’s law is
obtained:

jdr = σE (3.13)

The electric field E is related to the electric potential ϕ, the electric field being equal to the
negative value of the slope of electric-potential change along a direction in space (say the
y-axis):

E = −dϕ/dy (3.14)

In the specific case of E = const, dϕ/dy = −(ϕ1 − ϕ0)/L = −V/L, which reduces
Eq. (3.14) to Eq. (3.11). In the three-dimensional case, Eq. (3.14) is generalized as

E = −∂ϕ

∂x
xu − ∂ϕ

∂y
yu − ∂ϕ

∂z
zu (3.15)

where xu , yu , and zu are the unit vectors in x-, y-, and z-directions, respectively, while ∂’s
denote partial derivatives.1 Using Eqs. (3.14) and (3.15), the one-dimensional (along the

1Partial derivatives are used to denote that a derivation is with respect to one variable, while others
are treated as constants for that particular derivative; if there is one only variable, then the partial
derivative reduces to the ordinary derivative, as in Eq. (3.14).
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y-axis) and three-dimensional drift currents can be expressed as

jdr = −σ
dϕ

dy
, j = −σ

(
∂

∂x
xu + ∂

∂y
yu + ∂

∂z
zu

)
ϕ = −σ∇ϕ (3.16)

Equation (3.13), or equivalently Eq. (3.16), is a mathematical model for the drift
current. Equation (3.16) can directly be related to the following physical description of
drift as a carrier-transport mechanism. If an electric potential difference is created across
a medium having mobile charged particles, a nonequilibrium situation is created, and the
particles will start flowing as a reaction aimed at diminishing the potential difference. This
means that if the carriers are negatively charged—for example, electrons—they will flow
toward the higher potential in order “to find” the positive charges creating the potential
difference and neutralize them.

EXAMPLE 3.5 Current Density Versus Terminal Current

Calculate the maximum current density and the terminal current for the resistor designed in
Example 3.4b if a voltage of 5 V is applied to the resistor terminals. Neglect the corner effects.

SOLUTION

Neglecting the corner effects, the one-dimensional form of Ohm’s law [Eq. (3.12)] can be used
to calculate the current density. In that case the electric field is uniform and equal to E = V/L =
5/(125×10−6) = 40,000 V/m = 40 V/mm. The maximum current is obtained for the maximum
conductivity, which is σmax = σ(0) = 10 (� · cm)−1 as can be seen from Fig. 3.4. Therefore,
jdr−max = σmax E = 4 × 107 A/m2.

The terminal current can be obtained by integrating the current density as distributed from
the surface to x j (or to ∞ which is the same as no significant current flows between x j and ∞)
and multiplying by the resistor width:

I = W
∫ ∞

0
jdr(x) dx = W

V

L
σ(0)

∫ ∞

0
e−(x/x0)

2
dx

The integral that appears in the foregoing equation was discussed in Example 3.4b. Using the
values for all the quantities in SI units, one obtains

I = 10−6 5

125 × 10−6 1000
√

π/2 = 5 × 10−5 A = 50 μA

Note that the integral form of Ohm’s law gives the same result for the terminal current (I =
V/R = 5 V/100 k� = 50 μA), but it cannot be used to find the maximum current density inside
the resistor body.
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3.2.3 Conductivity Ingredients
Ohm’s law [Eq. (3.13)] is a phenomenological relationship between the current density and
the electric field, with the conductivity as the proportionality coefficient. Hence, the con-
ductivity incorporates all the material-related factors. There are basically two things that
influence the conductivity: (1) concentration of the carriers available to contribute toward
the electrical current and (2) mobility of these carriers. With the concentration of the carri-
ers, it is clear that a higher carrier concentration means a higher current for the same electric
field, which further means that the conductivity is higher. The second factor, the mobility,
accounts for an effect that different carriers, or the same carriers in different conditions, do
not flow equally easily. To illustrate this effect, consider the ions in a metal lattice: these
are charged particles with a finite concentration, but they would not make any current if an
electric field is applied as they are completely immobile—their mobility is equal to zero.
Therefore, the conductivity is proportional to the carrier concentration and the carrier
mobility. Given that there are two types of current carriers in semiconductors, free electrons
and holes, there are both electron and hole components in the conductivity equation:

σ = qnμn + qpμp (3.17)

In Eq. (3.17), n and p are concentrations of the free electrons and holes, respectively, μn

and μp are the free-electron and hole mobilities, respectively, and q is the electronic charge
(q = 1.6 × 10−19 C). Obviously, qnμn is the electrons contribution to the conductivity,
whereas qpμp is the contribution of the second type of current carriers, the holes. Usually,
it is either n  p or p  n, so one of the two terms in Eq. (3.17) is dominant and the
other can be neglected.

Given that the unit of the conductivity is (� · m)−1, the mobility is in units of m2/V · s.
The next section describes the mobility in more detail.

EXAMPLE 3.6 Conductivity and Carrier Concentration

P-type silicon has a resistivity of 0.5 � · cm. Find the following, assuming that μn =
1450 cm2/V · s and μp = 500 cm2/V · s:

(a) the hole and electron concentrations
(b) the maximum change in resistivity caused by a flash of light, if the light creates 2 ×1016

additional electron–hole pairs/cm3

SOLUTION

(a) In a P-type semiconductor the conductivity due to electrons can be neglected because
p  n. Therefore, σ ≈ qμp NA . The resistivity is

ρ ≈ 1

qμp NA
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The concentration of acceptor ions, and therefore holes, is then NA ≈ p = 1/(qμpρ) =
2.5 × 1016 cm−3. The concentration of electrons is found as

n = n2
i

p
= 4.2 × 103 cm−3

(b) The flash of light produces excess electrons and holes, reducing therefore the resistivity.
When the light is removed, the excess electrons and holes will gradually recombine with
each other, increasing the resistivity to its original value—that is, the equilibrium value.
To find the maximum change in the resistivity, we need to determine the resistivity of
the specimen when the light is on. In that case the concentration of holes is p = 2.5 ×
1016+2×1016 = 4.5×1016 cm−3. The concentration of electrons is n = 2×1016 cm−3,
as generated by the light, and in this specific case it cannot be neglected when compared
to the concentration of holes. The conductivity is calculated as

σ = qμp p + qμnn = 8.24 (� · cm)−1

The corresponding resistivity is ρ = 1/σ = 0.12 � · cm. The maximum difference is,
therefore, �ρmax = 0.5 − 0.12 = 0.38 � · cm.

EXAMPLE 3.7 TCR

The temperature coefficient of a resistor, TCR, is defined as

TCR = 1

R

d R

dT
× 100

[
%/◦C

]
Find the TCR (at room temperature) of a resistor made of N-type silicon. If the resistance of the
resistor is 1 k� at 27◦C, estimate the resistance at 75◦C. The temperature dependence of electron
mobility is approximated by

μn = const T −3/2 [T in K]

SOLUTION

The resistance of a resistor depends on the resistivity ρ, resistor length L, and resistor cross-
sectional area x j W [Eq. (3.4)], where the resistivity is the only temperature-dependent parameter.
Replacing the resistance R in our definition of TCR by Eq. (3.4), the TCR is obtained as

TCR = 1

ρ

dρ

dT
× 100
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The resistivity of N-type silicon is given by

ρ = 1/(qμn ND)

where, obviously, the mobility is the only temperature-dependent parameter. Using the given
temperature dependence of mobility, the resistivity is expressed by

ρ = 1

q ND const
T 3/2

Finding that

dρ

dT
= 3

2

1

q ND const
T 1/2

the TCR is obtained as

TCR = 3

2T
× 100

Therefore,

TCR = 3

2 × 300
× 100 = 0.5%/K = 0.5%/◦C

When the temperature changes from 27◦C to 75◦C, the resistance changes by

�R ≈ TCR

100
R�T = 0.005 × 1 k� × (75◦C − 27◦C) = 0.24 k�

The resistance at 75◦C is, therefore, estimated at 1.24 k�.

3.3 CARRIER MOBILITY

3.3.1 Thermal and Drift Velocities
The carrier-gas model assumes that the kinetic energy of any single carrier is given by

Ekin =
{

m∗|�v|2/2 = | �p|2/2m∗ general case
m∗v2

x/2 = p2
x/2m∗ one-dimensional case

(3.18)

where m∗ is the effective mass, introduced in Section 2.3.1. Like the molecules in the
air, the current carriers in semiconductors possess kinetic energy even when no electric
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(a) (b) (c)

vdr � 0

E � 0

vdr

E

vdr

E

vth

Figure 3.5 The concept of drift
velocity. (a) No electric field is applied.
(b) A small electric field is applied.
(c) A larger electric field is applied.

field is applied. In that case, the kinetic energy of the carriers is related to the crystal
temperature T :

Ekin = m∗v2
th

2
=

{
3
2 kT three-dimensional case
1
2 kT one-dimensional case

(3.19)

where k is the Boltzmann constant, T is the absolute temperature, and vth is the thermal
velocity. The thermal motion of carriers is essentially random due to the scattering from
the imperfections of the crystal lattice (doping atoms, phonons, etc.). Carriers that move
randomly do not make any drift current because they do not effectively move from one
point in the semiconductor to another. Figure 3.5a illustrates an electron that returns to
the initial position after a number of scattering events, performing therefore no effective
motion in any particular direction in the crystal. It is said that the drift velocity of the
carriers is equal to zero.

If an electric field is applied to the electron gas, the electric-field force will cause
slight deviations of the electron paths between collisions, producing an effective shift of
the electrons in the direction opposite to the direction of the electric field, as illustrated
in Fig. 3.5b. The effective shift of carriers per unit time is the drift velocity. Figure 3.5c
illustrates that an increase in the electric field increases the drift velocity.

The concept of drift velocity as the flow of a carrier is quite fundamentally linked
to the concept of electric current, which is the flow of many carriers. To establish this
fundamental relationship, let us consider a semiconductor bar that has a cross-sectional
area A and good contacts at the ends. A voltage applied at the ends of the sample establishes
an electric field within the sample that forces the carriers, say electrons, to move at an
average drift velocity of vdr . If we count how many electrons per unit time t are collected
at the positive contact, we will find that this number is equal to the number of electrons
that are not further than vdr t from the contact at the beginning of the counting (vdr t is the
average distance that electrons travel in time t when moving with the average velocity vdr ).
In other words, this number is equal to the number of electrons confined within the volume
vdr t A. If there are n electrons per unit volume—that is, the concentration of electrons is
n—there will be nvdr t A electrons that reach the positive contact during time t . The number
of electrons that are collected per unit time t , which is nvdr A, multiplied by the charge
that every electron carries (−q), is the electric current flowing through the terminal, I .
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Figure 3.6 Drift velocity versus electric field
in Si.

Therefore,

I = −qnvdr A (3.20)

The current I (expressed in A, which is C/s) turns into current density jdr (expressed in
A/m2) when divided by the area A:

jdr =
{−qnvdr electrons

qpvdr holes (3.21)

Equation (3.21) provides the relationship between the electric-current density and the drift
velocity of carriers. It is not difficult to understand this equation: If there are more carriers
per unit volume (n higher) that move faster (vdr larger), the current density j will be
proportionally larger. The factor q is there to convert particle current density expressed in
s−1 m−2 into electric current density expressed in C · s−1 m−2—that is, A · m−2.

As illustrated in Fig. 3.5, the drift velocity depends on the electric field applied.
Figure 3.6 shows measured values of the drift velocities of electrons and holes versus elec-
tric field in silicon. The expected linear relationship between the drift velocity and the
electric field is observed only for small electric fields—that is, small drift velocities. As
the electric field is increased, the drift velocity tends to saturate at about 0.1 μm/ps in the
case of Si crystal. Let us think of what is going to happen with the electron trajectory in
Fig. 3.5 if we continue to increase the electric field. We can see that there is a limit to
the increase in drift velocity because there is a limit to how much the scatter-like electron
trajectory can be stretched in the direction of the electric field. This provides an insight
into the effect of drift-velocity saturation.

EXAMPLE 3.8 Drift Velocity

A uniformly doped semiconductor resistor (doping level ND = 1016 cm−3 and cross-sectional
area A = 20 μm2) conducts 2 mA of current. The resistor is connected by copper wires
with cross section of 0.1 mm2. Determine and compare the drift velocities of the electrons
in the semiconductor and copper regions. The concentration of free electrons in copper is
nCu = 8.1 × 1022 cm−3.
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SOLUTION

The relationship between the drift velocity and the current density is given by Eq. (3.21).
Therefore, the absolute value of the drift velocity is

vdr = I

Aqn

where n = ND and n = nCu in the semiconductor and the copper wires, respectively.
The drift velocities of electrons in the semiconductor and the copper wires are 62.5 km/s

and 1.54 μm/s, respectively. There are so many more electrons in the copper wires that they can
move 6.25 × 104/1.54 × 10−6 = 4 × 1010 times slower and still supply the necessary current to
the resistor.

3.3.2 Mobility Definition
Let us consider the semiconductor bar having good contacts at the ends again. If electric
field E is applied and the conductivity of the semiconductor is σ , then the current density
is obtained from the differential form of Ohm’s law [Eq. (3.12)]. If the semiconductor is
N type, the conductivity is given by σ = qμnn. Therefore, Ohm’s law expresses the current
density in the following way:

jdr =
{

qμnnE electrons

qμp pE holes
(3.22)

Ohm’s law is not derived from principles of solid-state physics; it simply expresses an
observation that the current density depends linearly on the electric field applied. Lacking
a detailed physical background, it has to involve a proportionality constant, which is the
mobility μn in Eq. (3.22), that needs to be determined experimentally. In the previous
section, a current equation is derived [Eq. (3.21)] from a microscopic consideration of the
flow of current carriers. Given that Eqs. (3.21) and (3.22) have to give the same current
densities, the elimination of jdr from these equations leads to the following relationship
between vdr and E :

vdr =
{−μn E electrons

μp E holes
(3.23)

Equation (3.23) reveals that Ohm’s law implicitly assumes a linear relationship between
the drift velocity and the electric field. The experimental results given in Fig. 3.6 show
that this assumption is valid only at small electric fields. This clearly shows an important
limitation of Ohm’s law when applied to semiconductor devices. The mobility has to be
adjusted to preserve the validity of Eq. (3.22). This complicates the concept of mobility
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due to the fact that it can be considered as a constant only at low electric fields, whereas it
becomes an electric-field-dependent parameter at high electric fields.

Equation (3.23) is basically the definition of mobility. The carrier mobility is the
proportionality coefficient in the dependence of drift velocity on the applied field. The
unit for mobility is given by the velocity unit over the electric field unit, which is
(m/s)/(V/m) = m2/V · s.

3.3.3 Scattering Time and Scattering Cross Section
Electrons appearing in electric field E experience force F = −q E , which accelerates
them: F = m∗dv/dt . For small electric fields, the acceleration can be expressed as vdr/τsc,
where vdr is the average velocity (the drift velocity) and τsc is the average scattering time.
With this, −q E = m∗vdr/τsc, which means that the linear relationship between vdr and E
can be expressed as

vdr = −qτsc

m∗ E (3.24)

Given that the mobility is the proportionality coefficient in Eq. (3.24) (vdr = −μn E), the
mobility is directly proportional to the scattering time and inversely proportional to the
effective mass:

μn = qτsc

m∗ (3.25)

Equation (3.25) shows that carriers with a smaller effective mass have a higher
mobility. The concept of effective mass was introduced in Section 2.3.1. Let us now gain an
insight into the scattering time. When a carrier moves toward a scattering center (phonon,
ion, etc.), a scattering event occurs if the carrier hits the effective area of the scattering
center, called scattering cross section (σsc). If there are Nsc scattering centers per unit
volume, the product Nscσsc has the meaning of scattering probability per unit length
of the carrier path. The reciprocal value, 1/Nscσsc, is the scattering length—that is, the
average distance that a carrier travels between two collisions with the scattering centers.
The average time between two collisions—the scattering time, τsc—is obtained as the ratio
between the scattering length and the average thermal velocity of the carrier, vth :

τsc = 1

vthσsc Nsc
(3.26)

The reciprocal value of τsc is the probability that a carrier will be scattered per unit
time. The probability that a carrier will be scattered by a phonon depends on the phonon
size that can be related to the radius of crystal-atom vibrations. The radius of the atom
vibrations increases with an increase in the temperature, thereby increasing the probability
that carriers will collide with vibrating atoms. Therefore, the phonon-limited mobility
decreases with temperature.



126 CHAPTER 3 DRIFT

The doping atoms are another important source of electron and hole scattering. The
doping atoms are ionized particles (donors positively and acceptors negatively); therefore
they repel or attract electrons or holes that appear in their vicinity, changing consequently
the direction of their motion. This is referred to as Coulomb scattering. Coulomb scattering
is more pronounced at lower temperatures because the thermal velocity of the carriers
is smaller and the carriers stay for a longer time in electric contact with the ionized
doping atoms, making the scattering more efficient. A deeper insight into the temperature
dependences of phonon and Coulomb scattering is provided by Examples 3.9 and 3.10,
respectively.

EXAMPLE 3.9 Scattering Cross Section of Phonons

(a) If the phonon-limited scattering time in silicon is τsc−ph = 0.2 ps, determine the
scattering cross section of phonons at 300 K. The effective mass of electrons in silicon
is m∗ = 0.26m0.

(b) Assuming that the scattering cross section of phonons is proportional to the temperature,
determine the temperature dependence of the phonon-limited mobility.

SOLUTION

(a) From Eq. (3.26),

σsc−ph = 1

τsc−phvth Nsc−phonons

where Nsc−ph is equal to the concentration of silicon atoms (5 × 1022 cm−3 according
to Example 1.3), and vth can be obtained from the energy-balance equation m∗v2

th/2 =
3kT/2:

vth =
√

3kT/m∗ = 2.29 × 105 m/s

With this value for vth and τsc−ph = 0.2 ps, we obtain σsc−ph = 4.36 × 10−22 m2 =
4.36 × 10−18 cm2.

(b) The dependence of phonon-limited mobility on temperature is due to σsc−ph and vth :

μph = qτsc−ph

m∗ = q

m∗vthσsc−ph Nsc−ph
∝ 1

σsc−phvth

μph ∝ 1

T
√

3kT/m∗ ∝ 1

T 3/2

μph = A pT −3/2
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EXAMPLE 3.10 Cross Section of Coulomb Scattering Centers

The scattering cross section of a donor ion can be related to the spherical region where the
thermal energy of a carrier is smaller than the energy associated with the Coulomb attraction.

(a) Estimate the cross section of Coulomb scattering centers in silicon. The dielectric
constant of silicon is εs/ε0 = 11.8.

(b) Determine the temperature dependence of the Coulomb-limited mobility.

SOLUTION

(a) The energy of Coulomb attraction/repulsion is q2/(4πεsr), where r is the distance
between the center of the ion and the carrier, whereas the kinetic energy of the carrier
is 3kT/2. Therefore, the radius of the spherical region can be found from the following
condition:

q2

4πεsr
= 3

2
kT

r = q2

6πεskT

The cross section of the spherical region (the scattering cross section) is then σsc−C =
πr2 = 3.1 × 10−17 m−2 = 3.1 × 10−13 cm−2.

(b) The temperature-dependent factors are σsc−C and vth , where σsc−C = πr2 ∝ 1/T 2:

τsc−C ∝ 1

σsc−Cvth
∝ 1

(1/T 2)
√

T
= T 3/2

μC = AcT 3/2

3.3.4 Mathieson’s Rule
The concept of scattering probability per unit time (1/τsc) can be used to combine the
effects of independent scattering mechanisms. For example, if the probabilities that a
carrier is scattered by lattice vibrations (phonon scattering) and doping ions (Coulomb
scattering) are 1/τsc−ph and 1/τsc−C , respectively, the total probability of scattering per
unit time is the sum of the two:

1

τsc
= 1

τsc−ph
+ 1

τsc−C
(3.27)

Combining Eqs. (3.25) and (3.27), we can see that the reciprocal values of the phonon-
limited (μph) and the Coulomb-limited (μC ) mobilities are added to obtain the reciprocal
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value of the total mobility: 1/μ = 1/μph + 1/μC . This is known as Mathieson’s rule. In
general,

1

μ
=

N∑
i=1

1

μi
(3.28)

where μi is the mobility limited by the action of the i th scattering mechanism, and μ is the
total mobility.

Because temperature has opposite effects in the cases of phonon and Coulomb
scattering, the dependence of mobility on temperature is not a straightforward function.
If the doping concentration is high enough, causing Coulomb scattering to dominate
over phonon scattering, mobility continuously increases with the temperature as Coulomb
scattering is weakened. Such a situation appears in silicon for a doping level of 1019 cm−3

and temperatures up to 500 K (Fig. 3.7). As the doping concentration is reduced, the
phonon scattering dominates at higher temperatures, which means that the increase in
mobility at lower temperatures (due to weakened Coulomb scattering) is followed by
a decrease in mobility at higher temperatures (due to strengthened phonon scattering).
Figure 3.7 shows such behavior by the mobility, observed for low and medium doping
levels (1015 and 1017 cm−3, respectively).

Figures 3.8 and 3.9 provide dependencies of electron and hole mobilities on doping
concentration at different temperatures for silicon and gallium arsenide, respectively.
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EXAMPLE 3.11 Mobility Plots

Based on the results from Exercises 3.9 and 3.10, plot the following mobility dependencies:

(a) Electron mobility versus temperature for ND = 1016 cm−3 in the temperature range
30 K to 300 K (use 10-K steps to calculate the data).

(b) Electron mobility versus donor concentration for 300 K in the doping concentration
range 1015 cm−3 to 1020 cm−3 (use 10 concentration points per decade).

SOLUTION

(a) Given that the phonon-limited scattering time at 300 K is τsc−ph = 0.2 ps, the room-
temperature phonon-limited mobility is μph(300) = A p × 300−3/2, and the coefficient
A p can be determined from

A p = μph(300) × 3003/2

The room-temperature Coulomb-limited mobility is

μC (300) = q

m∗ ND σsc−C (300) vth(300)

where σsc−C (300) = 3.1 × 10−17 m−2 (according to Example 3.10a) and vth(300) =
3.92 × 105 m/s (according to Example 3.9a). Knowing μC (300), the coefficient Ac can
be determined from

Ac = μC(300)/3003/2
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The following MATLAB©R script can be used to calculate the numerical values:

>>q=1.6e-19;
>>meff=0.26∗9.1e-31;
>>tauph=0.2e-12;
>>muph300=q∗tauph/meff
muph300 =

0.1352
>>Ap=muph300∗300ˆ1.5
Ap =

702.7763
>>vth300=3.92e5;
>>sigma300=3.1e-17;
>>Nd=1e22;
>>muC300=q/(meff∗Nd∗sigma300∗vth300);
>>Ac=muC300/300ˆ1.5
Ac =

0.0011

A p = 702.78 m2 · K3/2/V · s, Ac = 0.0011 m2/V · s · K3/2.
The total mobility is determined according to the Mathieson’s rule [Eq. (3.28)]:

1

μ
= 1

μph
+ 1

μC

μ = μphμC

μph + μC

The following MATLAB script will generate the data, perform the plotting, and label the
axes (the plot is shown in Fig. 3.10):

>>T=[30:10:300];
>>muph=Ap∗T.ˆ(-1.5);
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Figure 3.10 The MATLAB plot
for Example 3.11a.
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>>muC=Ac∗T.ˆ1.5;
>>mu=muph.∗muC./(muph+muC);
>>plot(T,mu)
>>xlabel('Temperature (K)')
>>ylabel('Electron Mobility (mˆ2/Vs)')

(b) In this case, the phonon mobility is constant μph = 0.1352 m2/V · s, and the Coulomb
mobility changes with the doping concentration as

μC = q/m∗ σsc−C(300) vth(300)︸ ︷︷ ︸
ACN

1

ND

where AC N = 5.5649 × 1022 (mV · s)−1. The following is the MATLAB script for the
calculations and the plot is shown in Fig. 3.11.

>>Acn=5.5649e22;
>>Ndlog=[21:0.1:26];
>>Nd=10.ˆNdlog;
>>muC=Acn./Nd;
>>mu=muph300∗muC./(muph300+muC);
>>semilogx(Nd,mu)
>>xlabel('Doping Concentration (mˆ-3)')
>>ylabel('Electron Mobility (mˆ2/Vs)')
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Figure 3.11 The MATLAB plot
for Example 3.11b.
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*3.3.5 Hall Effect
The Hall effect is related to the force that acts on a charged particle that moves in a
magnetic field. In the general case of arbitrary velocity and magnetic field directions, the
force is expressed as

F = qv × B (3.29)

where v is the particle velocity, B is the magnetic flux density, and the vector cross product
is v×B= |v||B| sin [ � (v, B)]. Figure 3.12 illustrates the Hall effect. Let us assume that
a current of holes (I ) is established through a P-type semiconductor bar so that the holes
move in the y-direction with the velocity equal to drift velocity vdr = vy . At time t = 0,
a magnetic field perpendicular to the current flow, Bz , is established. As a hole enters the
semiconductor bar with velocity vy , the force Fx = −qvy Bz causes its trajectory to deviate
and to hit the side of the semiconductor bar (Fig. 3.12a). The holes accumulating at one
side of the bar create an electric field −Ex , which counteracts the magnetic-field force:

q Ex = qvy Bz sin
[ � (vy, Bz)

]︸ ︷︷ ︸
−90◦

⇒ −Ex = vy Bz (3.30)

This establishes a steady state where the holes continue to flow through the semiconductor
bar in the y-direction (Fig. 3.12b). If the width of the semiconductor bar (the dimension in
the x-direction) is W , a voltage VH equal to −Ex W can be measured between the opposite
sides. This voltage is referred to as the Hall voltage, whereas the corresponding field is
referred to as the Hall field (EH = −Ex in Fig. 3.12b).

Assuming that all the holes move with the drift velocity vy = vdr and relating the drift
velocity to the current density jy [ jy = qpvdr according to Eq. (3.21)], the Hall field can

(a) (b)

Bz

I

V � 0

Bz

Steady state

vy

I

V � VH

�Ex 

t � 0

�

Figure 3.12 Illustration of the Hall effect. (a) The force due to the magnetic field Bz causes the hole
trajectory to deviate. (b) Accumulated holes create a Hall field EH = −Ex that counteracts the force
from the magnetic field Bz .
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be expressed as

EH = jy

qp
Bz (3.31)

which further leads to the following equation for the Hall voltage:

VH = 1

qp

I

ts
Bz (3.32)

where ts is the sample thickness. When the effect was discovered, Hall observed that the
field EH is directly proportional to the magnetic flux density and the current density and is
inversely proportional to the sample thickness,

VH = RH
I Bz

ts
(3.33)

where the proportionality constant RH is now known as the Hall coefficient. Comparing
the empirical Eq. (3.33) to Eq. (3.32), the Hall coefficient is obtained as

RH = 1

qp
(3.34)

Alternatively, RH can be expressed as

RH = μp

σp
(3.35)

given that σp = qμp p.
In reality, the drift velocity vdr represents only the average carrier velocity, and it

cannot be said that vy = vdr for any carrier. This means that this theory can strictly be
applied only to the carriers moving with average velocity. Consequently, the mobility in
Eq. (3.35) is called the Hall mobility, to indicate that it generally has different value from
the drift mobility. This inaccuracy can be compensated by introducing a factor r in the
equation relating the empirical Hall coefficient to the semiconductor properties:

RH =
{

r/qp for holes

−r/qn for electrons
(3.36)

The factor r is typically between 1 and 2.
Using Eq. (3.33), the Hall coefficient can experimentally be determined by measuring

the Hall voltage VH for a given current I and magnetic flux density Bz and knowing the
sample thickness ts . The measured value of the Hall coefficient can be used to calculate the
carrier concentration, p or n, using Eq. (3.36).

It is interesting to note that the polarity of the Hall voltage VH depends on the type of
semiconductor used. If an N-type semiconductor is used in the example of Fig. 3.12, with
the same current direction, the electrons will move in the negative y-direction; however, the
force due to the magnetic field Bz is in the same direction because of the negative charge
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of the electrons: (−q)(−vy)Bz = qvy Bz . This means that the electrons will accumulate at
the same side as the holes in Fig. 3.12b, leading to an Ex field in the opposite direction
and, therefore, a VH voltage with the opposite polarity. Therefore, the polarity of the Hall
voltage can be used to determine the semiconductor type.

Practical applications of the Hall effect include techniques for characterization of
semiconductor materials and magnetic sensors.

SUMMARY

1. A slope in an energy–space diagram indicates an electric field: an energy difference due
to band bending in space, expressed in eV, is numerically equal to the negative electric-
potential difference between the two points (E = −qϕ). To visualize the drift current,
the electrons in the conduction band can be thought of as balls on a solid surface; an
analogy for the holes in the valence band is bubbles in water.

2. Sheet resistance RS = 1/(σ̄ x j ) involves all the technological parameters that influence
the resistance of a semiconductor layer. It is expressed in �/� to indicate that it means
resistance per square, so that the total resistance is

R = RS
L

W

where the geometric parameters determine the number of squares L/W .
3. An electric field Ey causes drift current of charged particles, as expressed by the

differential form of Ohm’s law:

jy = σ Ey = −σ
dϕ

dy

4. The conductivity of a semiconductor is given by

σ = qnμn + qpμp

where n and p are the concentrations, and μn and μp are the mobilities of electrons
and holes, respectively.

5. The concept of current density relates to the velocity of a certain concentration of
particles. In the case of drift current of electrons, jdr = −qnvdr , where vdr is the
drift velocity. The drift velocity is directly related to the electric field causing the drift:

vdr =
{−μn E for electrons

μp E for holes

where the proportionality coefficient μn,p is the mobility. By introducing the concept
of mobility, the fundamental current equation ( jdr = −qnvdr ) is converted into the
differential Ohm’s law ( jdr = qnμn E = σ E). The mobility is constant at low electric
fields, but it drops at high fields due to the drift-velocity saturation effect.
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6. The mobility value is basically determined by the average time between two scattering
events (τsc) and the effective mass (m∗):

μ = qτsc

m∗

The reciprocal value of the scattering time, 1/τsc, has the meaning of the probability
that a carrier is scattered per unit time. This probability depends on the concentration
of scattering centers (Nsc), their scattering cross section σsc, and the thermal velocity
of the carriers (vth):

1

τsc
= vthσsc Nsc

7. Two dominant scattering mechanisms are phonon scattering (μph ∝ T −3/2) and
Coulomb scattering by the ionized doping atoms (μC ∝ T 3/2).

8. Given that the total scattering probability is equal to the sum of the scattering
probabilities due to different and independent scattering mechanisms, the total mobility
can be expressed by Mathieson’s rule:

1

μ
=

N∑
i=1

1

μi

where μi is the mobility limited by the action of i th scattering mechanism.

PROBLEMS

3.1 The bottom of the conduction band at one end of
a silicon resistor is at the same energy level as
the top of the valence band at the other end. What
current flows through the resistor if the resistance is
1.12 k�?

3.2 A test resistor with length L = 50 μm and
width W = 5 μm is used to measure the sheet
resistance of a resistive layer. What is the sheet
resistance if a test voltage of 1 V produces current of
I = 0.50 mA?

(a) 50�/�
(b) 100�/�
(c) 200�/�
(d) 300�/�
(e) 400�/�
(f) 450�/�

3.3 A resistor of 50 � is to be designed for fabrication
by a standard bipolar integrated-circuit technology
incorporating base- and emitter-type diffusion lay-

ers. The sheet resistance of the base-type diffusion
layer is 200 �/�, whereas the sheet resistance of the
emitter-type diffusion layer is 5 �/�. The minimum
width of the diffusion lines is 5 μm. Which diffusion
layer (emitter type or base type) would you use for
this resistor, and why? Determine the dimensions
(length and width) of the resistor.

Figure 3.13 Top view of an IC
resistor.
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3.4 A diffusion layer with sheet resistance RS =
200 �/� is used for the resistor of Fig. 3.13. If the
total resistance of this resistor is R = 6.5 k�, what
is the resistance of each corner square?

3.5 Estimated operating temperature of an IC chip is
70◦C. Design a molybdenum resistor so that its
resistance is 75 � at the estimated operating tem-
perature. The thickness of the molybdenum film is
100 nm and the minimum track width is limited
to 2 μm. What will the resistance be if the actual
operating temperature is 75◦C? A

3.6 A copper track is to connect two device terminals
that are 100 μm apart. If the thickness of the copper
film is 200 nm and the operating temperature is
80◦C, design the width of the track so that the
maximum dissipated power is 1 mW. The maximum
current flowing through the track is 200 mA.

3.7 An N-type diffusion layer creates a semiconductor
resistor. The length and the width of the resistor are
L = 100 μm and W = 5 μm, respectively. The
applied voltage across the resistor is 1 V.

(a) What is the electric field inside the resistor?
(b) If the doping level at the surface is ND(0) =

1016 cm−3 and the doping level at 0.5 μm be-
low the surface is ND(0.5 μm) = 1015 cm−3,
determine the current density at the semicon-
ductor surface and at x = 0.5 μm below the
surface.

Assume constant electron mobility of μn =
500 cm2/V · s.

3.8 The conductivity of a 1-μm-deep semiconductor
layer changes as

σ(x) = σ(0) exp(−x/x0)

where σ(0) = 15(� · cm)−1 and x0 = 0.2 μm.
What is the average conductivity of this layer?

3.9 The conductivity of a 3-μm-deep semiconductor
layer changes as

σ(x) = σ(0) exp(−x/x0)

where σ(0) = 100 (� · cm)−1 and x0 = 0.5 μm.
What is the sheet resistance of the layer that is
obtained after the top 1 μm is etched away? A

3.10 The voltage across a 200-� resistor in a bipolar
integrated circuit is ≤5 V. Reliability considerations

limit the average current density to jdr–max =
109A/m2. Design this resistor so that it can be
implemented as a base diffusion resistor, with the
sheet resistance and the junction depth of the base
diffusion layer being RS = 100 �/� and x j =
2 μm, respectively.

3.11 Repeat Problem 3.10 for the case in which the
reliability constraint means that the current density
should not exceed jdr−max = 109A/m2 at any
point, and the nonuniform conductivity can be
expressed as σ(x) = σ(0) exp−(x/x0)2, where
x0 = 1 μm. Assume constant electric field E =
V/L . It is also known that

∫ ∞
0 exp(−u2/2) du =√

π/2. A

3.12 To measure the sheet resistance of a resistive layer,
taking into account the parasitic series contact
resistance, a test structure consisting of resistors
with the same width and different lengths is
provided. Measuring the resistances of the resistors
with lengths L1 = 10 μm and L2 = 30 μm, the
following values are obtained: R1 = 365 �, and
R2 = 1085 �, respectively. If the width of the
resistors is 5 μm, determine the sheet resistance and
the contact resistance values. A

3.13 The concentration of donor atoms in N-type silicon
is ND = 1016 cm−3. Determine the conductivity of
this material, assuming that the electron mobility is
μn = 1450 cm2/V · s. A

3.14 P-type doped semiconductor layer has approxi-
mately uniform acceptor concentration NA = 5 ×
1016 cm−3 and thickness x j = 4 μm. Calculate
the sheet resistance, if the hole mobility is μp =
450 cm2/V · s.

3.15 In a silicon crystal, ND = 1017 cm−3 and NA =
1016 cm−3. Find the resistivity of the crystal if the
electron mobility is μn = 770 cm2/V · s.

3.16 An N-type silicon substrate with ND = 1015 cm−3

is to be converted into P type by boron diffusion, so
that the resistivity at To = 75◦C is ρ = 5 � · cm.
What should be the doping level? What is the
resistivity at room temperature? The hole mobilities
at 75◦C and room temperature are 341 cm2/V · s
and 467 cm2/V · s, respectively. The intrinsic carrier
concentration at 75◦C is ni = 2.9 × 1011 cm−3. A

3.17 What is the tolerance �R/R of an N-type diffusion
resistor if the tolerances of the resistor dimensions
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(including junction depth) are ±0.3 μm and the
tolerance of the doping density is 5%?

3.18 A 2-cm-long silicon piece, with cross-sectional area
of 0.1 cm2, is used to measure electron mobility.
What is the electron mobility if 90 � of resistance
is measured and the doping level is known to be
ND = 1015 cm−3? Neglect any contact resistance.

3.19 The resistance of a P-type semiconductor layer is
1 k�. In what range will the resistance change if
the operating temperature is 75◦C ± 10◦C? The
temperature dependence of hole mobility is given by
μp = const T −3/2.

3.20 A bar of N-type semiconductor (ND = 5 ×
1017 cm−3, L = 1 cm, W × T = 3 mm × 0.5 mm)
is used as a resistor. Calculate and compare the sheet
resistances at 27◦C and 700◦C if the semiconductor
material is
(a) silicon
(b) 6H silicon carbide A

Assume constant mobilities μn = 400 cm2/V · s
and μp = 200 cm2/V · s, and use the energy-gap
and density-of-states data from Problems 2.36 and
2.37.

3.21 An electric field E = 1 V/μm produces current
density j = 0.8 × 109 A/m2 through an N-type
doped semiconductor (ND = 1017 cm−3). What
will the current density be if the electric field is
increased five times, so that the electrons reach the
velocity saturation vsat = 0.1 μm/ps?
(a) 0
(b) 0.8 × 109 A/m2

(c) 1.6 × 109 A/m2

(d) 4.0 × 109 A/m2

(e) 3.2 × 109 A/m2

(f) 8.0 × 109 A/m2

3.22 A bar of silicon 1 cm long, 0.5 cm wide, and 0.5 mm
thick has a resistance of 190 �. The silicon has a
uniform N-type doping concentration of 1015 cm−3.
(a) Calculate the electron mobility.
(b) Find the drift velocity of the electrons, when

10 V is applied to the ends of the bar of silicon.
(c) Find the corresponding electric field, and relate

it to the drift velocity and the electron mobility.

3.23 (a) The channel of a 0.1-μm MOSFET can be
considered as a resistor with length L = 0.1
μm. Because the channel is short, the electrons
drift through the channel with the saturation
velocity (vsat = 0.1 μm/ps) when nominal

voltage is applied across the channel. How long
does it take an average electron to drift across
the whole channel?

(b) The MOSFET channel is connected by a 5-
mm-long copper track to another device. How
long does it take an average electron to drift
the distance between the two devices connected
by the copper track if the current that the
electrons conduct is 10 mA? The cross section
of the stripe is 0.1 μm2, and the number of
free electrons in copper is nCu = 8.1 ×
1022 cm−3. A

(c) Based on the speed of light in vacuum (c =
3 × 108 m/s), estimate the time that it takes
an electromagnetic wave to propagate along the
MOSFET channel and along the 5-mm copper
track. Based on the results, answer the following
question: Does drift velocity impose limitation
to the speed of signal/energy propagation? If
not, what is the meaning of the drift velocity?

3.24 (a) Design a 1-k� diffused N-type resistor. The
technology parameters are as follows: the
concentration of donor impurities ND =
1017 cm−3, the junction depth x j = 2 μm,
and the minimum diffusion width as constrained
by the particular photolithography process and
lateral diffusion is 4 μm.

(b) How long should the resistor be if P-type silicon
with the same doping density is used instead of
the N-type silicon?

(c) What will the resistance be if the concentration
of donors is increased to ND = 1019 cm−3? A

3.25 For the resistor designed in Problem 3.24a, find the
resistance at 125◦C?

3.26 What is the scattering time of N-type silicon (ND =
1015 cm−3) whose measured conductivity is σ =
0.224 (� · cm)−1? The effective mass of electrons
in silicon is m∗ = 0.26m0.

3.27 Determine the scattering lengths of electrons and
holes in an N-type silicon sample with the following
values for the electron and hole mobilities: μn =
1000 cm2/V · s and μp = 350 cm2/V · s. The sample
is at room temperature. Assume that the effective
masses of electrons and holes are 0.26m0 and
0.50m0, respectively. ( A for holes)

3.28 Determine the scattering time due to the Coulomb
scattering of silicon doped at ND = 1017 cm−3

if the mobility of the doped silicon is μtotal =
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800 cm2/V · s and the mobility of pure silicon is
μ0 = 1500 cm2/V · s. The effective mass of silicon
is m∗ = 0.26m0.

3.29 When the doping level of N-type GaAs is in-
creased from ND1 = 1015 cm−3 to ND2 =
1017 cm−3, the conductivity is increased from σ1 =
1.36 (� · cm)−1 to σ2 = 800 (� · cm)−1. What
is the scattering time of the higher-doped sample
if the scattering time of the lower-doped sample is
τsc = 0.324 ps? A

3.30 The scattering times in a GaAs sample due to
phonon scattering, Coulomb scattering, and all the
other scattering mechanisms are τsc−ph = 0.35 ps,
τsc−C = 0.20 ps, and τsc−other = 43 ps,
respectively. Determine the carrier mobility if the
effective mass is m∗ = 0.067m0.

3.31 For silicon doped with ND ≈ 1016 cm−3, the
electron mobility at the liquid-nitrogen temperature
(T = 77 K) is approximately the same as
that at room temperature (T = 27◦C): μn =
1250 cm2/V · s. Assuming that the mobility is
determined by Coulomb (μC = AcT 3/2) and
phonon (μph = A pT −3/2) scattering mecha-
nisms, determine the maximum mobility and the
temperature at which the maximum mobility is
observed. Which scattering mechanism dominates at
this temperature?

3.32 The phonon (μph) and Coulomb (μC ) limited
mobilities in N-type silicon can be expressed as

μph = A pT −3/2

μC = Acn N−1
D T 3/2

where A p = 700 m2V−1s−1K3/2 and Acn =
1.1 × 1019 V−1s−1K−3/2m−1.

(a) What doping is needed to achieve temperature-
independent resistivity for temperatures around
300 K?

(b) What would be the temperature coefficient of
this resistive film (T C R) if the operating tem-
perature is 85◦C?

3.33 Derive the equation that expresses the scattering
length in terms of carrier mobility and the necessary
physical constants. Calculate the scattering length
for carriers with effective mass m∗ = 0.26m0 and
mobility μn = 500 cm2/V · s at room temperature.

3.34 The phonon-limited mobility of electrons in silicon
at 75◦C is μn = 1000 cm2/V · s. Determine the
scattering cross section of phonons and the effective
phonon radius. The effective mass of electrons in Si
is m∗ = 0.26m0.

3.35 A slab of N-type silicon, doped at ND =
1015 cm−3, is biased so that I = 200 mA of
current flows through its cross-sectional area, A =
100 μm × 100 μm. The electron mobility is μn =
1500 cm2/V · s. Consider a scattering event that
drops the kinetic energy of the electron to Ekin =
3kT/2 = 38.8 meV and scatters the electron
exactly in the direction opposite to the electric-
field direction. The electron is now accelerated by
the electric field until the next scattering event that
occurs after lsc = 20 nm.
(a) Apply the energy-band presentation of current

flow, illustrated in Fig. 3.2, to determine the
kinetic energy of the electron just before the
second scattering event.

(b) How much faster is this electron just before
the second scattering event in comparison to its
average thermal velocity at room temperature?
The effective mass of the electron is m∗ =
0.26m0.

REVIEW QUESTIONS

R-3.1 What does a nonzero slope of a E–x band diagram mean?
R-3.2 Can EC and EV have different slopes at a single point in space?
R-3.3 How do the electrons and holes behave in the region of tilted energy bands?
R-3.4 What is the sheet resistance? In what units is it expressed?
R-3.5 What is the difference between the integral and the differential forms of Ohm’s law?
R-3.6 Do the positive donor ions in an N-type semiconductor contribute to the conductivity σ ? If

not, why not?
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R-3.7 Is the linear relationship between the current density and the electric field (Ohm’s law) always
valid? What about the linear relationship between the current density and the drift velocity?

R-3.8 What is the proportionality coefficient in the linear relationship between the drift velocity
and the applied electric field called?

R-3.9 How is the effect of drift-velocity saturation included in Ohm’s law?
R-3.10 Is the ratio between the scattering length and the scattering time equal to the thermal velocity

or the drift velocity of the carriers?
R-3.11 Does vdr/τsc depend on the applied electric field? What about vth/τsc?
R-3.12 The product of the concentration of scattering centers and their scattering cross section

(Nscσsc) has the unit of length. What is the physical meaning of Nscσsc? What does it give
when multiplied by the thermal velocity (vth) of a carrier?

R-3.13 What are the two dominant scattering mechanisms in semiconductors?
R-3.14 How are the contributions of different scattering mechanisms combined to obtain the total

carrier mobility?
R-3.15 How does the mobility of carriers change with temperature?



4 Diffusion

This chapter deals with carrier diffusion as a current mechanism that is additional to, and
in general independent from, the carrier drift. Following the introduction of the diffusion-
current equation and the diffusion coefficient as its parameter, the diffusion coefficient and
its relationship to the mobility (the parameter of the drift-current equation) are considered
in more detail. Because the diffusion current is closely related to time and spatial variations
of carrier concentrations, the chapter concludes with the basic form of the equation that
links these variations to both the diffusion and the drift currents—the basic form of the
continuity equation.

4.1 DIFFUSION-CURRENT EQUATION

Diffusion appears due to random thermal motion of the diffusing particles (these can be
electrons, holes, doping atoms such as boron or phosphorus, molecules in the air, or smoke
particles). Imagine that thousands of smoke particles are produced near the wall of a house
(Fig. 4.1). If there is an open window in the wall, some particles will pass through the
window. In their random motion, half the outside particles move toward the window, as
well as half the inside particles, with the same chance of passing through it. However, if
there are more particles outside the window, more particles will be entering the house,
compared to those going in the opposite direction.

Diffusion of particles creates an effective particle current toward the points of lower
particle concentration. There is no effective particle current when the concentration of
particles is uniform, because in this case an equal number of particles move either way.
The current of particles (charged or uncharged) produced by a difference in the particle
concentration is called diffusion current. The force behind this current has nothing to
do with gravity or with electric-field forces; these are separate forces that can produce
a current of particles on their own. The force behind the diffusion current is the random
thermal motion.

140
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Figure 4.1 The concept of diffusion.
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x

A
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cross section)
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Figure 4.2 Diffusion current: particles flow
through the window in both directions, but more
from left to right because there are more particles
on the left-hand side.

Diffusion is not limited to gases; it happens in liquids and solids as well, although a
very high temperature is typically needed for the diffusion of atoms to be clearly observed
in solids. If a semiconductor crystal is heated, the diffusion of doping atoms can be
achieved in a way similar to the diffusion of the smoke particles into the house. Figure 1.20
is analogous to Fig. 4.1 except that it shows the doping atoms diffusing into a piece of
semiconductor through a window in a diffusion-protective “wall.”

Figure 4.2 illustrates in more detail that a difference in concentration of particles,
performing random thermal motion, is the only driving force behind the diffusion current. It
is useful to express this understanding of the diffusion current by a mathematical equation.
It should be noted that the current considered here is not necessarily electric current—that
is, current of charged particles. Uncharged particles can create diffusion current as well.
The unit for the current of uncharged particles is not the ampere (A = C/s), but simply
1/s, expressing the number of particles per unit time. The current density (which is current
per unit area) as a differential quantity is more general and more convenient to work with
than the overall current (i.e., integral current), as discussed in Section 3.2.2. The diffusion
current density will be denoted by Jdiff (when meant as particle current and expressed in
units of s−1 m−2) and by jdiff (when meant as electric current and expressed in units of
A/m2).

As already mentioned, the current density of the particles flowing from left to right
(J→) is proportional to the concentration of particles to the left of the window (NL ). The
current density of the particles flowing in the opposite direction (J←) is proportional to the
concentration of particles to the right of the window (NR ). The effective current density is
equal to the difference between those two currents:

Jdiff = J→ − J← ∝ NL − NR︸ ︷︷ ︸
≡−�N

(4.1)
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Note that the minus sign in front of �N expresses that the concentration N is decreasing
along the x-axis; �N ≡ N(x + �x) − N(x).

The difference in concentration is not the only thing that is important for the diffusion
current; equally important is the distance at which this difference appears. The same
difference in the concentrations of particles appearing on each side of the window, �N ,
would lead to a smaller current density if the difference were across a larger �x . Therefore,
the current density is proportional to the difference in concentration �N appearing across
a distance �x :

Jdiff ∝ −�N

�x
(4.2)

The ratio �N/�x is the change in the concentration per unit length, or concentration
gradient. A steeper concentration gradient produces a larger diffusion current.

If a proportionality factor, denoted by D, is introduced into Eq. (4.2), and the finite
differences � replaced by their infinitesimal counterparts d , the final form of the diffusion-
current equation is obtained:

Jdiff = −D
d N

dx
(4.3)

The proportionality factor D is called diffusion coefficient. Equation (4.3) is the one-
dimensional form of the diffusion-current equation. It can be expanded to include all the
three space dimensions, in which case the current density is expressed as a vector:

Jdiff = −D

(
∂ N

∂x
xu + ∂ N

∂y
yu + ∂ N

∂z
zu

)
= −D∇N (4.4)

To convert Eq. (4.3) for the particle current density (expressed in s−1 m−2) into electric
current of electrons or holes (expressed in A/m2), the particle concentration N can be
replaced by p or n and multiplied by ±q:

jdiff =
{

q Dndn/dx electrons

−q Dpdp/dx holes
(4.5)

The random thermal motion of particles is more pronounced at higher temperatures;
therefore, the diffusion current is expected to be larger. It appears that the diffusion-
current equation does not take into account the influence of the temperature on diffusion.
The dependence of the random thermal motion of particles on temperature, however, is
different in different materials and for different particles (different in gases and solids for
that matter), so it is not possible to establish a general temperature dependence of the
diffusion current. To deal with this problem, the temperature dependence of the diffusion
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current is taken into account by the diffusion coefficient, which has to be determined for
any individual material and any kind of diffusing particles.

4.2 DIFFUSION COEFFICIENT

The diffusion coefficient of electrons and holes can be related to the electron and hole
mobilities. This relationship, known as the Einstein relationship, is introduced in this
section. In spite of this relationship, the diffusion and drift mechanisms act independently,
as is nicely illustrated by the Haynes–Shockley experiment. The Haynes–Shockley
experiment and its use for measurements of mobility and the diffusion coefficient are also
described in this section. The doping atoms are neutral particles, so there is no mobility
parameter and no Einstein relationship for the diffusion coefficient of these particles.
The diffusion coefficient of the doping atoms follows the Arrhenius-type temperature
dependence, as described in Section 4.2.3.

4.2.1 Einstein Relationship
Equation (4.5) expresses a phenomenological relationship between the diffusion current
and the concentration gradient in a similar way to the expression by Ohm’s law of
a phenomenological relationship between the drift current and the gradient of electric
potential [Eq. (3.16)]. As opposed to this, Eq. (3.21) is the fundamental link between the
drift current and the average drift velocity of the current carriers. Analogously, the thermal
velocity vth can be linked to a thermal current. Referring to Fig. 4.2, let us estimate the
current of particles moving through the window from left to right, as a result of the random
thermal motion. The particles that have a chance to pass through the window during the
time interval equal to the average scattering time τsc are confined within the volume lsc A,
where A is the area of the window, lsc = vthτsc is the average scattering length, and
vth is the thermal velocity. Labeling the concentration of particles by NL , the number of
particles within the volume lsc A is NLlsc A = NLvthτsc A. We can assume that one-third
of these particles move in the x-direction and that the other two-thirds move in the y- and
z-directions. Of those moving in the x-direction (assumed to be normal to the window),
one-half would be moving toward the window and the other half away from it. Therefore,
the number of particles passing through the window is estimated as NLvthτsc A/6. Because
these are the particles moving from the left-hand side to the right during the time interval
equal to τsc, the current density of particles moving to the right is

J→ = NLvth

6
(4.6)

Analogously, the current density of particles passing through the window from the right-
hand side to the left is

J← = NRvth

6
(4.7)
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The difference between J→ and J← is the effective current through the window—that is,
the diffusion-current density:

Jdiff = J→ − J← = (NL − NR)
vth

6
(4.8)

Obviously, the diffusion current depends on the difference between the particle concentra-
tions on the left and on the right (there is no effective current when the concentrations are
equal). Presenting the concentration difference as concentration gradient (d N/dx),

NR − NL

2lsc
= d N

dx
(4.9)

we obtain the diffusion-current density as

Jdiff = − vthlsc

3︸ ︷︷ ︸
D

d N

dx
(4.10)

Comparing Eqs. (4.10) and (4.3), we find that the diffusion coefficient is given by

D = vthlsc

3
= τscv

2
th

3
(4.11)

Therefore, we conclude that the diffusion constant is determined by temperature (the
thermal velocity) and by the particle scattering (lsc or τsc). The temperature can be shown
explicitly, given the relationship between the kinetic (m∗v2

th/2) and the thermal energy
(3kT/2) [Eq. (3.19)]. Using this relationship to eliminate vth from Eq. (4.11), we obtain

D = kT
τsc

m∗ (4.12)

The derivation presented has involved some coarse approximations, such as the assumption
that one-sixth of particles move toward the window and Eq. (4.9) for the concentration
gradient. Nonetheless, rigorous analyses also lead to the result given by Eq. (4.12). The
derivation has not involved any assumptions regarding the particle charge, so Eq. (4.12)
is valid for both neutral particles (such as gas molecules) and charged particles (such as
electrons and holes). Importantly, it has been assumed that particle scattering alone limits
thermal motion. This means that Eq. (4.12) cannot be used when other limiting factors are
pronounced. For example, the diffusion of doping atoms is not limited by scattering but by
availability of empty sites for the doping atoms to move to. Consequently, a different equa-
tion is needed for the diffusion coefficient of doping atoms (Section 4.2.3). Similarly, the
availability of empty states influences the electron/hole transport in heavily doped (degen-
erate) semiconductors. Again, Eq. (4.12) cannot be used for degenerate semiconductors.

The fact that the diffusion constant depends on scattering indicates that there is a
link between the diffusion constant and the mobility. The relationship between τsc and
mobility is given by Eq. (3.25). Using Dn and Dp as symbols for the diffusion coefficients
of electrons and holes, respectively, and eliminating τsc from Eqs. (4.12) and (3.25) lead to
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the following relationship between Dn,p and μn,p:

Dn,p = (kT/q)μn,p = Vtμn,p (4.13)

Equation (4.13) is known as the Einstein relationship.
The fact that drift and diffusion are independent current mechanisms, yet there is a

link between their parameters (μn,p and Dn,p), should not be confusing. The independence
relates to the independent forces causing the current: gradient of electric potential (that is,
electric field) in the case of drift and gradient of concentration in the case of diffusion.
The link between μn,p and Dn,p exists because the properties of the current carriers are
the same in both cases. As an illustration, take particles with a low mobility due to their
heavy effective mass. If there is a concentration gradient, a diffusion current would exist.
Because particles would move very slowly in this case, it would take a significant time
for the particles to be transported from a higher to a lower concentration region, which
means that the diffusion current is small. This example illustrates that the mobility μn,p is
proportional to the diffusion coefficient Dn,p .

Consider the effect of temperature because both the mobility and the diffusion
coefficient are found to be temperature-dependent. The influence of the temperature on
mobility is basically through scattering, more pronounced scattering leading to reduced
scattering length, and consequently reduced mobility. Reduction in the scattering length
would proportionally reduce the diffusion coefficient, implying again that the mobility is
proportional to the diffusion coefficient. The temperature, however, is essential for the
process of diffusion. Imagine an intrinsic semiconductor (Coulomb scattering negligible)
at a very low temperature. The thermal velocity of the carriers would be very small; but
this would not stop the electric field from driving the carriers very efficiently, producing
a significant drift current, which means the mobility is quite high. When the thermal
velocity of the carriers is small, however, the diffusion process goes very slowly because
the only driving force behind the diffusion is the random thermal motion. If the temperature
is increased, the random thermal motion as well as the diffusion process become more
pronounced, which means that the diffusion coefficient is increased.

These considerations illustrate that the diffusion coefficient Dn,p of a carrier gas is
proportional to the mobility μn,p of the carriers as well as to the thermal energy kT (or
thermal voltage Vt = kT/q), just as given by Eq. (4.13).

Given that Eq. (4.12) does not hold for degenerate gases, when the carriers start
competing for vacant positions, the Einstein relationship [Eq. (4.13)] cannot be used for
heavily doped semiconductors when the electron–hole gas cannot be approximated by the
Maxwell–Boltzmann distribution.

EXAMPLE 4.1 Alternative Derivation of the Einstein Relationship

A constant electric field E is established inside a semiconductor. The direction of the field is
normal to the surface of the semiconductor, so that the flow of any current is prevented. Using
the fact that the net currents of both electrons and holes have to be zero, determine the relationship
between the diffusion constant Dn,p and the mobility μn,p .
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SOLUTION

Labeling the direction normal to the semiconductor surface by x , we write the total current
density of electrons:

jn = qμnn(x)E︸ ︷︷ ︸
drift

+ q Dn
dn(x)

dx︸ ︷︷ ︸
diffusion

The drift and the diffusion components of the total current must balance each other so that the
total current is zero:

μnn(x)E = −Dn
dn(x)

dx
(4.14)

The concentration of electrons (n), and therefore the concentration gradient (dn/dx), can be
related to the electric field by expressing both n and E in terms of EC (the bottom of the
conduction band). Taking into account that EF = const for a system in equilibrium, and
according to Eq. (2.76),

n(x) = NC e−[EC (x)−EF ]/kT (4.15)

dn(x)

dx
= − 1

kT
NC e−[EC (x)−EF ]/kT︸ ︷︷ ︸

n(x)

d EC(x)

dx

As the gradient of EC is related to the electric field [Eq. (3.2)],

1

q

d EC(x)

dx
= E

we obtain

dn(x)

dx
= − q

kT
n(x)E (4.16)

From Eqs. (4.14) and (4.16),

μn = q

kT
Dn

which is the Einstein relationship for electrons. The Einstein relationship for holes can be
obtained by analogous derivation. Note that involving Eq. (4.15) in the derivation means that the
Maxwell–Boltzmann distribution is assumed. This is the case of nondegenerate semiconductors.
When the Fermi level is too close to EC (degenerate semiconductors), the Maxwell–Boltzmann
approximation and the Einstein relationship cannot be used.
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*4.2.2 Haynes–Shockley Experiment
As mentioned before, drift and diffusion are two independent current mechanisms. This
is nicely demonstrated by the Haynes–Shockley experiment, illustrated in Fig. 4.3. To
monitor the process of drift and diffusion, a pulse of minority carriers is generated in a very
narrow region (�x → 0) of a semiconductor bar for a very short time interval (�t → 0).
In the case shown in Fig. 4.3, this is achieved by a flash of light that illuminates a narrow
region at the end of an N-type silicon bar at time t = 0. The light generates both electrons
and holes; however, the direction of the electric field applied is such that the electrons
are quickly collected by the positive contact, while the holes have to travel through the
silicon bar to be collected by the negatively biased contact. The drift velocity of holes is
vd = μp E , and if the diffusion did not exist, a short current pulse would be detected by
the ammeter as the holes are collected by the negative contact after the time interval equal
to L/vd . However, as the holes diffuse in either direction, the hole distribution widens with
time, as illustrated in Fig. 4.3. The hole distribution can be expressed by the following form
of the Gauss distribution:

p = pmaxe−(x−xmax )2/4Dpt (4.17)

The position of the distribution peak (x = xmax) shifts as the holes drift along the electric
field: xmax = vd t .
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Figure 4.3 Haynes–Shockley experiment. (a) A flash of light is used to generate a narrow pulse of minority carriers (holes).
(b) The motion of the hole peak illustrates the hole drift, while the widening of the hole distribution illustrates the hole
diffusion. (c) The measured current at the end of the semiconductor can be used to calculate μp and Dp.
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Both the minority-carrier mobility and diffusion coefficient can be extracted from the
measured time dependence of the current. Figure 4.3c illustrates that the maximum of the
current coincides with the arrival of the peak of the hole distribution at the negative contact.
The drift velocity can be calculated from the measured time between the current maximum
and the flash of light as vd = L/tmax . The mobility is then calculated using Eq. (3.23):

μp = vd

E
= L2

tmax V
(4.18)

The diffusion coefficient can be determined from the width of the current pulse.
Equation (4.17) shows that p = pmax/e for (x − xmax)

2 = 4Dpt; that is, �x =
xmax − x = √

4Dpt . The current that corresponds to this point of the hole distribution
is imax/e. Because it takes the time of �t = �x/vd for the holes to travel the distance of
�x = √

4Dpt = √
4Dp(tmax + �t), the following equation can be written:

�t = �x

vd
=

√
4Dp(tmax + �t)

vd
(4.19)

By using vd = L/tmax , the diffusion coefficient can be expressed in terms of the measured
values of tmax and �t:

Dp =
�t2

(
L

tmax

)2

4(tmax + �t)
(4.20)

4.2.3 Arrhenius Equation
Equation (4.12) was derived with an assumption that the particle motion is determined
by particle scattering. In the case of the diffusion of doping atoms into a semiconductor,
the motion of the doping atoms is limited by the availability of empty sites that the doping
atoms can move to. Therefore, the diffusion coefficient of the doping atoms does not follow
the temperature dependence predicted by Eq. (4.12). Doping atoms can diffuse through
vacancies in the crystal lattice. In this case, the dominating role of temperature is related
to the generation of vacancies. This is a process that follows the common exponential
dependence on the needed activation energy (E A), normalized by the thermal energy (kT ):
D ∝ exp(−E A/kT ). Doping atoms can also diffuse as interstitial atoms. In this case, they
need to overcome the energy barriers between the interstitial positions. If the barrier height
is E A, the probability that a doping atom will gain this energy is again proportional to
exp(−E A/kT ). Introducing the proportionality constant D0, the diffusion coefficient can
be expressed by

D = D0e−E A/kT (4.21)

The diffusion constant for doping atoms follows the so-called Arrhenius type of tempera-
ture dependence. The parameters E A (the activation energy) and D0 (the frequency factor)
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have to be determined for any individual semiconductor material and for individual doping
species.

How strongly the diffusion coefficient depends on the temperature can be illustrated
by considering the ratio of the diffusion coefficient at 1000◦C and at room temperature. For
the case of E A = 3.5 eV, which is a typical value, this ratio is D(T = 1273 K)/D(T =
300 K) = 8.5 × 1044. This means that if an hour is needed to obtain a doped layer in the
silicon at T = 1000◦C, the same process would take 8.5×1044 hours at room temperature.
This time expressed in years is 1041, or 1038 millennia. It is certainly correct to say that
there is no diffusion in the silicon at room temperature.

EXAMPLE 4.2 Diffusion Coefficient for Boron

Calculate the diffusion coefficient for boron at 1000◦C and 1100◦C, using the following values
for the frequency factor and the activation energy: D0 = 0.76 cm2/s, E A = 3.46 eV. Comment
on the results. The Boltzmann constant is k = 8.62 × 10−5 eV/K.

SOLUTION

The diffusion coefficient can be calculated using Eq. (4.21). Note that the temperature should
be expressed in K; therefore, T1 = 1000 + 273.15 = 1273.15 K and T2 = 1100 + 273.15 =
1373.15 K, respectively. The results are D1 = 1.54×10−14 cm2/s and D2 = 1.53×10−13 cm2/s
for T1 and T2, respectively. An increase in the temperature from 1000◦C to 1100◦C (10%)
increases the diffusion coefficient 10 times.

4.3 BASIC CONTINUITY EQUATION

The concentration profile [N(x)] of a set of particles changes with time as the diffusion
process transports particles from higher- to lower-concentration regions. The concentration
of diffusing particles is, therefore, a function of two variables: N(x, t). Let us consider how
the particle concentration at the window in Fig. 4.4 changes in time. To do so, consider the
change in the number of particles confined in the little box at the window during a small
time interval �t . This change is equal to the difference between the number of particles
that enter the box and the number of particles that come out of the box in the time interval
�t . If �A is the area of the side of the box, the number of particles entering the box per
unit time is J (x)�A, where J (x) is the density of particle current at x . Analogously, the
number of particles coming out of the box per unit time is J (x +�x)�A, where J (x +�x)

is the density of particle current at x +�x . Therefore, the change in the number of particles
inside the box per unit time can be expressed as

�NUM

�t
= [J (x) − J (x + �x)]︸ ︷︷ ︸

−�J (x)

�A = −�J (x)�A (4.22)
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Figure 4.4 If the particle current flowing out of the box is
different from the particle current flowing into the box, the
number of particles in the box changes in time: ∂N/∂t �= 0.

Because our aim is to express the change of concentration in time, Eq. (4.22) can be
divided by the volume of the box (�A�x) to convert the number of particles NUM into
the concentration of particles N(x, t):

�N/�t︷ ︸︸ ︷
�NUM/�A�x

�t
= −�J (x)

�x
(4.23)

Finally, by taking infinitesimal values, we obtain the following differential equation:

∂ N(x, t)

∂ t
= −∂ J (x)

∂x
(4.24)

Partial derivatives are used to express that the derivative of N(x, t) is only with respect
to time, whereas the derivative of J (x) is with respect to space. Equation (4.24) is called
the continuity equation. It represents a general conservation principle. A nonzero gradient
of particle current [∂ J (x)/∂x �= 0] means that the numbers of particles flowing into and
out of a specified point in space are different. For particles that are not being generated
or annihilated, this means that the particle concentration at that point must change in time
[∂ N(x, t)/∂ t �= 0]. It also means that the rate of concentration change [∂ N(x, t)/∂ t] is
determined by the current gradient.

The density of particle current in Eq. (4.24) is in the units of s−1 m−2. It can be
converted into the electric-current density of electrons, in the units of C · s−1 m−2 =
A/m2, by taking into account that each electron carries the charge of −q: jn = −q J (x).
Analogously, the electric-current density of holes is jp = q J (x). With this, and using
the usual labels for the concentrations of electrons and holes (n and p), the continuity
equations for electrons and holes take the following forms:

∂n(x, t)/∂ t = (1/q)∂ jn(x)/∂x for electrons
(4.25)

∂p(x, t)/∂ t = −(1/q)∂ jp(x)/∂x for holes

The current densities jn,p in Eqs. (4.25) are the total current densities of electrons and
holes. When both diffusion and drift currents exist, they are equal to jn = jn–dr + jn–diff
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and jp = jp–dr + jp–diff . It should be mentioned again that Eq. (4.25) is for the case of no
effective generation or recombination of the carriers. We will refer to Eq. (4.25) as the basic
continuity equation. The effects of generation and recombination due to nonequilibrium
concentrations of electrons and holes are considered in Chapter 5, where the complete
form of the continuity equation is presented.

EXAMPLE 4.3 Gradient of Current and Change of Particle
Concentration in Time

After 1 h of phosphorus diffusion into silicon, the concentration of phosphorus at and around
1 μm from the surface can be expressed as shown in Table 4.1.

(a) Knowing that the diffusion coefficient at the diffusion temperature is D = 3.43 ×
10−13 cm2/s, estimate the phosphorus current density at x = 0.975 μm and x =
1.025 μm.

(b) If the diffusion is performed through 100 μm × 10 μm window, estimate how many
phosphorus atoms arrive at 1 ± 0.025 μm during a time interval of 1 s, and how many
phosphorus atoms leave this segment during a second.

(c) The results of parts (a) and (b) show that the number of phosphorus atoms leaving
the segment 1 ± 0.025 μm is lower than the number of arriving atoms. As a result, the
phosphorus concentration at 1±0.025μm increases with time (the continuity equation).
Estimate how long it will take for the concentration to rise by 1%.

SOLUTION

(a)
J = −D

d N

dx
≈ −D

�N

�x

J (0.975 μm) = −3.43 × 10−17 × (1.32 − 1.61) × 1025

0.05 × 10−6 = 1.989 × 1015 s−1 m−2

J (1.025 μm) = −3.43 × 10−17 × (1.07 − 1.32) × 1025

0.05 × 10−6 = 1.715 × 1015 s−1 m−2

(b) NUM = I�t = J A�t

NUMIN = J (0.975 μm)A�t =1.989×1015×100×10−6×10×10−6×1=1,989,000

NUMOUT = J (1.025 μm)A�t =1.715×1015×100×10−6×10×10−6×1=1,715,000

(c) One way to estimate this time is to utilize the result of part (b), which is that the
number of phosphorus atoms in the volume A�x increases by NUMIN − NUMOUT =
1,989,000 − 1,715,000 = 274,000 every second. To be able to find how many atoms
correspond to 1% of concentration reduction, we need to determine the number of
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TABLE 4.1

x (μm) N (cm−3)

0.95 1.61 × 1019

1.00 1.32 × 1019

1.05 1.07 × 1019

phosphorus atoms in the volume A�x . The total number of phosphorus atoms in A�x is

NUM = NA�x = 1.32 × 1025 × 1000 × 10−6 × 10−6 × 0.05 × 10−6 = 6.6 × 108

therefore, a 1% increase corresponds to an increase by 6.6 × 106 atoms. Given that the
increase is 274,000 atoms per second, it will take 6.6×106/274,000 = 24.1 s for the 1%
increase. Another way to estimate this time is to work with the concentration directly:
that is, to use the continuity equation in its usual form:

∂ N

∂ t
= −∂ J

∂x

�N

�t
≈ −�J

�x

�t ≈ −�N�x

�J

�N is equal to 1% of 1.32 × 1025 m−3 (with a minus sign because the concentration is
smaller for a larger x), �J = (1.989−1.715)×1015 s−1m−2, and �x = 0.05×10−6 m.
Therefore,

�t ≈ 0.01 × 1.32 × 1025 × 0.05 × 10−6

(1.989 − 1.715) × 1015
= 24.1 s

EXAMPLE 4.4 Nonuniform Electron Concentration in Equilibrium

Determine the equilibrium distribution of electron concentration, n(x), for the sample described
in Example 4.1. Set x = 0 at the surface of the semiconductor and assume that the semiconductor
extends to x → ∞.

SOLUTION

There is no time change of n(x) when the equilibrium condition is reached. Consequently,
∂n/∂ t = 0. According to the continuity equation [Eq. (4.25)], the first derivative of the total
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current has to be equal to zero (in addition to the fact that jn = 0). Given that the total current is
equal to the sum of the drift and the diffusion currents,

jn = qμnn(x)E + q Dn
dn(x)

dx

and that E = const, we obtain

d jn
dx

= qμn E
dn(x)

dx
+ q Dn

d2n(x)

dx2

The condition d jn/dx = 0 leads to the following differential equation:

d2n(x)

dx2 = − (μn/Dn)︸ ︷︷ ︸
q/kT

E
dn(x)

dx

The variables can be separated by introducing u(x) = dn(x)/dx :

du(x)

dx
= −q E

kT
u(x)

du(x)

u(x)
= −q E

kT
dx

ln u(x) − ln A︸ ︷︷ ︸
integ. const.

= −q E

kT
x

u(x) = dn(x)

dx
= Ae−q Ex/kT

n(x) = − kT

q E
Ae−q Ex/kT + B

The integration constants A and B can be determined from the boundary conditions. The term
−kT A/q E is an integration constant (A) multiplied by another constant (−q E/kT ), so it can
be replaced by a single constant C:

n(x) = Ce−q Ex/kT + B

The two boundary conditions are for x = 0 and x → ∞: n(0) and n(∞). Therefore,

n(0) = C + B

n(∞) = B
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Given that C = n(0) − B = n(0) − n(∞), the distribution of electron concentration can be
expressed as

n(x) = [n(0) − n(∞)] e−q Ex/kT + n(∞)

The concentration at x → ∞ is equal to the equilibrium concentration without the electric
field E . Upon labeling it by n0 = n(∞), for convenience, we can express the concentration
distribution in the following way:

n(x) − n0 = [n(0) − n0] e−q Ex/kT

If the direction of the electric field is such that electrons are accumulated at the surface
[n(0) − n0 > 0], the difference in electron concentration inside the semiconductor [n(x) − n0]
will drop exponentially toward zero. If the field is such that the surface is depleted of electrons
[n(0) − n0 < 0], the difference in electron concentration will rise exponentially toward zero.

SUMMARY

1. Random thermal motion of either charged or neutral particles results in an effective
diffusion current when there is a gradient of the particle concentration. The density of
particle diffusion current, in units of s−1m−2, is

Jdiff = −D
∂ N

∂x

The density of electric diffusion current, in units of A/m2, is

jdiff =
{

q Dn dn/dx for electrons

−q Dp dp/dx for holes

2. The diffusion coefficient of electrons and holes depends on the scattering time, the
effective mass, and the thermal energy:

Dn,p = kT
τsc

m∗
n,p

Because the carrier mobility also depends on the scattering time and the effective mass,
there is also a relationship between the coefficients of diffusion and drift (two otherwise
independent current mechanisms):

Dn,p = (kT/q)μn,p = Vtμn,p
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3. The diffusion coefficient of doping atoms is determined by the thermal energy and the
activation energy of the diffusion process:

D = D0 exp

(
− E A

kT

)

4. A current-density gradient (a difference in the number of particles flowing in and out
per unit time) leads to a change in the particle concentration in time, as expressed by
the basic continuity equation:

∂ N(x, t)/∂ t = −∂ J (x)/∂x for neutral particles

∂n(x, t)/∂ t = (1/q)∂ jn(x)/∂x for electrons

∂p(x, t)/∂ t = −(1/q)∂ jp(x)/∂x for holes

PROBLEMS

4.1 Identify
(a) drift-current equation
(b) diffusion-current equation
(c) continuity equation
applied to electrons. The list of options is

(1) j = q Dn(dn/dx)

(2) j = qnμn E
(3) j = σ(dn/dx)

(4) ∂ j/∂x = q(∂n/∂t)
(5) j = −q Dn (dϕ/dx)

(6) j = q DnnE

4.2 Certain carrier-transport conditions result with a
steady-state distribution of electrons n(x). The
distribution can be approximated by a linear
function of x . Knowing that the maximum electron
concentration is n(0) = 1016 cm−3 and that
it drops to one-third of this value at x =
100 μm, determine the diffusion current density.
The diffusion coefficient of electrons is Dn =
25 cm2/s.

4.3 A constant diffusion current of electrons is estab-
lished through a semiconductor material. The value
of the current density is jn = −0.5 A/cm2 (the
minus sign indicates that the current direction is
opposite to the chosen direction of the x-axis). The
electron concentration at x = 0 is n(0) = 2 ×
1015 cm−3. Determine the electron concentration at
x = 25 μm if the material is
(a) Si (Dn = 35 cm2/s),
(b) GaAs (Dn = 220 cm2/s). A

4.4 The concentration of holes in a silicon sample can
be approximated by

p(x) = pmax e−x/L p

where pmax = 5 × 1015 cm−3 and L p = 50 μm.
Determine the hole diffusion current density at x1 =
0 and x2 = L p = 50 μm. The diffusion coefficient
for holes is Dp = 10 cm2/s.

4.5 Metal film with area AC = 2.25 × 10−4 cm2

provides ohmic contact to P-type silicon. If the
concentration of holes is p0 = 1016 cm−3, calculate
how many holes hit the contact with metal per unit
time. Express this number as hole current. If this
contact is in thermal equilibrium, what mechanism
provides the balancing current so that the total
diffusion current is equal to zero? Assume that the
thermal velocity of holes is vth = 107 cm/s.

4.6 Consider a bar of N-type silicon with cross-sectional
area A = 100 μm × 100 μm and concentration of
free electrons n0 = 1015 cm−3.

(a) Estimate the number of electrons that pass
through a cross-sectional plane in only one di-
rection each second. The temperature is 300 K,
and the effective mass of electrons in silicon is
m∗ = 0.26m0.

(b) Express the flow of electrons, calculated in part
(a), as electric current in amperes.
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(c) Based on the diffusion-current equation, de-
termine the concentration gradient dn0/dx
that corresponds to the diffusion current of
Idiff = 100 mA. Assuming linear concentra-
tion change, determine the distance �x that is
needed for the concentration to change from n0
to 0. The diffusion constant for the electrons is
Dn = 38 cm2/s.

(d) Based on the results obtained in parts (b) and
(c), answer the following question: Can the
diffusion current exceed the current value that
corresponds to the flow of electrons in one
direction only, which is determined in part (b),
to reach the value of 100 mA at 300 K that is
assumed in part (c)?

4.7 The diffusion constant of electrons in a low-doped
silicon is dominated by phonon scattering and is
equal to Dn = 36 cm2/s at room temperature. What
is the diffusion constant at 125◦C?

4.8 Room-temperature values of hole mobilities in P-
type silicon are 470 cm2/V · s and 150 cm2/V · s
for NA = 1015 cm−3 and NA = 1018 cm−3,
respectively. Calculate the diffusion constants of
holes at 125◦C for these two doping levels.

4.9 For silicon doped with ND ≈ 1016 cm−3, the
electron mobility at liquid-nitrogen temperature
(T = 77 K) is approximately the same as
at room temperature (T = 27◦C): μn =
1250 cm2/V · s. Calculate the diffusion coefficient at
these temperatures.

4.10 The total hole-current density is constant and equal
to jp = 1 A/cm2 in the region of a silicon sample
extending from x = 0 to x → ∞. The distribution
of hole concentration is given by

p(x) = p(0)e−x/L p + p0

where L p = 100 μm and p0 = 1015 cm−3. At
x = 0, the drift current is equal to zero so that
jp−diff (0) = jp. Determine the electric field as a
function of x and calculate the values of the electric
field at the following points: x = 0, x → ∞, and
x = L p . The hole mobility is μp = 350 cm2/V · s,
the diffusion coefficient is Dp = Vtμp , and Vt =
kT/q = 0.02585 V (given that the sample is at room
temperature). [ A for E(L p)]

4.11 The donor distribution of a nonuniformly doped
silicon sample can be approximated by N(x) =

Ns exp(−x/x0), where x0 = 1 μm. As no current
flows under the open-circuit condition, a built-in
electric field is established so that the drift current
exactly compensates the diffusion current. Calculate
the built-in electric field.

4.12 Internal power dissipation increases the temperature
of a silicon device to Toper = 75◦C. This reduces
the scattering length of electrons from lsc−room =
45.7 nm at room temperature to lsc–oper = 36.5 nm
at Toper . Determine the relative change in the
diffusion coefficient. The effective mass of electrons
is m∗ = 0.26m0. A

4.13 The drift velocities of holes in a silicon sample are
vdr = 0.02 μm/ps, vdr = 0.04 μm/ps, and vdr =
0.07 μm/ps at E = 0.5 V/μm, E = 1.0 V/μm,
and E = 5 V/μm, respectively. Determine the
corresponding diffusion coefficients and comment
on the results. The temperature is T = 300 K.

4.14 The electron mobility in a silicon sample is
determined by the Coulomb (μC = AcT 3/2) and the
phonon (μph = A pT −3/2) scattering mechanisms,

where Ac = 1.85 × 10−4 m2/K3/2V · s and A p =
650 m2K3/2/V · s.

(a) Determine the room-temperature value of the
diffusion coefficient.

(b) Determine the value of the diffusion coefficient
at the liquid-nitrogen temperature (T =
77 K). A

(c) Determine the maximum value of the diffusion
coefficient and the temperature at which this
value is observed.

4.15 The concentration profile of ion-implanted boron
atoms in silicon can be approximated by the
Gaussian

N(x) = Nmax e−(x−x0)
2/2σ 2

where x0 = 0.3 μm, σ = 0.07 μm, and Nmax =
1018 cm−3. After the ion implantation, the sample is
heated to a high temperature to activate and diffuse
the implanted boron atoms. At the selected diffusion
temperature, the diffusion coefficient of boron in
silicon is D = 1.54×10−14 cm2/s. As the diffusion
process begins, determine

(a) the current density of boron atoms (in s−1

cm−2) at x = x0 − σ , x = x0, and x = x0 + σ

(b) the rate of concentration change (∂N/∂t) at x =
x0, x = x0 + σ , and x = x0 + 2σ
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Explain why the obtained values are negative, posi-
tive, or zero.

4.16 A P-type silicon is covered by a metal that totally
reflects any incident light. There is a narrow slit in
the metal film, allowing a planelike generation of
electron–hole pairs when the sample is illuminated.
The distribution of hole concentration in the sample,
following the exposure to a short light pulse, is given
by

p(x, t) = �√
2πσ

e−x2/2σ 2 + NA

where x is the normal distance from the slit, σ =√
2Dpt , t is the time after the light pulse, Dp =

10 cm2/s, and � = 5 × 1013 cm−2. Determine the
changes of hole concentrations at x = 10 μm during
the following time intervals after the light pulse:
(a) 10 ns ±�t/2
(b) 50 ns ±�t/2
(c) 100 ns ±�t/2 A
where �t = 1 ns. Explain why the obtained values
are negative, positive, or zero.

4.17 A constant electric field, normal to the surface of a
semiconductor, establishes the following equilib-
rium distribution of electron concentration:

n(x) = 2NDe−q Ex/kT + ND (for x > 0)

where x = 0 is at the surface of the semiconductor,
the electric field is E = 100 V/m, and ND =
1015 cm−3. At time t = 0, the electric field is set
to zero.

(a) Determine the current density at x = 50 μm,
appearing immediately after the removal of the
electric field.

(b) Determine the initial rate of concentration
change at x = 50 μm. A

(c) Can the diffusion-current and continuity equa-
tions be used to determine the current density
and the rate of concentration change at the
surface of the semiconductor (x = 0)? If not,
why not?

The diffusion coefficient is Dn = 35 cm2/s.

REVIEW QUESTIONS

R-4.1 What force causes the diffusion current?
R-4.2 Can charge-neutral particles make diffusion current? If so, what is the unit for the density of

the particle-diffusion current?
R-4.3 If drift and diffusion are independent current mechanisms, why are their coefficients related?
R-4.4 Is the Einstein relationship, D = Vtμ, applicable to any electron–hole gas in semiconductors?
R-4.5 Can the total current density of electrons be zero if there is a nonzero gradient of electron

concentration?
R-4.6 If the concentration of particles in a considered point does not change in time, does this mean

that the diffusion-current density is equal to zero? Does it mean that the total current density
is equal to zero?

R-4.7 Can the currents of particles flowing into and out of a given elementary volume be different?
If so, how can we account for the difference in the number of particles that flow into and out
of the volume per unit time?

R-4.8 An electric field is applied to the surface of a semiconductor, causing a nonuniform distribution
of electrons by attracting electrons to the surface. A steady-state concentration profile is
established as the diffusion current balances the drift current. Then, liquid nitrogen is poured
over the sample. Will this cause a current transient? If so, will the electrons move toward the
surface or away from the surface?



5 Generation and Recombination

Electron–hole generation is a process that creates free electrons and holes. The opposite
process, which results with annihilation of free electrons and holes, is called recombina-
tion. The balance of generation and recombination rates maintains the constant electron–
hole concentrations in thermal equilibrium, as explained in Section 1.2.4. When the carrier
concentrations are increased above or reduced below the thermal-equilibrium levels by
external factors, the recombination and generation processes act to bring the system back
into equilibrium. This action of the recombination and generation processes could be
accompanied by a current flow (typically due to diffusion) to simultaneously cause changes
in the carrier concentrations (∂n/∂ t �= 0, ∂p/∂ t �= 0). Therefore, recombination and
generation terms have to be added to the basic continuity equation of Section 4.3 to obtain
its general form.

Following an introduction to the generation and recombination mechanisms, this
chapter describes the generation and recombination rates as they appear in the general
form of the continuity equation. This is followed by an in-depth generation–recombination
physics and models for the effective recombination rate. Finally, a section is devoted to
surface recombination, due to its practical importance.

5.1 GENERATION AND RECOMBINATION MECHANISMS

The generation and recombination processes involve absorption and release of energy. The
generation of carriers due to thermal energy is called spontaneous generation, whereas
generation caused by absorption of light is called external generation. In the case of
spontaneous recombination, the released energy can be in the form of either heat or
light. Nonspontaneous recombination, also known as stimulated recombination, may occur

158
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Figure 5.1 (a) Electron and hole
emissions from an R–G center and (b)
electron and hole captures by an R–G
center lead to indirect generation and
recombination, respectively.

when light of appropriate wavelength initiates recombination events to cause emission of
additional photons with the same wavelength (the laser effect).1

Direct or band-to-band generation and recombination are conceptually the simplest
mechanisms. In the generation process, electrons move from the valence band to the
conduction band, which means that each generation event creates a pair of a free electron
and a hole. In the recombination process, electrons drop from the conduction band to the
valence band, so each recombination event annihilates a pair of a free electron and a hole.
In direct semiconductors (EC and EV appear for the same wave vector k), the momentum
of an electron recombining with a hole does not change, so the electron energy is typically
given away as a photon (radiative recombination). In the case of indirect semiconductors
(EC and EV appear for different wave vectors k), a recombination event necessitates
a change in both electron energy and electron momentum. Accordingly, phonons are
typically involved in the recombination process, and the energy is typically released to
the phonons (nonradiative recombination).

It was explained in Section 2.2.3 that the doping atoms introduce energy levels into the
energy gap. Analogously, other impurity atoms and crystal defects introduce energy levels
into the energy gap as well. Figure. 5.1 illustrates that an impurity atom or a defect with the
energy level in the energy gap can emit and capture electrons and holes. Two consecutive
steps of electron and hole emissions, in either order, lead to generation of an electron–
hole pair. Two consecutive steps of electron and hole captures lead to recombination of
an electron–hole pair. This is indirect recombination–generation, also called R–G center
recombination–generation, where the R–G centers are impurity atoms or defects with
energy levels in the energy gap. The energy needed for indirect generation is typically
supplied by the phonons (thermal energy) and also phonons are released during indirect
recombination (nonradiative recombination).

Two consecutive steps of electron and hole emissions can also be described as two
consecutive steps of electron jumps—for example, (1) an electron jump from the valence
band onto the R–G center (this is equivalent to hole emission) and (2) an electron jump
from the R–G center into the conduction band (the electron emission). An analogous
description can be developed for the recombination process: (1) a drop of an electron
from the conduction band to the level of the R–G center and (2) a drop of an electron
from the R–G center to the valence band. With this view, the R–G centers are sometimes
described as “stepping-stones” in analogy with the use of stepping-stones to jump across

1The conditions needed for the stimulated recombination are considered in Section 12.3.
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large space distances in smaller steps. This analogy, however, can be misleading.2 Based
on this analogy, it may seem that generation–recombination by multiple energy levels in
the energy gap (the use of more than one “stepping-stone” in the analogy) is much easier
and therefore more likely than recombination–generation through a single R–G center (one
“stepping-stone”). In reality, however, electron transitions from an R–G center to another
R–G center that may have a different energy level in the energy gap (two “stepping-stones”)
are very unlikely. This is because the R–G centers are states that are not only localized
in space but also too far apart—in terms of space, not energy—to allow any transition
from one R–G center to another. The concept of isolated centers is valid if the distance
between them is such that any overlap between the electron wave functions, associated
with neighboring centers, is insignificant. Assuming that 10 nm is a large enough distance,
we can easily work out that R–G centers placed at distance of 10 nm in a cubic-like crystal
define a unit cell with volume of 10−24 m3. This means that there can be as many as
1/10−24 = 1024 R–G centers per m3 and yet, they are still electronically isolated from
one another. In other words, the concentration of defects or impurity atoms can be as high
as 1018 cm−3, and electron transitions between them are still insignificant. Therefore, the
transitions that are of practical importance are the transitions between the energy bands
and the energy level of the R–G centers (a single “stepping-stone”).

A related question here is the case of a very high concentration of impurity atoms
or defects—for example, >1020 cm−3. In that case, the overlap of wave functions of
electrons at neighboring impurity atoms or defects is strong, and by the force of the
Pauli exclusion principle it causes a split in the energy levels to create an energy band.
Therefore, electron transitions from either the conduction or the valence band to a band
associated with the impurity atoms or defects is better described by the model of direct
recombination–generation. There can be isolated R–G centers helping the transitions from
either the valence or the conduction band to the band of high-concentration defects or
impurity atoms, but this is no different from the model of a single “stepping-stone.”

A third type of generation–recombination mechanism is illustrated in Fig. 5.2. The
carrier generation in this case is due to high kinetic energy that the carriers can gain when
accelerated by an electric field. Figure 5.2a illustrates an electron that gains kinetic energy
Ekin = −q Elsc between two scattering events, where lsc is the scattering length and
E is the electric field (the slope of the energy bands). When the electron hits an atom,
it may break a covalent bond to generate an electron–hole pair, if the kinetic energy
is larger than the energy needed to generate the pair. This mechanism of electron–hole
generation is called impact ionization. Typically, the process continues with the newly
generated electrons, leading to avalanche generation of electrons and holes (Fig. 5.2a). The
opposite process of impact ionization is Auger recombination (pronounced “oh-zhay”). In
semiconductors with high concentration of carriers (for example, in highly doped regions),
the carrier–carrier scattering becomes pronounced. During the collision of two carriers,
one of the carriers may give its energy to the other carrier (Fig. 5.2b). The carrier that loses
the energy is either trapped by an R–G center or recombined by a minority carrier. The
carrier that gains the energy, appearing with a high kinetic energy initially, will typically
lose it as heat (thermal energy) in subsequent phonon-scattering events.

2The stepping-stone analogy is about transitions in space. Recombination and generation transitions
are in energy, but importantly, space cannot be ignored to enable the use of a simple space-to-energy
analogy.
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Figure 5.2 (a) Avalanche generation and
(b) Auger recombination.

5.2 GENERAL FORM OF THE CONTINUITY EQUATION

The continuity equations for electrons and holes express the changes of electron and hole
concentrations in time. These changes can be due to carrier motion (drift and diffusion), but
can also be due to carrier generation and recombination. Accordingly, recombination and
generation rates (the concentrations of carriers that are recombined and generated per unit
time) have to be included in the continuity equation. In this section, the effective thermal (or
spontaneous) generation–recombination rate and the external-generation rate are defined.
After that, the typically used form of the effective thermal generation–recombination term
is introduced to define the minority-carrier lifetime and the diffusion length.

5.2.1 Recombination and Generation Rates
The basic continuity equation, introduced in Section 4.3, is for the case of no carrier
recombination or generation. Figure 5.3a illustrates this case: any change of the electron
concentration (∂n/∂ t �= 0) in the space element indicated by the dashed rectangle is due
to the difference in electron current densities flowing into and out of the space element
(∂ jn/∂x �= 0). To include the effects of recombination, consider Fig. 5.3b. In this case the
electron concentration changes not only because more electrons enter into than come out
of the considered space element, but also because some of the electrons are recombined
inside the element. The recombination contribution to the change of electron concentration
is exactly equal to the recombination rate, in units of concentration by time: m−3 s−1.

Before we include the recombination rate in the continuity equation, let us con-
sider the following “idea.” Assume a P-type semiconductor with some concentration of
electrons (minority carriers) and some (does not matter how small) recombination rate.
As electron by electron is recombined, after some time (does not matter how long) all
the electrons would disappear if electron generation did not occur. This thinking shows
that recombination is inseparable from the opposite process, thermal generation. As
emphasized in Section 1.2.4, the recombination and thermal-generation rates are equal
in thermal equilibrium, so that the concentration of minority carriers remains constant. If
excess carrier concentration is created, then the recombination rate exceeds the thermal
generation rate so that the excess carrier concentration is reduced (as in Fig. 5.3b).
Likewise, if deficiency of the carriers is created, the thermal-generation rate will exceed
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Figure 5.3 Illustration of the continuity
equation (a) without effective recombi-
nation and (b) with the effective recom-
bination term included.

the recombination rate, increasing the carrier concentration toward the equilibrium level.
It is quite convenient to define the difference between the recombination and the thermal
generation rates as effective thermal generation–recombination rate. If U is this effective
rate, U = 0 represents the thermal equilibrium case of no effective change in the carrier
concentrations. A positive effective thermal recombination rate (U > 0) indicates that
recombination mechanisms prevail, reducing the excess carrier concentration toward the
equilibrium level. Likewise, U < 0 indicates that thermal generation mechanisms prevail,
increasing the carrier concentration toward the equilibrium level.

The need to bring the system into equilibrium arises because external factors can take
it out of equilibrium. For example, application of an electric field may cause a sudden
depletion of the carriers. As opposed to this, external carrier generation (due to mechanisms
such as light absorption and impact ionization) may cause excess concentrations of
the carriers. External generation usually extends over time and is usually nonuniform,
which means that it has to be expressed as a time- and space-dependent function. If the
external generation rate (Gext) is defined to represent the overall effect of the external
generation mechanisms, it can simply be added as an additional term in the continuity
equation.

With the addition of the effective thermal generation–recombination rate (U ) and the
external generation rate (Gext), the general form of the continuity equation is obtained:

∂n

∂ t
= 1

q

∂ jn
∂x

− U + Gext

∂p

∂ t
= − 1

q

∂ jp

∂x
− U + Gext

(5.1)

The general three-dimensional continuity equations for the electrons and holes are

∂n
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q

(
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∂x

xu + ∂ jn
∂y
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∂z

zu
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)
− U + Gext = − 1

q
∇jp − U + Gext (5.3)
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When one is using the continuity equations, Gext appears as a time- and space-
dependent function.3 U can also vary in time and space, but additionally, it depends on the
instantaneous values of the electron and hole concentrations. It is necessary to establish the
dependence of U on the electron and hole concentrations to be able to use the continuity
equation. The next section describes the simplest and the most commonly used form of this
dependence. A more general model is considered in Section 5.3.

5.2.2 Minority-Carrier Lifetime
Because both electrons and holes are needed for recombination, the recombination rate is
directly proportional to the concentrations of available electrons and available holes. Given
that the effective recombination rate is zero in thermal equilibrium, when the product of the
electron and hole concentrations is equal to n2

i , it can be expressed as

U = αr
(
np − n2

i

)
(5.4)

where αr is the proportionality constant. U is positive for np > n2
i because the recombi-

nation mechanisms prevail (as they act to reduce np to n2
i ), and U is negative for np < n2

i
because the generation mechanisms prevail (as they act to increase np to n2

i ). The electron
and hole concentrations can be expressed as sums of the equilibrium concentrations (n0
and p0) and excess concentrations, labeled by δn and δp:

n = n0 + δn
(5.5)

p = p0 + δp

With this, the equation for U becomes

U = αr (n0δp + p0δn + δnδp) (5.6)

If we assume an N-type semiconductor ( p0 � n0) and a small deviation from equilibrium,
so that |δn| � n0, the effective recombination rate can be approximated by

U = αr n0δp (5.7)

Given that U has to be expressed in the units of concentration by time, Eq. (5.7) can be
written in the following form

U = δp

τp
(5.8)

where τp = 1/αr n0 is a time constant that replaces the constant αr .
To develop a physical meaning for the constant τp, let us consider the example of

external generation of minority carriers (for example, due to absorption of light) that
increases the excess minority-carrier concentration to |δp(0)| � n0 and then suddenly

3Obviously, this function has to be determined so as to properly represent the carrier-generation rate
due to the external causes (light absorption, impact ionization, etc.).
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stops at time t = 0. The continuity equation for holes can be used to determine how the
excess hole concentration δp(t) decays to zero for t > 0, as the effective recombination
acts to bring the system back to equilibrium. Assuming no space variations of the electron
and hole concentrations, the continuity equation for holes can be simplified to

dp(t)

dt
= −δp(t)

τp
(5.9)

This equation is equivalent to

dδp(t)

dt
= −δp(t)

τp
(5.10)

because dp/dt = d(p0 + δp)/dt = dδp/dt . The solution of Eq. (5.10) is

δp(t) = δp(0)e−t/τp (5.11)

Therefore, the excess minority-carrier concentration decays exponentially, with the time
constant τp . Accordingly, the time constant τp is referred to as the excess carrier lifetime.
If we attempted to apply the concept of τp to a single minority carrier, we would come to
the conclusion that it represents the average lifetime of the minority carrier. Therefore, τp

can be considered as the minority-hole lifetime, but only under the considered condition
that |δp| � n0, which in other words means that the minority carriers are surrounded by
abundant majority carriers.

Analogous conclusions can be derived for the case of a P-type semiconductor with a
small deviation from equilibrium (|δn| � p0). In that case, the minority-electron lifetime
(τn) shows how quickly the system will spring back to equilibrium when any external
disturbance is removed:

δn(t) = δn(0)e−t/τn (5.12)

EXAMPLE 5.1 Effective Thermal Generation

The minority-carrier lifetime and the doping level of an N-type region in a silicon device are
τp = 10 μs and ND = 1016 cm−3, respectively. An applied electric field causes depletion of
both the majority and the minority carriers. At time t = 0, the electric field is removed and
the thermal generation acts to bring the silicon region back into thermal equilibrium. If direct
generation dominates, it can be assumed that the concentration of electron–hole pairs generated
per unit time does not change if majority and minority carriers are suddenly depleted.4 Under
these conditions, estimate the effective generation rates for the cases of

4This is because the generation mechanism does not depend on the availability of free electrons and
holes. In the case of Shockley–Read–Hall generation (Section 5.3), this assumption cannot be used
because the associated depletion of the G–R centers changes the generation conditions.
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(a) lightly depleted region: δp/p0 = 0.1 and δn/n0 = 0.1
(b) fully depleted region: δp = p − p0 ≈ −p0 and δn = n − n0 ≈ −n0

SOLUTION

Replacing the proportionality constant αr by the minority-carrier lifetime (αr = 1/τpn0),
Eq. (5.6) takes the following form:

U = n0δp + p0δn + δnδp

n0τp

(a) Light Depletion. The equilibrium concentrations of the majority and minority carriers
are n0 = ND = 1016 cm−3 and p0 = n2

i /n0 = 104 cm−3. The concentrations of the de-
pleted carriers are then δn = −0.1n0 = −1015 cm−3 and δp = −0.1 p0 = −103 cm−3.
Therefore,

U = −1016 × 103 − 104 × 1015 + 1015 × 103

1016 × 10−5
= −1.9 × 108 cm−3 s−1

(b) Full Depletion. In this case,

U = −n0 p0 − p0n0 + n0 p0

n0τp
≈ − p0

τp
= −109 cm−3 s−1

EXAMPLE 5.2 Balance of External Generation and Recombination

(a) A slab of N-type silicon with the doping level ND = 1016 cm−3 and minority-
carrier lifetime τp = 10 μs is exposed to a light source. Assuming a uniform external
generation rate of Gext = 5 × 1018 cm−3 s−1, determine the steady-state concentration
of minority carriers.

(b) At time t = 0, the light source is switched off. Determine the effective recombination
rate. Noting that the values of the doping level and the minority-carrier lifetime are the
same as in Example 5.1, compare the rates of effective recombination and generation
and comment on the results.

SOLUTION

(a) Mathematically, steady-state concentration of holes means that ∂p/∂ t = 0. Given that
there is no current flow in the sample, we obtain from the continuity equation for the
holes [Eq. (5.1)] that

Gext = U
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As expected, the external generation rate has to be balanced by the effective recombina-
tion rate to reach the steady-state condition. Assuming that the term n0δp dominates in
Eq. (5.6), the effective recombination rate is given by Eq. (5.8), so

Gext = δp

τp

From here, δp = 5 × 1018 × 10−5 = 5 × 1013 cm−3. Therefore the total concentration
of holes is

p = p0 + δp ≈ δp = 5 × 1013 cm−3

Now we can verify the assumption that n0δp term dominates in Eq. (5.6): n0δp = 5 ×
1029 cm−6, p0δn = p0δp = 5.2 × 1017 cm−6, and δnδp = δp2 = 2.5 × 1027 cm−6.

(b) The effective recombination rate is

U = δp

τp
= 5 × 1018 cm−3 s−1

Comparing to the effective generation rates in Example 5.1, we see that the change of
minority-carrier concentration is many orders of magnitude slower when the generation
dominates (|U | ≤ 109 cm−3 s−1 in Example 5.1) compared to a typical case when the
recombination dominates (U = 5 × 1018 cm−3 s−1 in this example).

5.2.3 Diffusion Length
The concept of diffusion length characterizes the steady-state nonuniform distribution
of excess minority carriers. Take the following example: electrons are injected into
a P-type region at a constant rate so that a steady-state current of electrons is es-
tablished. The concentration of electrons at the edge of the P-type region (taken as
x = 0) is n(0), but it decays inside the P-type region (x > 0) as the electrons
are recombined by the majority holes. The task is to determine the profile of electron
concentration, n(x).

To begin with, note that we are considering a steady-state case, which means the
electron concentration n(x) does not change in time: ∂n(x)/∂ t = 0. Next, note that
the current of the minority electrons jn is the diffusion current given by Eq. (4.5). With
∂n(x)/∂ t = 0, U = δn/τn , and jn given by Eq. (4.5), the continuity equation takes the
following form:

0 = Dn
d2n(x)

dx2 − δn

τn
(5.13)
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This equation can be transformed into the following form:

d2δn

dx2 − δn

L2
n

= 0 (5.14)

where

Ln =
√

Dnτn (5.15)

is a constant with the unit of length. To solve Eq. (5.14), its characteristic equation is
written as

s2 − 1

L2
n

= 0 (5.16)

and solved, which gives the following two roots: s1,2 = ±(1/Ln). The general solution of
Eq. (5.14) is then expressed as

δn(x) = A1es1x + A2es2x = A1ex/Ln + A2e−x/Ln (5.17)

where A1 and A2 are integration constants to be determined from the boundary conditions.
One boundary condition is δn(∞) = 0, which turns the constant A1 to zero [if A1 was
not zero, δn(∞) would be infinitely large, which is physically impossible]. Using the other
boundary condition, which is δn(0), shows that the constant A2 has to be equal to δn(0).
With this, the solution of Eq. (5.14) is obtained as

δn(x) = δn(0)e−x/Ln (5.18)

Obviously, the excess electron concentration drops exponentially with the length constant
Ln . The constant Ln is called the diffusion length of minority electrons. It indicates how
deeply electrons can penetrate when injected into a P-type region. As Eq. (5.15) shows, the
diffusion length depends on the diffusion coefficient and the excess carrier lifetime. For a
shorter τn (because of a stronger recombination), the electrons are recombined closer to
the injection point, so the diffusion length is shorter. For a smaller Dn , a larger gradient
of electron concentration is needed so that the diffusion current can balance the injection
current, and a larger concentration gradient corresponds to a shorter diffusion length.

Analogously, the diffusion length of the minority holes is given by

L p = √
Dpτp (5.19)

†5.3 GENERATION AND RECOMBINATION PHYSICS
AND SHOCKLEY–READ–HALL (SRH) THEORY

Equation (5.8) for the effective thermal generation–recombination rate was written in-
tuitively. In a sense, it is a phenomenological equation. It does enable generation–
recombination-related changes of electron and hole concentrations to be incorporated into
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the continuity equation, but it involves an empirical constant (either αr or τp,n) that is
not related to known technological parameters and physical constants. An approach that
is based on a more fundamental physics is needed to link the generation–recombination-
related changes of n and p to specific technological parameters and physical constants. A
theory that addresses this need was developed by Shockley and Read5 and, independently
of them, by Hall.6 It has been widely accepted as the model for indirect recombina-
tion/generation and is known as the SRH theory. This theory and its results will be
presented in this section.

5.3.1 Capture and Emission Rates in Thermal Equilibrium
To develop a physical model for the changes in n and p due to the generation and
recombination mechanisms illustrated in Fig. 5.1, the four mechanisms (electron and hole
emissions and captures) should be represented by their rates—how many electrons or holes
are emitted or captured per unit volume and per unit time. The symbols that will be used
for the four rates are as follows: rc,n for the rate of electron capture, rc,p for the rate of hole
capture, re,n for the rate of electron emission, and re,p for the rate of hole emission. All
these rates are in units of m−3 s−1. The first steps in developing the theory are to establish
physically based equations for these rates.

To develop the equation for rc,n , let us begin the consideration with a single electron
in the conduction band. As this electron moves with the thermal velocity, it has a chance to
hit some of the R–G centers that exist in the material. This chance is determined by the
thermal velocity of the electron (vth), the capture cross section of the R–G centers (σn), and
the concentration of the R–G centers (Nt ).7 In analogy with the description of Eq. (3.26)
for the scattering time, the product of the capture cross section and the concentration of R–
G centers, σn Nt , is the probability that the moving electron will hit an R–G center per unit
length. Given that the length traveled per unit time is the thermal velocity, the probability
that a carrier will come in contact with an R–G center per unit time is

p1 = vthσn Nt (5.20)

Being in contact with an R–G center, an event characterized by the probability p1, is
not equivalent to electron capture. If the R–G center is already filled by an electron, then
it will not capture the considered electron. To obtain the probability per unit time that the
electron will be captured, p1 has to be multiplied by the probability that the trap is empty.
This probability is 1 − ft , where ft is the value of the Fermi–Dirac distribution at the
energy of the R–G center. Therefore,

p2 = p1(1 − ft ) = vthσn Nt (1 − ft ) (5.21)

5W. Shockley and W. T. Read, Statistics of the recombination of holes and electrons, Phys. Rev.,
vol. 87, p. 835 (1952).
6R. N. Hall, Electron–hole recombination in germanium, Phys. Rev., vol. 87, p. 387 (1952).
7The index t comes from the term trap, which is used for R–G centers that capture carriers.
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The step that remains is to convert the probability per unit time that a single electron
will be captured (p2) to the concentration of electrons captured per unit time (rc,n). To this
end, the probability p2 is multiplied by the concentration of electrons that have a chance
of being captured:

rc,n = vthσn Nt (1 − ft )n0 (5.22)

Obviously, n0 is the concentration of electrons in the conduction band.
The analogous equation for holes is

rc,p = vthσp Nt ft p0 (5.23)

where σp is the capture cross section for holes.
Turning to the emission rate, the SRH theory does not develop an equation for the

probability per unit time that an electron will be emitted from a considered R–G center.
Thus, there is no equation that is analogous to the equation for p2 in the case of capturing
process. The SRH theory introduces this probability as a parameter en that is to be
determined so that the emission rate is equal to the capture rate in thermal equilibrium,
re,n = rc,n .

The emission probability en is converted into the concentration of emitted electrons per
unit time in a way that is fully analogous to the case of the capturing process. Specifically,
en is multiplied by the concentration of electrons that have a chance of being emitted into
the conduction band. This concentration of electrons is equal to the concentration of filled
R–G centers, Nt ft . Therefore,

re,n = en Nt ft (5.24)

The analogous equation for holes is

re,p = ep Nt (1 − ft ) (5.25)

where ep is the probability that a hole will be emitted from an R–G center into the valence
band per unit time.

To satisfy the thermal equilibrium condition, the emission and capture rates have to
be equal for both electrons and holes. This is frequently referred to as the detailed balance
principle. From the condition re,n = rc,n , the emission coefficient en is determined as

en = vthσnn0
1 − ft

ft
(5.26)

Given that

ft = 1

1 + e(Et−EF )/kT
(5.27)
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the equation for the emission coefficient can be expressed in the following way:

en = vthσnn0e(Et−EF )/kT (5.28)

We can see from Eq. (5.28) that the emission probability increases exponentially with the
increase in the energy level of the R–G centers (Et ).

The analogous equation for the hole emission rate is

ep = vthσp p0e−(Et−EF )/kT (5.29)

EXAMPLE 5.3 Emission and Capture Rates in Thermal Equilibrium

Determine the capture rates for electrons and holes in a P-type silicon (NA = 1018 cm−3),
having midgap R–G centers with concentration of Nt = 1015 cm−3. Assume that σn = σp =
10−15 cm2 and that the room-temperature thermal velocity of both electrons and holes is equal to
vth = 107 cm/s. Compare and discuss the results. What are the electron and hole emission rates?

SOLUTION

The concentration of electrons as minority carriers is n0 = n2
i /NA = 104 cm−3. Because this

is a P-type silicon, the Fermi level is well below the midgap and ft � 1. With this, the electron
capture rate is calculated from Eq. (5.22) as

rc,n ≈ vthσn Nt n0 = 109 cm−3 s−1

To determine the hole capture rate using Eq. (5.23), we need to determine the value of ft . The
position of the midgap with respect to the Fermi level is

qφF = kT ln(NA/ni ) = 0.476 eV

Therefore,

ft = 1

1 + e(Et−EF )/kT
= 1

1 + eφF /Vt
= 1.0 × 10−8

rc,p = vthσp Nt ft NA = 1.0 × 1017 cm−3 s−1

Comparing rc,p and rc,n , we see that the capture rate of holes is eight orders of magnitude higher.
The high capture rate of holes is balanced by the hole emission rate: re,p = rc,p = 1.0 ×
1017 cm−3 s−1. Analogously, the electron capture rate is balanced by the electron emission rate:
re,n = rc,n = 109 cm−3 s−1. The interpretation of the high capture rate for holes can be related
to the fact that the concentration of holes is so much higher than the concentration of electrons.
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The interpretation of much higher emission rate for holes can be related to the fact tht the
concentration of holes at the R–G centers is much higher than the concentration of electrons,
(1 − ft )Nt  ft Nt .

EXAMPLE 5.4 Capture Cross Section

Donor-type R–G centers are due to impurity atoms or defects that can be either positively charged
or neutral. As in Example 3.10 for the case of scattering, the capture cross section of a donor ion
can be related to the spherical region where the thermal energy of an electron is smaller than
the energy associated with the Coulomb attraction. This is relevant for the capture cross section
of electrons (σn), given that positive donor ions capture electrons. In the case of capture cross
section of holes (σp), it is the cross section of the neutral donor atom that is relevant, given that
neutral donor atoms capture holes to become positive. Estimate and compare the values for σn

and σp if the atom radius is 0.175 nm. Draw a conclusion for the relationship between σn and σp

for the case of acceptor-type R–G centers.

SOLUTION

For the case of σn , when a positively charged donor captures an electron by Coulomb attraction,
the solution is the same as in Example 3.10a. Therefore, σn = 3.1 × 10−13 cm2. For the case of
σp , it is the cross section of the neutral atom that matters:

σp = πr2 = π × (0.175 × 10−9)2 = 9.6 × 10−20 m2 = 9.6 × 10−16 cm2

We can see that σn is 3.1 × 10−13/9.6 × 10−16 = 323 times larger than σp .
Acceptor-type R–G centers are negative when filled with electrons and are neutral when

empty. Therefore, neutral centers capture electrons to become negative, which means that σn

corresponds to the cross section of the atoms/defects that cause the R–G centers. As opposed
to this, negative acceptor ions capture holes, which means that σp corresponds to the area of
effective Coulomb attraction. This means σp  σn for the case of acceptor-type R–G centers.

5.3.2 Steady-State Equation for the Effective Thermal
Generation–Recombination Rate

The next step in the SRH theory is to assume that the equilibrium equations for the capture
and emission rates retain their mathematical forms for nonequilibrium cases. This approach
is frequently utilized to model nonequilibrium processes by equations developed for
equilibrium, and it is generally shown to be valid when the deviations from equilibrium are
sufficiently small. Because this specific case is about the change of nonequilibrium electron
and hole concentrations due to recombination–generation, the equilibrium concentrations
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n0 and p0 have to be replaced by their nonequilibrium counterparts, n = n0 + δn and
p = p0 + δp. Importantly, the SRH theory does this for the case of capture rates only.
Therefore, Eqs. (5.22) and (5.23) become

rc,n = vthσn Nt (1 − ft )n (5.30)

rc,p = vthσp Nt ft p (5.31)

No replacement of the equilibrium variables is performed for the emission rates. It will
be pointed out later that the theory collapses if nonequilibrium values are consistently
used in the equations for both emission and capture rates. Therefore, Eqs. (5.30) and
(5.31) for the nonequilibrium capture rates and Eqs. (5.24), (5.25), (5.28), and (5.29)
for the equilibrium emission rates will be used in the further derivation. In the original
derivation, n0 and p0 in Eqs. (5.28) and (5.29) are replaced by the Maxwell–Boltzmann
approximations given by Eqs. (2.85) and (2.86). At this stage we will retain the symbols
n0 and p0 for the more general case to show that the Maxwell–Boltzmann approximation
is not necessary.

In addition to n and p, another variable that changes its value under nonequilibrium
conditions is the probability that an R–G center is occupied by an electron, ft . In the case
of equilibrium, this value can be obtained from the Fermi–Dirac distribution, which was
used to convert the emission rate from the form given by Eq. (5.26). As already explained,
the SRH theory uses the equilibrium equations for the emission rates; thus it uses the
Fermi–Dirac distribution for ft and the equilibrium electron and hole concentrations. As
opposed to this, nonequilibrium values are used in the equations for the capture rates. Then
it become necessary to determine the nonequilibrium value for ft . The solution used in
the SRH theory is to obtain it from a condition that can be established for a steady-state
case.

Steady-state conditions are special nonequilibrium cases. Under steady-state condi-
tions, the nonequilibrium electron and hole concentrations, n and p, do not change in
time: dn/dt = dp/dt = 0. This is possible when the effective thermal recombination
rate is perfectly balanced by a constant external generation rate. For example, the effective
recombination rate for electrons is given by the difference between the electron capture
and emission rates:

U = rc,n − re,n (5.32)

In thermal equilibrium U = 0, so U > 0 is a nonequilibrium case. For U > 0,
the rate of electron capture exceeds the rate of electron emission, which means that the
thermal processes reduce the concentration of electrons in the conduction band. This
reduction can be perfectly balanced by an increase in electron concentration due to
external generation—for example, by light. A specific generation mechanism, which is
practically most important, is selected for the external generation. The mechanism is direct,
or band-to-band, generation, where the rate of external electron generation is directly
linked to the rate of external hole generation. Given that external generation increases
the hole concentration, there has to be a difference between the rates of hole capture and
thermal emission that balances the increase due to external generation. Thus, the effective
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recombination rate for holes is also equal to U :

U = rc,p − re,p (5.33)

Equations (5.32) and (5.33) establish the following steady-state condition:

rc,n − re,n = rc,p − re,p (5.34)

This is the condition used by the SRH theory to determine the nonequilibrium ft . Inserting
the emission and capture rates from Eqs. (5.28), (5.29), (5.30), and (5.31) into Eq. (5.34),
we obtain the following equation for the nonequilibrium ft :

ft = σnn + σp p0e−(Et−EF )/kT

σn
[
n + n0e(Et−EF )/kT

] + σp
[

p + p0e−(Et−EF )/kT
] (5.35)

Inserting ft back into Eq. (5.30), and inserting the obtained electron-capture rate with
the emission rate given by Eqs. (5.24) and (5.28) into Eq. (5.32), we obtain the following
result for the effective recombination rate:

U = σnσpvth Nt (np − n0 p0)

σn
[
n + n0e(Et−EF )/kT

] + σp
[

p + p0e−(Et−EF )/kT
] (5.36)

This equation is for a steady-state nonequilibrium case, but it does contain equilibrium
variables: n0, p0, and EF . It is obvious from the derivation that these equilibrium variables
originate from the use of equilibrium equations for the emission probabilities [Eqs. (5.28)
and (5.29)]. It is quite clear that if the equilibrium concentrations n0 and p0 were to be
replaced by the nonequilibrium values n and p in the equations for the emission rates, the
term np − n0 p0 in Eq. (5.36) would become np − np. Therefore, the asymmetrical use
of nonequilibrium and equilibrium values in the equations for capture and emission rates
is necessary to avoid this collapse of the theory, where U = 0 for the nonequilibrium
steady-state case.

By using the Maxwell–Boltzmann approximations for n0 and p0 [Eqs. (2.85) and
(2.86)], all the equilibrium values, n0, p0, and EF , can be converted into material constants:

U = σnσpvth Nt
(
np − n2

i

)
σn

[
n + ni e(Et−Ei )/kT

] + σp
[

p + ni e−(Et−Ei )/kT
] (5.37)

This is the general equation for steady-state nonequilibrium rate of effective thermal
generation–recombination in the SRH theory. In this equation, the term np − n2

i is
significant, given that it provides a model for the dependence of the effective thermal
generation–recombination rate U on the degree of deviation from the equilibrium. U = 0
for equilibrium (np = n2

i ), but then it increases with increasing difference between the
product of nonequilibrium n and p and the equilibrium level n2

i . For negative np − n2
i ,

we have the case of electron–hole deficiency and negative U , indicating that thermal
generation prevails over the recombination as the thermal processes work to bring the
system back into equilibrium.
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The term np − n2
i also appears in the empirical equation (5.4) used in Section 5.2.

Comparing Eqs. (5.37) and (5.4), we conclude that the empirical proportionality coefficient
αr involves the following technological and physical parameters: Nt , Et , σn,p , vth, and
ni . This comparison also shows that the coefficient αr depends on the nonequilibrium
concentrations of electrons and holes, n and p, which means that αr is not a constant when
n and p change over a wide range.

EXAMPLE 5.5 Dependence of the Effective Thermal Generation and Recombina-
tion Rates on the Energy Position of the R–G Centers

For N-type silicon with ND = 1015 cm−3 and Nt = 1015 cm−3, plot the dependencies of U on
Et − Ei for the following cases:

(a) Low-level injection of excess carriers: δn = δp = 1012 cm−3 (this is 0.1% of n0)
(b) Slight depletion: δn = −1012 cm−3, p = 0
(c) Full depletion: n = p = 0

Use the capture cross section values obtained in Example 5.4, the thermal velocity vth =
107 cm/s, and Et − Ei in the range of −0.56 eV to 0.56 eV with the energy step of 0.01 eV.
Simplify Eq. (5.37) for each of these cases to perform an analysis of the obtained graphs and
comment on the results.

SOLUTION

The following are the corresponding MATLAB©R scripts followed by the comments. The plots
are shown in Figs. 5.4, 5.5, and 5.6 for low-level injection, slight depletion, and full depletion,
respectively.

(a) Low-level injection of excess carriers.

>>kT=8.62e-5∗300;
>>ni=1.02e16;
>>vth=1e5;
>>sigman=3.1e-17;
>>sigmap=9.6e-20;
>>Nd=1e21;
>>Nt=1e21;
>>n=Nd+1e18;
>>p=Nd/niˆ2+1e18;
>>EtEi=[-0.56:0.01:0.56];
>>U=sigman∗sigmap∗vth∗Nt∗(n∗p-niˆ2)./

(sigman∗(n+ni∗exp(Eti./kT))+sigmap∗(p+ni∗exp(-Eti./kT)));
>>plot(EtEi,U∗1e-6)
>>xlabel('E t-E i (eV)')
>>ylabel('U(cmˆ{-3}sˆ{-1})')
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Figure 5.4 The MATLAB plot for
Example 5.5a.
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Figure 5.5 The MATLAB plot
for Example 5.5b.

The plot in Fig. 5.4 shows that the effective recombination rate is constant for R–G
centers with energy levels in a wide energy range around Ei . This range is not precisely
centered at Ei because σn σp in this specific example. The effective recombination
rate drops rapidly for R–G centers with energy levels close to either the top of the valence
band or the bottom of the conduction band. Mathematically, this is because either
the term exp [(Et − Ei )/kT ] or the term exp [−(Et − Ei )/kT ] in Eq. (5.37) becomes
large for Et levels away from Ei . Because we know that the origin of these terms is in the
emission probabilities en and ep [Eqs. (5.28) and (5.29)], we conclude that the emission
rates of electrons/holes are so high in these cases that any captured electron/hole is
quickly emitted back into the conduction/valence bands. As opposed to this, the emission
terms are much smaller than the capture terms for the energies closer to Ei . As a con-
sequence, an electron capture is likely to be followed by a hole capture by the same R–G



176 CHAPTER 5 GENERATION AND RECOMBINATION

center, which results in recombination of an electron–hole pair. Mathematically, the
emission-related terms are small enough to allow σnn to dominate in the denominator of
Eq. (5.37) (this conclusion also includes the fact that n  p). With this and the fact that
np  n2

i , Eq. (5.37) is effectively reduced to

U ≈ σpvth Nt p = 9.6 × 1018 cm−3 s−1

�0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6
�9

�8

�7

�6

�5

�4

�3

�2

0

�1

� 1017

Et � Ei (eV)

U
 (

cm
�

3 s�
1 )

Figure 5.6 The MATLAB plot
for Example 5.5c.

This is the value of U in the flat part of the U -versus-(Et − Ei ) graph. This analysis
shows that the effective recombination rate is limited by the minority carriers (p and
σp).

(b) Slight depletion.

>>n=Nd-1e18;
>>p=0;
>>U=sigman∗sigmap∗vth∗Nt∗(n∗p-niˆ2)./

(sigman∗(n+ni∗exp(Eti./kT))+sigmap∗(p+ni∗exp(-Eti./kT)));
>>plot(EtEi,U∗1e-6)
>>xlabel('E t-E i (eV)')
>>ylabel('U(cmˆ{-3}sˆ{-1})')

In this case U < 0, corresponding to the case of effective thermal generation. Even
though the generation mechanisms dominate, the generation rate is still very small when
energy level of the R–G centers is away from Ei and close to the band edges. This
is again because the carriers are exchanged (captured and emitted) between the R–G
centers and the conduction/valence band. The generation rate becomes significant for
energy levels that are closer to Ei . In this case the terms ni exp [(Et − Ei )/kT ] and
ni exp [−(Et − Ei )/kT ] are much smaller than n, so that

U ≈ −σpvth Nt n2
i

n
= 1012 cm−3 s−1
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We can see that the maximum effective generation rate is much smaller than the maxi-
mum effective recombination rate, even though the deviation of electron concentration
is the same in both cases (±0.1% of n).

(c) Full depletion.

>>n=0;
>>U=sigman∗sigmap∗vth∗Nt∗(n∗p-niˆ2)./

(sigman∗(n+ni∗exp(Eti./kT))+sigmap∗(p+ni∗exp(-Eti./kT)));
>>plot(EtEi,U∗1e-6)
>>xlabel('E t-E i (eV)')
>>ylabel('U(cmˆ{-3}sˆ{-1})')

In this case,

U = − σnσpvth Nt ni

σne(Et−Ei )/kT + σpe−(Et−Ei )/kT

If σn were equal to σp , the maximum generation rate would be for Et = Ei when both
exponential terms in the denominator are equal to 1. Given that σn  σp , the maximum
is shifted toward the top of the valence band. Importantly, one of the two exponential
terms becomes very large on either side of the peak, dropping the effective generation
rate to very small values.

5.3.3 Special Cases
As demonstrated by Example 5.5, Eq. (5.37) can be simplified for some specific cases.
Two cases are of special interest: (1) low-level injection of carriers so that recombination
dominates and (2) depletion of carriers so that generation dominates.

Minority-Carrier Lifetime at Low-Level Injection

Example 5.5a and Fig. 5.4 show that the effective recombination rate is high and constant
for a relatively wide energy range of the R–G centers for the case of low-level injection. It
is very likely that there will be high enough concentration of R–G centers with Et in this
range to allow them to dominate the effective recombination rate. Therefore, we will focus
on this range, which is defined by the conditions n  ni exp [(Et − Ei )/kT ] and p 
ni exp [−(Et − Ei )/kT ] for the case of an N-type semiconductor. With these conditions,
and given that n  p and np  n2

i , Eq. (5.37) is simplified to

U = σpvth Nt p (5.38)

The low-level injection for an N-type semiconductor is defined in Section 5.2.2 by the
condition δn � n0. The derivation of Eq. (5.37) assumed that the steady state is maintained
by a constant external generation of electron–hole pairs, so that δn = δp. Even though we
discuss the case of low-level injection (δn � n0), the concentration of minority carriers
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in an N-type semiconductor is so low that δp = δn is likely to be much higher than p0
for most cases of practical interest. This means that p = p0 + δp ≈ δp = δn. With this,
Eq. (5.38) becomes

U = σpvth Nt δp (5.39)

Comparing this simplified equation for U with Eq. (5.8) obtained in Section 5.2.2, we
find that the minority-carrier lifetime is given by

τp = 1/σpvth Nt (5.40)

The physical meaning of the term σpvth Nt , labeled by p1 in Section 5.3.1, was found to be
the probability that a carrier would come in contact with an R–G center per unit time. The
reciprocal value of p1 is the average time that it takes a carrier to come in contact with an
R–G center. This average time is τp , according to Eq. (5.40).

The following consideration provides the link between the average time that it takes
a carrier to come in contact with an R–G center and the minority-carrier lifetime.
The carriers we are considering are the holes as the minority carriers in an N-type
semiconductor. Most of the R–G centers in an N-type semiconductor are likely to be filled
by electrons. In equilibrium, the Fermi level is close to the bottom of the conduction
band, which means well above Et for the R–G center(s) of interest. According to the
Fermi–Dirac distribution, the probability of finding electrons at Et is close to 1, and
there is no reason for this high occupancy of the R–G centers to be any lower when the
external electron–hole generation takes the semiconductor out of equilibrium. Therefore,
practically any event of a hole hitting an R–G center results in capture of the hole.
Furthermore, this hole capture is equivalent to a removal of an electron from the R–G
center whose occupancy by an electron should remain close to 1. Consequently, the R–G
center practically instantaneously captures an electron, which means that the captured hole
is recombined. Therefore, the average time that it takes a hole to hit an R–G is practically
equal to the average lifetime of the hole.

Analogously, the lifetime of electrons as minority carriers is

τn = 1/σnvth Nt (5.41)

The considerations in this section show that the minority-carrier lifetime is just that—
the average lifetime of a minority carrier in the environment of abundant majority carriers.
Mathematically, Eqs. (5.40) and (5.41) are obtained by simplifications of the SRH equation
for the effective generation rate that is derived for a steady-state condition. Nonetheless,
the physical considerations provided in this section show that Eqs. (5.40) and (5.41) can be
used even when carrier concentrations change in time.
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EXAMPLE 5.6 Minority-Carrier Lifetime for R–G Centers
with Multiple Energy Levels

Two types of R–G center have energy levels close enough to Ei that both are effective
recombination centers. One of them is donor type (σn1 ≈ 10−13 cm2) with Nt1 = 1013 cm−3,
and the other is acceptor type (σn2 ≈ 10−15 cm2) with Nt2 = 1015 cm−3. Determine the lifetime
of electrons as minority carriers. The thermal velocity is vth = 107 cm/s.

SOLUTION

The probability that a minority electron will hit an R–G center (and will soon after recombine
with a hole) should be calculated as the sum of probabilities that the electron will hit an R–G
center of the first and the second types:

1

τn
= 1

τn1
+ 1

τ2
= vthσn1 Nt1 + vthσn2 Nt2 = 2 × 107 s−1

Therefore, τn = 50 ns.

Generation Time Constant in Depletion

The second special case of interest is a semiconductor depleted of the free carriers so that
the generation mechanisms prevail. In practice, a semiconductor region can be depleted
of carriers by application of external field that drifts electrons and holes away from the
depleted region. Usually, the concentrations of both electrons and holes are very small
under these conditions, so it is of particular interest to consider the case of n ≈ 0 and
p ≈ 0. For this, Eq. (5.37) becomes

U = − σnσpvth Nt ni

σne(Et−Ei )/kT + σpe−(Et−Ei )/kT
(5.42)

This equation can be written in the following simple form

U = −ni/τg (5.43)

where

τg = σne(Et−Ei )/kT + σpe−(Et −Ei )/kT

σnσpvth Nt
= τpe(Et−Ei )/kT + τne−(Et −Ei )/kT (5.44)

The unit of τg is s, so it is a time constant. In analogy with the minority-carrier lifetime in
Eq. (5.8), τg is frequently referred to as the generation lifetime. However, this name and
the definition of τg as “the time to generate one electron–hole pair by thermal emission
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processes”8 are physically ambiguous (as opposed to the clear concept of minority-carrier
lifetime).

To analyze this issue, we can take specific examples. As far as the minority-carrier
lifetime in Eq. (5.8) is concerned, a value of τp = 1 μs means that the average lifetime
of a minority hole, when surrounded by majority electrons, is 1 μs. This is true for silicon
and for any other material. For generation lifetime of τg = 1 μs, the generation rates are
different in different materials because of the factor ni in Eq. (5.43). As specific examples,
1010 electron–hole pairs would be generated per μs and per cm3 in Si, but only 10−7

electron–hole pairs would be generated per μs and per cm3 in 4H SiC.9 To have one
electron–hole pair generated in SiC per μs, we need to have a volume of 107 cm3 = 10 m3!
A statement that τg = 1 μs is the time that it takes to generate one electron–hole pair is
incomplete because the statement does not specify the volume in which the generation
processes act. To avoid confusion, we will refer to τg given by Eq. (5.44) as the generation
time constant.

The physically meaningful generation counterpart of the minority-carrier lifetime is
the average time that it takes a single R–G center to generate an electron–hole pair. We
will label this time by τt . The reciprocal value 1/τt represents the number of electron–hole
pairs generated by a single R–G center per unit time. Multiplying 1/τt by the concentration
of R–G centers Nt , we obtain the effective generation rate:

U = − Nt

τt
(5.45)

The minus sign is needed because of the convention that U < 0 when the generation
mechanisms prevail. Equation (5.45) is the generation counterpart of Eq. (5.8) and τt is
the generation counterpart of the minority-carrier lifetimes τp,n . The dependence of τt on
physical and material constants is derived in Example 5.7.

Equation (5.44) for the generation time constant has two terms because an electron–
hole generation event is a two-step process: (1) emission of an electron and (2) emission
of a hole from the R–G center (in either order). Depending on the energy position of the
R–G centers, Et , one of the two steps may dominate the time constant (being the limiting
step in the generation process) or both steps may have significant impact on the generation
process. An inspection of Eq. (5.44) shows that the first term in τg increases exponentially
for Et values above Ei whereas the second term increases exponentially for Et values
below Ei . Accordingly, τg has a sharp minimum that corresponds to the sharp peak in U
shown in Fig. 5.6 (the solution of Example 5.5c). It is useful to determine the Et position
of this peak as a reference point. Moreover, the peak position is of practical importance
when there are R–G centers with almost continuous distribution of Et levels. In that case,
it is the R–G centers with Et corresponding to the peak in U (the minimum τg) that provide
the fastest effective generation rate.

8D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., Wiley, New York,
1998, p. 428.
9This is because ni in 4H SiC is about 17 orders of magnitude lower than that in Si: ni ≈ 10−7 cm−3.
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The Et level corresponding to minimum τg can be determined by the following
straightforward procedure:

dτg

d Et
= 0 ⇒ τpe(Et−Ei )/kT = τne−(Et−Ei )/kT (5.46)

Et − Ei = kT

2
ln

τn

τp
(5.47)

This equation shows that the R–G centers with Et at the intrinsic Fermi level (Ei ) are the
most active for a very specific case of τn = τp. Equations (5.40) and (5.41) show that
this case means that the R–G centers have equal capture cross sections for both electrons
and holes (σn = σp). In practice, this would mean that the R–G centers with Et = Ei

are amphoteric defects: that is, they can act as both donors and acceptors. If no such R–G
centers are present, then the most active R–G centers would have Et either above or below
Ei . This depends on whether the R–G centers are donor type (σn > σp and τn < τp) or
acceptor type (σn < σp and τn > τp).10

The minimum generation time constant for R–G centers with spread out Et can be
obtained by inserting Eq. (5.47) into Eq. (5.44):

τg = 2
√

τnτp (5.48)

If there is insignificant concentration of R–G centers with an energy level that is close
to Et given by Eq. (5.47), then one of the two terms in Eq. (5.44) will dominate. For
example, if (Et − Ei )/kT  1

2 ln(τn/τp), then the first term in Eq. (5.44) dominates:

τg ≈ τpe(Et−Ei )/kT (5.49)

This is the case when the emission of holes limits the generation process because Et is
closer to the conduction band and further from the valence band or σp is smaller than σn .
Analogously,

τg ≈ τne−(Et−Ei )/kT (5.50)

for the case when (Et − Ei )/kT � 1
2 ln(τn/τp).

10Refer to Example 5.4 for estimates of σn and σp for donor- and acceptor-type R–G centers.
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EXAMPLE 5.7 The Average Time a Single R–G Center Takes
to Generate an Electron–Hole Pair, τt

Derive the dependence of τt on the relevant physical and material parameters. Simplify the
obtained equation for the R–G centers with the energy level that minimizes τt . Calculate the
minimum τt for Si, GaAs, and 3C SiC.

SOLUTION

From Eqs. (5.45) and (5.43), we obtain

τt = Nt

ni
τg

Replacing τg from Eq. (5.44), the following equation for τt is obtained:

τt = e(Et−Ei )/kT

σpvthni
+ e−(Et−Ei )/kT

σnvthni

The minimum τt corresponds to the condition for minimum τg , given by Eq. (5.46). With this
condition,

τt−min = 1

σgvthni
(5.51)

where

σg =
√

σnσp

2

Comparing Eq. (5.51) to Eqs. (5.40) and (5.41), it can be seen that τt−min is the generation
counterpart of the minority-carrier lifetimes τp and τn . The capture cross section σg appears as
an effective capture cross section when the generation dominates and it is approximately equal
for both donor-type (σn > σp) and acceptor-type (σp > σn) R–G centers. Using the values for
the capture cross -sections of neutral and charged atoms, estimated in Example 5.4, the value for
σg is

σg =
√

3.1 × 10−13 × 10−15

2
= 8.8 × 10−15 cm2

Assuming vth ≈ 1.5 × 107 cm/s in Si, GaAs, and 3C SiC, we obtain

τt−min = 1

8.8 × 10−15 × 1.5 × 107 × 1010
= 0.76 ms

τt−min = 1

8.8 × 10−15 × 1.5 × 107 × 2.1 × 106 = 3.6 s
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τt−min = 1

8.8 × 10−15 × 1.5 × 107 × 1
= 7.6 × 106 s

respectively. Therefore, the average time it takes a single R–G center to generate an electron–
hole pair in a fully depleted Si sample is 0.76 ms; in a fully depleted GaAs sample, 3.6 s; and in
a fully depleted 3C SiC sample, 7.6 × 106 s.

5.3.4 Surface Generation and Recombination
The surface of a semiconductor is of significant practical importance. Conceptually, the
generation and recombination mechanisms illustrated in Fig. 5.1 are not different for the
case of a semiconductor surface. There are, however, important practical and theoretical
differences that have to be taken into account in the modeling of surface generation and
recombination.

Given that the crystal lattice of a semiconductor is terminated at the surface, the
terminating bonds are crystal defects. Many of these bonds will be tied to passivating atoms
at the semiconductor surface, so that they are electronically passive defects. The passivating
atoms can be individual atoms, typically hydrogen, or the atoms from a passivating material
that is in contact with the semiconductor surface. The best passivating material in practice
has proved to be SiO2 as the native oxide of Si and SiC. The Si–SiO2 interface is by far the
best interface in terms of the density of interface defects that remain unpassivated either
by oxygen from the SiO2 or by individual hydrogen or nitrogen atoms. The unpassivated
interface defects are said to be those that introduce energy levels in the energy gap of
the semiconductor. Thus, these interface defects act as R–G centers, similar to the R–G
centers in the bulk of the semiconductor. They also have a significant impact on other
device parameters, in particular in the case of surface-based devices. A commonly used
term for these defects is interface traps, so this term will be used in this section. The
density of interface traps per unit area, in units of m−2, will be labeled Nit . Importantly,
the physical structure of the interface defects is not precisely defined; as a consequence,
the energy levels they introduce into the energy gap tend to be continuously distributed.
The energy distribution of the interface traps is labeled Dit , and because it expresses
the number of interface traps per unit of energy and unit of area, it is given in units of
eV−1 m−2.

The SRH theory can be adapted for surface generation–recombination in two different
ways: (1) to convert the concentration of R–G centers (Nt ) into density of interface
traps (Nit) and (2) to introduce the effect of continuous distribution of the interface traps
(Dit).

In mathematical terms, the first approach is a simple replacement of Nt by Nit . Also,
the label for the energy level will be changed from Et to Eit to ensure that it is clearly
associated with the interface traps. With this, and emphasizing that the electron and hole
concentrations are to be considered at the semiconductor surface (ns and ps instead of n
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and p), Eq. (5.37) can be rewritten as

Us = σnσpvth Nit
(
ns ps − n2

i

)
σn

[
ns + ni e(Eit−Ei )/kT

] + σp
[

ps + ni e−(Eit−Ei )/kT
] (5.52)

This equation is the SRH equivalent for the effective surface recombination–generation
rate. Because of the change of units from m−3 for Nt to m−2 for Nit , the unit for Us is
m−2s−1—the number of generated/recombined carriers per unit time and per unit area
(rather than per unit volume as in the case of U ).

Clearly, Eq. (5.52) gives Us due to interface traps having a single energy level
Eit and density Nit . As already mentioned, real interface traps have energy levels that
are continuously distributed in the energy gap. Therefore, the second approach—the
introduction of the continuous distribution Dit(E)—is more general. Replacing Nt in
Eq. (5.37) by Dit results in the following equation for the differential surface recombination
rate:

us = σnσpvth Dit(E)
(
ns ps − n2

i

)
σn

[
ns + ni e(Eit−Ei )/kT

] + σp
[

ps + ni e−(Eit−Ei )/kT
] (5.53)

The unit of us is eV−1m−2 s−1, meaning that us is the effective thermal generation–
recombination rate per unit area and unit energy. Integrating us over the entire energy
gap leads to the total rate, Us :

Us =
∫ EC

EV

us d E (5.54)

Surface Recombination Velocity at Low-Level Injection

In the first approach—replacing Nt by Nit—the simplified equation for the special case of
low-level injection can be obtained directly from Eqs. (5.38) and (5.39):

Us ≈ vthσp Nitδps ≈ σpvth Nit ps (5.55)

In analogy with Eqs. (5.38) and (5.39), δps ≈ ps is the excess concentration of the minority
holes at the semiconductor surface. These holes are surrounded by abundant majority
electrons, so it is the holes that limit the surface recombination rate. The analogy, however,
cannot be extended to Eq. (5.40), which links vthσp Nt to the minority-carrier lifetime.
Because the unit of the factor vthσp Nit is m/s, its reciprocal value does not relate to the
minority-carrier lifetime in the way the reciprocal value of vthσp Nt does in Eq. (5.40).
The product σp Nit has a different unit and a different meaning from the product σp Nt .
It no longer represents the probability that a considered hole will hit an R–G center per
unit length of its path. For the case of interface traps, σp Nit is simply the fraction of the
semiconductor surface that is covered by the capture cross sections of the interface traps.
Thus, when a hole hits the semiconductor surface, σp Nit shows the probability that the
hole will be in contact with an interface trap. This leads to the question about the physical
meaning of vthσp Nit .
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To derive the physical meaning of vthσp Nit , we note that we are again considering the
specific case when the majority electrons are in abundance as the minority holes hit the
surface. Because of the abundance of electrons at the surface, it can be assumed that nearly
all interface traps have captured electrons. For a recombination event to occur, an interface
trap also must capture a hole. Thus, nearly every hit of a minority hole into the capture
cross section of an interface trap results in a recombination event. The recombination of
the holes that hit the surface results in effective flow of these holes to the surface. This
picture is analogous to the case of drifting carriers collected by the biased contact of
the semiconductor bar considered during the derivation of Eq. (3.21) for the drift-current
density. In the analogy with Eq. (3.21), the drift velocity vdr has to be replaced by the
thermal velocity of the holes that not only hit the surface but also hit it in the recombination-
active area. The fraction of the surface that is covered by the capture cross sections of the
interface traps is σp Nit . Therefore, the thermal velocity has to be multiplied by σp Nit to
obtain the surface recombination counterpart of the drift velocity:

sp = vthσp Nit (5.56)

This velocity is referred to as the surface recombination velocity. For electrons, the surface
recombination velocity is

sn = vthσn Nit (5.57)

In summary, the minority-carrier lifetime is replaced by the surface recombination
velocity when Nt is replaced by Nit to consider surface recombination:

Us =
{

spδps for ns  ps

snδns for ps  ns
(5.58)

The more general approach is to introduce the continuous energy distribution of the
interface traps, Dit . For low-level injection, the condition ns ps  n2

i is satisfied for any
energy level Eit . With this condition and for the case of ns  ps (N-type semiconductor),
Eq. (5.53) can be simplified to the following form:

us = σpvth Dit(E)ns ps

ns + ni e(Eit−Ei )/kT + (σp/σn)ni e−(Eit−Ei )/kT
(5.59)

The exponential terms in the denominator can be neglected for energy levels Eit that are
not too far from Ei , leading to the result that can be obtained by direct replacement of Nt

in Eq. (5.39) with Dit :

us ≈ σpvth Dit(E)ps ≈ σpvth Dit(E)δps (5.60)

However, for Eit levels that are well above Ei , the term exp [(Eit − Ei )/kT ] begins to
dominate, causing an exponential drop of us with increasing Eit . Analogously, the term
(σp/σn)ni exp [−(Eit − Ei )/kT ] causes an exponential drop of us for Eit levels that are
well below Ei . This behavior of us is illustrated in Fig. 5.7 for Dit = const. Representing
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the interface traps by a constant Dit is a convenient assumption that is far more realistic
than the assumption of interface traps with a single Eit level (the first approach).

The two threshold energies shown in Fig. 5.7 are obtained as follows. The upper
threshold energy corresponds to the condition ns = ni exp [(Eit − Ei )/kT ]. For low-level
injection, ns is close to the equilibrium electron concentration in the N-type semiconductor
that is given by Eq. (2.85). Therefore, this condition is equivalent to Eit = EF , which is
the upper threshold for Eit . The lower threshold energy corresponds to the condition

σpni

σnns
e−(EN −Ei )/kT = 1 (5.61)

For the specific case of σn = σp , Ei − EN = EF − Ei , which means that the flat region of
us is centered at Ei and that its width is 2(EF − Ei ).

Approximating the differential surface rate us by its maximum value given by
Eq. (5.60) for EN ≤ Eit ≤ EF and neglecting it outside this energy range, the total
surface rate Us can be estimated from

Us ≈ sp ps ≈ spδps (5.62)

where the surface-recombination velocity is

sp = vthσp Dit(EF − EN ) (5.63)

Comparing Eqs. (5.63) and (5.56), we find that Dit(EF − EN ) corresponds to Nit . For
electrons, the surface-recombination velocity is

sn = vthσn Dit(E P − EF ) (5.64)

where E P is obtained from the following condition:

σnni

σp ps
e(EP−Ei )/kT = 1 (5.65)
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Figure 5.7 Differential surface recombination
rate for constant Dit, ns  δns = δps  ps, and
σp/σn = 0.01.
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Surface Generation Constant in Depletion

Upon defining surface depletion by ns ≈ 0 and ps ≈ 0, Eq. (5.53) becomes

us = − σnσpvth Ditni

σne(Eit−Ei )/kT + σpe−(Eit−Ei )/kT
(5.66)

Figure 5.8 illustrates this dependence for a constant Dit . The peak of us is at

Eit − Ei = kT

2
ln

σp

σn
(5.67)

and is equal to

us–peak = −1

2
√

σnσpvth Ditni (5.68)

To obtain the total rate Us , the differential rate us , given by Eq. (5.66), should be
integrated from EV to EC . Alternatively, we can approximate us by its peak for the
interface traps in the active energy region and neglect it outside this region. An analysis
of Eq. (5.66) shows that one of the two terms in the denominator drops e times for
Eit − Ei = ±kT . Thus, the energy width of the active interface traps can be approximated
by 2kT . Therefore, Us = 2kT us–peak leads to

Us = −sgni (5.69)

where

sg = √
σnσpvthkT Dit (5.70)

Different names are used for the constant sg in the literature, including surface generation
velocity. This term has problems analogous to those associated with generation lifetime,
described in Section 5.3.3. Accordingly, a much less confusing name for sg is surface
generation constant.
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SUMMARY

1. A direct or band-to-band generation event occurs when an electron–hole pair is created
because an electron moves from the valence into the conduction band. The opposite
process, when an electron drops from the conduction into the valence band, is a direct
or band-to-band recombination event. A photon can be absorbed to provide the energy
for a direct generation event, and a photon can be emitted during a direct recombination
event (radiative generation and recombination).

2. Usually more frequent generation and recombination events occur through R–G
centers—defects with energy levels in the energy gap. These are two-step processes:
(1) an electron and a hole emission from an R–G center (in either order) is a
generation event and (2) an electron and a hole capture by an R–G center (in either
order) is a recombination event. These mechanisms are known as SRH generation and
recombination.

3. Another pair of generation–recombination mechanisms consists of avalanche genera-
tion and Auger recombination. The energy provided for avalanche generation is due to
the kinetic energy when carriers are accelerated by electric field; the energy released by
Auger recombination is in the form of kinetic energy that the accelerated carrier loses
as heat in subsequent phonon-scattering events.

4. The rates of spontaneous generation and recombination are combined into a sin-
gle quantity, called the effective generation–recombination rate U . The effective
generation–recombination rate (U ) and any external generation rate (Gext) directly
influence the change of carrier concentrations per unit time. The continuity equations
for electrons and holes that include these rates are as follows:

∂n

∂ t
= 1

q

∂ jn
∂x

− U + Gext

∂p

∂ t
= − 1

q

∂ jp

∂x
− U + Gext

This form of the continuity equations does not include the possible rate of stimulated
recombination that occurs in lasers.

5. The effective generation–recombination rate is proportional to (np − n2
i ). In thermal

equilibrium, U = 0. When recombination prevails, U > 0, and when generation
prevails, U < 0. For a small deviation from equilibrium in an N-type semiconductor,
the effective generation–recombination rate can be expressed as

U = δp

τp

where τp is the lifetime of minority holes.
6. When minority carriers are injected into a neutral semiconductor, their steady-state

concentration decays exponentially from the injecting plane. For electrons as minority
carriers, δn(x) = δn(0) exp(−x/Ln), where Ln is the diffusion length. The diffusion
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length is determined by the minority-carrier lifetime and the diffusion constant:

Ln,p = √
Dn,pτn,p

7. According to the Shockley–Read–Hall (SRH) theory, the effective generation–recombination
rate for a steady-state nonequilibrium case is given by

U = σnσpvth Nt
(
np − n2

i

)
σn

[
n + ni e(Et−Ei )/kT

] + σp
[

p + ni e−(Et −Ei )/kT
]

where n and p are the nonequilibrium electron and hole concentrations, ni is the
intrinsic-carrier concentration, σn,p are electron–hole capture cross sections, vth is the
thermal velocity, Nt is the concentration of R–G centers, and Et − Ei is the energy
position of the R–G centers with respect to Ei .

• For the case of a low-level injection of minority carriers,

U ≈ δp

τp

where

τp = 1

vthσp Nt

is the minority-carrier lifetime. This result shows that the reciprocal value of the
minority-carrier lifetime is equal to the probability that a minority hole will hit an
R–G center per unit time (vthσp Nt ).

• For the case of depletion,

U = −ni

τg

where τg is the generation time constant. The dominant generation time constant is
for R–G centers with energy levels Et − Ei = (kT/2) ln(τn/τp), its value being
τg = 2

√
τnτp .

8. Analogously to the equation for U , the effective surface generation/recombination rate
is given by

Us = σnσpvth Nit
(
ns ps − n2

i

)
σn

[
ns + ni e(Eit−Ei )/kT

] + σp
[

ps + ni e−(Eit−Ei )/kT
]

where Nit is the density of effective interface traps (in m−2) and ns and ps are the surface
nonequilibrium concentrations of electrons and holes. The unit of Us is m−2s−1.
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• For low-level injection of minority carriers,

Us =
{

spδps for ns  ps

snδns for ps  ns

where

sp,n = vthσp,n Nit

is the surface-recombination velocity (in m/s). For a constant energy distribution
of interface traps, Dit = const, the total density of effective interface traps in the
equation for sp,n is Nit = 2|EF − Ei |Dit .

• For depletion,

Us = −sgni

where

sg = 1

2
√

σnσpvth Nit

is the surface generation constant. For a constant energy distribution of interface
traps, Dit = const, the total density of effective interface traps in the equation for sg

is Nit = 2kT Dit .

PROBLEMS

5.1 Two N-type silicon samples (ND = 1015 cm−3)
are exposed to light, which in both samples
generates electron–hole pairs at the rate of Gext =
1019 cm−3 s−1. The minority-carrier lifetime in the
first sample is τp = 100 μs, whereas the minority-
carrier lifetime in the second sample is reduced
to τp = 100 ns by intentionally introduced R–G
centers. For each sample, determine

(a) the steady-state excess concentration of holes,
δp

(b) how long it takes for δp to drop by 10% when
the light is switched off

(c) how long it takes for δp to drop to the value that
is 10% higher than the thermal equilibrium level

5.2 A region of N-type semiconductor, doped by ND =
1015 cm−3 is fully depleted of both majority
and minority carriers by an external electric field.
Assuming that the concentration of electron–hole
pairs that is generated per unit time does not change

when the semiconductor is depleted, determine the
effective generation rate if the semiconductor is

(a) Si (ni = 1.02 × 1010 cm−3)
(b) GaAs (ni = 2.1 × 106 cm−3)

The minority-carrier lifetime is the same in both
cases: τp = 1 μs.

5.3 Consider silicon in thermal equilibrium, with the
equilibrium concentration of electrons n0 =
1016 cm−3. The minority-carrier lifetime is τp =
0.4 μs.

(a) What is the effective recombination rate?
(b) Assuming that the concentration of electron–

hole pairs that are generated per unit time does
not change if the semiconductor is suddenly
fully depleted of both the electrons and holes,
determine the concentration of holes generated
per unit time in thermal equilibrium.

(c) What is the concentration of holes recombined
per unit time in thermal equilibrium? A
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5.4 Consider GaAs in thermal equilibrium, with the
equilibrium concentration of electrons n0 =
1016 cm−3 and the minority-carrier lifetime τp =
0.4 μs. If the direct generation–recombination
mechanism is dominant, what is the concentration
of holes recombined per unit time in thermal
equilibrium? Compare the result with the case of
silicon (Problem 5.3c) and explain the difference.

5.5 A light source uniformly generates carriers in a
slab of P-type silicon doped at the level of NA =
1017 cm−3. The minority-carrier lifetime is τn =
1 μs. At time t = 0, the light source is removed.
Determine how long it takes for the minority-carrier
concentration to

(a) drop by 10% from the steady-state level
(b) drop to the level that is 10% higher than the

thermal equilibrium value

for the following two values of the external
generation rate: (1) Gext = 1012 cm−3 s−1 and (2)
Gext = 1018 cm−3 s−1.

5.6 A photoresistor is made of a P-type semiconductor
doped at the level of NA = 1015 cm−3. Determine
the change in resistivity caused by an exposure to
light that uniformly generates carriers at the rate of
Gext = 5 × 1019 cm−3 s−1. The electron and hole
mobilities are μn = 250 cm2/V · s and μp =
50 cm2/V · s, and the minority-carrier lifetime is
τn = 20 μs.

5.7 (a) Design a photoresistor, based on a P-type
semiconductor doped with NA = 1015 cm−3,
so that the resistance at the external generation
rate of 1022 cm−3 s−1 is 1 k�. The follow-
ing technological parameters are known: the
thickness of the semiconductor film is 5 μm,
the minimum width of the semiconductor strip
is 500 μm, the electron mobility is μn =
250 cm2/V · s, the hole mobility is μp =
50 cm2/V · s, and the minority-carrier lifetime
is τn = 20 μs.

(b) What is the resistance in the dark?

5.8 The equilibrium concentration of minority holes in a
semiconductor is p0 and their lifetime is τp . At time
t = 0, light begins to uniformly generate carriers at
the rate of Gext . Derive the function that describes
the increase of minority-carrier concentration in
time, p(t). A

5.9 The equilibrium concentration of minority electrons
in a semiconductor is n0 = 5 × 104 cm−3 and

their lifetime is τn = 1 μs. At time t = 0, light
begins to uniformly generate carriers at the rate of
Gext = 1020 cm−3 s−1.

(a) Determine the steady-state electron concentra-
tion under the light illumination.

(b) How long does it take for the electron con-
centration to increase from 10% to 90% of the
steady-state level?

5.10 Holes are uniformly injected into the neutral N-
type region of a semiconductor device at the rate
of 5 × 1015 holes per second. The area of uniform
hole injection is A = 0.01 mm2. Initially, the
holes accumulate close to the injection plane (x =
0), increasing the concentration difference from the
equilibrium level in the N-type region away from
the injection plane. When the gradient of the hole
concentration is large enough to allow the diffusion
current to take holes away at the same rate as the
injection rate, the steady state is established.

(a) What is the steady-state diffusion current per
unit area? A

(b) If the diffusion constant of the minority holes
is Dp = 10 cm2/s and their lifetime is 1 μs,
determine the steady-state value of the excess
hole concentration at the injection plane.

5.11 A sample with different concentrations of G–R
centers but all other parameters identical to the
sample of Problem 5.10 is exposed to the same
injection conditions. If the steady-state value of the
excess hole concentration at the injection plane is 10
times smaller than the sample of Problem 5.10, what
is the minority-carrier lifetime?

5.12 The concentration of R–G centers in an N-type
silicon sample is Nt = 1012 cm−3. Based on
the estimates of the capture cross sections from
Example 5.4, determine the minority-carrier lifetime
if the R–G centers are

(a) donor type
(b) acceptor type A

Assume that the thermal velocity of holes is vth =
107 cm/s.

5.13 Determine the minority-carrier lifetimes in a P-
type silicon for the same other conditions and
assumptions as in Problem 5.12, including the value
of thermal velocity (vth = 107 cm/s).
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5.14 Assuming τn = τp = 1 μs and the dominance of
SRH generation, determine the maximum effective
generation rate in a fully depleted semiconductor if
the semiconductor is
(a) Si
(b) GaAs A

5.15 The temperature dependence of the effective SRH
generation rate in a fully depleted silicon is to be
expressed by the Arrhenius equation,

|U | = Ae−E A/kT

Determine the activation energy E A, neglecting
any temperature dependence of the generation time
constant.

5.16 A silicon sample has Nt = 1011 cm−3 donor-type
R–G centers with the energy level that corresponds
to the maximum generation rate. The following
values can be assumed for the capture cross sections
of the donor-type R–G centers: σn = 3×10−13 cm2

for the electron capture and σp = 10−15 cm2 for the
hole capture.
(a) Determine the generation time constant.
(b) Determine the effective generation rate at room

temperature if the sample is fully depleted.
(c) Determine the effective generation rate in a

fully depleted sample if the temperature is

increased to 100◦C (ni ≈ 1012 cm−3 at
100◦C; the generation time constant remains the
same). A

Assume that the thermal velocity is vth = 107 cm/s
in all cases.

5.17 An N-type silicon sample with passivated surface
has interface traps with uniform distribution across
the entire energy gap, Dit = 5 × 1010 cm−2 eV−1.
The doping level is ND = 1016 cm−3. Determine
the number of effective interface traps per unit area
(Nit ) for the following two cases:

(a) the recombination rate dominates to eliminate
excess carriers

(b) the generation rate dominates because the
surface is fully depleted

Assume that the capture cross sections for electrons
and holes are equal.

5.18 For σn = σp = 10−14 cm2, vth = 107 cm/s, and
the densities of effective interface traps determined
in Problem 5.17, calculate

(a) the effective surface recombination rate if
there are excess holes at the surface, δps =
1012 cm−3

(b) the effective surface generation rate if the
surface is fully depleted of carriers

REVIEW QUESTIONS

R-5.1 List the three most frequent pairs of generation and recombination mechanisms.
R-5.2 Can the effective generation–recombination rate (U ) be equal to zero? Are there any

generation or recombination events when U = 0?
R-5.3 Is the thermal equilibrium condition when the effective generation–recombination rate is

equal to the external generation rate, U = Gext? If not, what is the condition U = Gext
called?

R-5.4 For Gext = 0, does U �= 0 show how many electrons/holes are recombined per unit volume
and unit time?

R-5.5 What is the physical meaning of minority-carrier lifetime? Does it represent the average
lifetime of a minority carrier? If so, is it similar to the average lifetime of a majority carrier?

R-5.6 Does diffusion length depend on carrier recombination? If so, how?
R-5.7 In thermal equilibrium, can the rate of direct generation be balanced by the rate of SRH

recombination?
R-5.8 Can the rates of SRH generation and recombination balance each other?
R-5.9 In thermal equilibrium, is it necessary that the emission and capture rates be balanced

separately for the electrons and the holes?
R-5.10 At low-level injection, how is the effective recombination rate related to the minority-carrier

lifetime?
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R-5.11 In depletion, how is the effective generation rate related to the generation time constant? Is it
related to the minority-carrier lifetime?

R-5.12 What is the physical meaning of the surface recombination velocity? What are the similarities
and what are the differences between the drift current and the surface current due to the
surface recombination?

R-5.13 What is the effective energy range in the energy gap in terms of recombination-active
interface traps?

R-5.14 In depletion, how is the effective surface generation rate related to the surface generation
constant?

R-5.15 What is the effective energy range in the energy gap in terms of generation-active interface
traps?



6 P–N Junction

The P–N junction—a contact between P-type and N-type semiconductor regions—is a
fundamental structure. A P–N junction on its own performs the function of a rectifying
diode, as illustrated in Fig. 6.1. It can also be operated in its breakdown mode as a
reference diode. The capacitance of a P–N junction is voltage-dependent, so it can be
used as a variable capacitor. Transistor structures, including MOSFET and BJT, involve
combinations of P–N junctions.

This chapter introduces the P–N junction. The principles are described in the first
section using energy-band and concentration diagrams. The second section deals with the
DC model (current–voltage equations) in a way that links the theory to the practice of
related SPICE parameters. The capacitance of a reverse-biased P–N junction is analyzed
in the third section to introduce the concept of a voltage-dependent capacitance and the
equations for a very important concept: the depletion-layer width. The fourth section
describes stored-charge effects and their influence on the switching characteristics.

6.1 P–N JUNCTION PRINCIPLES

6.1.1 P–N Junction in Thermal Equilibrium
As the Fermi level depends on doping (Section 2.4.3), the average electron energy is
different in differently doped semiconductors. When an electrical contact is made between
two materials having different Fermi levels, the higher-energy electrons move into the
region of the lower-energy electrons to establish thermal equilibrium—the state where the
average electron energy is the same across the entire electrical system. With this, we can
establish the following important fact: for a system in thermal equilibrium, the Fermi level
is constant throughout the system.

194
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Figure 6.1 (a) Basic rectifying circuit. (b) I–V characteristics of the ideal rectifying device (dashed line) and the P–N
junction diode (solid line).

Energy-Band Diagram of a P–N Junction

The energy-band diagrams of an N-type and P-type semiconductor, shown in Fig. 2.19,
are drawn so that the EC and EV levels are aligned.1 The energy-band diagrams in
Fig. 2.19 show that the difference between the Fermi levels in an N-type and a P-type
semiconductor is

qVbi = |qφFn| + |qφFp| = kT ln
ND

ni
+ kT ln

NA

ni
= kT ln

ND NA

n2
i

(6.1)

If the energy-band diagrams are redrawn so that the Fermi levels are aligned, as in Fig. 6.2,
we see that there is a difference between EC levels (as well as EV levels) in the N-type
and the P-type regions. Clearly, this difference is also equal to qVbi given by Eq. (6.1).
The energy offset between the EC (EV ) levels in the N-type and the P-type regions is
such that aligned energy levels in the bands have equal occupancy probability throughout
the system. This is because EF is constant so that the distance of aligned energy levels
from EF is constant, and the value of the Fermi–Dirac distribution ( f ) at that energy level
is equal throughout the system. To visualize this effect, the diagrams given in Fig. 6.2
indicate electrons in the conduction band (filled circles) and holes in the valence band
(open circles).

When the energy-band diagrams of an N-type and a P-type region are drawn with
aligned Fermi levels, as in Fig. 6.2, they correspond to a P–N junction in equilibrium. To
complete the energy-band diagram in the missing part at and around the junction itself, the
EC and EV lines from the two regions are joined as in Fig. 6.3a to present both the bottom
of the conduction band and the top of the valence band by continuous EC and EV lines,
respectively. Clearly, there has to be a nonzero slope of the EC and EV lines at and around
the P–N junction. This slope expresses the existence of an electric field.2

1The position of EC with respect to the energy level of a free electron in space (vacuum level) is a
material constant, qχ , where χ is the electron affinity. Given that qχ does not change with doping,
the vacuum levels in the energy-band diagrams in Fig. 2.19 are also aligned (although not shown).
2The electric field is equal to the negative gradient of the electric potential (−dϕ/dx), which means
it is proportional to the positive gradient of the potential energy [(1/q) d E pot/dx].
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Depletion Layer

The cross-sectional diagram shown in Fig. 6.3b helps explain the source of the electric field
at a P–N junction in equilibrium. The source of this electric field is uncompensated donor
and acceptor ions, illustrated by the square symbols in Fig. 6.3b to distinguish them from
the circles used as symbols for mobile charge. These ions are uncompensated because some
electrons from the N-type region and some holes from the P-type region are removed in the
process of setting the thermal equilibrium condition at the P–N junction. We can think of
electrons moving from the N-type region to the P-type region (both across the junction and
through the short-circuiting wire) to recombine with holes in the P-type region. Also, holes
can move to the N-type region to get recombined with electrons. This process of electron–
hole recombination leads to the creation of a depletion layer at the P–N junction. Although
commonly used, the term depletion can be confusing, and it can even be wrongly extended
beyond its intended meaning. The use of depletion for P–N junctions in equilibrium does
not mean the same thing as depletion as used to describe nonequilibrium deficiency of
electrons and holes in Chapter 5. The term depletion layer is used for a region that has fewer
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majority carriers than there are in the electroneutral regions, irrespective of whether the
P–N junction is in equilibrium or not.3 As a result, a depletion layer has an uncompensated
charge of fixed acceptor and/or donor ions. This uncompensated charge creates an electric
field that is referred to as the built-in field. As distinct from the depletion layer, there is no
built-in field in the electroneutral regions, which is indicated by the flat EC and EV lines.

The built-in electric field results in a built-in voltage across the depletion layer. This
voltage corresponds to the difference between EC (or EV ) at the edges of the depletion
layer, and it appears as the energy barrier qVbi in Fig. 6.3a. Given that qVbi is in units of
energy, the built-in voltage, Vbi is in units of voltage. From Eq. 6.1, the built-in voltage at
a P–N junction is given by

Vbi = Vt ln
ND NA

n2
i

(6.2)

where Vt is the thermal voltage (Vt = kT/q).
It is important to clarify that the appearance of the built-in voltage at the P–N junction

by no means violates Kirchhoff’s second law, which states that the sum of voltage drops
along any closed loop is equal to zero. Imagine that the semiconductor is a circle, half of
which is doped as P type and half as N type. There will be two P–N junctions with two
equivalent built-in voltages that cancel each other when added up to make the sum of the
voltages along the closed loop. If the P–N junction is contacted by metal tracks, built-in
voltages will appear at the contacts,4 so that the sum of built-in voltages at the contacts and
at the P–N junction is equal to zero.

Balance of Currents

The net current through the circuit in Fig. 6.3b is equal to zero because there is no external
voltage source (a battery) to cause a current by attracting electrons toward its positive pole
and holes toward its negative pole. Although the net current is equal to zero, there are
individual electrons and holes that do pass through the P–N junction. Figure 6.3a shows
that most of the electrons in the N-type region are unable to move onto the P-type side
because the energy they possess is smaller than the energy barrier at the P–N junction.
These electrons hit the “wall” (bottom of the conduction band) when they move toward the
P-type side. Only the electrons possessing energy larger than the energy barrier can make
the transition to the P-type side, as shown by the arrow in the conduction band pointing
toward the P-type region (Fig. 6.3a). However, the concentration of electrons in the N-
type region that possess higher energy than the barrier is the same as the concentration of
electrons in the P-type region (the minority carriers). This is so because all these electrons
appear at the same energy levels with respect to the constant Fermi level and, according
to the Fermi–Dirac distribution, the population of the leveled density of states is the same.
Accordingly, an equal number of electrons move from the P-type to the N-type side, as

3The term depletion in this meaning is retained even for the case of excess carriers injected in the
region around the P–N junction.
4In general, built-in voltage appears at any junction of materials that have different positions of the
Fermi level with respect to the vacuum level.
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indicated by the conduction-band arrow pointing from the N-type toward the P-type region.
This is the current of minority electrons that balances the current of the fraction of majority
electrons possessing energies larger than the energy barrier.

The situation is analogous with the holes. The difference is that holes in the energy-
band diagram are like bubbles in water, which tend to bubble up. The top of the valence
band at the P–N junction appears as a barrier for the holes from the P-type side (the
majority carriers). The arrows in the valence band (Fig. 6.3a) indicate the balance between
the current of minority holes and the current of the fraction of majority holes that can get
through the junction without hitting the energy barrier.

In addition to the currents of electrons and holes moving from the N-type neutral
region to the P-type neutral region and vice versa, there are balanced currents due to
electron–hole recombination and generation inside the depletion layer (the vertical arrows
in Fig. 6.3a). The recombination current is due to the flow of electrons from the N-type
and holes from the P-type regions that hit each other and get recombined in the depletion
layer. The balancing generation current is due to generated electrons and holes that are
pushed by the electric field in the depletion layer to return to the N-type and P-type regions,
respectively.

Concentration Diagrams

The concentrations of carriers in the electroneutral regions are the same as in the case of
separate N-type and P-type semiconductors. As already explained, the concentrations of
majority carriers in the depletion layer are smaller. This can be deduced from the energy-
band diagram (Fig. 6.3a), recalling the dependencies of electron and hole concentrations
on the position of the Fermi level with respect to the bands. According to Eq. (2.76),
the concentration of electrons drops as EC − EF is increased in the depletion layer to
reach its minority-carrier level in the neutral P-type region. Likewise, EF − EV increases
in the direction from the P-type toward the N-type region, as the concentration of holes
drops from the majority-carrier level in the neutral P-type region to the minority-carrier
level in the N-type region [Eq. (2.79)]. The “proximity” of EF to EC (EV ) can be used
to visualize the concentrations of electrons (holes), but keep in mind that we are dealing
with exponential dependencies [Eqs. (2.76) and (2.79)]. Figure 6.4a shows the linear plots
of electron and hole concentrations in a P–N junction doped with ND = 1016 cm−3 (the
N-type region) and NA = 3 × 1015 cm−3 (the P-type region). It can be seen that the
concentrations of electrons and holes drop rapidly at the edges of the depletion layer.
Linear concentration diagrams are not usually used, however, because beyond illustrating
the “sharpness” of the depletion-layer edges, they provide no useful information. Instead,
the concentration is commonly plotted on a logarithmic axis, as in Fig. 6.4b. This diagram
shows complete information on the electron–hole concentrations (throughout the P–N
junction system), but again, it should be kept in mind that these are logarithmic plots and
that the concentrations drop by orders of magnitude at very short distances.

6.1.2 Reverse-Biased P–N Junction
When a reverse-bias voltage is applied to a P–N junction (Fig. 6.5), the energy-band
diagram is changed to express the applied voltage. Because of the applied voltage, the P–N
junction is no longer in thermal equilibrium, and the Fermi level is not constant throughout
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the system. The voltage applied to the P–N junction appears mainly across the depletion
layer, expanding the depletion-layer width and increasing the electric field in the depletion
layer (there cannot be a significant increase in the field in the neutral regions because it
would move the mobile electrons and holes, producing an unsustainable current flow). A
voltage drop −VD is expressed in the band diagram as energy difference of qVD. Figure 6.5
shows that the initially leveled Fermi levels in the N-type and P-type side are now separated
by qVD to express the voltage across the depletion layer. This increases the barrier height
between the N-type and P-type region by qVD.

The energy-band diagram of Fig. 6.5a is therefore constructed in the following way:

1. Fermi-level lines (the dashed–dotted line in the figure) separated by qVD are drawn
first. The lower Fermi-level line is for the N-type region, indicating that the N-
type region is at higher electric potential (E pot = −qϕ). The Fermi-level lines are
drawn inside the electroneutral regions but not in the depletion layer. The depletion
layer is not in equilibrium and the Fermi level is not defined, although the electron
and hole concentrations in the depletion layer can be related to quasi-Fermi levels.

2. The conduction and valence bands are drawn for the N-type and P-type neutral
regions (outside the depletion layer). The bands are placed appropriately with
respect to the Fermi level, indicating the band diagrams of N-type and P-type
semiconductors in equilibrium, as in Fig. 6.2.

3. The conduction- and valence-band levels are joined by curved lines to complete
the diagram.

Since the P–N junction is not in thermal equilibrium, there must be a current flowing
through the junction that works to bring the system back in equilibrium. A comparison
between the energy-band diagrams in Figs. 6.3a and 6.5a shows that the increased energy
barrier prevents the flow of majority carriers through the junction, which means that the
current of minority carriers is no longer balanced. This current is usually labeled by IS

and consists of electron (ISn) and hole (ISp) components: IS = ISn + ISp. Furthermore,
a comparison of the electron and hole concentrations in the widened depletion layer in
the reverse-biased P–N junction (Fig. 6.5a) and the depletion layer in the equilibrium P–N
junction (Fig. 6.3a) illustrates that the probability of electrons and holes meeting each other
in the depletion layer is significantly reduced by the reverse bias. As a consequence, the
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generation current IG is no longer balanced by the recombination current and it contributes
to the total current through the P–N junction.

The current of minority carriers (IS) does not increase with an increase in the reverse-
bias voltage. An increase in the reverse-bias voltage would increase the split between the
Fermi levels and consequently the slope of the energy bands (increased electric field in
the depletion layer). It may become easier for the electrons to roll down and the holes
to bubble up through the depletion layer; however, it is not the slope of the bands in the
depletion layer that limits the minority-carrier current—it is always favorable enough for
any electron appearing at the top to roll down, and for any hole appearing at the bottom to
bubble up to the opposite side. The current of the minority carriers is limited by the number
of minority electrons and holes appearing at the edges of the depletion layer. A waterfall
provides a good analogy for this effect: the water current is not limited by the height or
steepness of the fall but by the amount of water that reaches the fall.

At this point, it is important to recall that average number of minority carriers in
a neutral region of a semiconductor device is almost always smaller than one carrier
(Example 1.8). The consequences of this fact will be considered in Section 10.1. At this
stage, it is important to note that current of minority carriers is negligibly small. In practical
diodes, it is the generation current IG that determines the total current through a reverse-
biased P–N junction. If we label the average time a single R–G center takes to generate
an electron–hole pair by τt , the generation current due to this center is q/τt . If there are
Mt R–G centers of the same type in the depletion layer, the total generation current is
IG = Mt q/τt . The total number of the R–G centers can be expressed by their concentration
Nt multiplied by the volume of the depletion layer, AJ wd , where AJ is the junction area
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and wd is the depletion-layer width. Therefore, the generation current can be expressed as

IG = q
Nt

τt︸︷︷︸
|U |

wd AJ = q
ni

τg︸︷︷︸
|U |

wd AJ (6.3)

where |U | is the effective generation rate and τg = τt ni/Nt is the generation constant that
can be related to the minority-carrier lifetimes τn and τp (Section 5.3.3).

Figure 6.5a illustrates that a generated electron in the depletion layer rolls down into
the N-type region, and it can be imagined that the electron is further attracted to the positive
pole of the battery VR , where it is neutralized by a positive charge unit from the battery.
This is half the circuit for the generation current. The other half is completed by the
generated hole that is attracted to the negative pole of the battery. It can be said that the
aim of the generation current is to neutralize the battery charge as the cause for this net
current and to bring the P–N junction back to equilibrium, where qVD = 0 and the Fermi
levels are leveled off again. The situation in which the battery voltage is kept, or assumed,
constant is referred to as steady state.

The generation current is very small (usually more than 10 orders of magnitude smaller
than the current of the majority carriers); if it is neglected as a small leakage current, we
can say that a reverse-biased P–N junction (diode) acts as an open circuit.

6.1.3 Forward-Biased P–N Junction
Figure 6.6a illustrates that the energy barrier height is reduced for the case of forward-
biased P–N junction. The forward-bias voltage VD appearing across the depletion layer
splits the Fermi levels in the opposite direction, to reduce the barrier height from qVbi

to q(Vbi − VD). One effect is a significant increase in the concentration of electrons
in the N-type and holes in the P-type regions with energies higher than the reduced
barrier height. This results in a significant increase of the number of majority carriers
passing through the depletion layer and appearing as minority carriers on the other side.
The concentration of the minority carriers (electrons in the P-type and holes in the N-
type region) is, consequently, increased along the depletion-layer boundary, as shown in
Fig. 6.6c.

Holes from the P-type region are pushed toward the N-type region by the positive
pole of the battery; likewise, electrons are pushed by the negative pole of the battery. This
results in increased chances of electrons and holes meeting each other and recombining in
the depletion layer or either the P-type or the N-type region, as illustrated in Fig. 6.6 by the
vertical arrows. The process of recombination reduces the minority-carrier concentration
in the neutral regions from the highest value at the boundary of the depletion layer to the
equilibrium level, as shown in the concentration diagram of Fig. 6.6c. The concentration
of the majority carriers is not significantly altered, since any recombined carrier is quickly
replaced from the power supply.

Similar to the case of reverse bias and the generation current, a hole travels the part of
the circuit between the positive pole of the battery and the recombination point, whereas an
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Figure 6.6 (a) Energy-band diagram, (b) cross section, and (c) concentration diagram of a forward-biased P–N junction.

electron travels the other part (from the negative pole of the battery to the recombination
point). Again, it can be said that the current flowing through the junction is aimed at
removing the battery charge that is causing the current, except in this case the current
flows in the opposite direction from the reverse-bias current.

The number of majority carriers able to go over the barrier in the depletion layer
increases as the barrier height q(Vbi − VD) is lowered by an increase in the forward-
bias voltage VD . This means that the current of the majority carriers flowing through
the depletion layer is increased with an increase in the forward-bias voltage VD . A P–
N junction diode is said to be forward-biased when the voltage VD is large enough to
produce a significant flow of the majority carriers through the P–N junction—that is, when
it produces a significant effective diode current (in this case we can neglect the minority-
carrier current, which remains constant and small).

To gain insight into the type of current–voltage dependence of the forward-biased
diode, it is necessary to refer to the type of electron/hole energy distribution in the
conduction/valence band. The energy distribution of the electrons/holes is according to the
Fermi–Dirac distribution, the tails of which are very close to an exponential distribution,
as explained in Section 2.4 (Fig. 2.18). Therefore, as the energy barrier height in the
depletion layer q(Vbi − VD) (Fig. 6.6a) is lowered by the increasing VD voltage, the
number of majority electrons able to go over the barrier increases exponentially. The same
occurs with the majority holes. As a result, the current of a forward-biased diode increases
exponentially with the voltage. When the applied voltage is normalized by the thermal
voltage Vt = kT/q , the current–voltage dependence of a forward-biased diode can be
expressed as

ID ∝ eVD/Vt (6.4)
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6.1.4 Breakdown Phenomena
It has been explained that almost the whole reverse-bias voltage applied to a diode drops
across the P–N junction depletion layer, giving rise to the electric field E in the depletion
layer. The reverse-bias current is small and independent of the reverse-bias voltage, but
only to a certain value of the reverse bias, which is referred to as breakdown voltage. When
the breakdown voltage is reached, the reverse-bias current increases sharply, and the diode
is said to be in breakdown mode. This electrical breakdown does not cause permanent
damage by itself, provided the breakdown current is limited by a resistance connected
in series with the diode. In fact, the breakdown mode can be utilized, in particular as a
voltage reference. The simplest reference-voltage circuit is shown in Fig. 6.7a. As Fig. 6.7b
illustrates, the steep (nearly vertical) portion of the ID–VD characteristic in the breakdown
is used to provide the reference voltage. Diodes that are operated in their breakdown mode
are called Zener diodes, and they are presented with a modified symbol, also illustrated in
Fig. 6.7a.

There are two entirely different physical mechanisms that can lead to electrical
breakdown in reverse bias, and they are described in the following text.

Avalanche Breakdown

The direction of the electric field in the depletion layer of a reverse-biased P–N junction
is such that it takes the minority carriers through the P–N junction, causing the reverse-
bias current of the diode (IS). Let us consider an electron attracted by the electric field
E from the P-type region (Fig. 6.8a). This electron is accelerated by the electric field in
the depletion layer, which means that the electron gains kinetic energy Ekin = −q Ex
as the distance traveled by the electron (x) increases. As the electron moves through the
depletion layer, there is a high probability that it will be scattered by a phonon (vibrating
crystal atom) or an impurity atom. In the process of this collision, the electron may deliver
its kinetic energy to the crystal. If the reverse-bias voltage VR (and consequently the
electric field E) is increased so much that the electron gains enough kinetic energy to
break the covalent bonds when the electron collides, an electron–hole pair is generated
during this collision. This process is illustrated in Fig. 6.8a. Now we have two electrons
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that can generate two additional electron–hole pairs. The four new electrons can generate
an additional four to become eight, then sixteen, and so on, in this avalanche process.

The electron–hole generation process is repeated many times in the depletion layer,
because the average distance between two collisions (or also called scattering length) lsc

is much smaller than the depletion-layer width. Therefore, once the electric field is strong
enough that the kinetic energy gained between two collisions (Ekin = −q Elsc) is larger
than the threshold needed for electron–hole generation, the avalanche process is triggered
and an enormous number of free carriers is generated in the depletion layer. This produces
the sudden diode current increase in the breakdown region. Appropriately, this type of
breakdown is called avalanche breakdown.

The energy-band diagram, shown in Fig. 6.8b, provides a deeper insight into the
avalanche mechanism. We have frequently said that electrons roll down along the bottom
of the conduction band, while the holes bubble up along the top of the valence band.
This rolling and bubbling, however, is not quite as smooth as this simplified model may
suggest. At this point we should remember the details of the electron transport along tilted
energy bands, explained in Section 3.1 (Fig. 3.2). This process is again illustrated in the
band diagram of Fig. 6.8b. The horizontal motion of the electrons between two collisions
expresses the fact that the total electron energy is preserved. However, the potential energy
of the electrons is transformed into kinetic energy when electrons move through the
depletion layer as the energy difference from the bottom of the conduction band increases.
When the electrons collide and deliver the kinetic energy Ekin to the crystal, they fall down
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on the energy-band diagram. Therefore, the rolling down of electrons and bubbling up of
the holes occurs in staircase fashion.

As mentioned, the kinetic energy Ekin gained between two collisions can be delivered
to the crystal as thermal energy. In fact, this is the only possibility when Ekin < Eg ,
where Eg is the energy gap. However, as the slope of the bands is increased by increase
in the reverse-bias voltage, there will be a voltage VR at which Ekin becomes large enough
to move an electron from the valence band into the conduction band. This is the process
of electron–hole pair generation. As mentioned, this process is repeated many times in the
depletion layer, where the newly generated electrons also gain enough energy to generate
additional electron–hole pairs. This is the avalanche mechanism. Note that, theoretically,
the holes can also generate electron–hole pairs; however, this process is rarely observed
because the electron-induced avalanche requires smaller energy and happens at lower
voltages.

Understanding the mechanism of the avalanche process gives us a basis for under-
standing the temperature behavior of the avalanche breakdown. If the temperature is
increased above room temperature, the phonon scattering (Section 3.3.3) is enhanced and
the average distance between two collisions (the scattering length lsc) is reduced. This
means that a larger electric field E is needed to achieve the threshold kinetic energy
(Ekin = −q Elsc). An increase in the temperature increases the breakdown voltage. The
avalanche breakdown is said to have a positive temperature coefficient. This temperature
dependence of avalanche breakdown is generally undesirable because we do not want the
reference voltage to be temperature-dependent.

We can also understand now that the avalanche breakdown voltage is concentration-
dependent. A diode with higher doping levels in the P-type and N-type regions has a
larger built-in electric field (electric field due to the ionized doping atoms in the depletion
layer). Therefore, less external voltage VR is needed to achieve the critical breakdown field.
Adjusting the doping levels enables us to make diodes with avalanche breakdown voltage
as low as ≈6 V and as high as thousands of volts.

Tunneling Breakdown

The tunneling effect is related to the wave properties of electrons, as explained in
Section 2.1.3. Figure 6.9a illustrates the bound electrons (electrons in the valence band)
in the P-type region of the diode. The energy gap at the P–N junction separates the valence
electrons of the P-type region from the N-type side of the diode. This, however, does not
cause the electron wave function to abruptly drop to zero at the energy barrier (the top of the
valence band in the depletion layer). This would mean that the electrons could be confined
in a strictly defined space, denying them the wave properties they in fact exhibit. The wave
function does have a tail expanding beyond the position of the top of the valence band.

Figure 6.9b illustrates the case in which the width of the energy barrier d is reduced
by the increased reverse-bias voltage. This reduced energy barrier width is smaller than
the tail of the electron wave function, which means that there is some probability that a
valence electron from the P-type region is found on the N-type side of the P–N junction.
This is the tunneling phenomenon. The probability of finding an electron (or hole) on the
other side of energy barrier is called the tunneling probability.
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characteristic.

The tunneling effect cannot be neglected even though the tunneling probability is
typically very small. To explain this, assume a tunneling probability of 10−7. Because there
are more than 1022 electrons per cm3 in the valence band, the concentration of electrons
tunneling through the energy barrier of a P–N junction is higher than 1022 × 10−7 =
1015 cm−3. This concentration of electrons is high enough to make a significant current
when the tunneling electrons are attracted to the positive battery terminal connected to the
N-type side. This current is called tunneling current.

If the reverse-bias voltage is further increased, the associated energy-band bending
will further reduce the energy barrier width d , increasing the tunneling probability. Because
the tunneling probability depends exponentially on the energy barrier width, the tunneling
current depends exponentially on the reverse-bias voltage. This is illustrated in Fig. 6.9c.

Tunneling breakdown cannot occur unless the depletion layer, and consequently the
energy barrier, is very narrow. A narrow depletion layer appears when the doping levels of
both the N-type and the P-type region of the diode are very high. In addition, an increase
in the reverse-bias voltage VR does not significantly expand the depletion-layer width, wd .
This makes the energy barrier width (d) reduction due to the band bending quite significant.

We mentioned before that the doping concentration influences the avalanche break-
down voltage as well. In fact, it is the level of doping concentration that determines
whether the avalanche-breakdown voltage or the tunneling-breakdown voltage will be
smaller, thereby determining which type of breakdown will actually occur. If the doping
concentration is such that the breakdown occurs at more than about 6 V, then the
breakdown is generally avalanche-type breakdown. At higher doping levels, the tunneling
occurs at lower voltages than those needed to trigger the avalanche mechanism; therefore,
the tunneling breakdown is actually observed.

The ID–VD characteristic associated with the tunneling breakdown is not as abrupt as
the ID–VD characteristic of the avalanche breakdown. This can be seen by comparing the
ID–VD characteristics of Fig. 6.13 (Section 6.2.2) and Fig. 6.9c. Consequently, the stability
of the reference voltage provided by the diodes above 6-V diodes is a lot better than what
can be achieved by the sub-5-V diodes.
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Another difference is the temperature coefficient. Whereas for avalanche breakdown
the temperature coefficient is positive, it is negative in the case of tunneling breakdown.
An increase in the temperature reduces the tunneling breakdown voltage. This enables
us to reduce the temperature dependence of the reference voltage by designing diodes that
operate in the mixed-breakdown mode. The breakdown voltage of these diodes is generally
in the 5- to 6-V range.

6.2 DC MODEL

The term device model is used for a set of mathematical equations that can be used to
calculate the electrical characteristics of the device. A DC model is a set of mathematical
equations that can be used to calculate the time-independent current–voltage (I–V )
characteristics. These equations are mainly needed for the design and analysis of circuits
involving the considered device(s). A widely used computer program for this purpose is
SPICE. Even with the help of SPICE, a good understanding of device models is necessary,
in particular in terms of the adjustable parameters that are included in these models.

In this section, the basic I–V equation is derived from the first principles of diode
operation and is upgraded to its typical SPICE form. In this way, a link is made between
the physics of diode operation and the pragmatic SPICE parameters. The influence of
temperature on the I–V characteristic is also considered.

6.2.1 Basic Current–Voltage (I–V) Equation
To derive the basic I–V equation, let us assume the bias arrangement as shown in
Fig. 6.10a and consider the corresponding concentration diagram shown in Fig. 6.10b.
The characteristic points labeled in the concentration diagram of Fig. 6.10b are wp , the
depletion-layer edge on the P-type side; wn , the depletion-layer edge on the N-type side
(appearing with a minus sign because the origin of the x-axis is placed at the P–N junction);
n pe and pne, the equilibrium concentrations of the minority carriers; and n p(wp) and
pn(−wn), the minority-carrier concentrations at the edges of the depletion layer.
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Figure 6.10 (a) Simple biasing circuit showing the definition of the diode current direction ID and the polarity of the
diode voltage VD . (b) Carrier-concentration diagram illustrating the characteristic points and symbols used. (c) Carrier-
concentration diagram illustrating the diffusion current of the minority carriers.
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Following again the path of electrons, starting at the negative battery terminal, we
come to the neutral N-type region of the diode. Electrons can move through the neutral N-
type region because the electric field from the negative battery terminal pushes them toward
the depletion layer (this is the drift current). It is very important to clarify the question of
how strong this field is. The concentration of electrons in the N-type region (the majority
carriers) is huge, nn = 1017 cm−3 in the example of Fig. 6.10b. Because the drift electron
current density is given by jn = σn E = qμnnn E (the differential form of Ohm’s law), only
a small electric field E is needed to produce a moderate nn E value, thus a moderate current
density. Assuming μn = 625 cm2/V · s, we find that the electric field needed to produce
1 μA/μm2 of drift-current density is only E = 1 V/mm. If the width of the N-type region
is 10 μm, the voltage across the neutral region is only 10 mV. It is rightly assumed that
almost the whole diode voltage VD appears across the depletion layer.

The electrons that reach the depletion layer with large enough energies can go through
the depletion layer to appear at the P-type side (the point x = wp on the concentration
diagram). In the P-type region, the electrons are the minority carriers. The equilibrium
concentration of the minority electrons in the example shown in Fig. 6.10b is about
105 cm−3. If the same electric field and electron mobility are assumed in the P-type region
(E = 1 V/mm and μn = 625 cm2/V · s), the drift current of the minority electrons
in the P-type region is qμnn pe E = 10−12 μA/μm2. This means that the drift current
taking minority electrons away from the depletion-layer edge (the point x = wp on the
concentration diagram) is negligible compared to the drift current that brings electrons
to that point. In the absence of any other current, minority electrons accumulate at the
depletion-layer edge. As Fig. 6.10b illustrates, this causes an increased concentration of
minority electrons [n p(wp) > n pe]. The increasing concentration gradient increases the
diffusion current of the minority electrons, and at some point the diffusion current is strong
enough to balance the incoming flow of electrons (the drift current of electrons from the
N-type region). Analogous considerations apply to the holes. With the balance of incoming
and outgoing currents, the steady state is achieved with steady but nonuniform profiles of
the minority-carrier concentrations.

Therefore, the currents of minority carriers are basically diffusion currents. The
minority carriers move due to the diffusion until recombined. Once recombination has
occurred, the electric circuit is closed—the other part is completed by the recombining
majority carriers as explained previously.

To derive the I–V equation of the diode, it is sufficient to find the diffusion currents
of the minority carriers at the edges of the depletion layer.

To be able to use the diffusion-current equation [Eq. (4.5)], we need the profiles of
minority carriers, n p(x) and pn(x). Based on the considerations presented in Section 5.2.3,
we know that these profiles follow exponential dependencies, with the concentrations
dropping e times at distances equal to the diffusion lengths, Ln and L p . Noting that δn(0)

in Eq. (5.18) is equal to n p(wp)−n pe in Fig. 6.10, and using this concentration profile and
the analogous profile for the minority holes in the diffusion-current equations [Eq. (4.5)],
the following result is obtained:

jn = q Dn
[
n pe − n p(wp)

]
/Ln

jp = −q Dp [pn(−wn) − pne] /L p
(6.5)
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In Eq. (6.5), the diffusion currents of minority electrons and holes are labeled by jn and
jp, respectively, in accordance with the labeling in Fig. 6.10c. The result presented by
Eq. (6.5) would be obtained if the minority-carrier concentrations n p(x) and pn(x) were
approximated by linear functions, changing from the maximum values at the edges of the
depletion layer to the equilibrium values at distances Ln and L p , respectively. The linear-
profile approximations are illustrated in Fig. 6.10c.

In Eq. (6.5), the concentrations of the minority carriers at the depletion-layer edges,
n p(wp) and pn(−wn), are the only parameters that significantly depend on the applied
voltage. Remember that n p(wp) and pn(−wn) relate to the electrons and holes in the N-
type and P-type regions, respectively, that can overcome the energy barrier in the depletion
layer. The energy-barrier height is q(Vbi − VD), as shown previously in Fig. 6.6c, which
means that it depends on the applied voltage VD . To find out the concentration of electrons
having kinetic energies larger than the barrier height q(Vbi − VD), we should count and
add all the electrons appearing at the energy levels higher than q(Vbi − VD). We know that
the energy distribution of the electrons is given by the Fermi–Dirac distribution, which can
be approximated by the exponential function when the Fermi level is inside the energy gap
(Section 2.4.2):

f = 1

1 + e(E−EF )/kT
≈ e−(E−EF )/kT (6.6)

Given that the function f represents the probability of having an electron with energy
E , the total number of electrons having energies larger than q(Vbi − VD) can be found
by adding up the probabilities of finding an electron at any single energy level above
q(Vbi − VD). Because the energy levels in the conduction band are assumed to constitute a
continuous energy band, the adding up is performed by way of the following integration:

n p(wp) ∝
∫ ∞

q(Vbi−VD)

f d E =
∫ ∞

q(Vbi−VD)

e(E−EF )/kT d E (6.7)

which gives the following result:

n p(wp) ∝ eqVD/kT = eVD/Vt ⇒ n p(wp) = CAeVD/Vt (6.8)

In Eq. (6.8), Vt = kT/q is the thermal voltage (Vt ≈ 25.85 mV at room temperature),
and CA is a constant that needs to be determined. To determine the constant CA , we can
consider the case of zero bias (VD = 0), because we know that the electron concentration
is equal to the equilibrium value n pe throughout the P-type region in that case. Therefore,
the constant CA must be chosen so to express the fact that n p(wp) = n pe for VD = 0.
It is not difficult to see that the constant CA must be equal to the equilibrium value of the
electron concentration in the P-type region n pe; thus,

n p(wp) = n peeVD/Vt (6.9)
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In a similar way it can be shown that

pn(−wn) = pneeVD/Vt (6.10)

Replacing n p(wp) and pn(−wn) in Eq. (6.5) by Eqs. (6.9) and (6.10), the current
densities jn and jp are directly related to the voltage applied, VD:

jn = −q Dn

Ln
n pe

(
eVD/Vt − 1

)
jp = −q Dp

L p
pne

(
eVD/Vt − 1

) (6.11)

The total current density is obtained as the sum of the electron and hole current densities:

j = jn + jp = −
(

q Dn

Ln
n pe + q Dp

L p
pne

) (
eVD/Vt − 1

)
(6.12)

Using the fact that the product of the minority- and the majority-carrier concentrations is
constant in the thermal equilibrium [Eq. (1.6)] and that the majority-carrier concentrations
are approximately equal to the doping levels ND and NA , the equilibrium minority-carrier
concentrations are determined from the doping levels as

n pe = n2
i

ND

pne = n2
i

NA

(6.13)

in which case the current density becomes

j = −qn2
i

(
Dn

Ln NA
+ Dp

L p ND

)(
eVD/Vt − 1

)
(6.14)

Finally to convert the current density j (A/m2) into the terminal current ID (in A), the
current density is multiplied by the area of the P–N junction AJ . In addition, the sign of
the terminal current (positive or negative) needs to be properly used. The convention is that
the current is expressed as positive if it flows in an indicated direction (as in Fig. 6.10a,
for example), and it is expressed as negative if it flows in the opposite direction. On the
other hand, the minus sign in Eq. (6.14) for the current density means that the current
density vector and the x-axis are in the opposite directions; thus the current flows from the
P-type toward the N-type side. The current arrow in Fig. 6.10a is consistent with this but is
not consistent with the x-axis direction; therefore, the minus sign in Eq. (6.14) should be
dropped. With this the diode current can be expressed as

ID = IS

(
eVD/Vt − 1

)
(6.15)
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where IS is used as a single parameter to replace the following:

IS = AJ qn2
i

(
Dn

Ln NA
+ Dp

L p ND

)
(6.16)

In practice, the widths of the effective neutral regions are much smaller than the electron
and hole diffusion lengths: Wanode � Ln and Wcathode � L p . As a consequence, the
minority-carrier concentrations will drop to the equilibrium levels at the ends of the
neutral regions. The concepts shown in the concentration diagrams of Fig. 6.10 and the
corresponding form of Eq. (6.16) are still valid, so the diffusion lengths can be replaced by
the actual widths of the anode and cathode neutral regions:

IS = AJ qn2
i

(
Dn

WanodeNA
+ Dp

WcathodeND

)
(6.17)

The thermal voltage Vt appearing in Eq. (6.15) is approximately equal to 0.026 V at
room temperature. Normally, either the voltage VD is much larger than 0.026 V (forward
bias) or its absolute value is much larger than 0.026 V (reverse bias). This means that
exp(VD/Vt ) is either much larger than 1 (forward bias) or much smaller than 1 (reverse
bias). In the case of the reverse bias [exp(VD/Vt ) � 1], the diode current due to minority
carriers is ID ≈ −IS . This expresses the fact that the current of minority carriers does
not depend on the voltage applied as discussed in the preceding section. Consequently, the
parameter IS is called saturation current. In the case of the forward bias [exp(VD/Vt ) 
1], the diode current is ID ≈ IS exp(VD/Vt ). This expresses the fact that the forward-bias
current increases exponentially with VD , again as discussed earlier [Eq. (6.4)].

EXAMPLE 6.1 Dominance of the Generation Current (IG) Over the
Saturation Current (IS) in a Reverse-Biased P–N Junction

The following are typical parameters of a P–N junction diode: NA  ND = 1015 cm−3,
wd ≈ wn = 1.2 μm, L p  Wcathode = 10 μm, Dp = 12 cm2/s, τg = 1 μs, and
AJ = 100 μm × 100 μm. Calculate and compare the contributions of the saturation and the
generation currents to the reverse-bias current in this diode.

SOLUTION

The saturation current is given by Eq. (6.17):

IS = AJ qn2
i

(
Dn

Wanode NA
+ Dp

Wcathode ND

)
≈ AJ qn2

i
Dp

WcathodeND

= 10−8 × 1.6 × 10−19 × (1016)2 12 × 10−4

10 × 10−6 × 1021 = 1.92 × 10−14 A
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The generation current is given by Eq. (6.3):

IG = q
ni

τg
wd AJ = 1.6 × 10−19 1016

10−6 1.2 × 10−6 × 10−8 = 1.92 × 10−11 A

Obviously, IG  IS , which means that the reverse-bias current of the diode is IR = −ID ≈ IG .
The ratio between IG and IS is even higher for higher doping levels (an increase in ND will
reduce IS) and for real diodes where surface generation adds to IG .

EXAMPLE 6.2 A Diode Circuit

For the circuit of Fig. 6.1a, find the output voltage vOUT for vIN = 5 V. The value of the resistor
is R = 1 k�.

SOLUTION

To begin with, it is obvious that

vOUT = vIN − VD

The voltage across the diode can be expressed in terms of the diode current,

ID = ISeVD/Vt ⇒ VD = Vt ln(ID/IS)

and the diode current ID is related to the output voltage as vOUT = ID R. Therefore,

vOUT = vIN − Vt lnvOUT /(IS R)

The voltage vOUT cannot be explicitly expressed from this equation. However, the equation can
be solved by an iterative method: assume vOUT value, calculate the value of the right-hand side
(RHS), and compare to vOUT , which is the left-hand side (LHS). Table 6.1 gives an example,
where 5 V is used as the initial guess, and the obtained RHS value is used as the guess for the
next iteration. It can be seen in Table 6.1 that after three iterations, the LHS and RHS become
equal, which is the solution: vOUT = 4.308 V.

TABLE 6.1

LHS RHS

5.000 V 4.304 V
4.304 V 4.308 V
4.308 V 4.308 V



6.2 DC Model 213

EXAMPLE 6.3 Layout Design and Current Rating of an IC Diode

The doping levels and the neutral-region widths of N- and P-type layers to be utilized for
designing an IC diode are as follows: ND = 1021 cm−3, NA = 1018 cm−3, and WN = WP =
1 μm. Determine the area of the P–N junction so that the turn-on voltage of the designed diode
will be 0.7 V if the current rating of the diode is to be specified as 1 mA at room temperature.

SOLUTION

The current rating of a diode, for a specified voltage, is determined by the value of the saturation
current:

ID = ISeVD/Vt

IS = IDe−VD/Vt = 10−3e−0.7/0.02585 = 1.74 × 10−15A

Given that ND  NA , Eq. (6.17) for the saturation current can be simplified:

IS = AJ qn2
i

Dn

WP NA

To determine the junction area AJ , which is the layout design parameter, the values of the
technological parameters (NA and WP ) and the physical constants (q , ni , and Dn) are needed.
The diffusion constant for minority electrons in a P-type silicon doped at NA = 1018 cm−3

can be determined from the Einstein relationship (Dn = μnVt ), where the mobility μn can
be estimated from the mobility plots shown in Fig. 3.8a. For the doping level of 1018 cm−3,
the electron mobility from Fig. 3.8a is estimated as μn = 350 cm2/V · s. This means that
Dn = 0.035 × 0.02585 = 9 × 10−4 m2/s = 9 cm2/s. Therefore,

AJ = IS WP NA

qn2
i Dn

= 1.74 × 10−15 × 10−6 × 1024

1.6 × 10−19 × (1.02 × 1016)2 × 9 × 10−4 = 1.15 × 10−7 m2

If the diode is to have a square shape, the side of the square will be
√

AJ = √
1.15 × 10−7 =

3.4 × 10−4 m = 340 μm.

*EXAMPLE 6.4 Derivation of the Electron-Diffusion Current
for a Diode with a Short Anode

The boundary condition for minority electrons in the infinitely long anode, δn p(∞) = 0, cannot
be used in the case of a diode with an anode that is not much longer than the diffusion length of
electrons (in other words, Wanode  Ln is not satisfied). In this case, the boundary conditions
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for the excess electron concentrations at the beginning (x = wp) and the end (x = Wanode +wp)
of the neutral region are given by δn p(wp) = n p(wp) − n pe and δn p(Wanode + wp) = 0,
respectively.

(a) Apply the method of solving the continuity equation presented in Section 5.2.3 to derive
the concentration distribution of minority carriers in the general case (neither Wanode 
Ln nor Wanode � Ln can be used as a good approximation).

(b) Using the concentration distribution from part (a), derive the equation for the diffusion-
current density of minority electrons at the edge of the depletion layer (x = wp in
Fig. 6.10b).

(c) Simplify the equation obtained in part (b) for the case of a short diode (Wanode � Ln)
using the following approximation: exp(±Wanode/Ln) ≈ 1 ± Wanode/Ln .

SOLUTION

(a) Using the notation from Fig. 6.10 (the symbol n p for the concentration of minority
electrons), Eq. (5.14) and its general solution [Eq. (5.17)] can be rewritten as follows:

d2δn p

dx2 − δn p

L2
n

= 0

δn p(x) = A1es1x + A2es2x = A1ex/Ln + A2e−x/Ln (6.18)

where δn p(x) = n p(x) − n pe. The constants A1 and A2 should be determined from the
following boundary conditions:

δn p(x) = δn p(wp) for x = wp

δn p(x) = 0 for x = wp + Wanode

Applying these boundary conditions, the following system of linear equations is
obtained:

A1ewp/Ln + A2e−wp/Ln = δn p(wp)

A1e(wp+Wanode)/Ln + A2e−(wp+Wanode)/Ln = 0

The solutions of this system are

A1 = δn p(wp)
e−(wp+Wanode)/Ln

e−Wanode/Ln − eWanode/Ln

A2 = −δn p(wp)
e(wp+Wanode)/Ln

e−Wanode/Ln − eWanode/Ln
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Putting these constants into Eq. (6.18), one obtains

δn p(x) = δn p(wp)
e[Wanode−(x−wp)]/Ln − e−[Wanode−(x−wp)]/Ln

e(Wanode/Ln) − e−(Wanode/Ln)
(6.19)

(b) The diffusion current of the electrons [Eq. (4.5)] is

jn(x) = q Dn
dn p(x)

dx
= q Dn

dδn p(x)

dx

Replacing δn p(x) by the concentration profile given by Eq. (6.19), we obtain

jn(x) = −q Dn
δn p(wp)

Ln

e[Wanode−(x−wp)]/Ln + e−[Wanode−(x−wp)]/Ln

e(Wanode/Ln) − e−(Wanode/Ln)

At x = wp , this equation becomes

jn(wp) = −q Dn
δn p(wp)

Ln

eWanode/Ln + e−Wanode/Ln

eWanode/Ln − e−Wanode/Ln
= −q Dn

δn p(wp)

Ln

cosh(Wanode/Ln)

sinh(Wanode/Ln)

Using the result for n p(wp) given by Eq. (6.9), we find that δn p(wp) is related to the
applied voltage VD:

δn p(wp) = n p(wp) − n pe = n peeVD/Vt − n pe = n pe

(
eVD/Vt − 1

)
Therefore, the current density can be expressed as

jn(wp) = −q Dn
n pe

Ln

cosh(Wanode/Ln)

sinh(Wanode/Ln)

(
eVD/Vt − 1

)

= −q
Dn

Ln

n2
i

NA

cosh(Wanode/Ln)

sinh(Wanode/Ln)

(
eVD/Vt − 1

)
(c) Given that

cosh(Wanode/Ln)

sinh(Wanode/Ln)
= eWanode/Ln +e−Wanode/Ln

eWanode/Ln −e−Wanode/Ln
≈ 1 + Wanode/Ln +1−Wanode/Ln

1 + Wanode/Ln −(1−Wanode/Ln)
= Ln

Wanode

the current density becomes

jn(wp) = −q Dn
n pe

Wanode

(
eVD/Vt − 1

)
= −q

Dn

Wanode

n2
i

NA

(
eVD/Vt − 1

)
Comparing this result to Eq. (6.11) for the case of a long anode (Ln � Wanode), we
see that Ln is basically replaced by Wanode. This confirms the approach used to write
Eq. (6.17).
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6.2.2 Important Second-Order Effects
The diode theory, presented in the previous sections, introduced the rudimentary diode
model [Eq. (6.15)]. This model takes into account only the effects that are of principal
importance for the diode operation. However, there are a number of second-order effects
that significantly influence the characteristics of real diodes. Consequently, the rudimentary
model very frequently fails to accurately fit the experimental data. This section introduces
the most important second-order effects: carrier recombination and high-level injection
effects, parasitic resistance effects, and breakdown.

Recombination Current and High-Level Injection

The following two assumptions were made while developing the rudimentary model in the
previous section:

1. No electron–hole recombination occurs in the depletion layer.
2. The electric field in the neutral regions is negligibly small, meaning that there is no

voltage drop in the neutral regions.

These assumptions did simplify the modeling; however, most frequently they are not
justified in terms of model accuracy.

As for the electron–hole recombination in the depletion layer, it is obvious that some of
the electrons and holes will inevitably meet in the depletion layer, recombining with each
other there. This recombination process enables electrons and holes with kinetic energies
smaller than the barrier height q(Vbi − VD) to contribute to the current flow, increasing the
total current. Figure 6.6 helps explain this phenomenon. Obviously, an electron and a hole
cannot come to a common point if their kinetic energies (distances from the bottom and
the top of the conduction and valence bands, respectively) do not add up to q(Vbi − VD),
which means that such an electron–hole pair does not get recombined. An important point
is, however, that they do not need independently to have energies larger than q(Vbi − VD),
as is necessary for the diffusion current described in the previous sections. In fact, an
electron and a hole with kinetic energies as low as q(Vbi − VD)/2 can meet each other
in the middle and get recombined. If the recombination current was exclusively due to
recombination of the electrons and holes satisfying this minimum energy condition, it
would be proportional to exp [−(Vbi − VD)/2Vt ], thus proportional to exp [VD/2Vt ]. The
maximum recombination current is proportional to exp [VD/2Vt ], as distinct from the
diffusion current, which is proportional to exp [VD/Vt ].

The voltage dependencies of the diffusion and the maximum recombination currents
are similar, for they are both exponential-type dependencies. Indeed, they can be expressed
in the following common way:

ID ∝ eVD/nVt (6.20)

where n = 1 for the diffusion current and n = 2 for the maximum recombination current.
More importantly, varying the coefficient n between 1 and 2 would enable us to fit any
combination of diffusion and recombination currents.
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Furthermore, the introduction of the variable coefficient n eliminates the need for the
second assumption used to develop the rudimentary model, namely the assumption of zero
voltage drop in the neutral regions. The existence of excess minority electrons and holes
(illustrated in Fig. 6.10b and 6.10c) means that there must be an electric field associated
with this charge. In the case of high injection levels, the voltage drop associated with this
field cannot be neglected.

The electric field in the neutral regions leads to voltage drops vn between the depletion-
layer edge and the N-type bulk and vp between the P-type bulk and the corresponding
edge of the depletion layer. Therefore, the voltage applied VD is distributed as vn +
vdepl + vp , where vdepl is the voltage across the depletion layer. It is the voltage across
the depletion layer that alters the height of the potential barrier in the depletion layer:
q(Vbi −vdepl). The assumption used to derive the rudimentary model is that vn, vp � vdepl ,
thus vdepl ≈ VD .

In the case of high-level injection, the voltage that drops in the neutral regions becomes
pronounced, which means that the rudimentary model overestimates the current. This is
because the barrier height is reduced by only a fraction of qVD, not by the whole value of
qVD , as assumed in that model. However, the coefficient n introduced in Eq. (6.20) enables
us to involve this effect because the term qVD/nVt implies that the barrier is reduced by
qVD/n (n > 1), which is a fraction of qVD .

With the variable coefficient n, the current–voltage equation of a forward-biased diode
becomes

ID = ISeVD/nVt (6.21)

The coefficient n is called the emission coefficient.
To illustrate the importance of the emission coefficient n, the experimental data of a

real diode are fitted with the rudimentary model (n = 1) and the model that allows n to
be adjusted [Eq. (6.21)] in Fig. 6.11. It is obvious that the rudimentary model (the colored
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Figure 6.11 (a) Linear–linear and (b) logarithmic–linear plots illustrating best fits obtained by the rudimentary diode model
(n = 1, colored lines) and the model with variable emission coefficient n (black lines). The experimental data (symbols) are
for an LM3086 base-to-emitter P–N junction diode.
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Figure 6.12 Illustration of the influence of the parasitic resistance on P–N junction diode characteristic. (a) Electric-circuit
model. (b) Linear–linear and (c) logarithmic–linear plots of the diode forward characteristic (the symbols show the
experimental data for an LM3086 base-to-emitter P–N junction diode; the difference between the black lines and the
colored lines shows the effect of the parasitic resistance rS ).

lines, n = 1) does not properly fit the data, while quite satisfactory fitting can be achieved
when the emission coefficient is set to n = 1.23 (the black lines).

The emission coefficient n can be introduced into the more general diode equa-
tion [Eq. (6.15)], covering both the forward-bias and the reverse-bias regions. The emission
coefficient accounts for the effect in the forward-bias region while not altering the model
predictions in the reverse-bias region:

ID = IS
[
exp(VD/nVt ) − 1

]
(6.22)

Equation (6.22) is called the Shockley equation. It is also the basic SPICE model for
the ID–VD characteristic of a diode. Clearly, IS and n are the parameters of this model, so
they will be referred to as SPICE parameters. The thermal voltage Vt = kT/q is calculated
in SPICE from the set value for the temperature T (the default value is 27◦C).

Parasitic Resistance

Parasitic resistances exist in the structure of any real P–N junction diode. The parasitic
resistances are especially pronounced at the metal–semiconductor contacts (both the
cathode and the anode contacts) and in the neutral regions of the P-type and/or N-type
bodies. The effects of all these resistances can be expressed by a single parasitic resistor
rS connected in series with the P–N junction diode itself, as illustrated in Fig. 6.12a. The
series resistance rS is a direct SPICE parameter.

Figure 6.12b and 6.12c illustrates that the diode model of Eq. (6.22) (the colored
lines, rS = 0, in Fig. 6.12) fits the experimental data properly only in the region of
relatively small diode currents (<1 mA in this example). Clearly, the voltage across the
parasitic resistance (rS ID) is not significant compared to the voltage applied (VD) when
the current ID is small. However, as the current ID is increased, the voltage drop rS ID
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Figure 6.13 Experimental diode
characteristic (LM3086 base-to-
emitter P–N junction diode) illus-
trating the breakdown at VD = –BV.

becomes pronounced, which means that the voltage across the P–N junction itself is smaller
than VD; therefore the current is smaller. Equation (6.22) can be used to model the diode
characteristic in this case if VD0 = VD − rS ID is used instead of VD . In other words,
Eq. (6.22) is applied to the P–N junction diode in the equivalent circuit of Fig. 6.12a, and
the resistance rS is added between the cathode and the anode terminals.

Breakdown

The experimental characteristic of the P–N junction diode given in Fig. 6.13 shows that
the reverse-bias current is small (ID ≈ IS) only in the region −BV < VD ≤ 0. When the
reverse-bias voltage becomes VD = −BV , the current sharply increases due to the
electrical breakdown. The P–N junction breakdown mechanisms are described in more
detail in Section 6.1.4. Here, the appearance of the breakdown is introduced as a second-
order effect that limits the voltage range in which a diode can be used as a rectifier.
Although the breakdown voltage of BV ≈ 7 V (as shown in Fig. 6.13) is typical for the
base-to-emitter type diodes, it is by no means representative for all possible P–N junction
diodes. The breakdown voltage can be smaller than that; however, more frequently it is
much larger than 7 V and can be as large as hundreds or even thousands of volts in
specifically designed high-voltage diodes. Obviously, the breakdown voltage is a diode
parameter that has to be specified for any particular type of diode.

Generation Current as the Dominant Reverse-Bias Current

The Shockley equation predicts ID = −IS as the reverse-bias current of a P–N junction: for
VD < 0 and exp(VD/nVt ) � 1, the current in Eq. (6.22) becomes ID = −IS . As already
discussed in Section 6.1.2 and shown in Example 6.1, IS is much smaller in real diodes
than the generation current IG . Furthermore, IS is a voltage-independent current, which
is not the case with the generation current. The dependence of IG on the applied reverse-
bias voltage (VR = −VD) is due to the depletion layer (wd ), which directly determines
IG value, as can be seen from Eq. (6.3). It has already been mentioned that wd increases
with VR because the negative terminal of VR pulls holes away from the junction and the
positive terminal pulls electrons away from the junction to increase the electric field in
the depletion layer. Therefore, there is an increase in IG with VR . The actual dependence
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of wd on VR is derived in Section 6.3.2, where it is shown that wd is proportional to
(VR + Vbi )

m , where Vbi is the built-in voltage and m is a parameter that takes a value
between 1/3 and 1/2.

SPICE does not include a model for the generation current. There is a parallel
conductance GM I N set in parallel with the diode, predominantly as a way to manage
numerical problems when IS becomes too small. Although this conductance sets a linear
relationship between the current and the voltage (ID = GM I N VD), it can be used as an
approximation of the generation current when it is really necessary to include it in the
simulation. In most cases, the reverse-bias current of a diode can be neglected anyway.

6.2.3 Temperature Effects
The exponential term exp(VD/nVt ) = exp(qVD/nkT ) of the static diode model shows
the explicit temperature dependence of the diode characteristic. More importantly, there
is a very strong implicit dependence through the saturation current IS . Equation (6.16)
shows that IS is proportional to n2

i , where the intrinsic carrier concentration ni strongly
depends on temperature. The temperature dependence of the intrinsic carrier concentration
is explicitly shown by Eq. (2.83). Eg in Eq. (2.83) is the energy gap, which is different
for different materials, meaning that diodes based on different materials exhibit different
temperature behavior. Eg = 1.12 eV for Si, which is the default value taken in SPICE;
however, Eg is considered as a parameter, and it can be set to a different value to express
a different material. It should be noted that Eg itself depends on the temperature, but this
dependence does not significantly influence the diode characteristics.

To illustrate the temperature effects, the diode characteristics (originally shown in
Fig. 6.11 for T = 27◦C) are calculated by the SPICE model for temperatures T = 100◦C
and T = −50◦C, and they are shown in Fig. 6.14. It can be seen that the temperature
basically shifts the ID–VD characteristic along the VD axis by approximately −2 mV/◦C.
This temperature coefficient is negative because an increase in the temperature reduces the
voltage across the diode needed to produce the same current.
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m
A
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Figure 6.14 Temperature dependence of
the diode characteristic.
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EXAMPLE 6.5 Temperature Dependence of VD

The anode of a P–N junction diode is connected to the positive terminal of a 12-V voltage source
through a 1.2-k� resistor. This forward-biased diode is used as a temperature sensor. The room-
temperature (T = 27◦C) parameters of the diode are IS = 10−12 A, n = 1.4, and rS = 10 �.
What temperature is measured by the diode if the voltage across the diode is VD = 0.807 V?

SOLUTION

The voltage across the diode changes by −2 mV/◦C. We need to find VD at room temperature to
be able to determine the voltage shift, and consequently the temperature shift. The voltage across
the diode is

VD = nVt ln(ID/IS) + rS ID

As the current through the diode is

ID = Vsupply − VD

R

the voltage can be expressed as

VD = nVt ln

(
Vsupply − VD

RIS

)
+ rS

Vsupply − VD

R

This equation has to be solved numerically. If we assume VD = 0.7 V, the value of the right-hand
side (RHS) of the equation is 0.925 V. Assuming now VD = 0.925 V, the RHS is calculated as
0.923 V. Finally, assuming VD = 0.923 V gives 0.923 V for the RHS as well, and this is the
voltage across the diode at room temperature. Therefore, the voltage shift is 0.807 − 0.923 =
−0.116 V, which gives a temperature shift of −0.116 V/(−0.002 V/◦C) = 58◦C. The temperature
that is measured by the diode is 27 + 58 = 85◦C.

6.3 CAPACITANCE OF REVERSE-BIASED P–N JUNCTION

The capacitance effect is achieved when two conductive “plates” are placed close to
each other, but are still electrically isolated by a dielectric. The dielectric suppresses
any direct current (DC) flow through the capacitor, causing accumulation of positive and
negative charge at the capacitor plates. If the voltage applied across the capacitor is varied,
the charge stored at the capacitor plates changes, which appears as current flow through the
circuit. A reverse-biased P–N junction can act as a capacitor. The two conductive plates
are the N-type region on one side and the P-type region on the other side. These two
conductive plates are separated by the depletion layer that acts as the capacitor dielectric.

As in any capacitor, the strength of the capacitance effect depends on three factors:
(1) the area of the P–N junction, as larger conductive plates accommodate more charge,
(2) the depletion-layer width, as thinner dielectrics provide more effective penetration
of the electric field, and (3) the degree to which the internal structure of the dielectric
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material permits the penetration of the electric field, which is called dielectric permittivity.
Given that the P–N junction area is a geometric design parameter, it is useful to introduce
the concept of capacitance per unit area—a differential quantity that is basically a
technological parameter. For the case of the capacitance per unit area due to the depletion
layer—the depletion-layer capacitance—the capacitance per unit area is

Cd = εS

wd
(6.23)

where εs is the silicon permittivity (εs = 11.8 × ε0 = 11.8 × 8.85 × 10−12 F/m) and
wd is the depletion-layer width. Given that εs is a material constant, the depletion-layer
capacitance per unit area is basically determined by the depletion-layer width.

Following a brief introduction to the effect of voltage dependence of the depletion-
layer capacitance, the bulk of this section is devoted to the determination of the depletion-
layer width and the associated effects. The importance of the depletion-layer width is not
limited to calculation of the depletion-layer capacitance but also for general understanding
and design of devices based on or utilizing P–N junctions.

6.3.1 C–V Dependence
Figure 6.15 shows a reverse-biased P–N junction used as a capacitor in a simple R–C
circuit. It can be seen from Fig. 6.15b that the increase in the voltage applied increases the
depletion-layer width as this voltage attracts electrons and holes toward the contacts. As
a result, more uncompensated donor ions on the N-type side, along with uncompensated
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Figure 6.15 Reverse-biased P–N
junction used as a capacitor.
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acceptor ions on the P-type side, appear in the depletion layer. Figure 6.15c illustrates
that the decrease in the voltage causes a reduction of the depletion-layer width, and
consequently a reduction of the depletion-layer charge. These changes in the capacitor
charge, induced by the changes of the applied voltage, represent exactly the capacitance
effect (C = d QC/dVC ). The current that charges and discharges the capacitor is also
indicated in Fig. 6.15b and 6.15c.

The fact that the externally applied voltage changes the width of the depletion layer
makes the P–N junction capacitor voltage-dependent. If the DC component of the voltage,
VIN , in the circuit of Fig. 6.15 is increased, the average value of the depletion layer is also
increased. In effect, the capacitance is reduced [Eq. (6.23)]. The capacitance–voltage (C–
V ) dependence of a typical P–N junction is shown in Fig. 6.16. This voltage dependence
of the capacitance is a feature of the P–N junction capacitor that does not exist in discrete
ceramic capacitors. The voltage dependence of the capacitance is very useful as it enables
variable capacitors that are electrically controlled.

6.3.2 Depletion-Layer Width: Solving
the Poisson Equation

The relationship between the electric potential and the charge concentration at any single
point in the depletion layer is given by the Poisson equation. By solving the Poisson
equation, we can find the relationship between the depletion-layer width wd and the voltage
applied; and then by using Eq. (6.23), we can express the depletion-layer capacitance Cd

in terms of the voltage applied.
Neglecting any edge effects at the perimeter of the considered P–N junction (mathe-

matically, this is equivalent to the assumption of infinite junction along y- and z-axes), the
problem becomes one-dimensional and the Poisson equation can be expressed as

d2ϕ

dx2 = −ρcharge(x)

εs
(6.24)
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In Eq. 6.24, ρcharge(x) is the net charge concentration5 at point x in the units of C/m3. The
net charge concentration in the neutral regions is equal to zero; however, it has nonzero
values in the depletion layer due to the uncompensated donor and acceptor ions.

The mathematical equations for ρcharge(x) that provide good fit to the real doping
profiles, such as the diffusion doping profile shown previously in Fig. 1.14, turn out to be
unsuitable in terms of obtaining analytical solutions of Eq. (6.24). Nonetheless, it will
prove very useful to solve Eq. (6.24) for two simple and extreme approximations: (1)
abrupt junction and (2) linear junction. The solution for abrupt junctions is provided in
the following text, whereas the linear junction is consider shortly (Example 6.8). Then
Section 6.3.3 will show that the SPICE model for the depletion-layer capacitance is actually
a generalization of the analytical solutions for the two extreme approximations.

A P–N junction is considered as abrupt if there are only donors on one side of the
junction and only acceptors on the other side, as shown in Fig. 6.17a. Four regions can be
identified:

1. The electroneutral N+-type region in which the donor ions are compensated for by
the electrons. The charge concentration in this region is ρcharge = 0.

2. The depletion layer on the N+-type side in which the donor ions appear as the only
charge centers. There are ND donor ions per unit volume, and every donor ion carries
one unit (q) of positive charge. Therefore, the charge concentration in this region is
ρcharge = q ND .

3. The depletion layer on the P-type side in which the negative acceptor ions appear
as the only charge centers. Because there are NA negative charge centers per unit
volume, the charge concentration in this region is given as ρcharge = −q NA.

4. The electroneutral P-type region in which the acceptor ions are compensated for by
the holes. The charge concentration in this region is ρcharge = 0.

The charge concentration at and around the P–N junction is graphically presented
in Fig. 6.17b. To solve the Poisson equation, it is useful to split it into four parts,
corresponding to the four regions:

d2ϕ

dx2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x ≤ −wn

− q ND
εs

for −wn ≤ x ≤ 0
q NA
εs

for 0 ≤ x ≤ wp

0 for x ≥ wp

(6.25)

5In electromagnetics literature, ρcharge is frequently referred to as the “charge density.” Here the
term “charge density” is reserved for charge per unit area, expressed in C/m2.
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If the left- and right-hand sides of Eq. (6.25) are integrated, the following is obtained

dϕ

dx
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1 for x ≤ −wn

− q ND
εs

x + C2 for −wn ≤ x ≤ 0
q NA
εs

x + C3 for 0 ≤ x ≤ wp

C4 for x ≥ wp

(6.26)

where C1, C2, C3, and C4 are integration constants. Remembering that the electric field is
E = −dϕ/dx , it can be seen that Eq. (6.26) gives the electric field multiplied by a minus
sign. The electric field in the electroneutral regions (x ≤ −wn and x ≥ wp) must be zero.
If the field was not zero, the existing free electrons and holes would be moved by the field
producing a current flow, which means that the P–N junction would not be in equilibrium.
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We wish to consider the P–N junction in equilibrium here. Thus, the constants C1 = 0 and
C4 = 0. To obtain the other two integration constants, the boundary conditions at x = −wn

and x = wp should be used. We concluded earlier that the field at x = −wn and x = wp

(edges of the electroneutral regions) is zero. By applying Eq. (6.26) to the boundaries

0 =
⎧⎨
⎩

q ND
εs

wn + C2

q NA
εs

wp + C3

(6.27)

we obtain the constants

C2 = −q ND

εs
wn

C3 = −q NA

εs
wp

(6.28)

After putting these constants into Eq. (6.26), we have

dϕ

dx
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x ≤ −wn

− q ND
εs

(x + wn) for −wn ≤ x ≤ 0
q NA
εs

(x − wp) for 0 ≤ x ≤ wp

0 for x ≥ wp

(6.29)

The integration of the Poisson equation practically provides equations for the electric
field at and around the P–N junction because it is necessary only to multiply Eq. (6.29) by
−1 to convert dϕ/dx into E :

E(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x ≤ −wn

q ND
εs

(x + wn) for −wn ≤ x ≤ 0

− q NA
εs

(x − wp) for 0 ≤ x ≤ wp

0 for x ≥ wp

(6.30)

The electric field, as given by Eq. (6.30), is plotted in Fig. 6.17c. It can be seen that the
maximum of the electric field appears right at the P–N junction (x = 0). Moreover, the
maximum electric field Emax = E(0) is expressed in two ways: (1) through ND and wn

[the second line in Eq. (6.30)] and (2) through NA and wp [the third line in Eq. (6.30)].
This indicates that there is a relationship between (a) ND and wn on the N+-type side of
the junction and (b) NA and wp on the P-type side of the junction. This relationship can be
found using the two equations for Emax :

Emax = E(0) = q ND

εs
wn = q NA

εs
wp (6.31)
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which gives

NDwn = NAwp (6.32)

It is not hard to understand the meaning of Eq. (6.32). The number of donors (acceptors)
ND (NA) per unit volume, multiplied by the depletion-layer width wn (wp) gives the
number of donors (acceptors) per unit of junction area. As the junction area is the same
for both donors and acceptors, Eq. (6.32) means that there is equal number of donor
and acceptor ions in the depletion layer of the P–N junction. We could not expect any
other result, because every electric-field line that originates at a positive donor ion should
terminate at a negative acceptor ion.

Equation (6.32) means that if ND is larger than NA (as in the case shown in Fig. 6.17),
the depletion-layer width wn is smaller than wp . The depletion layer expands more on the
side of the lower-doped material.

The electric-potential distribution at and around the P–N junction can be obtained if
Eq. (6.29) is integrated (the second integration of the Poisson equation; the first integration
provided the electric field). The second integration gives

ϕ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C5 for x ≤ −wn

− q ND
εs

( x2

2 + wn x
) + C6 for −wn ≤ x ≤ 0

q NA
εs

( x2

2 − wpx
) + C7 for 0 ≤ x ≤ wp

C8 for x ≥ wp

(6.33)

As the field in the electroneutral regions (x ≤ −wn and x ≥ wp) is zero, the electric
potential is constant. Let us take the electric potential in the P-type region as the reference
potential (P-type side of the P–N junction is grounded). This means that C8 = 0. As
explained in Section 6.1.1, the built-in electric field results in a potential difference
appearing across the P–N junction, referred to as the built-in voltage and denoted by
Vbi . This means that C5 = Vbi . To find the other two constants, the following boundary
conditions should be used: ϕ(−wn) = Vbi , ϕ(wp) = 0. Applying Eq. (6.33) to the
boundaries x = −wn and x = wp ,

Vbi = −q ND

εs

w2
n

2
+ C6

0 = q NA

εs

w2
p

2
+ C7

(6.34)

the constants are obtained as

C6 = Vbi − q ND

εs

w2
n

2

C7 = q NA

εs

w2
p

2

(6.35)
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By putting the obtained constants into Eq. (6.33), we find the electric-potential distribution
as follows:

ϕ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vbi for x ≤ −wn

Vbi − q ND
2εs

(x + wn)
2 for −wn ≤ x ≤ 0

q NA
2εs

(x − wp)
2 for 0 ≤ x ≤ wp

0 for x ≥ wp

(6.36)

The electric potential, as given by Eq. (6.36), is plotted in Fig. 6.17d. The electric-potential
distribution at and around the P–N junction can be used to plot the energy bands as well.
The electric potential is related to the potential energy: E pot(x) = −qϕ(x). Using this
equation and knowing that the bottom of the conduction band is separated from the top
of the valence band by the energy-gap value (Eg), we can construct the energy bands as
illustrated in Fig. 6.17e.

The earlier-derived Eq. (6.32) provides a relationship between the depletion-layer
width components (wn and wp), expressed in terms of doping concentrations ND and NA .
The electric-potential distribution, given by Eq. (6.36), can be used to provide the second
relationship between wn and wp . With two equations, the two unknown components of the
depletion layer, wn and wp , can be found. To obtain the second relationship between wn

and wp , observe that the electric potential at x = 0 is expressed in two ways: (1) through
the parameters of the N+-type side [the second line in Eq. (6.36)] and (2) through the
parameters of the P-type side [the third line in Eq. (6.36)]. Therefore, by using the fact
that the electric potential at x = 0 is unique, we can establish a relationship between the
parameters of the N+-type and P-type sides:

ϕ(0) = Vbi − q ND

2εs
w2

n = q NA

2εs
w2

p (6.37)

Solving the system of two equations, (6.32) and (6.37), we obtain wn and wp as

wn =
√√√√√ 2εs Vbi

q ND

(
1 + ND

NA

) (6.38)

wp =
√√√√√ 2εs Vbi

q NA

(
1 + NA

ND

) (6.39)

The total depletion-layer width is, obviously, given as

wd = wn + wp (6.40)

Equations (6.38), (6.39), and (6.40) can be used to calculate the components of the
depletion-layer width, as well as the total depletion-layer width, for an abrupt P–N junction
in thermal equilibrium (zero-bias applied). Our final aim, however, is to determine the
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dependence of the depletion-layer width (and thus depletion-layer capacitance) on the
reverse-bias voltage applied to the terminals of the P–N junction capacitor. If the current
of the reverse-biased P–N junction is neglected (the leakage current), the Poisson equation
can be solved in a similar way as for the zero-bias case. An important difference would be
the boundary condition for the electric potential at x = −wn . If a reverse-bias voltage VR

is applied to the N+-type region, it should be added to the existing built-in voltage Vbi to
obtain the correct boundary condition in this case. This is analogous to the transition from
Fig. 6.3 to Fig. 6.5. Therefore, in the final equations for wn and wp , Vbi + VR will appear
instead of Vbi alone:

wn =
√√√√√ 2εs(Vbi + VR)

q ND

(
1 + ND

NA

) (6.41)

wp =
√√√√√ 2εs(Vbi + VR)

q NA

(
1 + NA

ND

) (6.42)

The depletion-layer capacitance, given by Eq. (6.23), can now be related to the applied
reverse-bias voltage VR through wn and wp:

Cd = A
εs

wd
= A

εs

wn + wp
(6.43)

It is important to note that in most practical cases it is either ND  NA (the case in
Fig. 6.17) or NA  ND . This is because either P-type substrate has to be converted into
N-type layer at the surface by diffusing much higher concentration of donors at the surface,
or vice versa, to create a P–N junction. Accordingly, the equations for the depletion-layer
widths can be simplified as follows:

wp ≈
√

2εs(Vbi+VR)
q NA

wn � wp

wd ≈ wp

⎫⎪⎪⎬
⎪⎪⎭ for ND  NA (6.44)

wn ≈
√

2εs(Vbi+VR)
q ND

wp �wn

wd ≈ wn

⎫⎪⎪⎬
⎪⎪⎭ for NA  ND (6.45)

By using Eqs. (6.43), (6.44), and (6.45), we can express the depletion-layer capacitance in
the following compact form

Cd = Cd (0)

(
1 + VR

Vbi

)−1/2

(6.46)
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where Cd (0) is

Cd(0) =
⎧⎨
⎩

A
2

√
2εsq NA

Vbi
for ND  NA

A
2

√
2εsq ND

Vbi
for NA  ND

(6.47)

Cd (0) can be considered as a parameter in the equation for the capacitance versus applied
voltage [Eq. (6.46)]. Its physical meaning is obvious: it represents the P–N junction
capacitance at zero bias (VR = 0). It is referred to as zero-bias junction capacitance.

In conclusion, the depletion-layer capacitance of the abrupt P–N junction is shown to
be proportional to (1 + VR/Vbi)

−1/2, where VR is the reverse-bias voltage.

EXAMPLE 6.6 Layout Design of a P–N Junction as a Varactor

A P–N junction is to be used as a varactor (a voltage-dependent capacitor used as a tuning element
in microwave circuits). The doping concentrations in the P-type and N+-type regions are known:
NA = 1018 cm−3 and ND = 1020 cm−3, respectively.

(a) Design the varactor (determine the needed junction area) so that the maximum
capacitance is Cmax = 30 pF.

(b) Calculate the varactor sensitivity (dC/dVR) at VR = 5 V.

SOLUTION

(a) The depletion-layer capacitance of a reverse-biased P–N junction is maximum when
the reverse-bias voltage is zero. Any increase in the reverse-bias voltage increases the
depletion-layer width, reducing the capacitance. Therefore, Eq. (6.47) can be used to
calculate the maximum capacitance. We need to calculate Vbi first, which can be done
using Eq. (6.2):

Vbi = kT

q
ln

NA ND

n2
i

= 0.02585 ln
1018 × 1020

(1.02 × 1010)2 = 1.07 V

By using Eq. (6.47), the maximum capacitance per unit area is determined:

Cmax

A
= 1

2

√
2εsq NA

Vbi
= 0.5

√
2×11.8×8.85×10−12×1.6×10−19×1024

1.07
= 2.8 mF/m2

The needed junction area is then

A = 30 pF

2.8 mF/m2 = 1.07 × 10−4 cm2 = 10,700 μm2
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(b) The capacitance versus applied reverse-bias voltage is given by Eq. (6.46), which can be
rewritten as

C = Cmax(1 + VR/Vbi )
−1/2

The first derivative of the capacitance with respect to VR will provide the equation
for the capacitor sensitivity:

dC/dVR = −1

2

Cmax

Vbi
(1 + VR/Vbi)

−3/2

At VR = 5 V, the sensitivity is dC/dVR = −1.0 pF/V.

EXAMPLE 6.7 Design for Specified Reverse-Voltage Rating
and Minimum Parasitic Resistance

For stable and reliable operation, the electric field inside a P–N junction diode should not exceed
2 × 105 V/cm. Design the P–N junction so that it can safely operate up to 12 V of reverse bias.
The selection of design parameters should minimize the parasitic resistance.

SOLUTION

The maximum electric field is right at the P–N junction and is given by Eq. (6.31):

Emax = q ND

εs
wn = q NA

εs
wp

The depletion-layer widths wn and wp depend on the reverse bias, as given by Eqs. (6.44)
and (6.45). Obviously, the N-type and P-type regions should be longer than wn and wp at
the maximum reverse bias (VR = 12 V). When the diode operates in forward-bias mode, the
depletion-layer widths wn and wp shrink. This leaves neutral regions that act as resistors and
contribute to the parasitic resistance. The change of the depletion layer is especially pronounced
on the lower-doped side. For example, if ND � NA , wp is negligible compared to wn . For
NA � ND , it is wp that dominates. To minimize the parasitic resistance, it is better to have a
longer N-type region than P-type region because the electron mobility is higher. This means that
it is better to use the N–P+ junction, where wp is negligible and wn is given by

wn =
√

2εs(Vbi + VR)

q ND
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Inserting the equation for wn into the equation for the maximum electric field, we obtain

Emax =
√

2q ND

εs
(Vbi + VR)

From here, the doping level on the N-type side can be expressed as

ND = εs E2
max

2q(Vbi + VR)
(6.48)

The built-in voltage Vbi also depends on the doping levels:

Vbi = Vt ln
ND NA

n2
i

As far as NA is concerned, the highest practical doping should be selected; for example, NA =
1020 cm−3. However, this still does not enable to explicitly express ND if Vbi is to be eliminated
from Eq. (6.48). To solve Eq. (6.48), we can begin by neglecting Vbi :

ND = 11.8 × 8.85 × 10−12(2 × 107)2

2 × 1.6 × 10−19 × 12
= 1.0878 × 1016 cm−3

With this value for ND , the built-in voltage is Vbi = 0.026 × ln(1020 × 1016/1020) = 0.96 V.
Recalculating ND with this value for Vbi ,

ND = 11.8 × 8.85 × 10−12(2 × 107)2

2 × 1.6 × 10−19 × (0.96 + 12)
= 1.0072 × 1016 cm−3

we can see that the change in Vbi does not cause a significant change in the calculated value for
ND . Therefore, the final design value for ND is 1016 cm−3.

EXAMPLE 6.8 Solving the Poisson Equation for the Linear P–N Junction

The linear P–N junction is the extreme approximation that is opposite to the abrupt-junction
approximation: the charge concentration changes from the most positive value (the donors on
the N-type side) to the most negative value (the acceptors on the P-type side) in the smoothest
possible way (Fig 6.18a and 6.18b). The linear P–N junction is the one where the charge
concentration in the depletion layer changes linearly,

ρcharge = −ax
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Figure 6.18 Linear P–N junction. (a) Illustration. (b)
Distribution of charge concentration. (c) Electric-field
distribution. (d) Electric-potential distribution. (e) Energy
bands.

where a is the slope of the linear dependence. Solve the Poisson equation for this case to
determine the dependence of the depletion-layer width and the depletion-layer capacitance on
reverse-bias voltage.

SOLUTION

In this case, the Poisson equation (6.24) becomes

d2ϕ

dx2 = a

εs
x (6.49)
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Of course, Eq. (6.49) is correct only for −wd/2 ≤ x ≤ wd/2 (the depletion layer); however,
solving the Poisson equation in the depletion layer will be quite enough to find the depletion-
layer width, provided that the boundary conditions are properly established.

The first integration of Eq. (6.49) leads to

dϕ

dx
= a

εs

x2

2
+ Ca

where Ca is the integration constant. The integration constant can be found from the condition
that the electric field, and therefore dϕ/dx , is equal to zero at x = −wd/2:

Ca = − a

εs

w2
d

8

When this value is used for the constant Ca , dϕ/dx becomes

dϕ

dx
= a

2εs

[
x2 −

(
wd

2

)2
]

(6.50)

whereas the electric field (E = −dϕ/dx) is

E(x) = a

2εs

[(
wd

2

)2

− x2

]
(6.51)

The electric field, as given by Eq. (6.51), is plotted in Fig. 6.18c.
Integrating the left-hand and right-hand sides of Eq. (6.50) (the second integration of the

Poisson equation) leads to an equation for the electric potential ϕ:

ϕ(x) = a

2εs

[
x3

3
−

(
wd

2

)2

x

]
+ Cb

The integration constant Cb can be found from the boundary condition ϕ(wd/2) = 0 (it is again
assumed that the potential of the P-type side is the reference potential). Using this boundary
condition, the constant is found as

Cb = a

εs

w3
d

24

which means the electric-potential distribution in the depletion layer is given by

ϕ(x) = a

2εs

[
x3

3
−

(
wd

2

)2

x + w3
d

12

]
(6.52)
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The electric potential, as given by Eq. (6.52), is plotted in Fig. 6.18d. The electric-potential
function ϕ(x) can be used to plot the energy bands as well. Using the fact that the energy bands
follow the potential-energy function E pot(x) = −ϕ(x) and that the bottom of the conduction
band and the top of the valence band are separated by the energy gap Eg , the energy bands are
constructed as in Fig. 6.18e.

The electric-potential distribution ϕ(x) is used to determine the depletion-layer width. This
can be achieved if the second boundary condition for the electric potential is employed, which is
the electric potential at x = −wd/2. Taking the electric potential at x = wd/2 as the reference
potential [ϕ(wd/2) = 0], the electric potential at the other side of the depletion layer (x =
−wd/2) must be equal to the built-in voltage Vbi . Therefore,

Vbi = a

2εs

(
−w3

d

24
+ w3

d

8
+ w3

d

12

)
= aw3

d

12εs
(6.53)

The depletion-layer width wd is obtained from Eq. (6.53) as

wd =
(

12εs Vbi

a

)1/3

This is the depletion-layer width of the linear P–N junction in thermal equilibrium (zero bias).
The Poisson equation can similarly be solved for a reverse-biased linear P–N junction. An
important difference will be the boundary condition at x = −wd/2. In that case the reverse-
bias voltage applied VR has to be added to the existing built-in voltage Vbi , which means that the
boundary condition becomes ϕ(−wd/2) = Vbi + VR . Accordingly, Vbi + VR will appear in the
final equation for wd instead of Vbi alone:

wd =
[

12εs(Vbi + VR)

a

]1/3

(6.54)

The depletion-layer capacitance of the linear P–N junction can now be related to the applied
reverse-bias voltage VR through wd :

Cd = A
εs

wd
= A

[
aε2

s

12(Vbi + VR)

]1/3

The depletion-layer capacitance Cd can be written in a more suitable form:

Cd = Cd (0)

(
1 + VR

Vbi

)−1/3

(6.55)

where

Cd(0) = A

(
aε2

s

12Vbi

)1/3

(6.56)
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Cd(0) in Eq. (6.55) can be considered as a parameter. This parameter represents the zero-bias
junction capacitance, analogously to the case of the abrupt P–N junction.

In conclusion, the depletion-layer capacitance of the linear P–N junction is shown to be
proportional to (1 + VR/Vbi )

−1/3, where VR is the reverse-bias voltage.

EXAMPLE 6.9 Minimum P–N Junction Capacitance

Calculate the minimum capacitance that can be achieved by a linear P–N junction capacitor
when the reverse-bias voltage varies between 0 and 5 V and the maximum capacitance is 2.5 pF.
Assume that the built-in voltage is Vbi = 0.8 V.

SOLUTION

The capacitance of the linear P–N junction is given by Eq. (6.55). The capacitance is maximum
for VR = 0 V, which means that the parameter Cd (0) = 2.5 pF. The reverse-bias voltage VR

reduces the capacitance, which means that it is minimum for the largest VR , which is VR−max =
5 V in this example. Therefore, the minimum capacitance is calculated as:

Cmin = Cd(0)(1 + VR−max/Vbi )
−1/3 = 2.5 × (1 + 5/0.8)−1/3 = 1.3 pF

6.3.3 SPICE Model for the Depletion-Layer Capacitance
Section 6.3.2 and Example 6.8 provide solutions of the Poisson equation for the two
extreme approximations of the P–N junction, the abrupt and the linear P–N junction,
respectively. The main result is that the capacitance is proportional to (1 + VR/Vbi )

−1/2

for the abrupt P–N junction and is proportional to (1 + VR/Vbi )
−1/3 for the linear P–N

junction. It can be seen that the only difference between these two extreme cases is in the
power coefficient, which is −1/2 for the abrupt and −1/3 for the linear P–N junctions.
The dependence of the depletion-layer capacitance Cd on the reverse-bias voltage VR can,
therefore, be expressed in the following compact form:

Cd = Cd (0)

(
1 + VR

Vbi

)−m

(6.57)

where m = 1/2 for the abrupt P–N junction and m = 1/3 for the linear P–N junction.
It is obvious that Eq. (6.57) becomes applicable to any P–N junction when m is allowed
to take any value between the two extremes (1/2 ≥ m ≥ 1/3). Thus, considering m as
a parameter whose value has to be determined experimentally, Eq. (6.57) can be used for
real P–N junctions that are neither abrupt nor linear. The parameter m is referred to as
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grading coefficient. The other two SPICE parameters in Eq. (6.57) are Cd (0), the zero-bias
capacitance, and Vbi , the built-in voltage.

6.4 STORED-CHARGE EFFECTS

The excess minority carriers, accumulated at the edges of the depletion layer due to
forward-bias current through a P–N junction, cannot instantly disappear when the forward
bias is reduced, set to zero, or changed to reverse bias. The charge of the excess minority
carriers at the depletion-layer edges is referred to as the stored charge, and the associated
time effects as the stored-charge effects. In SPICE, the strength of stored-charge effects is
set by a parameter called transit time. It will be shown in this section that the transit time
is directly related to minority-carrier lifetime. The main effect of the stored charge relates
to extended reverse-recovery time—the time needed for the reverse-bias current to drop to
its small equilibrium level when the diode is suddenly switched off. Therefore, the transit
time will be related to the reverse-recovery time.

6.4.1 Stored Charge and Transit Time
Figure 6.10 (Section 6.2) illustrates the appearance of excess minority carriers at the
edges of the depletion layer when a forward-bias current flows through the diode. The
charge associated with the excess minority carriers—the stored charge, Qs—is directly
proportional to the value of the current flowing through the diode:

Qs = τT ID (6.58)

The proportionality coefficient τT in Eq. (6.58) is called transit time.
Figure 6.19 shows that an increase in the voltage VD by �VD causes a corresponding

increase in the minority-carrier charge stored at the sides of the depletion layer. The charge
change �Qs caused by the voltage change �VD represents a capacitance effect. Therefore,
stored-charge capacitance can be defined as Cs = �Qs/�VD. By using the relationship
between Qs and ID [Eq. (6.58)], we can express the stored-charge capacitance as

Cs = d Qs

dVD
= τT

d ID

dVD
(6.59)

which is the equation used in SPICE to model the stored-charge effects. The transit time,
τT , is the SPICE parameter for this effect.

6.4.2 Relationship Between the Transit Time
and the Minority-Carrier Lifetime

To gain insight into the dependence of the transit time on technological and physical
parameters, we can use a familiar equation for the diode current (ID), develop a similar
equation for the stored charge (Qs), and insert them into the equation defining the transit
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Figure 6.19 Illustration of the stored
charge Qs and the associated
capacitance. (a) Voltage change �VD

leads to (b) change in the stored-charge
�Qs = Cs�VD.

time:

τT = Qs

ID
(6.60)

Let us assume the N+–P junction, meaning that the doping level of the N-type is much
higher than the doping level of the P-type region. With this assumption, we can neglect the
current due to the minority holes [ pne � n pe in Eqs. (6.11) and (6.12)]. In this case, the
diode current density is j ≈ jn, which means that the current is

ID = AJ jn (6.61)

where AJ is the area of the diode junction. Replacing jn by Eq. (6.5), the diode current
becomes

ID = AJ q Dn
n pe − n p(wp)

Ln
(6.62)

Let us now express Qs in terms of n p(wp), n pe, and Ln , as well, to replace it together
with the relation for ID in Eq. (6.60). Figures 6.10c and 6.19b illustrate Qs . To obtain
Qs , the average excess minority-carrier concentration

[
n p(wp) − n pe

]
/2 is multiplied by

the charge that every electron carries (this gives the average charge in C/m3), and is also
multiplied by the volume AJ Ln , to obtain the charge in C:

Qs = −q AJ Ln
n p(wp) − n pe

2
(6.63)

Replacing ID and Qs in Eq. (6.60) from Eqs. (6.62) and (6.63), respectively, the transit
time is obtained as

τT = L2
n

2Dn
(6.64)
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This equation is frequently used to estimate the transit time value, given that approximate
values of the diffusion coefficient Dn and the diffusion length Ln are usually known.

If Ln in Eq. (6.64) is replaced by Eq. (5.15), the transit time becomes

τT = τn

2
(6.65)

This result shows that there is a direct relationship between the transit time and the
minority-carrier lifetime (τn). For a shorter τn (because of a stronger recombination), the
electrons are recombined closer to the injection point, so the diffusion length is shorter, in
accordance with the lower level of stored charge.

Equation (6.65) is for an N+–P junction. It can be similarly shown that in the case
of a P+–N junction, the transit time is approximately equal to τp/2. In diodes where
the foregoing approximations cannot be applied, the transit time is a combination of the
minority hole and electron lifetimes. In either case, the important conclusion is that the
transit time is determined by the recombination rate. This means that the transit time can
be reduced by increasing the concentration of the recombination centers.

6.4.3 Switching Characteristics: Reverse-Recovery Time
Figure 6.20 illustrates the effect of the stored charge on the switching characteristics of
a P–N junction diode and the importance of properly setting the value of the associated
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Figure 6.20 (a) A simple circuit and (b) a corresponding simulation result for a typical set of diode parameters (the solid
lines) and for τT = 0 (the dashed lines) to illustrate the effect of the stored-charge capacitance.
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parameter τT when simulating switching circuits. To explain the effect of the stored charge,
consider the behavior of the diode when the forward-bias voltage is suddenly switched
off (t = 50 ns in Fig. 6.20b). With τT = 0 (the dashed lines), the circuit simulation
predicts quick exponential decay of the current iD and the voltage vD , as determined by the
relatively small RCd time constant. In reality, however, it takes much longer for the diode
to turn off (iD and vD to drop to zero values). The thermal equilibrium (iD = 0) is not
achieved for as long as there is excess minority-carrier charge—that is, stored charge—at
the P–N junction. Referring to Fig. 6.19b, the minority-carrier concentrations at the edges
of the depletion layer, n p(wp) and pn(wn), should fall down to the equilibrium levels, n pe

and pne, respectively. The process of stored-charge removal determines the time-response
and high-frequency behavior of the diode.

The process of stored-charge removal should be considered in more detail. When the
forward-bias voltage is turned off (t = 50 ns in Fig. 6.20b), the electric field that injects
the minority electrons and holes into the neutral regions is removed. The minority electrons
and holes caught at the edges of the depletion layer (the stored charge) find it now easier to
flow back through the depletion layer, returning to their respective original neutral regions.
In the spirit of the band diagram of Fig. 6.6a, the excess electrons at the P-type side find it
easier to roll down along the bottom of the conduction band back to the N-type region, and
the holes at the N-type side find it easier to bubble up along the top of the valence band
back to the P-type region. This produces the sudden change in the current iD from positive
to negative, shown in Fig. 6.20b.

The voltage drop vD is no longer due to the externally applied forward-bias voltage,
but due to the stored charge at the depletion-layer edges: vD = Qs/Cs . In this period,
the draining current iD = IR is limited by the external resistor R and the relatively small
value of vD . Consequently, the current IR = vD/R appears as nearly constant (Fig. 6.20b).
Assuming that the constant current IR alone has to remove the stored charge, the discharge
time can be calculated as

trs = Qs

IR
(6.66)

In Eq. (6.66), any contribution from the recombination mechanism is, clearly, neglected.
Therefore, the time given by Eq. (6.66) is the worst-case estimate. The contribution of
recombination can become significant if (1) the recombination mechanism is enhanced by
special manufacturing techniques (some of them are discussed later) and (2) the resistor
in the discharging circuit is too high, causing the discharging current to be too small. In
general, if estimated trs is not significantly smaller than 2τT , then there is enough time
for the recombination mechanism to remove a significant portion of the stored charge.
Therefore, if trs calculated by Eq. (6.66) is larger than the minority-carrier lifetime, then it
is significantly overestimated.

It should be noted here that the discharge current IR will be higher in circuits in which
the diode is not switched off from forward bias to zero but to a reverse bias. If the reverse-
bias value VR is much larger than vD ≈ 0.65 V, then the discharge current is IR ≈ VR/R.

After the removal of the stored charge, the charge of the depletion-layer capacitance
Cd (Section 6.3) has to be set at the level that corresponds to the reverse-bias voltage VR

(VR = 0 in Fig. 6.20). This period starts at about 73 ns in the example of Fig. 6.20. During
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this process, the diode behaves more like an ordinary capacitor, with the current and voltage
setting at a nearly exponential rate with time constant trd = Cd Ron. The times trs and trd
add up to the total reverse recovery time trr .

The main problem with trr , especially trs, is that it limits the switching speed. Because
Qs and τT are related to the recombination rate and the minority-carrier lifetime, a
recombination-rate increase would reduce these times. The recombination rate can be
increased by increasing the concentration of recombination centers. Suitable elements
as recombination centers in silicon are gold and platinum. Consequently, diffusion of
gold or platinum is used to improve the switching performance of P–N junction diodes.
Another technique is high-energy electron irradiation, which introduces recombination
energy levels in the energy gap by creating damage in the silicon crystalline structure.
When the concentration of recombination centers is too high, however, there is a sharp
increase in the forward voltage drop, which limits the reduction of transit time by this
approach.

SUMMARY

1. A built-in voltage Vbi appears at any junction of materials having mobile electrons with
different potential energies—that is, different positions of the Fermi level with respect to
the reference vacuum level—or expressed in yet another way, different work functions.
The built-in voltage corresponds to energy-band bending of qVbi that is needed to bring
the Fermi levels to a constant level throughout the system, indicating that the system is
in thermal equilibrium. For the case of a P–N junction,

qVbi = |qφFn| + |qφFp| = kT ln
ND

ni
+ kT ln

ND

ni
= kT ln

ND NA

n2
i

Energy-band bending is associated with the existence of built-in electric field, which is
caused by removal of electrons from the N-type side and holes from the P-type side.
The electric field appears in the depletion layer—the region that is depleted of majority
carriers to have uncompensated donor and acceptor ions.

2. A reverse-biased P–N junction is not in thermal equilibrium: the Fermi level is split
into electron and hole quasi-Fermi levels, so that the barrier height at the P–N junction
is increased (qVbi + qVR). This is a barrier for the majority carriers; minority carriers
flow easily through the junction, resulting in a small “leakage” current.

3. When a forward-bias voltage VD = VF is applied across a P–N junction, the barrier
height (due to the built-in voltage) is reduced, and a number of majority electrons and
holes are able to go over the barrier, appearing as minority carriers on the other side.
Because of their exponential distribution with energy, the number of electrons/holes
with energies higher than the reduced barrier height Vbi − VD depends exponentially on
VD . Consequently, the concentration of minority carriers at the edges of the depletion
layer depends exponentially on VD:

n p(|wp|) = n peeVD/Vt , pn(|wn|) = pneeVD/Vt
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where n pe and pne are the equilibrium minority-carrier concentrations ( pne = n2
i /ND ,

n pe = n2
i /NA). The injected minority carriers move through the neutral regions by

diffusion, so that the diffusion coefficients of minority carriers (Dn and Dp), in addition
to the applied voltage, the geometrical parameters, and the doping levels, determine the
overall diode current:

IS = AJ qn2
i

(
Dn

WanodeNA
+ Dp

WcathodeND

)

ID = IS
(
eVD/Vt − 1

)
4. In the absence of second-order effects, the slope of the ln ID–VD plot is 1/Vt . However,

electron–hole recombination increases the low-level current, and observable voltage
drops in the neutral region decrease the high-level current. These effectively reduce the
ln ID–VD slope to 1/nVt , where 1 ≤ n ≤ 2. Another important second-order effect is
due to parasitic resistance rS , appearing in series with the P–N junction. As a result, the
P–N junction voltage VD0 is different from the voltage applied across the terminals of
the diode: VD = VD0 + rS ID . The static diode model in SPICE is a resistance rS in
series with a voltage-controlled current source:

ID = IS
(
eVD0/nVt − 1

)
where the saturation current IS and the emission coefficient n are model parameters,
whereas Vt is the thermal voltage (Vt ≈ 26 mV at room temperature).

5. The electric field in the depletion layer, especially due to a reverse bias, accelerates
the minority electrons and holes, which lose the gained kinetic energy as they collide
with the crystal atoms. If the critical electric field is reached, this energy is sufficient
to generate electron–hole pairs: the new electrons are accelerated to further generate
electron–hole pairs, leading to avalanche breakdown. Diodes operating in the avalanche
mode can be used as voltage references, because large current variations are supported
by a very small voltage change. Another type of breakdown is due to tunneling: heavily
doped P- and N-type regions create a very narrow depletion layer (barrier), which is
further narrowed by the reverse bias to enable the electrons/holes to tunnel through
the barrier. The avalanche breakdown voltage has a positive temperature coefficient
(VB R increases with the temperature), whereas the tunneling breakdown voltage has
a negative temperature coefficient. The forward diode voltage also has a negative
temperature coefficient (�VD/�T ≈ −2 mV/◦C).

6. The width of the depletion layer, wd , defines the depletion-layer capacitance of a P–N
junction:

Cd = εs

wd
(F/m2)

The Poisson equation,

d2ϕ

dx2 = −ρcharge

εs
, where ρcharge = q(ND − NA + p − n)
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has to be solved to establish the relationship between the depletion-layer width and the
voltage across the depletion layer. In the case of abrupt and asymmetrical P–N junctions,
the result is

wd ≈ wp =
√

2εs(Vbi + VR)

q NA︸ ︷︷ ︸
for NA � ND

; wd ≈ wn =
√

2εs(Vbi + VR)

q ND︸ ︷︷ ︸
for ND � NA

The maximum electric field, appearing right at the P–N junction, is also found:

Emax = q

εs
NDwn = q

εs
NAwp

7. The SPICE equation for Cd(VR) is

Cd = Cd (0)

(
1 + VR

Vbi

)−m

which generalizes the analytical solution for the two extreme cases (m = 1/2 for an
abrupt and m = 1/3 for a linear P–N junction). The parameters of this equation are
the zero-bias capacitance [Cd(0)], the grading coefficient (m), and the built-in voltage
(Vbi ).

8. The excess minority carriers, due to forward diode current, create stored charge at the
edges of the depletion layer. The stored charge is directly proportional to the current

Qs = τT ID

and it changes as the applied voltage changes: Cs = d Qs/dVD = τT d ID/dVD . Cs is
effectively a capacitance that appears in parallel with the depletion-layer capacitance.
The proportionality coefficient, τT , is called transit time (a SPICE parameter). The
transit time is directly related to the minority-carrier lifetimes τn,p:

τT =
{

τn/2 for N+–P junctions

τp/2 for P+–N junctions

The forward diode voltage cannot be instantly changed to zero- or reverse-bias
voltage (the diode cannot be instantly turned off) before the stored charge is removed.
The stored charge is removed by (1) approximately constant discharging current
(≈ VR+0.7V

R ), flowing through the series-equivalent resistance R and the reverse-bias
voltage source, in the direction opposite to that of the forward current, and (2) electron–
hole recombination.
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PROBLEMS

6.1 Assign each of the band diagrams from Fig. 6.21 to
a statement describing the biasing condition.

6.2 Assign each of the concentration diagrams from
Fig. 6.22 to a statement describing the biasing
condition. Electron concentrations are presented
with solid lines, and the hole concentrations are
presented with dashed lines.

6.3 Which of the following statements, related to a P–N
junction, are correct?

(a) The direction of the built-in electric field in the
depletion layer is from the N-type toward the
P-type region.

(b) At reverse bias, the Fermi level is constant for
the entire P–N junction system.

(c) The net (effective) charge density at each point
of the depletion layer is zero.

(d) A nonzero current of minority carriers flows
through the junction at zero bias.

(e) The current of minority carriers depends on
the voltage applied.

(f) At reverse bias, the depletion-layer width is
saturated (does not depend on the voltage
applied).

(g) The net charge outside the depletion layer of a
reverse-biased P–N junction is zero.

(h) At reverse bias, any electron current is fully
compensated by corresponding hole current.

(i) The voltage drop in the neutral regions can be
neglected in comparison to the voltage drop in
the depletion layer.

(j) The electric field in the neutral regions is not
large enough to produce a significant drift
current of the majority carriers.

(k) The diffusion current of the minority carriers
is significant.

(l) The number of electrons able to overcome the
energy barrier at the P–N junction increases
exponentially with the forward-bias voltage.

(m) The drift current of the minority carriers is
significant.

(n) Forward bias does not influence the barrier
height at the P–N junction, because it does not
affect the built-in voltage.

6.4 The N-type and P-type doping levels of a silicon
P–N junction are ND = NA = 5 × 1016 cm−3.
Calculate the built-in voltage Vbi

(a) at room temperature
(b) at 300◦C (ni at 300◦C is calculated in

Problem 1.28) A
(c) at 700◦C (ni = 1.10 × 1018 cm−3). Does a

negative value for Vbi mean anything?

6.5 Calculate Vbi when the P–N junction of Problem 6.4
is implemented in GaAs (ni = 2.1×106 cm−3) and
Ge (ni = 2.5 × 1013 cm−3).

6.6 (a) Using the results of Problems 6.4a and 6.5,
plot Vbi versus Eg for the cases of Ge (Eg =
0.66 eV), Si (Eg = 1.12 eV), and GaAs (Eg =
1.42 eV), respectively.

(b) Derive Vbi (Eg) equation to explain the ob-
tained linear correlation between Vbi and Eg .

6.7 A very-low-doped N− layer (ND = 5×1014 cm−3)
is deposited onto a heavily doped N+ substrate
(ND = 1020 cm−3). Calculate the built-in voltage
at this N−–N+ junction.

6.8 Identify the mode of diode operation for each of the
ID–VD characteristics shown in Fig. 6.23.

6.9 The donor and acceptor concentrations of a diode
are ND = 1020 cm−3 and NA = 1016 cm−3,
respectively. Find the minority-carrier concentration
at the edges of the depletion layer for

(a) forward bias VF = VD = 0.65 V
(b) reverse bias VR = |VD | = 0.65 V A

6.10 The neutral region of the anode and cathode of the
diode from Problem 6.9 are much smaller than the
diffusion lengths: Wanode = 4 μm, Wcathode =
2 μm. Assuming linear distribution of minority
carriers in the neutral regions, find the diffusion-
current density of the minority electrons and holes
at VF = 0.65 V if the diode is implemented in

(a) silicon (μn=1450 cm2/Vs, μp=500 cm2/Vs,
ni = 1.02 × 1010 cm−3)

(b) GaAs (μn = 8500 cm2/Vs, μp = 400 cm2/Vs,
ni = 2.1 × 106 cm−3) A

6.11 For the diode considered in Problems 6.9 and
6.10, calculate the reverse-bias (VR = |VD | =
0.65 V) and the forward-bias (VF = VD =
0.65 V) current densities. Is the forward-bias current
equal to the sum of electron and hole diffusion
currents calculated in Problem 6.10? Perform the
calculations for both Si and GaAs.
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(a) (b) (c) (d) (e) (f)

(1)  Zero bias
(2)  Reverse bias
(3)  Forward bias
(4)  Practically
       impossible

Figure 6.21 Energy-band diagrams.

(a) (b) (c) (d) (e) (f )

(1)  Zero bias
(2)  Reverse bias
(3)  Forward bias
(4)  None

Figure 6.22 Concentration diagrams.
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T � 27°C
T � 100°C

(1)  Forward bias
(2)  Tunneling breakdown
(3)  Avalanche breakdown

Figure 6.23 |ID|–|VD| characteristics of P–N junction diodes in three different modes of operation.

6.12 If the widths of the anode and the cathode of a
P–N junction diode are similar (Wanode ≈ Wcathode
�Ln,p), whereas the doping level in the cathode is
1000 times higher, estimate how much the saturation
current will change if

(a) the doping of the anode is increased 10 times
(b) the doping of the cathode is increased 10

times

6.13 The doping and geometric parameters of a P–N
junction diode are ND = 1020 cm−3, Wcathode =
1 μm �L p, NA = 5 × 1015 cm−3, Wanode =
10 μm �Ln , and the junction area AJ = 500 ×
500 μm2. Calculate the saturation current IS , and
then use this result to obtain the forward voltage

that corresponds to a current of 100 mA, if the
semiconductor material is

(a) Si (μn = 1450 cm2/V · s, μp = 500 cm2/V · s,
ni = 1.02 × 1010 cm−3)

(b) SiC (μn = 380 cm2/V · s, μp = 70 cm2/V · s,
ni = 1.6 × 10−6 cm−3) A

6.14 As a layout designer, determine the radius of a P–
N junction diode with a circular shape so that the
current rating of the diode is 1 mA, specified at 0.6 V
and room temperature. The needed technological
parameters are as follows: the doping level of the
N type is much higher (ND  NA), the doping level
of the P type is 1017 cm−3, the diffusion constant
of minority electrons is 20 cm2/s, and the width of
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(b)

(a)

(c)

0.7
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)

0.8

(1)  IS � 1.65 � 10�10 A
       n � 2.27
       rS � 0

(2)  IS � 1.92 � 10�19 A
       n � 1
       rS � 5 �

(3)  IS � 10�12 A
       n � 1.7
       rS � 5 �

Figure 6.24 A set of measured ID–VD points (symbols) is fitted with three different sets of
parameters (lines).

the neutral P-type region is 1 μm. Assume that the
emission coefficient is n = 1.2.

6.15 The saturation current of a P–N junction diode is
IS = 10−11 A. The breakdown voltage of this diode
can be increased if the doping of the lower-doped N-
type region is reduced from ND = 5 × 1016 cm−3

to ND = 5 × 1014 cm−3 � NA . How would this
reduction of ND influence the saturation current?
Calculate the new saturation current, assuming that
the carrier mobility does not change.

6.16 Doping levels of a silicon P–N junction are
NA = 1020 cm−3 and ND = 1017 cm−3.
In thermal equilibrium, the current of minority
electrons (In,p→n ) is balanced by the current of
majority electrons (In,n→p ). Likewise, the current
of minority holes (Ip,n→p) is balanced by the
current of majority holes (Ip,p→n). Calculate the
currents of minority electrons and minority holes.
Assume that the thermal velocity of both minority
electrons and minority holes is the same: vth =
2 × 105 cm/s. The area of the P–N junction is AJ =
2.25 × 10−4 cm2. A

6.17 The current of majority holes (Ip,p→n), which is
equal to the current of minority holes in thermal
equilibrium (Ip,n→p ), reduces exponentially with
the applied reverse-bias voltage VR . Assuming that
Ip,n→p = 10−13 A and that it remains constant,
calculate the total reverse-bias current for VR =
0.01 V, 0.05 V, 0.10 V, 0.20 V, and 0.50 V at room
temperature.

6.18 The doping levels of a silicon P–N junction diode
are ND = 1020 cm−3 and NA = 1018 cm−3.
The width of both neutral regions is 1 μm, and the

diffusion constant of electrons is Dn = 9 cm2/s.
Assuming that the reverse-bias current is equal to
the saturation current IS , calculate the number of
electrons that pass through the P–N junction each
second if the area of the junction is (a) 100 μm
×100 μm and (b) 1 μm ×1 μm.

6.19 Find the missing result in Table 6.2.

TABLE 6.2

VD (V) 0.70 0.72 0.74
ID (mA) 0.6 ? 2.3

6.20 Find the parasitic resistance, if the current of the
diode from Problem 6.15 is ID = 17 mA at VD =
0.88 V. A

6.21 A set of experimental ID–VD data, shown by the
symbols in Fig. 6.24, is fitted with three different
sets of parameters (the lines). Identify the set of
parameters correspondsing to each of the lines.

6.22 The SPICE parameters of the diode used in the
circuit of Fig. 6.10 are IS = 10−12 A, n = 1.4,
and rS = 10 �. The current flowing through the
circuit is found to be ID = 3.5 mA. Knowing that
the thermal voltage is Vt = 26 mV, determine the
voltage between the diode terminals, VD . A

6.23 The operating junction temperature of a P–N
junction diode is estimated to be T = 75◦C.
To obtain the SPICE parameters for simulations
with 75◦C as the nominal temperature, two ID–
VD points are measured at 75◦C: ID1 = 0.57 mA,
VD1 = 0.67 V; ID2 = 1.28 mA, VD2 = 0.70 V.
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(a) Calculate IS and n.
(b) What would IS and n be if these measurements

were performed at 0◦C? A

6.24 A forward-biased diode is used as a temperature
sensor. To calibrate the sensor, the diode is placed
in a melting ice and boiling water, and the following
forward voltage drops are measured: 0.680 V and
0.480 V, respectively. What is the temperature when
the forward voltage drop of the diode is 0.618 V?

6.25 The avalanche breakdown of a silicon N+–P
junction, with the doping level of NA = 1016 cm−3,
occurs when the electric field at the junction reaches
EB R = 4 × 105 V/cm.

(a) Calculate the kinetic energy of the minority
electrons that trigger the avalanche process.
Compare this energy to the energy gap of
silicon. The electron mobility in the P-type
region is μn = 1200 cm2/V · s and the electron
effective mass is m∗ = 0.26m0.

(b) When the temperature of the P–N junction
is increased to 125◦C, the electron mobility
drops to μn = 600 cm2/V · s. Calculate the
average kinetic energy of the minority elec-
trons for the same electric field (E = 4 ×
105 V/cm) at this temperature. Is this electric
field sufficient to cause avalanche breakdown
at this temperature?

6.26 Derive the equation for the temperature coefficient
of the avalanche breakdown field,

T Cav = 100

EB R

d EB R

dT

(
%
◦C

)

assuming that the mobility is determined by the
phonon scattering: μn = A pT −3/2. Calculate
T Cav at 300 K.

6.27 Estimate the ratio of generation currents through a
reverse-biased silicon diode at Toper = 85◦C and
Tr = 27◦C if it is assumed that the generation
process is dominated by midgap R–G centers.

6.28 (a) A P–N junction has zero-bias (VR = 0 V)
capacitance per unit area Cd = 0.722 mF/m2.
What is the depletion-layer width?

(b) Assuming equal and uniform doping on either
side of the P–N junction, NA = ND =
5 × 1016 cm−3, calculate the number of
uncompensated donor ions per unit area that
exist on either side of the P–N junction.

(c) Given that a unit of charge (q = 1.6×10−19 C)
is associated with every uncompensated donor,
calculate the density of the capacitor’s positive
charge. A

(d) Because VR = 0 V, QC = Cd VR = 0 C/m2

gives a completely different result from the one
obtained in part (c). What is the explanation?

(1) QC = Cd VR cannot be used in this case
(Q = CV relationship is valid only in
special cases).

(2) There is equal density of negative charge,
due to the acceptors in the depletion layer,
so that the total charge is QC = 0 C/m2.

(3) The built-in voltage Vbi is not included,
i.e., QC = Cd (VR + Vbi ).

6.29 The Cd–VR characteristic of a P–N junction
capacitor is represented by Table 6.3. Assuming
ND = NA = 5 × 1016 cm−3, calculate the density
of positive charge at VR = 5 V. A

6.30 (a) If a sinusoidal signal voltage with zero-to-
peak amplitude of 500 mV is superimposed
to VR , calculate the maximum density of
positive charge for the P–N junction capacitor
of Problem 6.29. Using the result for VR = 5 V,
obtained in Problem 6.29, calculate the charge
density increase due to the peak signal voltage.

(b) By using the capacitance definition, the charge
density increase can be approximated as
�QC ≈ Cd�vC , where Cd is assumed to
be constant and equal to the zero-signal value
Cd (VR). Calculate �QC with this method, and
compare it to the result from part (a). A

6.31 Assume the signal voltage of Problem 6.30 is
increased to 5 V (zero-to-peak) so that the instan-
taneous voltage vC oscillates between 0 and 10 V.
(a) Using the results of Problems 6.29 and 6.28c,

calculate the charge density decrease due to the
negative signal peak.

(b) Calculate the charge density decrease from
�QC ≈ Cd�vC .

(c) The results from parts (a) and (b) of Prob-
lem 6.30 are very close; however, this time the
�QC ≈ Cd�vC method gives different result.
Why?

(1) The method in part (a) ignores the negative
charge due to the acceptors in the depletion
layer.

(2) The method in part (b) ignores Vbi .
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TABLE 6.3

VR (V) 0.0 1.0 2.0 3.0 4.0 4.5 5.0 5.5
Cd (mF/m2) 0.722 0.386 0.295 0.248 0.218 0.206 0.197 0.188

(3) The method in part (b) is meaningless for
�vC < 0.

(4) Cd changes with VR .

6.32 The doping levels of an abrupt P–N junction are
such that ND  NA . At what point is the
maximum of the electric field when a reverse bias is
applied?
(1) x = −wn (the edge of the depletion layer in the

N-type region)
(2) x = −wn/2
(3) x = 0
(4) x = wp/2
(5) x = wp (the edge of the depletion layer in the

P-type region)

6.33 The N-type and P-type doping levels of an abrupt
P–N junction are ND = 1017 cm−3, and NA =
1015 cm−3.
(a) Calculate and compare the zero-bias depletion

layer widths in the N- and P-type regions.
(b) Calculate the maximum electric field in the

depletion layer.
(c) Calculate the zero-bias capacitance per unit

area. A

6.34 The range of operating voltages of an abrupt P–N
junction capacitor is 0–10 V. What is the minimum
capacitance that can be achieved, if the maximum
capacitance is 2.5 pF? The built-in voltage is Vbi =
0.71 V.

6.35 The possibility to vary the capacitance by changing
the reverse-bias voltage VR enables the capacitor
of Problem 6.15 to be used as a tuning element
in microwave circuits. If the operating point of the
capacitor is VR = 5 V, determine the capacitor
sensitivity dC/dVR .

6.36 The donor and acceptor concentrations at each side
of a P–N junction are given in Table 6.4. Determine
ρcharge(x) in the depletion layer to demonstrate that
this is a linear P–N junction.
(a) Calculate the built-in voltage Vbi . A
(b) Calculate the zero-bias capacitance per unit area

and the capacitance at VR = 20 V.

(c) Calculate ND of an abrupt P–N junction (NA =
1020 cm−3), so that it has the same zero-bias
capacitance as the P–N junction in part (b).
Calculate the capacitance at VR = 20 V and
compare it to the result in part (b). Comment on
the result.

(d) Calculate and compare the maximum zero-bias
electric fields at the P–N junctions of parts (b)
and (c). A

TABLE 6.4

x (μm)
−5.0 0.0 5.0

ND (cm−3) 6 × 1015 3.5 × 1015 1015

NA (cm−3) 1015 3.5 × 1015 6 × 1015

6.37 (a) The charge density at a linear P–N junction
can be expressed by ρcharge = −5 × 108x ,

where x is in m and ρcharge in C/m3. Design the
donor concentration of an abrupt P–N junction
(NA  ND), so that the zero-bias maximum
field is the same as in the case of the linear
junction. Assume Vbi = 0.6 V for the linear,
and Vbi = 0.9 V for the abrupt P–N junction.

(b) Calculate and compare the maximum electric
fields at these junctions at VR = 20 V.

6.38 The capacitance of a P–N junction is Cd (0) =
3.0 pF and Cd (5V ) = 1.33 pF at VR = 0 V and
VR = 5 V, respectively. If Vbi = 0.76 V, determine
the grading coefficient m (SPICE parameter).

6.39 Derive the equation for the dependence of the
generation current (IG ) on the applied reverse-bias
voltage (VR) at an abrupt P+–N junction. Use the
derived equation to calculate the generation current
at VR = 10 V if it is known that the generation
current for very small reverse-bias voltages is
IG (VR ≈ 0) = 100 pA and the built-in voltage at
the P+–N junction is Vbi = 1.0 V.

6.40 The generation current of a silicon diode is 112.5 pA
at VR = 1 V and 238.7 pA at VR = 10 V. What is
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the grading coefficient of this diode if the built-in
voltage is Vbi = 0.80 V?

6.41 Identify the correct statement:
(a) If the forward bias across a P–N junction is sud-

denly switched off, the excess minority carriers
continue to flow in the same direction until their
concentration drops to the equilibrium level.

(b) If the forward bias across a P–N junction
is suddenly switched off, the current changes
its direction but continues to flow until the
minority-carrier concentrations reach the equi-
librium levels.

6.42 A current of 1 mA flows through a P–N junction
diode. Calculate the associated stored-charge capac-
itance, if the transit time is τT = 10 ns, the emission
coefficient of the diode is n = 1.2, and the thermal
voltage is Vt = 26 mV.

6.43 A P–N junction diode with τT = 100 ns conducts a
forward-bias current ID = 4.3 mA. At time t = 0,
the circuit conditions change, so that a reverse-bias
voltage VE = 20 V is connected in series with the
diode and a resistor R = 1 k�.
(a) Because of the strong discharging current (≈

20.7 V/1 k� = 20.7 mA), the contribution of
the recombination to the stored charge removal
can be neglected. How long will it take for the
stored charge to be removed?

(b) If VE = 0, the diode is discharged with a much
smaller current (≈ 0.7 V/1 k� = 0.7 mA),
so that the contribution from the recombination
cannot be neglected. If it is found that it takes
trs = 200 ns for the stored charge to be
removed, how much stored charge is removed
by recombination? A

6.44 The SPICE parameters of a P–N junction diode are
IS = 10−11 A, n = 1.4, rS = 0, and τT = 10 ns.

What is the value of the stored charge if the forward
voltage across the diode is VD = 0.7 V? A

6.45 A diode circuit is simulated by SPICE with
four different sets of parameters. The results for
the current flowing through the diode are shown
in Fig. 6.25. Identify which set of parameters
corresponds to each of the simulation results.

wp

np-max (t2)

x

t0
t1

t2

np(x)

Figure 6.26 Concentration diagrams of minority
electrons during diode turnoff (stored charge re-
moval).

6.46 The voltage vpulse in the circuit of Fig. 6.20a
rapidly changes from 5 V to 0 V at t = t0. As
a result, the concentration of minority electrons
starts changing as in Fig. 6.26. Solve the continuity
equation to find the change of the maximum electron
concentration with time: n p−max(t). If τn = 10 ns,
how long does it take for the maximum of the excess
electron concentration to drop to half of its original
value?

6.47 The technological parameters of a P–N+ GaAs
diode are as follows: NA = 5 × 1016 cm−3, Dn =
30 cm2/V · s, ni = 2.1×106 cm−3, and Ln = 5 μm.
Calculate the transit time τT (SPICE parameter).

6.48 Derive the dependence of τT on Dn for the case
of a short diode (Wanode � Ln), and calculate the

5
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3020100
Time (ns)

I D
 (

m
A

)

(a) (d)(b)

(c)

(1)  tT  � 0
      Cd(0) � 0

(2)  tT  � 12 ns
      Cd(0) � 0

(3)  tT  � 0
      Cd(0) � 4 pF

(4)  tT  � 12 ns
      Cd(0) � 4 pF

Figure 6.25 SPICE transient analysis
of a diode circuit. The diode current is
obtained with four different sets of diode
parameters.
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transit time for Wanode = 1 μm. Use the same
technological parameters as in Problem 6.47.

6.49 The doping levels in an abrupt P–N junction are
NA = 1015 cm−3 and ND = 1017 cm−3.
Determine the generation current per unit area at
reverse-bias voltage of VR = 5 V and compare it
to the diffusion-current density for

(a) Si (εSi = 11.8ε0, ni = 1.02 × 1010 cm−3)
(b) 3C SiC (εSiC = 10ε0, ni = 1 cm−3) A
Assume midgap R–G centers and equal minority-
carrier lifetimes for electrons and holes in both
materials: τn = τp = 0.5 μs. For simplicity,
assume equal diffusion constants for both electrons
and holes in both materials: Dn,p = 10 cm2/s.

REVIEW QUESTIONS

R-6.1 The difference between the Fermi levels in an N-type and a P-type semiconductor is 0.8 eV.
What is the built-in voltage if these materials create a P–N junction? What is the barrier
height for the electrons and the holes at the P–N junction?

R-6.2 In thermal equilibrium, the current of majority electrons able to go over the barrier to appear
in the P-type region is balanced by the current of minority electrons that easily roll down
from the P-type to the N-type region. How is this balance maintained in materials with large
barrier heights? For example, the barrier height at a P–N junction on SiC can be as high as
3 eV, meaning that practically no electron can move from the N-type to the P-type region. If
the total current is to be zero, there should be no electrons rolling down from the P-type to
the N-type region. Why?

R-6.3 If the temperature is increased, there are more electrons at higher energy levels (refer to
Fermi–Dirac and Maxwell–Boltzmann distributions). This means the number of majority
electrons able to go over the barrier is increased. If the balance with the current of the
minority carriers is to be maintained, what does increase the minority-carrier current?

R-6.4 Does the minority-carrier current of a reverse-biased P–N junction depend significantly on
the value of the reverse-bias voltage?

R-6.5 If the temperature is increased, will the minority-carrier current be increased as well? If so,
is the temperature dependence linear, quadratic, exponential, or logarithmic?

R-6.6 If the junction is exposed to light so that the light generates electron–hole pairs, will the
reverse-bias current (leakage current) be increased?

R-6.7 Consider a forward-biased P–N junction. Is the current of electrons in the N-type region (the
majority carriers) due to the drift or diffusion?

R-6.8 Is the electric field in the neutral regions large or small? Why can the voltage drop in the
neutral regions be neglected compared to the voltage drop in the depletion layer? Is the
electric field in the neutral regions large enough to produce a significant drift current of the
majority carriers? Why?

R-6.9 What is the effect of the forward bias on the energy barrier at the P–N junction?
R-6.10 Why is the increase in the number of electrons able to overcome the energy barrier at the

P–N junction exponentially dependent on the applied forward-bias voltage?
R-6.11 What happens to the electrons that overcome the energy barrier at the P–N junction and

appear in the P-type region? What are these electrons called?
R-6.12 Is the drift current of the minority carriers significant? The diffusion current?
R-6.13 How do the excess minority-carrier concentrations at the edges of the depletion layer depend

on the forward-bias voltage? Are these the maximum concentrations of the minority electrons
and holes, respectively?

R-6.14 How does the avalanche breakdown voltage depend on temperature? Why?
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R-6.15 We have seen that energy barriers of sufficient height can block electron motion. Is the barrier
width important as well? Can the energy barrier be so narrow that it lets some electrons
through? If so, what is this effect called?

R-6.16 Can a P–N junction diode be used as a temperature sensor?
R-6.17 Why does the capacitance of a reverse-biased P–N junction depend on the reverse-bias

voltage? What reverse-bias voltage provides maximum capacitance?
R-6.18 Abrupt and linear P–N junctions represent two extreme cases. What are the similarities and

what are the differences in the derived equations for Cd–VR dependence?
R-6.19 If the forward-bias voltage is suddenly switched off, what happens to the excess minority

carriers? In which direction does the current flow immediately after the voltage has been
switched off?

R-6.20 What is the SPICE parameter that accounts for the stored-charge effect?
R-6.21 Is the transit time related to the minority-carrier lifetime? If so, how?
R-6.22 Is the transit time related to the reverse-recovery time? If so, how?



7 Metal–Semiconductor Contact
and MOS Capacitor

The P–N junction is a fundamental device structure. Many concepts from Chapter 6 on
P–N junctions can be applied to junctions/contacts of other types, such as semiconductor–
metal and semiconductor–dielectric contacts. There are, however, important differences.
The essential similarity is that a built-in voltage appears at any junction of materials
with different work functions; this is because the mobile electrons in such materials have
different potential energies, so they are redistributed around the junction to bring the system
into thermal equilibrium. A very important difference is that band offsets appear at the
junction of two materials with different electron affinities; this is a new concept that did
not appear in the P–N junction chapter because the electron affinities of both P-type and
N-type silicon are equal. Both the built-in voltage and the band offset are directly related
to potential-energy barriers, but there is a fundamental difference: the barrier due to the
work-function difference can be altered by a voltage applied across the junction, whereas
the barrier due to the band offset is a material constant.

Based on this difference, junctions between two materials can be classified into
homojunctions (these are the P–N junctions of identical semiconductors) and heterojunc-
tions. With this classification, it can be stated that this chapter extends the homojunc-
tion concepts from the previous chapter to the more general case of a heterojunction.
The term heterojunction, however, tends to be used specifically for junctions of two
different types of semiconductors.1 Nonetheless, junctions between semiconductors and
metals or between semiconductors and dielectrics are “heterojunctions” in qualitative
terms. For example, dielectrics may be modeled by energy-band diagrams that are not
qualitatively different from the energy-band diagram of semiconductors, which means that

1Specific heterojunctions of different semiconductors will be considered in the sections on
heterojunction bipolar transistors (Section 9.4), lasers (Section 12.3), and high-electron-mobility
transistors (HEMT) (Section 10.2).

252
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a semiconductor–dielectric junction is not qualitatively different from the heterojunction
of two different semiconductors.

The first part of this chapter is devoted to a specific type of “heterojunction”—the
metal–semiconductor contact. The second part of the chapter is devoted to the metal–
oxide–semiconductor (MOS) capacitor (obviously, the MOS structure can be considered
as a system of two “heterojunctions”).

7.1 METAL–SEMICONDUCTOR CONTACT

In practical terms, there are two different types of metal–semiconductor contact: (1) recti-
fying contacts that are widely known as Schottky diodes and (2) ohmic contacts.

Schottky diodes have current–voltage characteristics very similar to those of the P–N
junctions, but there is also an important difference: Schottky diodes operate with a single
type of carrier (the majority carriers). The irrelevance of the minority carriers means that
the stored-charge effect does not exist, which makes the Schottky diodes suitable for fast
switching applications.

Ohmic contacts have linear current–voltage characteristics, so they enable the semi-
conductor devices to be contacted by metal conductors.

7.1.1 Schottky Diode: Rectifying Metal–Semiconductor Contact
This section describes the principles of metal–semiconductor contacts on the example of
rectifying contacts (Schottky diodes). Energy-band diagrams are used in the explanations
because they are by far the best tool for comprehending junction phenomena.

Figure 7.1a shows the energy-band diagrams of an N-type semiconductor and a metal
that are separated from each other. The energy-band diagrams of these two materials are
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Figure 7.1 Illustration of metal–semiconductor contact in thermal equilibrium. (a) Separated N-type semiconductor and
metal. (b) N-type semiconductor and metal in electrical contact. (c) Ideal physical contact between N-type semiconductor
and metal.
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TABLE 7.1 The Work Functions and Electron
Affinities of the Most Frequently
Used Materials at 300 K

Work Function Electron Affinity
Material qφm (eV) qχs (eV)

Al 4.1
Cr 4.5
Ni 5.15
Pt 5.7
PtSi 5.4
W 4.6
WSi2 4.7
Si 4.05
GaAs 4.07
Ge 4.0
SiO2 1
N+ Si 4.05 4.05
P+ Si 5.17 4.05

drawn so that the vacuum levels are matched. Remember, the vacuum level is the energy
level of a completely free electron (an isolated electron in vacuum). The electrons in solids
have negative energies with respect to the vacuum level: they need some energy to be able
to liberate themselves from the attracting forces in the crystal and become free electrons.
The energy (work) that is needed to remove an average electron (an electron at the Fermi
level) from the metal is called the work function and is labeled by qφm in Fig. 7.1a. In
other words, the work function expresses the position of the Fermi level with respect to
the energy of a free electron in vacuum (vacuum level). The work functions for different
metals are material constants, and some of them are given in Table 7.1.

When dealing with semiconductors, the same definition of the work function has to be
used, regardless of the fact that, typically, there are no electrons at and around the Fermi
level. In Fig. 7.1a, the work function of the semiconductor is labeled by qφs . The work
function of semiconductors is not a material constant but depends on the doping type and
level because the position of the Fermi level is changed with the doping. However, the
doping does not influence the position of the bands with respect to the vacuum level. The
position of the bottom of the conduction band with respect to the vacuum level is referred to
as the electron affinity, labeled qχs in Fig. 7.1a. The electron affinity is equal to the energy
needed to remove a free electron with zero kinetic energy (an electron at the bottom of the
conduction band) from the semiconductor. The electron affinities are material constants
and for some important semiconductors and insulators are also given in Table 7.1.

In Fig. 7.1a, the Fermi level of the N-type semiconductor is higher than the Fermi level
of the metal, which means that the mobile electrons in the semiconductor are at higher
energy levels than the electrons in the metal.
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Thermal Equilibrium

Consider now what happens when an electric contact is made between the two materials—
for example, by the wire (short circuit) illustrated in Fig. 7.1b. In this case, the two materials
represent a single system. The electrons from the higher energy levels in the semiconductor
move through the wire into the metal, creating a depletion layer at the semiconductor
surface. The uncompensated positive donor ions in the depletion layer create an electric
field that is associated with the appearance of a potential difference between the surface
of the metal and the bulk of the semiconductor. When thermal equilibrium is established,
this potential difference is exactly equal to the initial difference between the Fermi levels,
which means that the Fermi levels in the semiconductor and the metal are now perfectly
aligned to each other. We already know that the Fermi level of a single system in thermal
equilibrium is constant.

There is a gap between the metal and the semiconductor in Fig. 7.1b. In reality, it is
very likely that there will be a minute gap of the order of atomic distances at the interface.
Although this does influence the properties of the metal–semiconductor contact, it is not
of essential importance. For easier understanding, it is helpful to assume ideal contact. The
ideal metal–semiconductor contact is illustrated in Fig. 7.1c. The energy-band diagram is
constructed in the following way:

1. The Fermi level (dash–dot line in Fig. 7.1c) is drawn first.
2. The conduction and valence bands are drawn in the neutral region of the

semiconductor. The bands are placed appropriately with respect to the Fermi level,
to express the doping level of the semiconductor (the energy-band diagram in the
neutral region should be the same as in Fig. 7.1a).

3. Inside the metal, no change is practically observed because of the abundance
of electrons and the related fact that any electric field penetrates only to atomic
distances.

4. At the semiconductor–metal interface, the energy-band offset between the semi-
conductor and the metal is preserved. Accordingly, the interface positions of EC

and EV are determined so that they remain at the same energy positions with
respect to EF in the metal. Hence, the difference between EF and EC at the
interface is

qφB = qφm − qχs (7.1)

This is the energy barrier for the electrons in the metal. It is independent of either
semiconductor doping or bias applied because both qφm and qχs are material
constants.

5. The energy bands are bent in the depletion layer of the semiconductor to join the
bulk and interface levels. This bending is equal to the original difference between
the Fermi levels of the metal and the semiconductor:

qVbi = qφm − qφs = qφms (7.2)

This is the energy barrier for the electrons in the semiconductor. It is directly
related to the built-in voltage Vbi in the depletion layer of the semiconductor.
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Reverse Bias

Now, we can consider the effects of applied voltage between the metal and the semi-
conductor. Figure 7.2a illustrates the case of reverse bias. Applying negative voltage
VD = −VR to the metal with respect to the N-type semiconductor means that its Fermi
level is set above the Fermi level of the semiconductor by the amount qVR . Remember that
potential energy = −q(electric potential).

The reverse bias VD = −VR increases the energy barrier height for the electrons in
the semiconductor to q(Vbi + VR). The increased energy barrier in the depletion layer of
the semiconductor prevents the electrons from the semiconductor from moving through the
contact.
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The barrier for the electrons in the metal (qφB) does not change. The minor number
of electrons in the metal that are able to overcome the potential barrier and appear in the
N-type semiconductor make the reverse-bias current of the Schottky diode. Given that qφB

is bias-independent, the reverse-bias current does not depend on the reverse-bias voltage:

ID = −IS (7.3)

If IS is considered as a parameter, as is the case in SPICE, the reverse-bias current
of the Schottky diode is expressed in the same way as for P–N junction diodes. The
difference between Schottky diodes and P–N junctions is in the ingredients of IS . In the
case of the Schottky diode, IS is due to thermal emission of electrons over the barrier qφB .
This is different from the IS current due to the minority carriers in P–N junctions. It is
similar, however, to the injection of carriers over the reduced barrier in forward-biased
P–N junctions. Following reasoning analogous to that used for carrier injection over a
P–N junction barrier [Eq. (6.7)], we can conclude that the number of electrons able to go
over qφB is proportional to exp(−qφB/kT ). More precisely, the current due to thermal
emission is given by

IS = AJ A∗T 2e−qφB/kT (7.4)

where AJ is the diode area, T is absolute temperature, qφB is the barrier height, and A∗
is the so-called effective Richardson constant. For N-type Si, A∗ ≈ 120 A cm−2 K−2; and
for N-type GaAs, A∗ ≈ 140 A cm−2 K−2.

There is a second-order effect that significantly influences the reverse-bias current of a
Schottky diode. This effect is due to the appearance of an image force between the electrons
in the semiconductor and the nearby highly conductive metal. It is shown that the barrier
height reduction is

�φB =
√

q Emax

4πεs
(7.5)

where Emax is the maximum electric field.2 This field is the same as for the abrupt P–
N junction [Eqs. (6.31) and (6.41)] and is therefore proportional to

√
VR . Clearly, this

effect causes a significant increase in the reverse-bias current IS of the Schottky diode with
increasing reverse-bias voltage.

Forward Bias

Analogously to the case of the P–N junction, forward-bias voltage VD reduces the energy
barrier in the depletion layer to q(Vbi −VD) (Fig. 7.2b). This enables a number of electrons
from the semiconductor to overcome the barrier and appear in the metal. The number of
electrons that move in the opposite direction, from the metal into the semiconductor, is
the same as in the case of reverse bias. Importantly, the current of the electrons from the

2E. H. Rhoderic, Metal–Semiconductor Contacts, Clarendon Press, Oxford, 1978; S. M. Sze, Physics
of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
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semiconductor dominates. Moreover, this current increases exponentially with the forward-
bias voltage. Again, this is due to the fact that the electrons are exponentially distributed
along the energy in the conduction band. As the energy barrier height is reduced by qVD,
the number of electrons able to go over the barrier increases exponentially with VD .

The different physical background of IS notwithstanding, the forward-bias current of
the Schottky diode can be expressed in the same way as the forward-bias current of the
P–N junction:

ID = ISeVD/nVt (7.6)

Of course, the values of the parameters IS and n should be adjusted to fit the characteristic
of a particular diode. In that sense, there is no different SPICE model for the Schottky
diode. The values of the diode parameters are adjusted appropriately to reflect the
characteristics of Schottky diodes.

Although the same mathematical equation can be used to model the ID–VD character-
istic of Schottky diodes, there are important practical differences. Typically, the built-in
voltage (Vbi ) is smaller in the case of Schottky diodes.3 The current of silicon P–N
junctions becomes significant at about 0.7 V, whereas the same current can be achieved by
a voltage as low as 0.2 V in the case of the Schottky diodes. This represents an advantage
of the Schottky diodes in applications where the power loss VD ID across the diode is
critical. This improvement, however, is achieved at the expense of increased reverse-
bias (saturation) current IS . Mathematically, it can be seen that IS in Eq. (7.6) has to
be significantly increased to account for the significant increase in ID . This can also be
concluded from the energy bands. Using a metal with smaller qφm to reduce the built-in
voltage (Eq. 7.2) leads to a related reduction of qφB [Eq. (7.1)], and hence an increase in
IS [Eq. (7.4)]. In the extreme case of qφB = 0, electrons move freely from the metal into
the semiconductor and vice versa—this is a perfect ohmic contact.

Another important difference between P–N junction and Schottky diodes is in the
dynamic characteristics. In the case of a forward-biased P–N junction diode, the electrons
from the N-type semiconductor appear as minority carriers in the P-type region after
they pass through the junction. This leads to accumulation of the minority carriers at the
sides of the depletion layer—the stored charge. When the forward-bias voltage is switched
off, the steady-state reverse-bias current cannot be established before the stored charge is
removed.4 In Schottky diodes (Fig. 7.2b), the electrons from the silicon appear in the metal
after they passed through the contact. These electrons appear among the huge number of
electrons already existing in the metal. They are not minority carriers and do not make any
difference. Due to the absence of the stored-charge effects, the Schottky diode responds
much more quickly to voltage changes than the P–N junction diode.

3Note from Eq. (7.2) that Vbi of Schottky diodes can be technologically altered by using metals with
different work functions (φm).
4The effects of the stored charge on the dynamic characteristics of the P–N junction diode are
explained in Section 6.4.
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EXAMPLE 7.1 Designing and Comparing PIN and Schottky Diodes
for Power Applications

Both P–N junction and Schottky diodes are frequently used for power applications. To increase
the breakdown voltage and reduce the parasitic resistance, a very-low-doped region, labeled I, is
sandwiched between N+ and P+ regions to create so-called PIN diode, or between the metal and
the highly doped semiconductor body in the case of the Schottky diode. This example compares
Si PIN and Schottky power diodes, with the same area AJ = 0.1 cm2, and the same doping level
in the low-doped region of ND = 5 × 1014 cm−3. The Schottky diode is created by depositing
tungsten onto the low-doped Si.

(a) Assuming maximum allowable field of Emax = 20 V/μ m, calculate the needed width
of the low-doped (drift) layer so that the depletion layer does not extend into the N+
region. What reverse-bias voltage (maximum operating voltage) corresponds to Emax?

(b) Calculate the saturation currents of the PIN and the Schottky diodes and compare
them. Assume the following value for the diffusion coefficient of minority holes:
Dp = 50 cm2/s.

(c) Neglecting the parasitic resistances, calculate and compare the forward voltages for an
operating current IF = 5 A. Discuss the results in terms of power loss. (Assume an ideal
emission coefficient n = 1.)

(d) Can the area of the PIN diode be designed to have the same forward voltage at IF = 5 A
as the Schottky diode?

(e) Assuming mobility of μn = 1400 cm2/V · s, calculate the resistance of the drift region.
What are the forward voltage drops when this resistance is included?

(f) Including the barrier-lowering effect, calculate the reverse current of the Schottky diode
at maximum reverse voltage. Discuss the result in terms of power dissipation.

SOLUTION

(a) The theory of asymmetrical abrupt P–N junction, presented in Section 6.3.2, can also
be applied to the case of Schottky diode. This is because a significant depletion layer
appears only in the N-drift region in both cases. From Eq. (6.31), the maximum
depletion-layer width is obtained as

wn−max = εs Emax/(q ND) = 11.8 × 8.85 × 10−1220 × 106

1.6 × 10−19 × 5 × 1020 = 26 μm

Therefore, the width of the drift layer should be wn−epi ≈ 26 μm. Neglecting the small
Vbi in comparison to VR , the maximum operating voltage is calculated from Eq. (6.45)
as

VR−max = w2
n−max q ND/(2εs) = (26 × 10−6)2 1.6 × 10−19 × 5 × 1020

2 × 11.8 × 8.85 × 10−12 = 260 V
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(b) Noting that NA  ND , Eq. (6.17) can be simplified to calculate the saturation current
of the PIN diode:

IS = AJ qn2
i

Dp

wn−epi ND

= 10−5 × 1.6 × 10−19 × (1.02 × 1016)2 0.005

26 × 10−6 × 5 × 1020

= 6.4 × 10−11 A

The barrier height qφB is needed to be able to calculate the saturation current of the
Schottky diode. From Eq. (7.1), we find

qφB = qφm − qχs = 4.6 − 4.05 = 0.55 eV

where the value for qφm is obtained from Table 7.1. From Eq. (7.4),

IS = AJ A∗T 2e−qφB/kT = 10−5 × 120 × 104 × 3002 × e−0.55/0.2585 = 6.2 × 10−4 A

The saturation current of the Schottky diode is 6.2 × 10−4/6.4 × 10−11 ≈ 107 times
higher.

(c) Neglecting the parasitic resistances, the forward voltage can be obtained from the
equation

IF = ISeVF /Vt

for both PIN and Schottky diodes. For the PIN diode, it is

VF = Vt ln(IF/IS) = 0.02585 × ln(5/6.4 × 10−11) = 0.65 V

For the Schottky diode,

VF = 0.02585 × ln(5/6.2 × 10−4) = 0.23 V

The series contact resistances, the resistance of the drift region, and the substrate
resistance will add voltage to VF , so the actual forward voltage will be significantly
higher—part (d) of this example. Nonetheless, the difference between the PIN and
Schottky diodes of about 0.4 V will remain. At 5 A and an assumed 50% duty cycle,
this means a difference of 0.5 × 0.4 × 5 = 1 W of power dissipation.

(d) The equation IF = IS exp(VF/Vt ), which is applicable to both devices, shows that
IS of the PIN diode will have to be increased to the same value as in the case of the
Schottky diode so that IF = 5 A corresponds to the same VF in either case. Based on
the results from part (b), the needed increase in IS is 6.2×10−4/6.4×10−11 ≈ 107 times.
This increase can theoretically be achieved if the junction area is increased 107 times.
Practically, this is impossible because the needed area would be AJ = 0.1 × 107 cm2

(for the square shape, this is a square with the side equal to 10 m).
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(e) The conductivity of the drift region is

σ = qμn ND = 1.6 × 10−19 × 0.14 × 5 × 1020 = 11.2 (� · m)−1

The resistance is then

R = wn−epi/(σ AJ ) = 26 × 10−6

11.2 × 10−5 = 0.232 �

With IF = 5 A, the forward voltages of the PIN and Schottky diodes are VF = 0.65 +
0.232 × 5 = 1.81 V and VF = 0.23 + 0.232 × 10 = 1.39 V, respectively.

(f) The barrier height lowering is given by Eq. (7.5):

�φB =
√

q Emax/(4πεs) =
√

1.6 × 10−19 × 20 × 106

4π × 11.8 × 8.85 × 10−12 = 0.05 V

The reverse-bias current with the lower barrier qφB −q�φB = 0.55−0.05 = 0.50 eV is

IR = IS(VR−max) = 10−5 × 120 × 104 × 3002 × e−0.50/0.2585 = 4.3 mA

The power loss due to this current is not insignificant at VR−max = 260 V. Assuming
again a 50% duty cycle, it is 0.5 × 260 × 4.3 × 10−3 = 0.56 W.

7.1.2 Ohmic Metal–Semiconductor Contacts
The width of the energy barrier at a Schottky contact depends on the doping level in the
semiconductor. This is due to the dependence of the depletion-layer width on doping
(Section 6.3.2). Equation (6.45), which gives the depletion-layer width in an N-type
semiconductor as a part of one-sided (NA  ND) abrupt P–N junction, would also be
obtained for the case of a metal–N-type semiconductor contact if the Poisson equation was
solved. The heavily doped P-type semiconductor in the one-sided P–N junction behaves
similarly to the metal in the case of the Schottky diode, as far as the depletion layer is
concerned.

Figure 7.3 illustrates the contact between metal and heavily doped N-type semicon-
ductor. To express that the doping level is high, the semiconductor is called an N+ type.
Due to the high doping level, the energy barrier at the surface of the semiconductor is very
narrow. As a consequence, the electrons from the metal can tunnel through the barrier when
negative voltage is applied to the metal (Fig. 7.3a). As the applied voltage is increased, the
associated splitting of the Fermi levels increases the band bending, further narrowing the
energy barrier. This leads to a significant increase in the tunneling current.

Figure 7.3b illustrates the case of positive voltage applied to the metal. In this case the
electrons from the semiconductor not only go over the reduced barrier (as in the case of the
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Figure 7.3 Illustration of ohmic
metal–semiconductor contact with
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Schottky diode), but also tunnel through the barrier, significantly increasing the current.
Therefore, positive voltage at the metal also produces a current flow through the contact
that rapidly increases with the voltage increase. The electric characteristic of the contact
between a metal and a heavily doped semiconductor is equivalent to the characteristic of
a small resistance.

7.2 MOS CAPACITOR

Metal–oxide–semiconductor (MOS) capacitors exhibit sophisticated characteristics when
compared to the ordinary metal–dielectric–metal capacitors. It is the replacement of one
metal electrode by a semiconductor that leads to some unique effects. The dielectric in
the MOS capacitor has almost always been the silicon dioxide, or oxide, for short, so
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the standard term is MOS (metal–oxide–semiconductor). The MOS capacitor can be seen
as a structure consisting of two heterojunctions: (1) metal–dielectric and (2) dielectric–
semiconductor, where the dielectric is the silicon dioxide.

It is the high quality of oxide–semiconductor interface that enables practical applica-
tions of this device structure. For decades, a device-quality oxide–semiconductor interface
has been limited to one semiconductor only—silicon. It is this fact that makes silicon
by far the dominant semiconductor, in spite of the fact that many other semiconductors
have better bulk properties. Recently, device-quality oxide–semiconductor interfaces have
been developed on silicon carbide—a wide-energy-gap semiconductor with excellent bulk
properties.

The problems with the interface are due to the dangling atomic bonds at the
semiconductor surface that have to be electronically passivated to enable existence of
mobile charge at the semiconductor surface. This will be explained in Section 7.2.1. There
are no special effects at the metal–oxide interface. In fact, heavily doped polysilicon
has been typically used in the place of metal electrode, the reason being an important
technological effect that relates to the MOSFET structure. Accordingly, the energy-band
diagrams in this chapter will be shown for polysilicon gates.

MOS capacitors have been used in linear circuits and as the storage elements
in random-access memories (RAMs) and charge-coupled devices (CCDs). The real
importance of this structure, however, is that it is the central part of the most used device in
electronics—the metal–oxide–semiconductor field-effect transistor (MOSFET). The metal
(or heavily doped polysilicon) electrode of the MOS capacitor in a MOSFET is called the
gate. Accordingly, the metal/polysilicon electrode of the MOS capacitor will be referred
to as the gate, and the oxide will frequently be referred to as the gate oxide to distinguish
it from oxide layers that play other roles in integrated circuits.

7.2.1 Properties of the Gate Oxide and
the Oxide–Semiconductor Interface

The properties of thermally grown silicon dioxide films on silicon are summarized in
Table 7.2. A two-dimensional chemical-bond model of the oxide–semiconductor interface
is given in Fig. 7.4a. Although the oxide is not a crystal, the silicon and oxygen atoms are
packed in an orderly manner: each silicon atom is bonded to four oxygen atoms, and each
oxygen atom is bonded to two silicon atoms. Cells formed by one silicon atom and the

TABLE 7.2 Properties of Thermally Grown SiO2

Structure Amorphous silica in which Si atoms are
surrounded tetrahedrally by four O atoms:
Si–O distances vary from 0.152 to 0.169 nm,
Si–O–Si angles vary from 120◦ to 180◦,
O–Si–O angle is about 109.5◦.

Dielectric constant 3.9
Dielectric strength ≈ 107 V/cm
Energy gap ≈ 9 eV
Resistivity 1012–1016 � · cm
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four surrounding oxygen atoms have tetrahedral shapes in the reality (three dimensions) as
explained in Table 7.2. The energy-band model of the oxide–silicon interface is shown in
Fig. 7.4b. The energy gap of the oxide is about 9 eV. This value places the oxide among
the very good insulators—its energy gap is more than eight times larger than that of silicon
(1.12 eV). The large difference in the energy gaps of the oxide and the silicon means that
there must be discontinuities in the energy bands at the oxide–silicon interface; these band
discontinuities are called band offsets. The conduction-band offset is �EC = 3.2 eV. This
is the barrier that the electrons from the silicon face when they move toward the oxide. This
barrier is high enough to prevent any flow of electrons from the silicon into the oxide under
normal conditions. The valence-band offset is even larger: �EV = 9−3.2−1.12 ≈ 4.7 eV.
Of course, this is the barrier that stops the flow of holes from the silicon into the oxide.

Interface Traps and Oxide Charge

The average distance between the oxygen atoms in the oxide is larger than the distance
between the silicon atoms in the silicon. This means that some of the interface atoms
from the silicon cannot create Si–O bonds because they are missing oxygen atoms. The
atoms from the silicon that remain bonded only to three silicon atoms with the fourth bond
unsaturated (trivalent interfacial silicon atoms) represent interface defects. The energy
levels associated with the fourth unsaturated bond of the trivalent silicon atoms do not
appear in the conduction or the valence band, but rather in the silicon energy gap. It
is believed that every trivalent silicon atom introduces a pair of energy levels; one can
be occupied by an electron (acceptor type), and the other can be occupied by a hole
(donor type). Electrons and holes that appear on these levels cannot move freely because
there is a relatively large distance between the neighboring interfacial trivalent silicon
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atoms (these levels are localized and isolated from each other). Because these levels can
effectively trap mobile electrons and holes, they are called interface traps. Impurity atoms
and groups (such as H, OH, and N) can be bonded to the unsaturated bonds of the interfacial
trivalent silicon atoms, which results in a shift of the corresponding energy levels into the
conduction and the valence bands (defect B in Fig. 7.4). Although this process effectively
neutralizes the interface traps, it is not possible to enforce such a saturation of all the
interfacial trivalent silicon atoms, which means that the density of the interface traps can
never be reduced to zero. The interface trap density will be denoted by Nit to express the
number of interface trap per unit area (in m−2), or by q Nit to express the associated charge
per unit area (in C m−2).

Trivalent silicon atoms can also appear in the oxide; these are silicon atoms bonded
to three neighboring oxygen atoms with the fourth bond unsaturated (defect 1 in Fig. 7.4).
There are also a number of other possible defects in the oxide: nonbridging oxygen, oxygen
vacancy, interstitial silicon, silicon vacancy, and interstitial oxygen. All these defects are
illustrated in Fig. 7.4 as well. The oxide defects introduce energy levels in the oxide energy
gap, which can trap electrons and holes. The charge due to the trapped electrons and holes
onto the oxide defects is referred to as the oxide charge. Although the oxide traps do not
continuously exchange electrons and holes with the silicon, the oxide charge does affect
the electrons and holes in the silicon by its electric field. In general the oxide charge is
usually positive and is mostly located close to the oxide–silicon interface. The density of
oxide charge will be labeled Noc to express the number of charge centers per unit area
(in m−2), or q Noc to express it in C m−2.

Oxide Growth

It can be imagined that the density of the interface traps and oxide charge is largely
dependent on the processing conditions. Although it is possible to deposit oxide film onto
the silicon surface, such a process does not provide an oxide–silicon interface good enough
to be used in MOS capacitors. The density of interface traps in this case may exceed the
density of electrons/holes that can ever be attracted to the surface. This means that the
interface traps would make the appearance of any significant density of free carriers at the
silicon surface impossible.

A high-quality oxide–silicon interface can be achieved if the oxide is thermally grown
on the silicon surface. When the silicon is exposed to oxygen or water vapor at high
temperature (around 1000◦C), silicon dioxide is created through the following reactions:

Si + O2 ⇒ SiO2 (dry oxidation)

Si + 2H2O ⇒ SiO2 + 2H2 (wet oxidation)
(7.7)

This process of thermal oxidation, when conducted in an ultrapure atmosphere and
after a sophisticated cleaning of the silicon surface, produces a high-quality oxide–silicon
interface. Importantly, hydrogen is always present at the oxide–semiconductor interface so
it plays an important role in passivating dangling silicon bonds at the interface (refer to
defect B in Fig. 7.4). A specific post-metalization annealing is also performed to enhance
the effects of hydrogen-based passivation. With this, the density of the interface traps is
reduced to the order of 1010 cm−2. This has proved sufficient for the integrated circuits that
use gate oxides thicker than 5 nm. However, Si–H and S–OH bonds are rather weak and
can be dissociated during device operation, especially when the use of ultrathin oxides in
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modern devices results in a relatively high electric field in the oxide. It has been established
that Si≡N are much stronger and that they also provide interface passivation. Accordingly,
the gate oxides in modern devices are subject to nitridation conditions to improve interface
reliability. There are a number of different nitridation processes, the typical being high-
temperature annealing or direct oxide growth in N2O or NO. The percentage of nitrogen
that accumulates at the interface is rather low (several percents), but it has a significant
impact on the quality of the oxide–silicon interface.

The oxidation reaction takes place at the interface, which means that after a layer of
the oxide has been created, the oxygen or the water molecules must diffuse through this
already created layer to interact with the silicon. As a consequence, the growth rate is
slowed down as the oxide thickness is increased. The growth rate is very dependent on the
oxidation temperature, and it is also different for the dry (O2) and the wet (H2O) processes.
An increase in the oxidation temperature causes a significant increase in the growth rate,
which at any temperature is higher for wet processing.

The process of thermal oxidation cannot be used to create gate oxides of sufficient
quality with GaAs substrates. This is because the quality of the native oxide of GaAs
is not good enough to be used as a gate dielectric. Deposition of silicon dioxide onto
GaAs substrate creates a high density of interface traps. These facts practically prevent
implementation of a MOS capacitor with GaAs substrates.

EXAMPLE 7.2 Oxide Growth Kinetics

The dependence of the thermal oxide thickness (tox) on the oxidation time and temperature is
frequently modeled by the following equation:

tox

A/2
=

√
1 + t + τ

A2/4B
− 1

where A, B , and τ are temperature-dependent coefficients. The values of the coefficients A,
B , and τ are given in Tables 7.3 and 7.4, respectively (Source: L. E. Katz, Oxidation, in VLSI
Technology, S. M. Sze, ed., McGraw-Hill, New York, 1983, pp. 131–167). How long would it
take to grow 0.5 μm of SiO2 at 920◦C in a wet atmosphere? If dry oxidation is applied, what
would be the oxide thickness? Comment on the difference. Repeat the calculations for 1000◦C
and comment on the results.

TABLE 7.3 Rate Constants for Wet Oxidation of Silicon

Oxidation Parabolic Rate Linear Rate
Temperature Constant Constant
(◦C) A (μm) B (μm2/h) B/A (μm/h) τ (h)

1200 0.05 0.720 14.40 0
1100 0.11 0.510 4.64 0
1000 0.226 0.287 1.27 0
920 0.50 0.203 0.406 0
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TABLE 7.4 Rate Constants for Dry Oxidation of Silicon

Oxidation Parabolic Rate Linear Rate
Temperature Constant Constant
(◦C) A (μm) B (μm2/h) B/A (μm/h) τ (h)

1200 0.040 0.045 1.12 0.027
1100 0.090 0.027 0.30 0.076
1000 0.165 0.0117 0.071 0.37

920 0.235 0.0049 0.0208 1.40
800 0.370 0.0011 0.0030 9.0
700 — — 0.00026 81.0

SOLUTION

The oxidation time t can be expressed from the model given in the text of the example as

t =
[(

tox

A/2
+ 1

)2

− 1

]
A2

4B
− τ

The values of the parameters are found in Table 7.3 in the row corresponding to T = 920◦C.
The calculated time is t = 2.46 h. If the dry oxidation process is used at the same temperature,
the appropriate parameters are found in Table 7.4 in the row for T = 920◦C. Putting these
parameters and t = 2.46 h into the equation given in the text of the example, the oxide thickness
is calculated to be tox = 0.063 μm = 63 nm. The oxide grows much faster in the wet than in the
dry ambient.

For the case of T = 1000◦C, the time of the wet oxidation needed to grow 0.5 μm of oxide
is found to be t = 1.26 h. The same time and temperature, used in the process of dry oxidation,
would grow tox = 78 nm. When the temperature is increased from 920◦C to 1000◦C, the time
required to grow 0.5 μm of “wet” oxide is approximately halved. The “dry” oxide grown for
the same time is again much thinner, but somewhat thicker than that grown for twice as long
at 920◦C.

7.2.2 C–V Curve and the Surface-Potential
Dependence on Gate Voltage

There are three characteristic modes of a MOS capacitor: accumulation, depletion, and
strong inversion. For a MOS capacitor on a P-type semiconductor, these modes can briefly
be described as follows: (1) in accumulation mode, a negative effective voltage between the
gate and the substrate attracts holes to the semiconductor surface creating an accumulation
layer at the semiconductor surface, (2) in depletion mode, a positive effective voltage repels
the holes from the surface region, creating a depletion layer, and (3) in strong inversion,
a strong positive voltage attracts electrons (the minority carriers) to the surface, creating
an inversion layer. The capacitance–voltage dependence, illustrated in Fig. 7.5, reflects
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these modes of operation. Accordingly, the capacitance–voltage dependences (C–V curves)
are widely used for characterization of MOS capacitors and for monitoring and analyzing
numerous phenomena related to the MOS structure. The C–V curve will be systematically
described in this section. A very important related quantity in terms of understanding the
modes of operation and the C–V curve is the surface potential. The surface potential
is the electric potential between the semiconductor surface and the semiconductor bulk,
which is assumed to be at the reference potential (ground). This means that the surface
potential (ϕs) is just a fraction of the voltage applied between the gate and the substrate
(VG ). The rest of the gate voltage, VG − ϕs , appears across the gate oxide. The definition
of the three characteristic modes (accumulation, depletion, and strong inversion) and the
two boundary voltages (flat-band voltage and threshold voltage) will be directly linked
to specific approximations of the surface-potential values and its dependence on the gate
voltage.

Accumulation

There is a net charge of equal density and opposite signs at each plate of a charged
capacitor. In accumulation, the net charge at the semiconductor surface is due to excess
holes (assuming P-type semiconductor). An incremental change in the applied gate voltage
(�VG) causes a corresponding change in the density of the accumulation charge (�Q A).
This situation is equivalent to an ordinary metal–dielectric–metal capacitor. Therefore,
the capacitance per unit area in the accumulation mode is determined by the gate-oxide
thickness and is voltage-independent:

Cox = εox

tox
(7.8)

where Cox is in F/m2. This capacitance relates �Q A to �VG : �Q A = Cox�VG .
Assuming an abundance of holes (the majority carriers), there is no significant

penetration of the electric field into the semiconductor. The electric field lines originate
from the excess holes at the semiconductor surface and terminate at the excess electrons at
the metal–dielectric interface. The absence of electric field below the surface means that
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Figure 7.6 Approximations of the surface-potential dependence on gate voltage define the three
MOS capacitor modes: (1) accumulation (ϕs = 0), (2) depletion (ϕs increases with the gate voltage
and the depletion-layer widening), and (3) strong inversion (ϕs = 2φF).

there is no potential difference between the surface and the bulk of the semiconductor—
the surface potential is equal to zero. This approximation, based on the assumption of
abundance of holes, is illustrated in Fig. 7.6.

The real ϕs−VG curve (the colored line in Fig. 7.6) shows that the actual surface
potential drops below zero in accumulation. This corresponds to some penetration of the
electric field below the semiconductor surface that is needed to create the high density of
holes in the accumulation layer. This effect is considered in more detail in Section 1.2.4.

Flat Bands

The point where the actual surface potential is equal to zero is of special interest. This is the
point where the energy bands in the semiconductor are flat (no band bending) because there
is no change in the electric potential in the surface region: the electric potential is equal
to zero everywhere in the semiconductor. In the ideal case, this condition would occur for
zero applied voltage at the gate. However, the difference in the work functions of the metal
and the semiconductor creates a built-in voltage and a built-in electric field, analogously
to the P–N junction and the metal–semiconductor contact. In addition, there is a “built-in”
electric field from the oxide charge. As a result, the electric field in the oxide is typically
not zero and the capacitor is not discharged at VG = 0. The gate voltage that neutralizes
the built-in electric field and sets the surface of the semiconductor at zero (the flat-band
condition) is called flat-band voltage (VF B). The equation that links the flat-band voltage
to the technological parameters, the work-function difference and the oxide-charge density,
is introduced in Section 7.2.3 when the energy bands of the MOS structure are drawn. At
this stage, it is quite sufficient to know that VF B appears as a gate-voltage offset. To draw
a voltage dependence with ϕs = 0 as the reference point, either VF B can be assumed to be
equal to zero (the ideal MOS capacitor approach) or the gate voltage can be expressed as
VG − VF B (the effective-gate-voltage approach).
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When one considers the total charge density at the capacitor plates, the effective gate
voltage should be used in the capacitance–voltage equation (Q = CV ). In accumulation,
the net charge at the semiconductor plate is due to accumulated holes; therefore,

Q A = (VG − VF B)Cox (7.9)

This equation shows that the gate voltage is basically offset by VF B . It also shows that
Q A = 0 at VG = VF B .

Depletion

When a small positive effective voltage is applied to the gate, holes are repelled from
the semiconductor surface, creating a depletion layer. In this case, the net charge at the
semiconductor plate is due to the negative acceptor ions in the depletion layer. This charge
is not mobile, yet its density has to change when the gate voltage is changed. This is
achieved by altering the width of the depletion layer (wd ), given that the depletion layer
charge is equal to

Qd = q NAwd (7.10)

For example, an increase in VG − VF B expands the depletion layer to increase Qd .
This situation is fully analogous to the variable depletion-layer capacitance in the case of
a P–N junction. In fact, the equations for wd derived in Section 6.3.2 for asymmetrical
abrupt P–N junctions can be used in this case, provided the voltage across the depletion
layer is properly specified.5 In the case of a reverse-biased P–N junction, this voltage is
Vbi +VR . In the case of the surface-depletion layer in a MOS capacitor, this voltage is equal
to the surface potential (ϕs). Therefore Eq. (6.44) for an N+–P junction can be used for the
depletion layer in a MOS capacitor on a P-type semiconductor if Vbi +VR is replaced by ϕs :

wd =
√

2εsϕs

q NA
(7.11)

Analogously to the depletion-layer capacitance in P–N junctions, the MOS capacitance in
the depletion region is reduced when the applied voltage is increased, as can be seen in
Fig. 7.5.

In the depletion region, the MOS capacitance can be represented by a series connection
of two capacitors: the gate-oxide capacitance (Cox = εox/tox) and the depletion-layer
capacitance (Cd = εs/wd ). Therefore, the total MOS capacitance is

C = CoxCd

Cox + Cd
= Cox

1 + Cox/Cd
= εox

tox + (εox/εs)wd
(7.12)

Equation (7.12) shows that C is reduced as wd is increased; however, Eq. (7.11) gives
wd in terms of the surface potential and not in terms of the applied gate voltage itself. To
be able to use Eqs. (7.11) and (7.12) to calculate the C–V dependence, an equation linking

5The Poisson equation can be solved as in Section 6.3.2, the only difference being the boundary
condition for the voltage across the depletion layer.
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the gate voltage and the surface potential is needed. The difference between the effective
gate voltage (VG − VF B) and the surface potential (ϕs) is the voltage drop across the oxide.
When divided by the oxide thickness, this difference is related to the gate-oxide field:

Eox = VG − VF B − ϕs

tox
(7.13)

The gate-oxide field is related to the electric field at the semiconductor surface (Es). From
Gauss’s law, we have

εox Eox = εs Es (7.14)

The surface electric field can be found by solving the Poisson equation. This procedure is
analogous to the solution given in Section 6.3.2, so we can simply adjust Eq. (6.31) for the
maximum electric field at the P–N junction:

Es = q NA

εs
wd (7.15)

From Eqs. (7.11), (7.13), (7.14), and (7.15), the relationship between the gate voltage and
the surface potential can be expressed in the following form

VG − VF B = ϕs + γ
√

ϕs (7.16)

where

γ =
√

2εsq NA/Cox (7.17)

is called the body factor and incorporates all the technological parameters. The unit for the
body factor is V1/2. Figure 7.6 illustrates the dependence of ϕs on VG in the depletion
region.

Strong Inversion and Threshold Voltage

The validity of Eq. (7.16) is limited to the depletion region. For simplicity, the concentra-
tions of both electrons and holes are neglected in Eq. (7.16). However, the surface potential
increase can lead to a pileup of a significant concentration of electrons (minority carriers) at
the semiconductor surface. A more general equation, which includes the minority carriers,
is derived in Example 7.3. A deeper insight into the conditions for appearance of electrons
at the semiconductor surface can be gained from the energy-band diagrams that will be
considered in Section 7.2.3. At this stage, it is sufficient to realize that the energy-band
bending brings the bottom of the conduction band closer to the Fermi level, and when
EC −EF becomes smaller than EF −EV , the semiconductor surface is inverted. Thermally
generated electrons are collected at the surface, creating an inversion layer. The surface-
potential increase slows down as the MOS capacitor enters the inversion region. The gate-
voltage increase does increase the gate-oxide field, but this field is screened by increasing
density of electrons in the inversion layer. The screening becomes more effective as the
concentration of electrons in the inversion layer is increased, and when it becomes so
strong that any further increase in the surface potential can be neglected, it is said that
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the MOS capacitor is in strong inversion. The threshold value of the surface potential, at
the onset of strong inversion, is defined as

ϕs = 2φF (7.18)

where φF is the Fermi potential. This is an empirically based and convenient definition.
Figure 7.6 illustrates that the surface potential in strong inversion is assumed to be constant
and equal to 2φF . The gate voltage corresponding to the onset of strong inversion, when ϕs

reaches 2φF , is called the threshold voltage. The threshold voltage will be labeled by VT

and should be distinguished from Vt used for the thermal voltage.6 Applying Eq. (7.16) to
the defined threshold condition, VG = VT for ϕs = 2φF , the following threshold-voltage
equation is obtained:

VT = VF B + 2φF + γ
√

2φF (7.19)

The strong-inversion mode of MOS capacitor operation is by far the most important,
given that it is the inversion layer that is utilized for conduction in the most frequent
electronics device—the MOSFET. Accordingly, the threshold voltage is a very important
MOS parameter because it defines the voltage boundary of the strong-inversion region.

Two C–V lines are shown in Fig. 7.5 in the inversion region, one labeled by HF and the
other by LF. The low-frequency (or more precisely, the quasistatic C–V line) shows that the
capacitance increases as the concentration of electrons in the inversion layer increases to
approach the Cox level in the strong inversion. In the simple model, any increase in the gate-
oxide field due to an increase in the gate voltage beyond the threshold voltage is perfectly
screened by a corresponding increase of electrons in the inversion layer. Accordingly, the
inversion-layer charge is modeled by

QI = (VG − VT )Cox (VG ≥ VT ) (7.20)

According to this equation, QI = 0 at the onset of strong inversion (VG = VT ), whereas in
the strong-inversion region, any increase in the gate voltage leads to corresponding increase
in the inversion-layer charge: �QI = Cox�VG . This is consistent with the assumption that
the strong-inversion capacitance is constant and equal to Cox.

The described behavior of the MOS capacitor in strong inversion can be observed
under the condition that there is a supply of electrons (minority carriers) to respond to
the gate-oxide field changes. This supply of electrons is provided by specific electrodes in
the case of a complete MOSFET. Therefore, the MOS capacitance in strong inversion is
according to the LF (or quasistatic) model when measured by a MOSFET with a specific
supply (source) of electrons. In the case of a simple MOS capacitor, the supply of electrons
is limited to thermal generation. Thermal generation is a slow process and is not able
to respond to fast oscillation of a measurement signal. It may take as long as seconds
for thermal generation to provide electrons in the inversion layer of silicon, and it may
take many years for this process to be completed in wide-energy-gap semiconductors.
Therefore, if the capacitance is measured with a signal whose oscillations are faster than

6The two variables share a similar subscript in their labels, but they are otherwise completely separate
and independent variables.
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these times, oscillations in the inversion-layer charge are not possible. In this case, the
oscillating field of the measuring signal has to penetrate through both the gate oxide and
the depletion layer to oscillate the negative charge due to the acceptors in the depletion
layer. This means the model of Cox and Cd connected in series has to be applied in this
case. This model is used for the depletion region, the difference this time being that the
surface potential is approximately pinned at the strong-inversion value of 2φF . As a result,
the strong-inversion capacitance remains constant at its minimum level that corresponds
to the maximum value of ϕs = 2φF in Eqs. (7.11) and (7.12). This behavior of the
capacitance in strong inversion is shown by the line labeled by HF in Fig. 7.5. Of course,
this behavior will be observed under the condition that the inversion layer is fully formed
at the considered gate bias VG when the high-frequency measurement is performed. If
the capacitor is created on a semiconductor with a much wider energy gap, such as silicon
carbide, the formation of the inversion layer by thermal generation would take much longer
than any practical time for room-temperature measurements. As a result, no inversion layer
is formed, and the C–V curve behavior from the depletion region continues into what is
referred to as deep depletion. Analogous behavior can be observed with silicon at very low
temperatures when the thermal generation in silicon is practically inhibited.

For the case of capacitors made with N-type rather than P-type silicon substrate, the
depletion-layer charge is positive because it originates from uncompensated positive donor
ions. Accordingly, the concentration of donors (ND) should replace the concentration of
acceptors in the equations for both the body factor γ and the Fermi potential φF . The
Fermi potential [as given by Eq. (2.8)] appears as negative; in the equation for the threshold
voltage, it cannot be used as negative under the square root. Careful consideration of the
boundary conditions for the electric potential in the process of solving the Poisson equation
would indicate that the only thing that matters for wd is the absolute value of 2φF . These
considerations show that the threshold voltage in the case of N-type silicon substrate has
to be modified in the following way:

VT = VF B − 2|φF | − γ
√

2|φF | (7.21)

where the body factor γ is given in terms of the donor concentration:

γ =
√

2εsq ND/Cox (7.22)

EXAMPLE 7.3 Surface Potential Versus Gate Voltage
in Depletion and Strong Inversion

In the model that uses the concept of the threshold voltage, the surface potential in strong
inversion is assumed to be constant, specifically, ϕs = 2φF . In reality, there is a slight dependence
of the surface potential on the gate voltage (the colored line in Fig. 7.6). Solve the Poisson
equation, including both the depletion-layer charge and the minority electrons, to obtain a more
precise model for the surface-potential dependence on the gate voltage.
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SOLUTION

When both the acceptors in the depletion layer and the electrons in the inversion layer are
included, the charge density used in the Poisson equation becomes

ρ(x) = −q NA + n(x) = −q
[

NA + n0eqϕ(x)/kT
]

= −q
[

NA + n0eϕ(x)/Vt
]

(7.23)

The exponential dependence of n(x) on ϕ(x) is again due the the Maxwell–Boltzmann
distribution and the fact that ϕ(x) corresponds to the bending of the conduction band. The
constant n0, which is the equilibrium concentration of electrons, is determined so that n(x) = n0
for ϕ(x) = 0. Given that n0 p0 = n2

i and that p0 ≈ NA , the charge density can be
expressed as

ρ(x) = −q NA

[
1 +

(
ni

NA

)2

eϕ(x)/Vt

]
= −q NA

[
1 +

(
ni

p0

)2

eϕ(x)/Vt

]
(7.24)

Using the relationship between p0 and ni [Eq. (2.86)], the term (ni/p0)
2 can be expressed

through the Fermi potential: (ni/p0)
2 = exp [−q(2φF)/kT ] = exp(−2φF/Vt ). With this, the

charge density can be expressed in the following convenient form:

ρ(x) = −q NA

{
1 + eϕ(x)−2φF/Vt

}
(7.25)

The Poisson equation is then

d2ϕ

dx2 = q NA

εs

{
1 + eϕ(x)−2φF /Vt

}
(7.26)

This equation has to be integrated once to obtain the electric field E = −dϕ/dx and, specifically,
to obtain the equation for the electric field at the surface of the semiconductor that is valid
in both the depletion region and the inversion region. This equation is to replace Eq. (7.15),
which is limited to the depletion region. All other steps in the previously shown derivation of the
relationship between the surface potential and the gate voltage remain the same.

To enable integration of Eq. (7.26), the following identity is utilized:

d2ϕ

dx2 = 1

2

d

dϕ

(
dϕ

dx

)2

(7.27)

With this, Eq. (7.26) becomes

1

2
d

[(
dϕ

dx

)2
]

︸ ︷︷ ︸
E2

= q NA

εs

{
1 + eϕ(x)−2φF /Vt

}
dϕ (7.28)
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and the integration is performed as follows:

1

2

∫ E2
s

0
d(E2) = q NA

εs

∫ ϕs

0

{
1 + eϕ(x)−2φF /Vt

}
dϕ (7.29)

1

2
E2

s = q NA

εs

[
ϕs + Vt e

(ϕs−2φF )/Vt
]

(7.30)

Es =
√

2q NA

εs

√
ϕs + Vt e(φs−2φF )/Vt (7.31)

We can see that for small values of ϕs , when the exponential term can be neglected, this equation
becomes identical to the surface electric field defined by Eqs. (7.15) and (7.11). However, this is
the more general equation, and it will expand the γ

√
ϕs term in Eq. (7.16) as follows:

VG − VF B = ϕs + γ

√
ϕs + Vt e(ϕs−2φF )/Vt (7.32)

It is the exponential term that causes the apparent saturation of ϕs with VG in the strong-
inversion region. Because of this exponential dependence, very small increases in ϕs correspond
to large increases in VG . This exponential term is due to the exponential increase of electron
concentration with ϕs ; hence, it is said that the increase in electron concentration screens the
penetration of the electric field.

7.2.3 Energy-Band Diagrams
The previous section defined the principal modes of MOS–capacitor operation using the
idealized model for surface-potential dependence on the applied gate voltage (Fig. 7.6). As
a summary, these modes are (1) accumulation for VG < VF B (ϕs ≈ 0), (2) depletion
for VF B < VG < VT , and (3) strong inversion for VG > VT (ϕs ≈ 2φF ). In this
section, energy-band diagrams are used to provide a deeper insight into the physics of
MOS capacitors.

Zero Bias Versus Flat Bands: Definition of the Fundamental Terms

Figure 7.7a illustrates a MOS capacitor with P-type substrate and N+-type polysilicon gate
when all the charges are compensated—that is, no net charge appears at the capacitor plates
(the flat-band condition). The holes in the P-type substrate are compensated by the negative
acceptor ions and the minority electrons, whereas the electrons in the N+-type gate are
compensated by the positive donor ions and the minority holes. In general, the flat-band
condition does not appear for zero applied voltage. The fundamental source of the nonzero
flat-band voltage can be illustrated by the corresponding energy-band diagrams.
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Figure 7.7 Illustration of the fundamental MOS-related terms. (a) MOS capacitor cross section, illustrating the existing
types of charge. (b) The starting point in construction of the MOS energy-band diagram. (c) The energy-band diagram
at zero-bias condition. (d) The energy-band diagram at flat-band condition.

To construct the energy-band diagram of a MOS capacitor, the procedure used for the
case of P–N junctions (Section 6.1) has to be developed further to account for the existence
of the oxide appearing between the P- and N+-type silicon regions:

1. As before, the Fermi level lines are drawn first (dashed–dotted lines in Fig. 7.7):

1.1 If the system is in thermal equilibrium (zero bias applied), the Fermi level is
constant throughout the system. The Fermi level lines in the substrate and the
gate have to be matched, as in Fig. 7.7b.
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1.2 If a voltage is applied between the gate and the substrate, the Fermi level (or
more precisely, the quasi-Fermi level) lines should be split to express this fact,
as in Fig. 7.7d.

2. Analogously to the case of P–N junctions, the conduction and valence bands are
drawn for the P-type and N-type neutral regions (away from the oxide–silicon
interfaces). The bands are placed appropriately with respect to the Fermi level, so
as to express the band diagrams of the P-type and N-type silicon, respectively. This
is illustrated in Fig. 7.7b.

3. In the case of a P–N junction, the conduction- and the valence-band levels would
simply be joined by sloped lines to complete the diagram. The oxide that appears
between the P- and N+-type regions in the case of the MOS capacitor, has a much
larger energy gap (Eg = EC − EV ) than the silicon regions. Figure 7.4b illustrates
the existence of conduction-band and valence-band discontinuities at the oxide
silicon interface. These discontinuities have to be expressed in the band diagram.
The band diagram around the oxide is constructed in the following way (refer to
Fig. 7.7c):

3.1 The bands are bent in the P- and N+-type silicon regions toward each other,
but they do not come to the same level. There is a difference between the bands
(say the intrinsic Fermi level Ei ) at the N+–gate-oxide interface and at the
oxide–P-type-substrate interface. This difference is due to the voltage across
the oxide.

3.2 Lines expressing the discontinuities of the conduction and the valence bands
at the oxide–silicon interfaces are drawn. The conduction-band discontinuity is
�EC = 3.2 eV and the valence-band discontinuity is about �EV = 4.7 eV
(this makes an oxide energy gap of about 3.2 + 4.7 + 1.12 ≈ 9 eV).

3.3 The conduction and valence bands in the oxide are drawn with straight lines, to
express that the electric field in the oxide is constant.7 It is assumed that there
is no built-in charge in the bulk of the oxide, which would enforce change in
the electric field in the oxide (any oxide charge is modeled as a sheet charge
appearing along the oxide–silicon interface).

Figure 7.7b and 7.7c illustrates that there is a potential difference between the N+-type
gate and the P-type substrate at zero bias. This is analogous to the built-in voltage in P–N
junctions. In the case of the MOS capacitor, the built-in potential difference is referred to
as a work-function difference (qφms). The electric field associated with the nonzero work-
function difference is due to uncompensated positive donor ions on the N+-type gate side
(Fig. 7.7c).

Considering the energy-band diagram, as shown in Fig. 7.7c, the work function of a
semiconductor (qφs) can be related to the electron affinity qχs:

qφs = qχs + Eg

2
+ qφF (7.33)

7Constant electric field E corresponds to a linear electric potential, thus potential energy (E =
−dϕ/dx ∝ d E pot/dx).
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where Eg/2 is the half-value of the energy gap and qφF is the Fermi potential (the
difference between Ei and EF ).8 The Fermi potential depends on the doping type and
level, as expressed by Eqs. (2.87) and (2.88).

Using Eq. (7.33), the work-function difference can be expressed as

qφms = qφm − qφs = qφm − q

(
χs + Eg

2q
+ φF

)
(7.34)

To calculate the work-function difference, the Fermi potential is calculated first for the
given doping level [using Eq. (2.87) or Eq. (2.88)] and, according to Eq. (7.34), combined
with the values of qχs , Eg , and qφm corresponding to the materials used (Table 7.1). In the
case of metal gates, the value of qφm is a material constant. When a silicon gate is used, it
may be necessary to calculate qφm from Eq. (7.33) using an appropriate doping level. Very
frequently, however, the gates are very heavily doped (to provide as close an emulation of
the metal properties in terms of conductivity as possible), which means the Fermi level is
either very close to the bottom of the conduction band (N+-type gate) or very close to the
top of the valence band (P+-type gate). Therefore, as given in Table 7.1, the work function
of a heavily doped polysilicon gate can be approximated by qχs in the case of N+-type
doping and by qχs + Eg in the case of P+-type doping.

Because of the work-function difference, creating the built-in field, the capacitor plates
are not discharged at the zero bias. To achieve the zero-charge condition—that is, to flatten
the bands—it is necessary to split the Fermi levels in the gate and the substrate by a
value that will compensate for the work-function difference (Fig. 7.7d). This value is equal
to the work-function difference. Because the Fermi levels are split by applying a voltage
between the gate and the substrate, we conclude that the flat-band voltage is equal to the
work-function difference (VF B = qφms).

It is important to note, however, that the effects of a nonzero oxide charge are not
shown in Fig. 7.7d. As described Section 7.2.1, the oxide charge is typically located close to
the oxide–silicon interfaces. The charge that appears close to the oxide–gate interface does
not influence the MOS capacitor properties significantly, because it is easily compensated
by the charge from the heavily doped silicon gate. The charge sheet appearing close to
the oxide–substrate interface, however, influences the mobile carriers in the substrate by
its electric field. The electric field of this oxide charge is able to produce significant band
bending in the surface area of the silicon substrate. To bring the bands in flat condition,
this field should be compensated by an appropriate gate voltage, as well. In other words, it
is necessary to apply a gate voltage to remove any charge attracted to the substrate surface
by the oxide charge. If the gate-oxide capacitance is Cox and the density of the charge is
q Noc, the needed voltage is q Noc/Cox. A negative voltage is needed in the case of positive
oxide charge (to repel the electrons attracted to the surface by the positive oxide charge);
analogously, a positive voltage is needed in the case of negative oxide charge.

8The concepts of work function and electron affinity are introduced in Section 7.1.1.
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Combining the effects of the work-function difference (φms ) and the oxide charge
(−q Noc/Cox), the flat-band voltage is expressed as

VF B = φms − q Noc/Cox (7.35)

Accumulation

A negative effective gate bias, VG − VF B < 0, produces an electric field that attracts holes
to the surface of the silicon substrate. This is the accumulation mode. The density of holes
in the surface layer of the silicon substrate is exactly matched by the density of electrons
at the gate, induced by the negative gate bias applied. This is illustrated in Fig. 7.8a. The
appearance of extra holes in the surface region of the silicon substrate means that the Fermi
level in the surface region is closer to the top of the valence band than in the bulk. The
energy bands are, therefore, bent upward going from the silicon substrate toward the gate,
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Figure 7.8 MOS capacitor in accumulation. (a) Cross section illustrating the type of charge at the capacitor plates. (b) The
energy-band diagram. (c) C–V dependence.
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as shown in Fig. 7.8b. This band bending is due to the difference between the energy bands
in the bulk of the silicon and the gate, which is directly related to the effective bias applied
(qVG − qVF B). The level of the band bending in the silicon substrate is directly related to
the value of the surface potential (ϕs); the band bending is equal to qϕs .

The gradient in the energy bands around the oxide–silicon interfaces and in the oxide
expresses the existence of an electric field in the direction from the substrate toward the
gate (E = −dϕ/dx ∝ d E pot/dx). This is the field that keeps the excess holes in the
substrate and the excess electrons in the gate close to the oxide–silicon interfaces.

Any change in the gate voltage �VG will inevitably produce a change in the band
bending. For example, if the voltage is decreased by �VG , the bending is further increased,
which means that the Fermi level at the surface of the silicon substrate is moved a bit
closer to the top of the valence band. Thus, the density of the holes at the substrate surface
is increased. Because the Fermi level is very close to the top of the valence band, only a
slight shift in the top of the valence band toward the Fermi level (a slight reduction in the
surface potential) is needed to significantly increase the density of the populated energy
levels in the valence band by new holes. This is due to the fact that the probability of
occupancy by holes of the levels in the valence band increases exponentially as the valence
band moves toward the Fermi level (Fig. 2.18 in Section 2.4.3). Because the change in
the surface potential is much smaller than the gate voltage change �VG , almost the entire
gate voltage change appears across the oxide. This situation is very much like the situation
of a capacitor with metal plates separated by a dielectric equivalent to the gate oxide. The
capacitance per unit area is, therefore, equal to the gate-oxide capacitance, Cox. Figure 7.8c
illustrates that the capacitance of the MOS capacitor in accumulation, being equal to the
gate-oxide capacitance, is independent on the gate voltage.

Depletion and Weak Inversion

When relatively small positive effective gate bias (VG − VF B > 0) is applied, the electric
field produced repels the holes from the surface, creating a depletion layer at the surface of
the silicon substrate. The charge that appears at the substrate plate of the capacitor in this
case is due to uncompensated negative acceptor ions, as illustrated in Fig. 7.9a and 7.9b.
Although these ions are immobile, gate voltage changes must produce related changes
in the density of the negative-ion charge. For this to happen, the electric-field lines from
the gate have to penetrate through the depletion layer to either further repel the holes (an
increase in the gate voltage) or attract the holes back toward the surface (a decrease in
the gate voltage). The appearance of the depletion layer reduces the capacitance in the
depletion mode.

Capacitance reduction is illustrated in Fig. 7.9c, which also illustrates that the
capacitance behavior changes as the voltage is further increased. There is a characteristic
point (VMG ), which can be explained using the energy-band diagram of Fig. 7.9b. The
gate voltage increase above the flat-band level causes band bending in the direction that
increases the difference between the top of the valence band and the Fermi level. This is the
condition that is associated with the reduction (and eventual elimination) of the holes from
the surface. As a consequence of this band bending, Ei approaches EF . The characteristic
point mentioned is the midgap line exactly at the Fermi level at the silicon surface (the
situation illustrated in Fig. 7.9b). At this point, the surface of the silicon substrate is in the
intrinsic silicon condition. For a larger band bending than this (due to a larger gate voltage
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Figure 7.9 MOS capacitor at the midgap point. (a) Cross section illustrating the type of charge at the capacitor plates.
(b) The energy-band diagram. (c) C–V dependence.

than VMG ), Ei crosses EF at some distance from the surface. This means that the Fermi
level is closer to the bottom of the conduction band than to the top of the valence band at
the silicon surface. This further means that the concentration of electrons (minority carriers
in the P-type substrate) is larger than the concentration of holes at the silicon surface—an
inversion layer is created at the surface.

The appearance of some mobile charge at the silicon surface means that some of
the electric field lines do not need to penetrate through the depletion layer to change
the charge as a response to a gate voltage variation. The low-frequency (or quasistatic)
capacitance increases as the density of the mobile charge (electrons in this case) is
increased by the gate voltage. This mode is referred to as weak inversion.
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Strong Inversion

The behavior of the MOS capacitor in the strong-inversion mode is of great importance
for MOSFET operation. To understand the difference between weak and strong inversion,
it is necessary to refer to the fact that the tail of the Fermi–Dirac distribution shows an
exponential increase in the probability of electrons appearing at the conduction-band levels
as the difference between the bottom of the conduction band EC and the Fermi level EF

is reduced.9 It is also useful to keep in mind that any increase in the gate voltage (�VG)

9This effect is described in Section 2.4.2.
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has to be accompanied by a corresponding increase in electron density in the inversion
layer (�QI ).

When the Fermi level EF is not very close to the bottom of the conduction band
(weak-inversion mode), the occupancy probability of the electron levels in the conduction
band is relatively small. This means that the electron density increase �QI , necessary as a
response to a gate voltage increase �VG , can be achieved only by a significant band bend-
ing. As the EC − EF difference is reduced, the probability of the electron-level occupancy
in the conduction band rises exponentially. This means that a significant increase in �QI

can now be achieved only by a slight reduction of the EC −EF difference. The related slight
change in the surface potential �ϕs is much smaller than the gate voltage change �VG ,
which means that the increased gate voltage (�VG) appears mostly across the gate oxide.
With this, it can be assumed that the surface potential is pinned at ϕs ≈ 2φF [Eq. (7.18)].

Figure 7.10a and 7.10b illustrates the appearance of electrons at the silicon surface
as a response to a gate voltage increase beyond the threshold voltage. The situation in
which applied voltage variations produce related variations in the charge located along the
oxide interfaces is like the situation in an ordinary metal-plate capacitor with a dielectric
equivalent to the gate oxide. The overall MOS capacitance is equal to the gate-oxide
capacitance and is therefore voltage-independent. This is illustrated in Fig. 7.10c by the
solid line labeled LF. As mentioned in Section 7.2.2, the thermally generated electrons
in the inversion layer are unable to respond to the variations of signals with frequencies
higher than the generation–recombination rates. In that case, the density of the electrons
in the inversion layer appears “frozen” and the varying electric field penetrates through
the depletion layer to repel/attract the majority carriers. The total capacitance also appears
“frozen” at the minimum level, labeled HF.

EXAMPLE 7.4 Calculating the Threshold Voltage

Technological parameters of a MOS capacitor are given in Table 7.5, together with the values of
the relevant physical parameters.

(a) Determine the value of the flat-band voltage.
(b) Calculate the charge density at the onset of strong inversion. Identify the type and origin

of this charge.

TABLE 7.5 MOS Technological Parameters

Parameter Symbol Value

Substrate doping concentration NA 7 × 1016 cm−3

Gate-oxide thickness tox 30 nm
Oxide charge density Noc 1010 cm−2

Type of the gate N+-polysilicon
Intrinsic carrier concentration ni 1.02 × 1010 cm−3

Energy gap Eg 1.12 eV
Thermal voltage at room temperature Vt = kT/q 0.026 V
Oxide permittivity εox 3.45 × 10−11 F/m
Silicon permittivity εs 1.04 × 10−10 F/m
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(c) Calculate the value of the body factor.
(d) Calculate the value of the threshold voltage.
(e) Calculate the charge density in the inversion layer at VG = 5 V.

SOLUTION

(a) To calculate the flat-band voltage VF B using Eq. (7.35), the work-function difference
φms is needed; to obtain φms using Eq. (7.34), the Fermi potential φF has to be
determined first. Using Eq. (2.88), we write

φF = Vt ln
NA

ni
= 0.41 V

Using this value of φF , and reading the values of φm and χs from Table 7.1, we can
calculate the work-function difference by using Eq. (7.34):

φms = φm −
(

χs + Eg

2q
+ φF

)
= 4.05 −

(
4.05 + 1.12

2
+ 0.41

)
= −0.97 V

After finding Cox as Cox = εox/tox = 3.45 × 10−11/30 × 10−9 = 1.15 × 10−3 F/m2,
we calculate the flat-band voltage by using Eq. (7.35):

VF B = φms − q Noc

Cox
= −0.96 − 1.6 × 10−19 × 1014

1.15 × 10−3 = −0.974 V

(b) At the onset of strong inversion (VG = VT ), the inversion-layer charge is assumed to be
zero. Consequently, the depletion-layer charge Qd appears as the only uncompensated
charge in the silicon substrate. Originating from the uncompensated negative acceptor
ions (concentration NA) in the depletion layer of width wd , the depletion-layer charge
density Qd (C/m2) can be expressed as

Qd = q NAwd

Equation (7.11) gives wd in terms of NA and the Fermi potential ϕs = 2φF , which after
substitution into this equation leads to

Qd =
√

2εsq NA(2φF )

Thus,

Qd =
√

2 × 1.04 × 10−10 × 1.6 × 10−19 × 7 × 1022 × (2 × 0.41) = 1.38 × 10−3 C/m2

(c) The body factor is defined by Eq. (7.17):

γ =
√

2εsq NA

Cox
=

√
2 × 1.04 × 10−10 × 1.6 × 10−19 × 7 × 1022

1.15 × 10−3 = 1.327 V1/2
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(d) The threshold voltage is given by Eq. (7.19):

VT = VF B + 2φF + γ
√

2φF = −0.974 + 2 × 0.41 + 1.327
√

2 × 0.41 = 1.05 V

(e) The assumptions are that the inversion-layer charge density is zero at VG = VT and that
the whole gate voltage increase beyond the threshold voltage is spent on creating the
inversion-layer charge. Thus:

QI = (VG − VT )Cox = (5 − 1.05) × 1.15 × 10−3 = 4.54 × 10−3 C/m2

EXAMPLE 7.5 Designing the Threshold Voltage

In CMOS (complementary MOS) integrated circuits, it is required to provide equal absolute
values of the threshold voltages of MOS structures on P-type and N-type substrates. Determine
the value of the donor concentration ND , necessary to provide an N-substrate MOS structure
with the absolute value of the threshold voltage equal to the threshold voltage of the P-substrate
MOS structure considered in Example 7.4. The values of all other parameters should remain the
same.

SOLUTION

Equation (7.21) gives the threshold voltage for the case of N-type silicon substrate:

VT = VF B − 2|φF | − γ
√

2|φF |

Because the Fermi potential 2φF , the body factor γ , and the flat-band voltage VF B depend on
the donor concentration, it is necessary to express them in terms of ND . Using Eq. (2.87) for
2φF , Eqs. (7.35) and (7.34) for VF B , and Eq. (7.22) for γ , the threshold-voltage equation is
developed as

VT = φm − χs − Eg

2q
+ Vt ln

ND

ni
− 2Vt ln

ND

ni
−

√
2εsq ND

Cox

√
2Vt ln

ND

ni

where Vt = kT/q . Using the values of the known parameters, we simplify this equation to

VT = −0.56 − 0.026 ln
ND

ni
− 5.02 × 10−12

√
ND

√
0.052 ln

ND

ni

Because ln ND/ni > 0 (this is because ND > ni ), all three terms are negative, which means that
the threshold voltage is negative. To use the absolute value of the threshold voltage, all the minus
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TABLE 7.6 Iterative Solutions
for Example 7.5

ND (m−3) LHS

7 × 1022 2.569
1021 1.380
2 × 1021 1.454
1.8 × 1021 1.441

signs should be changed to pluses. Given that the absolute value of the threshold voltage should
be 1.05 V (as obtained in Example 7.4), and developing ln(ND/ni ) as ln ND − ln 1.02 × 1016 =
ln ND − 36.86 (where ND is in m−3), the following equation is obtained:

1.05 = 0.56 + 0.026 ln ND − 0.026 × 36.86 + 5.02 × 10−12
√

ND

√
0.052 ln ND − 0.052 × 36.86

Grouping the terms with the unknown ND on the left-hand side leads to

0.026 ln ND + 5.02 × 10−12
√

ND

√
0.052 ln ND − 1.917 = 1.448

This equation can be solved iteratively: a guess is made for the value of ND , and the
left-hand side (LHS) is calculated and compared to the value on the right-hand side (1.448).
This comparison provides an indication of whether the value of ND should be increased or
decreased before the next iteration is performed. When the difference between the LHS and RHS
is acceptable, the value of ND is taken as the solution. Perhaps it makes sense to take the value
of the acceptor concentration from Example 7.4 as the initial guess: ND = 7 × 1016 cm−3 =
7 × 1022 m−3. Table 7.6 illustrates that the LHS value is 2.569, which is higher than the RHS
value of 1.448; the concentration ND should be reduced. Table 7.6 also illustrates that the next
guess of 1021 m−3 is smaller than it should be, whereas the guess of 2 × 1021 m−3 is slightly
larger than the proper concentration. Finally, ND = 1.8 × 1021 m−3 is found to give a quite
acceptable value of the LHS (1.441 as compared to the wanted 1.448). Therefore, the solution is
taken to be ND = 1.8 × 1021 m−3 = 1.8 × 1015 cm−3.

*7.2.4 Flat-Band Capacitance and Debye Length
In the case of metal–dielectric–metal capacitors, any field penetration beyond the metal
surfaces is limited to atomic distances, so it is practically negligible. In semiconductors,
the field penetration may be quite significant. An obvious example is the case of a MOS ca-
pacitor in depletion mode. This section provides an analysis of the surface field penetration
in MOS capacitors biased in the vicinity of the flat-band voltage (the reference voltage).

The surface potential is equal to zero when the effective gate voltage VG − VF B = 0.
This also means that the electric field is equal to zero throughout the semiconductor.
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Assume now that a small negative effective voltage is applied at the gate—for example,
in the process of measuring the capacitance at the flat-band condition. The electric field
created by this voltage will attract holes toward the surface. The question is how deeply the
electric field enters into the semiconductor, or, in other words, how thick the accumulation
layer is. The Poisson equation [Eq. (6.24)] can be used to obtain the quantitative estimate
of this effect. In the general case, the charge density to be used in the Poisson equation is
ρ = q(p − n − NA + ND). In this specific case, ND = 0 because we assumed P-type
semiconductor and p  n because we are focusing on the accumulation mode. Therefore,

d2ϕ(x)

dx2 = − q

εs
[p(x) − NA] (7.36)

Assuming Maxwell–Boltzmann distribution, we write

p(x) = p0e−qϕ(x)/kT ≈ NAe−qϕ(x)/kT (7.37)

where ϕ(x) ≤ 0 is the electric potential that varies from the surface potential ϕs at the
semiconductor surface (x = 0) to 0 for x → ∞. The exponential dependence on ϕ(x) is
due to the Maxwell–Boltzmann distribution and the fact that EV (and EC ) bending follows
ϕ(x). The constant p0 is determined from the condition that the concentration of holes is
equal to the equilibrium level for ϕ(x) = 0. For a small ϕ(x), the exponential dependence
can be approximated by the following linear dependence:

p(x) = NAe−qϕ(x)/kT ≈ NA

[
1 − qϕ(x)

kT

]
(7.38)

With this, Eq. (7.36) can be written in the following form:

d2ϕ(x)

dx2 = ϕ(x)

L2
D

(7.39)

where

L D =
√

εskT

q2 NA
(7.40)

The general solution of Eq. (7.39) is

ϕ(x) = A1e−x/L D + A2ex/L D (7.41)

The constants A1 and A2 for this specific case are A2 = 0 [because ϕ(∞) = 0] and
A1 = ϕs [because ϕ(0) = ϕs]. Therefore,

ϕ(x) = ϕse−x/L D (7.42)

This result shows that the electric potential drops exponentially from the surface value
ϕs toward zero. The parameter of this exponential dependence, L D , corresponds to the
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distance x = L D at which the electric potential drops e times. This type of exponential
dependence is maintained for the electric field

E = −dϕ

dx
= ϕs

L D
e−x/L D (7.43)

as well as for the hole distribution. From the linear approximation in Eq. (7.38) and
Eq. (7.42) for ϕ(x), the excess hole concentration is obtained as

δp(x) = p(x) − NA = qϕs

kT
NAe−x/L D (7.44)

Therefore, the parameter L D also characterizes the field penetration and the width of the
accumulation layer. This parameter is called the Debye length. Equation (7.40) shows
that the Debye length is inversely proportional to the doping level. Because of the
electroneutrality equation, p0 = NA in this case, the Debye length is in principle inversely
proportional to the equilibrium concentration of the mobile charge. The physical meaning
here is that a higher concentration of mobile charge can provide much better screening, so
the penetration of the electric field is shallower. In the case of metals, the concentration of
the mobile charge is so high that the Debye length drops to subatomic levels.

As a direct consequence of the field penetration in semiconductors, the accumulation-
mode capacitance is actually smaller than Cox. The accumulation capacitance approaches
the Cox level with increasing negative voltage because the increasing concentration of
holes in the accumulation layer provides more efficient field screening. Figure 7.5 shows
that the actual accumulation capacitance increases as the negative voltage is increased.
Nonetheless, the model of accumulation capacitance that is constant and equal to Cox

throughout the accumulation region is still useful. For example, it enables a straightforward
calculation (estimate) of the accumulation-layer charge: Q A = Cox(VG − VF B).

Apart from the model of constant accumulation capacitance, it is sometimes quite
useful to determine the actual capacitance at flat bands. In particular, this can be used for
experimental determination of the value of the flat-band voltage from a measured C–V
curve. At flat bands, the MOS capacitance can be represented by a series connection of
two capacitors: the gate-oxide capacitance and the semiconductor capacitance that is due
to the penetration of the electric field into the semiconductor. The gate-oxide capacitance
per unit area is Cox = εox/tox. Analogously, the semiconductor capacitance per unit area
is Cs = εs/L D . Therefore

1

CF B
= 1

Cox
+ 1

Cs
= tox

εox
+ L D

εs
= tox + (εox/εs)L D

εox
(7.45)

CF B = εox

tox +
(

εox

εs

)√
εskT/(q2 NA)

(7.46)

The voltage that corresponds to this capacitance on the accumulation side of the C–V curve
is the flat-band voltage.
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SUMMARY

1. A difference in the work functions of a metal (qφm) and a semiconductor (qφs) creates
a built-in voltage at the metal–semiconductor interface:

Vbi = φm − φs

This built-in voltage is associated with a depletion layer at the semiconductor surface,
and it represents a barrier for the electrons in the semiconductor. The electrons in the
metal also face a barrier, which is

qφB = qφm − qχs

qφB is voltage-independent, whereas the barrier from the semiconductor side can be
changed by applied voltage (Vbi − VF ; Vbi + VR), enabling the metal–semiconductor
contact to operate as a rectifying diode—a Schottky diode.

2. The current–voltage characteristic of the Schottky diode has the same form as for the
P–N junction diode:

ID = IS

(
eVD/nVt − 1

)
By proper selection of the metal electrode, Schottky diodes with smaller built-in
voltages can be created, resulting in a smaller forward voltage for the same current.
In the model, this is accounted for by a larger IS , which shows that there is a direct link
to an increase in the reverse-bias current.

3. Schottky diodes are single-carrier devices (e.g., the minority holes in metal–N-type
Schottky diodes do not play a significant role in the current flow). There is no stored
charge of minority carriers, so there is no stored-charge capacitance and the associated
switch-off delay.

4. A contact between a metal and a heavily doped semiconductor leads to a very narrow
barrier (narrow depletion layer), enabling the carriers to tunnel in either direction. This
type of metal–semiconductor contact acts as a small-resistance (ohmic) contact.

5. Oxidizing silicon in strictly controlled conditions creates a dielectric–semiconductor
interface of unique quality in terms of electronic properties. When a metal or heavily
doped polysilicon is deposited on the thermal oxide, a metal–oxide–semiconductor
(MOS) capacitor is created. The metal (polysilicon) electrode is referred to as gate.

6. Depending on the gate voltage applied, a MOS capacitor is said to be in one of the three
modes defined in Table 7.7.

7. At flat-band conditions (VG = VF B ), the net charge at the capacitor plates, the electric
field, and the semiconductor surface potential (ϕs) are all zero. A nonzero flat-band
voltage appears due to the metal–semiconductor work-function difference (qφms) and
the effects of the oxide charge (Noc):

VF B = φms︸︷︷︸
φm−φs

−q Noc

Cox
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TABLE 7.7 Potential–Capacitance–Charge Equations for a MOS Capacitor

Accumulation Depletion Strong Inversion

P type VG < VF B VF B ≤ VG ≤ VT VT < VG

N type VF B < VG VT ≤ VG ≤ VF B VG < VT

ϕs Small |ϕs | ≤ |2φF | ϕs ≈ 2φF

C C = Cox = εox/tox
1
C = tox/εox + wd/εs LF: C = Cox = εox/tox

wd = √
2εs |ϕs |/(q NA,D ) HF: 1

C = tox/εox + wd−inv/εs

wd−inv = √
2εs |2φF |/(q NA,D )

|Q| Q A = |VF B − VG |Cox Qd = q NA,Dwd QI = |VG − VT |Cox

= √
2εsq NA,D |ϕs | Qd = √

2εsq NA,D |2φF |
= γ Cox

√|2φF |

8. The Fermi level of a heavily doped N+ silicon (polysilicon) is approximately at the
bottom of the conduction band, so qφm = qχs , where the electron affinity qχs is
a material constant. The Fermi level of a heavily doped P+ silicon (polysilicon) is
approximately at the top of the valence band; therefore, qφm = qχs + Eg . The Fermi
level in the moderately doped semiconductor substrate depends on the doping level, the
Fermi potential qφF expressing the difference between the midgap, and the position of
the Fermi level:

qφs = q

(
χs + Eg

2q
+ φF

)

φF =
⎧⎨
⎩

+ kT
q ln NA

ni
for P-type

− kT
q ln ND

ni
for N-type

9. At the onset of strong inversion (VG = VT ), the surface potential ϕs is approximately
at its maximum value of |2φF |. In strong inversion, the depletion-layer width and
the depletion-layer charge do not change significantly, because the voltage across the
depletion layer (ϕs) remains approximately at the constant level of 2φF . Any gate-
voltage change in the strong inversion results in a proportional change of the inversion-
layer charge: QI = Cox(VG − VT ). The threshold voltage is given by

VT = VF B ± 2|φF | ± γ
√

2|φF |

where the upper and lower signs are for P-type and N-type substrates, respectively, and
the body factor γ is given by

γ =
√

2εsq NA,D

Cox
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PROBLEMS

7.1 Each of the graphs in Fig. 7.11 shows a pair of
P–N junction and Schottky diode characteristics.
Identify the combination that properly groups three
characteristics that all belong to one of the two
diodes.

7.2 The graphs of Fig. 7.12 show the energy-band
diagrams of three different pairs of metal–semi-
conductor materials. State whether each of the
systems would create a Schottky or an ohmic contact
if placed in contact.

7.3 A Schottky diode with N-type silicon (ND =
1015 cm−3) is designed to have built-in voltage
Vbi = 0.40 V and barrier height φB = 0.65 V. If
the actual donor concentration is 4.66 × 1015 cm3,
what are the built-in voltage and the barrier height?

(a) 0.40 V; 0.65 V
(b) 0.36 V; 0.65 V
(c) 0.44 V; 0.65 V
(d) 0.40 V; 0.61 V
(e) 0.40 V; 0.69 V
(f) 0.36 V; 0.69 V

7.4 The energy barrier and the built-in voltage of a
Schottky diode are qφB = 0.65 eV and Vbi =
0.40 V, respectively. What are the barrier heights
for the electrons in semiconductor and metal,
respectively, at

(a) forward bias VF = 0.2 V
(b) reverse bias VR = 5 V A

7.5 Chromium (Cr) and tungsten silicide (WSi2) are
available as the metal electrodes for a Schottky
diode. Design the minimum-area Schottky diode so
that VF = 0.2 V at IF = 100 mA (this current
is low enough so that the emission coefficient is
n = 1). Neglect the image-force effect and use
T = 300 K.

7.6 For the diode designed in Problem 7.5, determine
the forward voltage for the same forward current at

(a) 85◦C A
(b) 100◦C

7.7 A Schottky diode is created by depositing tungsten
(qφm = 4.6 eV) onto N-type silicon. By appropriate
heating, tungsten silicide (qφm = 4.7 eV) can be
created, becoming effectively the metal electrode
of the Schottky diode. Would this heating process

increase or decrease the saturation current? How
many times?

7.8 A P–N junction diode and a Schottky diode have the
same emission coefficient n = 1.25. The forward
voltage (measured at the same current) of the
Schottky diode is 0.5 V smaller. How many times
is the reverse-bias saturation current of the Schottky
diode larger? The thermal voltage is Vt = 0.026 V.

7.9 A Schottky diode, created on N-type silicon (ND =
1015 cm−3) has Vbi = 0.4 V. Determine the
depletion-layer capacitance per unit area at

(a) zero bias A
(b) reverse bias VR = 25 V

7.10 To reduce the series resistance, the width of the
low-doped region of the PIN and Schottky diode
considered in Example 7.1 is cut down to wn−epi =
10 μm.

(a) Calculate the achieved reduction in forward
voltage �VF .

(b) Calculate the associated reduction in maximum
reverse-bias voltage �VR−max .

7.11 Obtain the SPICE parameters IS and n of a Schottky
diode, using the data given in Table 7.8. Assume
room temperature (Vt = 0.02585 V).

TABLE 7.8 ID–VD Data for a Schottky
Diode

Current (mA) Voltage (V)

60.4 0.40
101.2 0.42

7.12 Design thermal oxidation conditions to grow 500-
nm SiO2 that is required in an IC technology
process. The temperature limits are 900◦C and
1200◦C, and both dry and wet processes are
available. To maximize throughput, the design
should minimize the growth time.

7.13 Which of the following statements, related to a MOS
capacitor, is correct?

(a) The condition of zero net charge at the MOS
capacitor plates is referred to as zero-bias
condition.

(b) There is no field at the semiconductor surface at
VGS = VF B .
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Figure 7.11 Characteristics of a P–N junction and a Schottky diode.
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Figure 7.12 Semiconductor–metal energy-band diagrams.

(c) The net charge at the MOS capacitor plates has
to be zero at VGS = 0.

(d) The density of inversion-layer charge is
expressed as QI = Cox(VGS − VF B).

(e) The surface potential ϕs increases exponentially
with gate voltage in strong inversion.

(f) The density of inversion-layer charge at the
onset of strong inversion is QI = γ

√
2φ f .

(g) The capacitance in depletion mode does not
depend on the gate voltage applied.

(h) The inversion-layer capacitance is proportional
to (VGS − VT ).

7.14 Which mode of MOS capacitor operation (accumu-
lation, depletion, or strong inversion) is expressed
by the energy-band diagram of Fig. 7.13? Knowing
that the energy gap of silicon is 1.12 eV, estimate
the voltage applied between the gate and the silicon
substrate.

7.15 How is the corresponding mode referred to and what
type of mobile and/or fixed charge appears at the
semiconductor surface of a MOS capacitor on a
P-type substrate when

(a) a negative effective voltage (VG − VF B < 0) is
applied to the gate?

(b) a small positive effective gate voltage is applied
to the gate (VF B < VG < VT )?

(c) a large positive effective gate voltage (VG >

VT ) is applied to the gate?

Assume Noc = 0.

Silicon

EC

EV

EF

OxideMetal

Figure 7.13 MOS energy-band diagram.

7.16 The flat-band voltage of a MOS capacitor on N-type
substrate is VF B = −1 V. If the gate-oxide thickness
is 5 nm, calculate the value and determine the
direction(s) of the electric fields in the gate oxide
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and at the surface of the semiconductor at zero gate
bias (VG = 0). A

7.17 Two different MOS capacitors, with different gate-
oxide thicknesses (3 nm and 15 nm), have the
same density of positive oxide charge (Noc =
5 × 1010 cm−2) close to the oxide–semiconductor
interface. Find the flat-band voltage shifts due to this
positive oxide charge for these two MOS capacitors.
What are the threshold voltage shifts?

7.18 The C–V curves of a MOS capacitor before and after
a gate-oxide stressing are shown in Fig. 7.14. Find
the density of gate-oxide charge, Noc, created by
this stress.

0.0
0

Gate voltage (V)

C
ap

ac
ita

nc
e 

(m
F/

m
2 )

2 4�4 �2

VG � 0.32 V

1.47 mF/m2

0.4

1.6

1.2

0.8

After stress
Before stress

Figure 7.14 C–V curves of a MOS capacitor
before and after gate-oxide stressing.

7.19 What is the work-function difference between
heavily doped polysilicon and P-type silicon that is
doped with 1016 cm−3 acceptor atoms if the heavily
doped polysilicon is

(a) P+ type A
(b) N+ type

7.20 (a) The flat-band voltage of a MOS capacitor with
N+ polysilicon gate is VF B = −0.25 V.
Assuming zero oxide charge, determine the type
and level of the substrate doping.

(b) What would be the flat-band voltage if P+
polysilicon gate is used with the same type and
level of substrate doping? A

7.21 The threshold voltage of a MOS capacitor on a P-
type silicon substrate is VT = 1.0 V. Give the
type and density of the mobile charge at the silicon
surface if 5 V is applied between the gate and the
substrate. The gate-oxide thickness is 15 nm. A

7.22 The threshold voltage of a MOS capacitor on a
P-type substrate is VT = 0.25 V, and the gate-
oxide capacitance is Cox = 6.5 mF/m2. How many
electrons can be found in 0.1 μm × 0.1 μm of
capacitor area if the gate voltage is VG = 0.5 V?

7.23 The threshold and the flat-band voltages of a MOS
capacitor are VT = −1.0 V and VF B = −0.5 V,
respectively. Is this capacitor created on an N-type
or P-type semiconductor? What is the density of
minority carriers (in C/m2) at the semiconductor
surface when the voltage applied between the metal
and semiconductor electrodes is VG = −0.75 V? A

7.24 The flat-band voltage and the threshold voltage of
a MOS capacitor are VF B = −3.0 V and VT =
−1.0 V, respectively. The gate-oxide capacitance is
Cox = εox/tox = 3.45 × 10−3 F/m2.

(a) Is this capacitor created on an N-type or P-type
semiconductor? Explain your answer.

(b) What is the density of minority carriers (in
C/m2) at the semiconductor surface when
the voltage applied between the metal and
semiconductor electrodes is VG = −2.0 V?

(c) What is the density of minority carriers (in
C/m2) at the semiconductor surface when
no voltage is applied across the capacitor
(VG = 0)?

7.25 Calculate the threshold voltage of a P+ polysilicon-
gate MOS capacitor on an N-type substrate (ND =
5 × 1016 cm−3) if the gate oxide thickness is 7 nm.
Neglect the gate-oxide charge.

7.26 The oxide thickness of a MOS capacitor is 4 nm.
The silicon substrate is N-type (doping level ND =
7 × 1016 cm−3), and the gate is heavily doped
N+-type polysilicon. Assuming zero oxide charge
density, determine the density of mobile charge at
the semiconductor surface if the voltage applied
between the gate and the substrate is −1.5 V. A

7.27 Calculate high- and low-frequency strong-inversion
capacitances per unit area of a MOS capacitor
having 50-nm-thick oxide as the dielectric and
P-type substrate doped with NA = 1015 boron
atoms per cm3.

7.28 The accumulation and strong-inversion capacitances
of a MOS capacitor, measured by a high-frequency
signal, are 9 mF/m2 and 3 mF/m2, respectively.
These capacitances are measured at VG = −2 V
and VG = 2 V, respectively.

(a) Is the substrate N or P type?
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(b) Determine the gate-oxide thickness.
(c) Assuming a uniform substrate doping, calculate

the substrate doping concentration. A

7.29 A MOS capacitor with N+ polysilicon gate is biased
in strong inversion. What is the surface potential ϕs?
Determine the voltage across the gate oxide if the
gate to substrate voltage is 5 V. The doping level of
the silicon substrate is NA = 5 × 1016 cm−3. A

7.30 The oxide breakdown electric field is 1 V/nm.
Design the oxide thickness of a MOS capacitor so
that the breakdown voltage in strong inversion is
5 V. N+ polysilicon is to be used for the gate, and
the substrate doping is NA = 7.5 × 1016 cm−3.
What is the breakdown voltage in accumulation if
the surface potential is neglected in comparison to
the breakdown voltage?

7.31 The following relationship among the oxide field,
the semiconductor field, and the density of oxide
charge close to the oxide–semiconductor interface
can be derived from the integral form of Gauss’s
law:

εs Es − εox Eox = q Noc

where both the semiconductor field at the surface
(Es) and the oxide field (Eox) are in the direction
toward the substrate. Calculate Eox and Es for
VG = VF B and

(a) Noc = 0 A
(b) Noc = 5 × 1010 cm−2

7.32 A MOS capacitor has a P+ polysilicon gate, sub-
strate doping of ND = 1016 cm−3 and gate-oxide
thickness of tox = 80 nm. The breakdown field
of the oxide is 1 V/nm. Calculate the breakdown
voltage in strong inversion if
(a) the oxide charge can be neglected.
(b) as a result of exposure to high electric field,

a positive charge with density of Noc = 5 ×
1011 cm−2 is created close to the silicon–oxide
interface. A

7.33 A MOS capacitor on a P-type substrate with φms =
1.0 V is biased by a constant gate voltage VG =
−7 V, in order to test the integrity of its 10-nm gate
oxide. If this stress creates Noc = 1010 cm−2 of
positive charge close to the silicon–oxide interface
every hour, how long will it take before the oxide
field reaches the critical level of 1 V/nm?

7.34 Five polysilicon-gate N-channel MOSFETs, each
with a different gate-oxide thickness tox (45 nm,
47 nm, 50 nm, 53 nm, and 55 nm), are made on P-
type silicon substrates having the same doping level
NA = 5 × 1016 cm−3. The gate-oxide charge Qoc
is assumed to be equal for all the MOSFETs because
they are processed in a single batch of wafers.
Measurements of the threshold voltages VT are
made, yielding the following values: 1.10 V, 1.16 V,
1.25 V, 1.33 V, and 1.39 V. Discuss the shape and
the slope of VT (tox) dependence, and explain the
meaning of the intercept VT (tox = 0). Determine
the value of the oxide charge Qoc and the metal–
semiconductor work-function difference φms .

REVIEW QUESTIONS

R-7.1 Make an analogy between a P–N junction and a Schottky diode. What is the origin of the
built-in voltages in either case? How do typical values compare?

R-7.2 What is the origin and meaning of the barrier potential φB? Does it depend on the bias
applied?

R-7.3 Why do the electrons from an N-type semiconductor not appear as minority carriers after
they pass through metal–semiconductor contact?

R-7.4 How does the absence of stored charge influence the Schottky diode characteristics?
R-7.5 Is there a net charge at MOS capacitor plates at VG = 0 V? If there is, there must be an

electric field at the semiconductor surface to keep that charge at the capacitor plates. With no
gate voltage applied, where can this electric field originate from?

R-7.6 How is the condition of zero charge at MOS capacitor plates referred to? Is there any field in
the oxide or the substrate? Is there any potential difference between the surface and the bulk
of the silicon substrate?
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R-7.7 How is the flat-band voltage expressed in terms of the work-function difference and the oxide
charge?

R-7.8 What type of charge appears at MOS capacitor plates when negative effective gate voltage
(VG − VF B < 0) is applied? How is this mode referred to? Assume a P-type semiconductor.

R-7.9 What determines the MOS capacitance in accumulation mode? Does it depend on the voltage
applied?

R-7.10 What type of charge appears at MOS capacitor plates when small positive effective gate
voltage (VG − VF B > 0) is applied? How is this mode referred to? Assume a P-type
semiconductor.

R-7.11 What determines the MOS capacitance in depletion mode? Does it depend on the voltage
applied? Does the surface potential change as the gate voltage is changed?

R-7.12 What type of charge appears at MOS capacitor plates when the gate voltage applied is larger
than the threshold voltage (VG > VT )? How is this mode referred to? Assume a P-type
semiconductor.

R-7.13 Write the capacitance–voltage–charge equation (Q = CV ) for a MOS capacitor in strong
inversion to show the relationship of different types of charge in the silicon substrate and the
effective gate voltage across the gate oxide.

R-7.14 Does surface potential depend significantly on the gate voltage in strong inversion?
R-7.15 What determines the surface potential in strong inversion? How is it expressed?
R-7.16 What is the density of the inversion-layer charge (electrons in the case of a P-type substrate)

at the onset of strong inversion?
R-7.17 What is the voltage at the gate that sets the MOS structure at the onset of strong inversion

called?
R-7.18 Obtain the threshold-voltage equation from the equation written in Question 13.



8 MOSFET

The first MOSFET (metal–oxide–semiconductor field-effect transistor) was fabricated in
1960, only a year after the beginning of the integrated-circuit era in 1959. The MOSFET
became the basic building block of very-large-scale integrated (VLSI) circuits, therefore
becoming the most important microelectronic device. Huge investments have been made in
what is known as CMOS technology, a technology used to manufacture circuits consisting
of complementary pairs of MOSFETs. Those investments, having been quite favorable,
consequently led to the rapid progress in computer and communication integrated circuits
that we have seen in the past decades.

However, the application of MOSFETs is not limited to VLSI circuits. MOSFETs play
an important role in power-electronic circuits, and they are becoming increasingly popular
and suitable for microwave applications.

This chapter explains MOSFET principles and characteristics, and it describes
MOSFET models and parameters used in circuit simulation. The metal–oxide–semi-
conductor (MOS) capacitor, dealt with in Section 7.2, represents the basis of a MOSFET.
Therefore, a good grasp of the effects explained in the MOS capacitor section is necessary
for effective understanding of this chapter. Also, the MOSFET involves two P–N junctions,
which means that the P–N junction concepts introduced in Chapter 6 need to be understood
as well.

8.1 MOSFET PRINCIPLES

8.1.1 MOSFET Structure
As indicated, the MOSFET is developed from the MOS capacitor. The voltage applied to
the gate of the MOS capacitor controls the state of the silicon surface underneath. Negative
gate voltages attract the holes from the P-type silicon to the surface (accumulation),

296
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Figure 8.1 (a) Schematic cross section and (b) the
circuit symbol of an N-channel MOSFET.

whereas positive voltages larger than the threshold voltage create a layer of electrons at
the surface (inversion).

These two states of the MOS capacitor can be used to make a voltage-controlled
switch. To achieve this, the layer of electrons at the surface is contacted at the ends by
N+ regions referred to as source and drain, as illustrated in Fig. 8.1a. The existence of the
electron layer, also referred to as channel, corresponds to the on state of the switch as the
electron channel virtually short circuits the source and the drain regions, which are used
as the switch terminals. When the gate voltage is below the threshold voltage, the electron
layer (the channel) disappears from the surface, and the source and drain N+ regions are
isolated by the P-type substrate. This is the off state of the switch.

The same structure, shown in Fig. 8.1, can be used to create a voltage-controlled
current source. This is possible because at higher drain-to-source voltages the current
flowing through the channel (on mode) does not increase linearly with the drain-to-source
voltage but saturates. The mechanisms of current saturation will be explained in detail in
Section 8.1.4. Because the saturation current is independent of the voltage between the
source and drain, the device behaves as a current source. In addition, it is possible to alter
the value of this current between its maximum value and zero. Therefore, the MOSFET
appears as a voltage-controlled current source at higher drain-to-source voltages.

It is obvious from Fig. 8.1 that the MOSFET is essentially a four-terminal device.
The four terminals are as follows: the silicon substrate (body) (B), the gate (G), the
source (S), and the drain (D). Very frequently, the body and the source are connected
together, so that the controlling voltage applied to the gate, as well as the driving voltage
applied to the drain, can be expressed with respect to the common reference potential of
the short-circuited source and body. In some integrated circuits, the body and the source
cannot be short-circuited, or a voltage is deliberately applied between the body and the
source. The effect of the body-to-source voltage is called body effect and is explained in
Section 8.1.3.

Figure 8.1 illustrates one type of MOSFET, which uses a P-type substrate (body), an
N+-type source, and drain layers and also needs positive voltage at the gate to turn the
MOSFET on by creating channel of electrons between the source and the drain. Because
this type of MOSFET operates with N-type channel (electrons), it is referred to as an
N-channel MOSFET. It is possible to make a complementary MOSFET using N-type
substrate (body) and P+-type source and drain layers. In this type of MOSFET, the channel
connecting the source and the drain in on mode has to be created of holes (P-type carriers),
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Figure 8.2 Types of MOSFETs.

because of which it is called a P-channel MOSFET. The terms N-channel and P-channel
MOSFETs are frequently replaced by the shorter terms NMOS and PMOS.

A common characteristic of these N-channel and P-channel MOSFETs is that they are
in the off mode when no gate bias is applied. This is because there is no channel between the
source and the drain, and therefore the drain current is zero. Consequently, these MOSFETs
are classified as normally off MOSFETs. The transfer characteristics (ID–VGS) in Fig. 8.2
show that the drain current appears for (a) sufficiently large positive gate voltages in the
case of an N-channel and (b) negative gate voltages in the case of a P-channel MOSFET.
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This is because appropriate gate voltages are needed to create the channel of electrons and
holes in N-channel and P-channel MOSFETs, respectively. As a consequence, MOSFETs
of this type are also referred to as enhancement MOSFETs.

MOSFETs can be created with technologically built-in channels. Because no gate
voltage is needed to set these MOSFETs in the on state, they are called normally on
MOSFETs. To turn this type of MOSFETs off, the channels have to be depleted of
electrons or holes, so they are also referred to as depletion-type MOSFETs. The transfer
characteristics in Fig. 8.2 illustrate that negative voltage is needed to stop the drain current
in the case of an N-channel MOSFET, and similarly positive voltage is needed to set a
P-channel MOSFET in the off state.

Defining the threshold voltage as the gate voltage at which the channel is just formed
(or depleted), we can say that the threshold voltage of the enhancement-type N-channel
MOSFETs is positive, whereas it is negative in the case of the depletion-type N-channel
MOSFETs. The situation is opposite with the P-channel MOSFETs: negative threshold
voltage in the case of enhancement type, and positive threshold voltage in the case of the
depletion type.

The main MOSFET type is the N-channel enhancement type. The P-channel
enhancement-type MOSFET is used as a complementary transistor in circuits known as
CMOS (complementary MOS) technology. The N-channel depletion-type MOSFET is
used as a kind of complementary transistor in circuits using only N-channel MOSFETs
(NMOS technology).

8.1.2 MOSFET as a Voltage-Controlled Switch
Cross-Sectional Illustration and ID–VDS Characteristics

Figure 8.3 illustrates the two modes of a MOSFET used as a voltage-controlled switch.
The switch is between the source and drain terminals, whereas the gate is the controlling
electrode. In the off mode, the structure between the drain and the source terminals is
equivalent to two back-to-back P–N junction diodes. A positive voltage between the drain
and the source (VDS > 0) sets the drain-to-body diode in off mode (reverse bias); hence
there is no significant current through the switch (refer to the ID–VD characteristic in
Fig. 8.3c). The reverse bias expands the depletion layer at the drain-to-body junction, as
illustrated in Fig. 8.3a.

The switch remains in off mode for as long as the gate voltage is below the threshold
voltage (VGS < VT ). When the gate voltage is higher than the threshold voltage, the
channel between the drain and source is formed, thereby enabling a current flow through
the switch. The channel under the gate electrode appears as a resistor between the drain
and the source electrodes, so the channel current increases linearly with the drain-to-source
voltage (Fig. 8.3c). The channel resistance can be considered as a parasitic resistance of a
switch in on mode. In other words, the switch is not ideal because it does not provide the
perfect short circuit in on mode.

Voltage-controlled switches are typically used in circuits that operate with two voltage
levels: low (VL ≈ 0) and high (VH ≈ V+, where V+ is the positive power-supply voltage
in the circuit). For enhancement-type MOSFETs, VL < VT (off mode) and V+ > VT (on
mode). The two colored lines in the ID–VDS characteristic of Fig. 8.3c correspond to these
two cases.
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Figure 8.3 Cross-sectional illustrations of a MOSFET in (a) off and (b) on modes, along with (c) the corresponding
current–voltage characteristics.

The region of the ID–VDS characteristics corresponding to the negligible ID current
of a MOSFET used as a switch in off mode (VGS < VT ) is referred to as the cutoff region.
The region of the ID–VDS characteristics corresponding to the use of a MOSFET as a
switch in on mode is referred to as the linear region. The black lines in Fig. 8.3c illustrate
the ID–VDS characteristics for gate voltages between VGS1 = VL and VGS6 = VH . In
the linear region, the slope of the ID–VDS characteristic is smaller for lower gate voltages
than VGS6 = VH . This is because there are fewer electrons in the channel for a lower
gate voltage, meaning that the channel resistance is higher. Therefore, the MOSFET acts
as a voltage-controlled resistor when biased in the linear region. As Fig. 8.3c illustrates,
the linear region is limited to small drain-to-source voltages; the deviation from the linear
dependence and the current saturation at higher drain-to-source voltages will be considered
in Section 8.1.4.

Equations (3.4) and (3.17) can be used to relate the channel resistance to the
technological and the geometric parameters:

R = ρ
L

W xch
= 1

qnμn

L

W xch
(8.1)

where W is the channel width, L is the channel length, xch is the channel thickness, n is
the average electron concentration in the channel, and μn is the average electron mobility
in the channel. The average electron concentration depends on the gate voltage, and it can
be related to the charge density per unit area in the inversion layer of a MOS capacitor in
strong inversion (QI ). The dependence of QI on the gate voltage is given by Eq. (7.20).
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Figure 8.4 Two-dimensional energy-band
diagram for the semiconductor part of an
N-channel MOSFET in the flat-band condition.
The two different colors in the conduction band
indicate the two different types of doping: N
type in the source and drain regions, and P type
in the body. Darker colors indicate higher carrier
concentration, and the nearly white areas
indicate the depletion region.

Given that QI /q is the number of electrons per unit of channel area, QI /qxch is the number
of electrons per unit volume, which is the electron concentration. Replacing the electron
concentration n in Eq. (8.1) by n = QI /qxch and using Eq. (7.20) for QI , the following
equation for the resistance of the channel is obtained:

R = 1

μnCox(VGS − VT )

L

W
(8.2)

The current through the channel—that is, the drain current—is then

ID = VDS

R
= μnCoxW

L
(VGS − VT )VDS (8.3)

This equation models both the linear dependence of ID on VDS (the output characteristics)
and the linear dependence of ID on VGS − VT (the transfer characteristic). Of course, these
linear models are applicable only to the linear region of MOSFET operation.

Energy Bands

As with the other devices, the energy-band model can be used to provide a deeper
insight into the MOSFET operation.1 The MOSFET effects have to be considered in two
dimensions. The first dimension is needed to express the gate-voltage-related effects—
that is, to follow the direction from the silicon surface into the silicon body. The second
dimension is needed to express the drain-to-source voltage-related effects—that is, along
the silicon surface. Because of that, two-dimensional energy-band diagrams will be used
when we explain MOSFET operation.

A two-dimensional energy-band diagram for an N-channel MOSFET in the flat-band
condition is shown in Fig. 8.4. Looking at the right-hand side—the cross section of the
diagram that goes through the drain region and the body—we can identify the familiar
energy-band diagram of the N–P junction formed by the N-type drain and the P-type body.
Just as in Fig. 6.3, showing the energy-band diagram of a P–N junction, EF is closer to EC

in the N-type drain region, whereas it is closer to EV in the P-type body.

1This may not be very important for the basic operation of a MOSFET in the cutoff and linear
regions, but the energy bands will appear as an irreplaceable tool for the forthcoming explanations of
more advanced effects, such as the body effect, the current saturation due to channel pinch-off, and
the drain-induced barrier lowering.
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The front cross section of the two-dimensional energy-band diagram of Fig. 8.4 goes
along the semiconductor surface. This is the energy-band diagram of the N–P–N structure
formed by the N-type source, P-type body, and N-type drain at the semiconductor surface.
This one-dimensional energy-band diagram can easily be deduced from the energy-band
diagram of a P–N junction, given that the N–P–N structure can be split into N–P and P–N
structures with the P regions merged with one another. The energy-band diagram of the
N-type source and P-type body is constructed in the same way as the energy-band diagram
of the N–P junction shown in Fig. 6.3. The remaining part (P-type body and N-type drain)
is a mirror image of the source–body part, so the energy-band diagram is completed by the
mirror image of the band diagram for the N–P part.

If a cross section is made in the central part in the direction from the surface into
the semiconductor body, the energy bands would be flat, just as in Fig. 7.7d showing the
flat-band condition of a MOS capacitor.

The energy barriers at the P–N junctions, which are equal to qVbi , create potential
wells that confine the source and the drain electrons in the N-type source and drain regions,
respectively. A helpful analogy for the electrons in the source and the drain regions is to
consider the source and the drain as “lakes” with water (or “electron fluid” if that seems
closer to the reality). The electrons in the source and drain regions are separated by the
potential barrier created by the P-type body (refer to Fig. 8.4).

When a positive voltage is applied between the drain and the grounded source and
body contacts, the drain-to-body N–P junction is set at reverse bias. The quasi-Fermi level
in the N-type drain is lowered by qVDS with respect to the Fermi-level position in the
grounded body and source regions, as shown in Fig. 8.5a. This lowering of the energy
bands in the drain causes any electrons appearing in the surrounding depletion layer to roll
down into the drain. This is certainly applicable to minority electrons in the P-type body
that contribute to the reverse-bias current of the drain-to-body N–P junction. The electrons
in the source are at a higher energetic position compared to the electrons in the drain, but
they do not roll down into the drain because they are separated by the energy barrier of
the P-type body. There is no significant current between the source and the drain, even for
relatively high drain-to-source voltages—the MOSFET acts as a switch in off mode.

With a gate voltage higher than the threshold voltage, the surface potential is set to
approximately 2φF [Fig. 7.6 and Eq. (7.18)]. The surface potential change from 0 (the flat
bands) to 2φF corresponds to lowering of the energy bands at the surface by 2qφF , as
illustrated in Fig. 8.5b. In other words, the barrier height between the source and the drain
is lowered by 2qφF to qVbi − 2qφF at the surface of the P-type body. As Fig. 8.5b shows,
the electrons from the source can now flow through the channel into the drain. In fact, the
energy bands in the channel region correspond to the energy bands of a biased resistor,
discussed in Chapter 3 and shown in Fig. 3.2. Therefore, the analogy of electron fluid
together with the energy bands in Fig. 8.5b provide a clear illustration of the previously
discussed linear dependence of ID on VDS: an increase in VDS corresponds to an increase
in the slope of the bands in the channel (qVDS/L), which causes a proportional increase in
the current flow.

CMOS Inverter

A typical application of MOSFETs as controlled switches is in complementary MOS
(CMOS) digital circuits. The CMOS inverter, shown in Fig. 8.6a, is the representative
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Figure 8.5 Two-dimensional energy-band
diagrams for an N-channel MOSFET acting as a
switch in (a) off mode and (b) on mode. The two
colors in the conduction band indicate the
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colors correspond to higher carrier con-
centrations, whereas the nearly white areas
indicate depleted regions. Note that the
depleted regions correspond to the areas with
sloped energy bands and therefore with
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CMOS circuit. CMOS digital circuits operate with two voltage levels, the low level
being VL ≈ 0 and the high level being VH = V+. Digital circuits can be built using
complementary pairs of N-channel and P-channel MOSFETs, also referred to as NMOS
and PMOS transistors, respectively. This technology is known as the complementary MOS
(CMOS) technology.

At high input voltage (VH ≈ V+), the NMOS is in on mode because its gate-to-source
voltage is higher than its threshold voltage. However, the PMOS is in off mode because
its gate-to-source voltage (vH − V+) is close to zero (in absolute terms, it is smaller than
the threshold voltage). As Fig. 8.6b shows, no DC current flows through the inverter in
this logic state. The other logic state is for a low input voltage (VL ≈ 0). In this case,
the PMOS is in on mode because its gate-to-source voltage is close to the negative value
of V+ (VGS = VL − V+ ≈ −V+), which means that its absolute value is larger than the
PMOS threshold voltage. In this case, however, the NMOS is in off mode because its gate-
to-source voltage is at VL ≈ 0, thus below the threshold voltage. Again, no DC current
flows through the inverter (Fig. 8.6b). Consequently, no static power dissipation is needed
to maintain any logic state by a CMOS digital circuit.

With this conclusion, it is important to emphasize that CMOS circuits do dissipate
power when the logic states are changed (dynamic power dissipation). This is because
the outputs of CMOS logic cells, such as the inverter in Fig. 8.6, are loaded by the parasitic
input capacitances of the connected logic cells (represented by CL in Fig. 8.6a). To change
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Figure 8.6 (a) The circuit of the CMOS
inverter. (b) Typical input/output signals.

the output of the inverter of Fig. 8.6 from low to high level, the capacitor CL has to be
charged by current flowing through the channel resistance of the PMOS in on mode. When
the output is changed from high to low level, the capacitor CL has to be discharged through
the channel resistance of the NMOS in on mode. Obviously, in these transition periods,
some power is dissipated by the inverter.

The low-power-dissipation characteristic of the CMOS circuits has expanded the
applications of digital circuits enormously, ranging from battery-supplied portable and
entertainment electronics to computer applications as we now know them. The switching
speed (maximum operating frequency) was initially a disadvantage of the CMOS circuits,
but aggressive MOSFET dimension reduction has led to a dramatic increase in the
speed. The dimension reduction has also enabled increased levels of integration, leading
to powerful digital ICs. Dimension reduction, or so-called MOSFET downscaling, is
described in more detail in Section 8.4. The CMOS technology has become the dominant
electronics technology today.

8.1.3 The Threshold Voltage and the Body Effect
It has been assumed so far that the source and the body of the MOSFET are short-circuited
(VBS = 0). Although MOSFETs are very frequently used in this way, there are some
applications where the body and the source cannot be short-circuited, or nonzero voltage is
deliberately applied between the body and the source. In the case of N-channel MOSFETs,
therefore P-type body and N-type source, the voltage applied between the body and the
source should not be positive, because it would bias the body-to-source P–N junction
in the forward mode, opening a current path between the source and the body contacts.
Negative body-to-source voltages (VBS < 0), or equivalently positive source-to-body
voltages (VSB > 0), set the body-to-source P–N junction in reverse-bias mode. This reverse
bias increases the threshold voltage of the MOSFET, which is the effect referred to as the
body effect.
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Figure 8.7 Illustration of the body effect. (a) VSB

voltage increases the barrier between the
electrons in the source and the drain. (b) The
surface potential of 2φF does not reduce the
barrier sufficiently for the electrons to be able to
move into the channel. (c) The surface potential
needed to form the channel is 2φF + VSB.

The body effect may be hard to comprehend with cross-sectional diagrams in mind, but
the two-dimensional energy-band diagrams illustrate this effect clearly. Figure 8.7 shows
the two-dimensional band diagrams for three different values of the surface potential ϕs .
In Fig. 8.7a, the surface potential in the P-type region is zero with respect to the electric
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potential in the neutral region of the body—flat bands in the P-type substrate along an
imagined cross section that is perpendicular to the surface. The effect of the applied VSB

voltage can be seen at the cross section that goes through the drain and is visible at at
the right-hand side of the diagram. This is the energy-band diagram of a reverse-biased
N–P junction. The source-to-body junction is also reverse-biased. In fact, the drain and
the source are at the same potential, so we can think that the energy bands of the body
are lifted up with respect to both the drain and the source by the reverse bias −qVBS.
As a consequence, the energy barrier between the electrons in the source and the drain is
increased by qVSB when compared to the case of VSB = 0 (Fig. 8.5a).

Figure 8.7b illustrates the case of ϕs = 2φF . This is the value of the surface potential
that corresponds to the strong-inversion mode (the channel of electrons is formed) in the
case VSB = 0. As can be seen from Fig. 8.7b, the surface potential of ϕs = 2φF does
not reduce the energy barrier between the source and the drain sufficiently in the case
of VSB > 0. To compensate for the effect of the VSB bias, the surface potential needs to
be further increased (therefore, the energy barrier reduced), and that is exactly by VSB.
Figure 8.7c illustrates the case of ϕs = 2φF + VSB when the energy barrier between the
source and the drain is reduced sufficiently to enable electrons to form the channel.

In conclusion, the surface potential in strong inversion for the general case of a nonzero
source-to-bulk voltage is

ϕs = 2φF + VSB (8.4)

The threshold-voltage equation for a MOS capacitor, which is Eq. (7.19) derived in
Section 7.2.2, can be used for a MOSFET with VSB = 0 V. For the case of a nonzero VSB,
the threshold-voltage equation can also be derived from the capacitance–voltage–charge
relationship in the depletion mode. If the density of the depletion-layer charge (Qd ) is
divided by the gate-oxide capacitance per unit area (Cox), the effective voltage across the
capacitor dielectric is obtained:

VGS + VSB − VFB︸ ︷︷ ︸
effective gate-to-body voltage

−ϕs

︸ ︷︷ ︸
voltage across the gate oxide

= Qd

Cox
(for VFB ≤ VGS ≤ VT ) (8.5)

Using ϕs = 2φF + VSB and VGS = VT as the values of the surface potential and the gate
voltage at the onset of strong inversion, Eq. (8.5) becomes

VT + VSB − VFB − (2φF + VSB) = Qd

Cox
(8.6)

which leads to the following equation for the threshold voltage:

VT = VFB + 2φF + Qd

Cox
(8.7)



8.1 MOSFET Principles 307

It is the depletion-layer charge (Qd ) that depends on VSB in this equation. Given that the
voltage across the depletion layer is ϕs = 2φF + VSB, it is this value of ϕs that should
be used in Eq. (7.11). With this change, Eqs. (7.10) and (7.11) lead to the following
equation for Qd :

Qd =
√

2εsq NA(2φF + VSB) (8.8)

and the following equation for the threshold voltage:

VT = VFB + 2φF + γ
√

2φF + VSB (8.9)

The threshold-voltage increase �VT , caused by the voltage VSB is

�VT = VT (VSB) − VT (VSB = 0) = γ
(√

2φF + VSB −
√

2φF
)

(8.10)

For a MOSFET on an N-type substrate (a P-channel MOSFET), Eq. (7.21) for the case
of VBS = 0 can be extended in a similar way to obtain the threshold-voltage equation that
includes the effects of body bias (VBS > 0 in this case):

VT = VFB − 2|φF | − γ
√

2|φF | + VBS (8.11)

The body factor γ is given by Eqs. (7.17) and (7.22) for P-type and N-type substrates,
respectively.

EXAMPLE 8.1 Threshold Voltage with VSB = 0 and VSB =/ 0 (Body Effect)

An N-channel MOSFET with N+-type polysilicon gate has oxide thickness of 10 nm and
substrate doping NA = 5 × 1016 cm−3. The oxide charge density is Noc = 5 × 1010 cm−2.
Find the threshold voltage if the body is biased at 0 V and −5 V, respectively. The following
constants are known: the thermal voltage Vt = 0.026 V, the oxide permittivity εox = 3.9 ×
8.85 × 10−12 F/m, the silicon permittivity εs = 11.8 × 8.85 × 10−12 F/m, the intrinsic carrier
concentration ni = 1.02 × 1010 cm−3, and the silicon energy gap Eg = 1.12 eV.

SOLUTION

To use Eq. (8.9) to calculate the threshold voltage, the Fermi potential φF , the flat-band voltage
VFB, and the body factor γ should be obtained first. According to Eq. (2.88), the Fermi potential is

φF = +Vt ln
NA

ni
= 0.401 V

The flat-band voltage equation [Eq. (7.35)] shows that the work-function difference qφms and
the gate-oxide capacitance per unit area Cox are needed as well. The work-function difference
is given by Eq. (7.34). In the N+ type gate, the Fermi level is very close to the bottom of the
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conduction band, which means that the work function of the gate qφm is approximately equal to
the electron affinity qχs (Section 7.2.3); therefore,

φms = − Eg

2q
− φF = −0.961 V

Because the gate-oxide capacitance per unit area is

Cox = εox/tox = 3.45 × 10−3 F/m2

the flat-band voltage is obtained as

VFB = φms − q Noc

Cox
= −0.961 − 1.6 × 10−19 × 5 × 1014

3.45 × 10−3 = −0.984 V

The body factor is given by Eq. (7.17):

γ =
√

2εsq NA/Cox

=
√

2 × 11.8 × 8.85 × 10−12 × 1.6 × 10−19 × 5 × 1022/3.45 × 10−3

= 0.375 V1/2

The threshold voltage at VSB = 0 V is calculated as

VT (0) = VFB + 2φF + γ
√

2φF + VSB = −0.984 + 2 × 0.401 + 0.375
√

2 × 0.401 + 0 = 0.15 V

To calculate the threshold voltage at VSB = 5 V, find the threshold-voltage difference �VT using
Eq. (8.10):

�VT = 0.375
(√

2 × 0.401 + 5 − √
2 × 0.401

) = 0.57 V

Therefore, VT (5V ) = VT (0) + �VT = 0.72 V.

8.1.4 MOSFET as a Voltage-Controlled Current Source:
Mechanisms of Current Saturation

When a MOSFET is operated as a switch in on mode (VGS > VT and VDS < VDSsat for
an N-channel MOSFET), the normal electric field from the gate voltage VGS holds the
electrons in the inversion-layer channel while the lateral electrical field due to the drain-
to-source voltage VDS rolls them into the drain. The channel of electrons extends all the
way from the source to the drain, the resistance of which determines the slope of the linear
ID–VDS characteristic.
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To use the MOSFET as a constant-current source, ID should become independent of
VDS . This happens at larger drain-to-source voltages (VDS > VDSsat), an effect referred
to as current saturation. There are two different mechanisms that can cause drain-current
saturation in MOSFETs. These two mechanisms are considered in the following text.

Channel Pinch-off

As the drain-to-source voltage VDS is increased, the lateral electric field in the channel
is increased as well and may become stronger than the vertical electric field due to the
gate voltage. This would first happen at the drain end of the channel. In this situation, the
vertical field is unable to keep the electrons at the drain end of the channel as the stronger
lateral field sweeps them into the drain. The channel is pinched off at the drain end. The
drain-to-source voltage at which this happens is called the saturation voltage, VDSsat.

An increase of VDS beyond VDSsat expands the region in which the lateral field is
stronger than the vertical field, effectively moving the pinch-off point closer to the source.
A MOSFET with the pinch-off point between the source and the drain is illustrated in
Fig. 8.8a. The region created between the pinch-off point and the drain is basically the
depletion layer at the reverse-biased drain–substrate junction. Note that we are considering
the surface area of the junction, which is influenced by the gate field. Consequently, the
surface region of the P–N junction is not in the reverse-bias mode until the drain voltage
reaches VDSsat. This is different from the bulk region of the junction, which is in the
reverse-bias mode for any positive VDS voltage.

The voltage across the depletion region at the surface (the reverse bias) is VDS–VDSsat,
which is the voltage increase beyond VDSsat. The remaining part of the drain-to-source
voltage, which is VDSsat, drops between the pinch-off point and the source. In this region the
vertical field is stronger than the lateral field, and the inversion layer (channel of electrons)
still exists. It is in fact this part of the source-to-drain region that determines the value of
the drain current. Given that the voltage across the channel of electrons is fixed to VDSsat

for VDS > VDSsat, the drain current remains fixed to the value corresponding to VDSsat.
This effect is called drain-current saturation, and the VDS > VDSsat region of the MOSFET
operation is referred to as the saturation region.
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S
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Figure 8.8 (a) Cross section of a MOSFET in the saturation region. (b) The corresponding ID–VDS

characteristics.
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Figure 8.9 Two-dimensional energy-band
diagrams for an N-channel MOSFET in saturation
due to channel pinch-off. A comparison of the
smaller VDS bias in (a) to the larger VDS value in (b)
shows that the channel is shortened by the
increased drain-to-source bias, but the con-
centration of electrons in the channel is not
changed. As in the waterfall analogy, the drain
current is limited by the concentration of the elec-
trons in the channel and not by the height of the fall.

The two-dimensional energy-band diagrams of the MOSFET, shown in Fig. 8.9,
provide a clearer insight into the effect of current saturation due to the channel pinch-
off. The energy bands are very steep in the depletion region, which represents the situation
of a very strong lateral field in this region. Electrons do not spend much time on this very
steep part of EC ; they very quickly roll down into the drain. This part of the source-to-
drain region offers little resistance to the electrons. Although an increase of VDS continues
to lower EC in the drain region (Fig. 8.9b), this does not increase the drain current. The
electrons in this shape of energy bands can be compared to a waterfall: the water current
depends on the quantity of water before the fall (the channel) and not on the height of the
waterfall (qVDS − qVDSsat).

In summary,

1. The depletion region has little influence on the drain current.
2. The value of the drain current is limited by the number of electrons that appear at

the edge of the depletion region (the pinch-off point) per unit time. In the waterfall
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analogy, the current of water is determined by the water flow before the fall and
cannot be increased by increasing the height of the fall.

3. The number of the electrons in the channel, and therefore the number of electrons
that hit the pinch-off point per unit time, is controlled by the gate voltage and not
the drain voltage.

4. As a consequence, the drain current is controlled by the gate voltage and is
independent of the drain voltage—the MOSFET acts as a voltage-controlled
current source.

5. As it should be for a current source providing a current that does not depend on
the voltage across the current source, the ID–VDS characteristics of a MOSFET
in saturation (VDS > VDSsat) are horizontal. Figure 8.8b shows a set of horizontal
lines because the saturation current ID depends on the gate voltage—these are the
current–voltage characteristics of a voltage-controlled current source.

Drift Velocity Saturation

Minimum lateral and vertical dimensions of MOSFETs are continuously being reduced in
order to increase the density and the speed of modern ICs. These MOSFETs are referred
to as short-channel MOSFETs. The operating VDS voltages cannot be proportionally
reduced because the maximum operating voltage has to be kept well above the MOSFET
threshold voltage. As a consequence, short-channel MOSFETs operate with significantly
increased lateral and vertical electric fields in the channel. Although the relative rela-
tionship between the lateral and the vertical electric fields is roughly maintained, these
MOSFETs typically exhibit a different type of drain-current saturation. It happens that the
current saturates at a drain-to-source voltage smaller than the voltage that would cause
channel pinch-off at the drain end.

To explain this effect, refer to Eq. (3.21) in Section 3.3, which shows that the current
is directly proportional to the drift velocity of the carriers. As explained in Section 3.3,
the drift velocity follows a linear dependence on the lateral electric field in the channel
up to a certain level, and saturates if the field is increased beyond that level (Fig.3.6).
The lateral electric field in short-channel MOSFETs is stronger than the critical velocity
saturation value, while not being stronger than the vertical electric field at the drain end of
the channel (the channel is not pinched off). Nonetheless, the drain current saturates due to
the carrier velocity saturation in the channel.

Although this is a different mechanism of current saturation than the pinch-off, the
MOSFET can equally well be used as a voltage-controlled current source.

Related to modeling of this saturation mechanism, it is worth considering the
following issue. If the channel is not pinched off, it can be modeled as a resistor between the
source and the drain. If that is so, it could be expected that the current should not saturate
but increase linearly with VDS, according to Ohm’s law! However, the velocity saturation
and the related current saturation are real effects. They do happen in semiconductor devices
in practice, although they cannot be observed in metals (too-high carrier concentration
makes it impossible to reach high electric fields). If we wish to continue using Ohm’s law,
we have to alter appropriately the value of the mobility in Eq. (3.22) so that it models this
effect properly. The next section, on MOSFET modeling, will describe the mobility models
used in SPICE to account for this effect.
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8.2 PRINCIPAL CURRENT–VOLTAGE CHARACTERISTICS AND EQUATIONS

Mathematical equations are needed to calculate the drain current (ID) for a set of applied
voltages, VGS , VDS, and VSB. In general, ID = f (VGS, VDS, VSB), where the function
f depends on a number of geometrical and technological parameters. For convenience,
a set of mathematical equations is typically used to present the function f . This set of
mathematical equations is referred to as the MOSFET model. There are a large number
of models that differ in terms of their accuracy and complexity. Additionally, the models
of the principal effects (first-order models) are modified in virtually countless ways to
include observed second-order effects. The consideration of MOSFET models, presented
in this section, is limited to a selection of SPICE equations (even in SPICE, there are three
basic model options, referred to as LEVEL 1, LEVEL 2, and LEVEL 3, plus additional
more sophisticated or specific models).

In the most important practical models, the function f is different for the triode,
saturation, and subthreshold regions of MOSFET operation. The output characteristics
shown in Fig. 8.10a illustrate that ID increases with VDS in the triode region, whereas
it is almost independent of VDS in the saturation region. The transfer characteristic shown
in Fig. 8.10b shows that ID ≈ 0 in the subthreshold region (VGS < VT ). Accordingly, the
general form of these first-order models is as follows:

ID =

⎧⎪⎨
⎪⎩

0 subthreshold or cutoff (VGS < VT )

f (VGS, VSB, VDS) triode region (0 ≤ VDS ≤ VDSsat)

f (VGS, VSB, VDSsat) saturation (VDS ≥ VDSsat)

(8.12)

Basically, the function f is derived for the triode region, and its prediction for the current
at the onset of saturation (VDS = VDSsat) is used for the saturation region (the current in
the subthreshold region is assumed to be zero).

Different functions f (VGS, VSB, VDS) are used in LEVELS 1, 2, and 3 of the principal
SPICE model. The SPICE LEVEL 1 model is the simplest MOSFET model that is typically
used in circuit design books. The SPICE LEVEL 2 model is a physically based model
presented in a number of semiconductor books as the MOSFET model. The LEVEL 2
model frequently appears as unnecessarily complex, whereas the LEVEL 1 model is rarely

ID ID

VT

(a) (b)

Triode region Saturation region

Cutoff region

VDSsat

VDS � constVGS6

VGS5

VGS4

VGS3

VGS2

VDS VGS

Figure 8.10 (a) Output and
(b) transfer characteristics of a
MOSFET.
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accurate enough. The SPICE LEVEL 3 model is almost as simple as the LEVEL 1 model
(the equations resemble the LEVEL 1 equations) and is almost as accurate as the LEVEL
2 model. Technically, the LEVEL 3 model is the best choice. Moreover, the equation of the
LEVEL 3 model can be obtained by simplifying the equation of the LEVEL 2 model, and
the LEVEL 3 equation can be reduced to the equation of the LEVEL 1 model. To show
these relationships between different models, all three first-order equations are presented
in this section. The second-order effects included in SPICE are presented in Section 8.3 for
the LEVEL 3 model.

8.2.1 SPICE LEVEL 1 Model
It is assumed in the SPICE models that all the majority carriers flowing through the channel
terminate at the drain. In the case of N-channel MOSFETs, this means that the terminal
current ID is equal to the current of the electrons in the channel. The electron flow in the
channel is caused by the electric field due to the drain-to-source bias VDS. This current
mechanism, the drift current, is modeled by Ohm’s law [Eq. (3.12)]:

j = σ E (8.13)

where j is the current density in A/m2, E is the electric field, and σ is the conductivity.
The conductivity can be expressed in terms of the electron concentration n and electron
mobility μ0 [refer to Eq. (3.17)], which leads to

j = qμ0nE (8.14)

It appears that the current density of the electrons in the channel j , given in units
of A/m2, can simply be multiplied by the channel cross-sectional area to convert it into
the drain current ID , which is expressed in A. As discussed in Section 3.2.2, this would
implicitly assume a uniform current density. If the current density changes, it means that the
average value of the current density is actually taken. If this approach is taken, all the other
differential quantities in Eq. (8.14) should be represented by their average values. Denoting
the channel cross section by xchW and expressing the average value of the electric field by
VDS/Leff ,

j xchW︸ ︷︷ ︸
ID [A]

= μ0 qnxch︸ ︷︷ ︸
Q I [C/m2]

W E︸︷︷︸
VDS/Leff

(8.15)

the following equation is obtained:

ID = μ0W

Leff
QI VDS (8.16)

QI in Eqs. (8.15) and (8.16) is the average value of the inversion-layer charge density,
expressed in C/m2. Small drain-to-source voltages (VDS � VGS) do not disturb the
channel, in which case QI is very close to the inversion-layer charge density of the MOS
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structure [Eq. (7.20)],

QI ≈ QI = (VGS − VT )Cox for (VGS ≥ VT ) (8.17)

Using this equation for QI in Eq. (8.16) leads to the drain-current equation for the linear
region [Eq. (8.3)].

To model the drain current in the whole triode region (not its linear part only), the
influence of VDS voltage on the inversion-layer charge density cannot be neglected. As
VDS voltage is increased, the drain end of the inversion layer is being gradually depleted,
until it is completely pinched off at the drain end, which is the point of drain-current
saturation (VDS = VDSsat). Therefore, the VDS voltage causes a nonuniform distribution
of the inversion-layer charge density along the channel. To include this effect, the MOS
capacitor equation for QI [Eq. (7.20)] can be modified as follows:

QI (v) = (VGS − VT − v)Cox (8.18)

where v is electric potential whose value changes from 0 at the source end of the channel
to VDS at the drain end of the channel. Therefore, QI changes from (VGS − VT )Cox at the
source end of the channel (no influence from the drain bias) to (VGS − VT − VDS)Cox at the
drain end of the channel. The average value of the inversion-layer charge density is then

QI = 1

VDS

∫ VDS

0
QI (v)dv

= Cox

VDS

∫ VDS

0
(VGS − VT − v)dv

=
(

VGS − VT − VDS

2

)
Cox (8.19)

With this equation for QI , Eq. (8.16) becomes

ID = β

[
(VGS − VT )VDS − V 2

DS

2

]
(8.20)

where β is called the gain factor and is defined as

β = μ0Cox
W

Leff
(8.21)

The gain factor involves the two geometric or layout-design variables (the ratio of channel
width to channel length W/Leff ) and two technological parameters, μ0 and Cox. In SPICE,
the technological parameters are frequently grouped together to specify them by a single
so-called transconductance parameter KP:

β = μ0Cox(W/Leff ) = KP(W/Leff ) (8.22)
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Figure 8.11 Output characteristics corresponding
to SPICE LEVEL 1 model. Solid lines, Eq. (8.20);
dashed lines, saturation current.

The unit for both the gain factor and the transconductance parameter is A/V2.
Equation (8.20) is the principal SPICE LEVEL 1 model in the triode region.

Importantly, this equation cannot be used in the saturation region. The plots of Eq. (8.21),
given in Fig. 8.11, show that it predicts a current reduction with VDS increase in the
saturation region. This result is due to the integration of negative values of (VGS − VT −
v)Cox , appearing between the channel pinch-off point and the drain (v > VGS − VT

in this region). However, the negative values of (VGS − VT − v)Cox should not be
integrated when one is deriving the drain current because there is no current-reduction
mechanism in the depletion layer between the pinch-off point and the drain. Accordingly,
the derivation leading to Eq. (8.20) for the drain current is limited to nonnegative values of
QI (v) = (VGS − VT − v)Cox .

The condition of zero inversion-layer charge at the drain end of the channel, (VGS −
VT − VDS)Cox = 0, corresponds to the case of the drain end of the channel being pinched
off. This is the onset of saturation region. From this condition, the drain-to-source voltage
at which the MOSFET enters saturation is obtained:

VDSsat = VGS − VT (8.23)

Another way of obtaining this saturation voltage equation is by determining the VDS vol-
tage that correspond to the maximum of ID given by Eq. (8.20):

∂ ID

∂VDS
= 0 ⇒ VDSsat = VGS − VT (8.24)

Thus, the triode-region current ID reaches maximum for VDS = VDSsat. This max-
imum current is taken as the MOSFET current in saturation (VDS ≥ VDSsat). Putting
Eq. (8.23) for VDSsat in place of VDS in the current equation (8.20), the saturation current
is obtained as

IDsat = ID(VDSsat) = β

2
(VGS − VT )2 (8.25)

Therefore, the saturation current in the principal model is independent of VDS, and it de-
pends parabolically on VGS − VT .
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The SPICE LEVEL 1 MOSFET model in the above-threshold region can be summa-
rized as follows:

ID =
⎧⎨
⎩

β
[
(VGS − VT )VDS − V 2

DS/2
]

if 0 ≤ VDS < VDSsat

β
2 (VGS − VT )2 if VDS ≥ VDSsat

(8.26)

where the gain factor β is given by Eq. (8.21) and the drain saturation voltage VDSsat is
given by Eq. (8.23). The difference between the triode-region equation and the simplest
model for the linear region [Eq. (8.3)] is due to the term V 2

DS/2. This equation is the
simplest model that accounts for the reduction of the inversion-layer charge when VDS

is increased toward VDSsat. This simple approach does not fully incorporate the effects
of the reverse-biased drain-to-body junction, and as a result the simple LEVEL 1 model
overestimates the drain current.

8.2.2 SPICE LEVEL 2 Model
The drain-current equation used as the basic SPICE LEVEL 2 model is quite different
from the LEVEL 1 model. The difference emerges from a different approach used to
incorporate the effects of the reverse-biased drain-to-body junction on QI reduction toward
the drain end of the channel. This approach is based on the model for the threshold-voltage
increase caused by the body effect. As described in Section 8.1.3, the increase of strong-
inversion surface potential due to the reverse bias of the body-to-source and body-to-drain
junctions leads to a threshold-voltage increase, which is known as the body effect. As
shown by Eq. (8.4), the surface potential is increased from the usual 2φF to 2φF + VSB to
include the body bias. In Fig. 8.12, this is the situation at the source end of the channel. At
the drain end of the channel, the surface potential in strong inversion is increased further to
2φF + VSB + VDS , because the complete reverse-bias voltage across the drain–body P–N
junction is VDS +VSB. Consequently, the threshold voltage at the drain end of the channel is
larger than at the source end (stronger body effect due to the larger body bias, VDS + VSB).

ID

B

P substrate

S

G D

2fF � VSB � VDS2fF � VSB

VSB

N� N�

VDSVGS

Leff

y

x

W

Figure 8.12 N-channel MOSFET diagram,
indicating the surface potential at the
source and drain ends of the channel.
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According to Eq. (8.17), the larger threshold voltage causes smaller inversion-layer charge
density QI at the drain end of the channel.

The varying threshold voltage along the channel can uniquely be expressed in terms
of the surface potential by generalizing Eq. (8.9) in the following way:

VT = VFB − VSB + 2φF + VSB︸ ︷︷ ︸
ϕs

+ γ
√

2φF + VSB︸ ︷︷ ︸
ϕs

(8.27)

As long as ϕs is fixed to 2φF + VSB, this threshold-voltage equation is equivalent to
Eq. (8.9). However, if ϕs is allowed to take any value between 2φF + VSB (the surface
potential at the source end) and 2φF + VSB + VDS (the surface potential at the drain end
of the channel), the threshold voltage becomes a differential quantity that varies along the
channel due to the surface-potential variation:

vT (ϕs) = VFB − VSB + ϕs + γ
√

ϕs (8.28)

In principle, the average inversion-layer charge density, to be used in Eq. (8.16), should
be obtained through the following averaging formula:

QI = 1

Leff

∫ Leff

0
QI (y) dy = 1

Leff

∫ Leff

0
[VGS − vT (ϕs)] Cox dy (8.29)

However, the integration with respect to y (the space coordinate along the channel) is
not possible as the surface-potential dependence, and for that matter the threshold-voltage
dependence on y is not established. Instead, the averaging is performed as follows:

QI = 1

(2φF + VSB + VDS) − (2φF + VSB)

∫ 2φF +VSB+VDS

2φF +VSB

QI (ϕs) dϕs

= 1

VDS

∫ 2φF +VSB+VDS

2φF +VSB

[VGS − vT (ϕs)] Cox dϕs (8.30)

Replacing vT (ϕs) from Eq. (8.28) and solving the integral in Eq. (8.30), the following
result is obtained:

QI = Cox

VDS

{(
VGS − VFB − 2φF − VDS

2

)
VDS

− 2

3
γ
[
(2φF + VSB + VDS)

3/2 − (2φF + VSB)3/2
]}

(8.31)
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Inserting the obtained equation for the average inversion-layer charge density QI into
Eq. (8.16), the drain current is obtained as

ID = β

{(
VGS − VFB − 2φF − VDS

2

)
VDS

− 2

3
γ
[
(2φF + VSB + VDS)

3/2 − (2φF + VSB)3/2
]}

(8.32)

Equation (8.32) is the SPICE LEVEL 2 model in the triode region. Analogously to the
LEVEL 1 equation (Fig. 8.11), the ID(VDS) dependence reaches maximum at the saturation
voltage VDSsat. Using the condition that the first derivative of IDS(VDS) is zero at VDS =
VDSsat (the maximum of the current ID), the saturation voltage is obtained as

∂ ID

∂VDS
= 0 ⇒ VDSsat = VGS − VFB − 2φF

− γ 2

2

[√
1 + 4

γ 2 (VGS − VFB + VSB) − 1

]
(8.33)

The SPICE LEVEL 2 model works in the following way: (1) the saturation drain
voltage VDSsat is calculated first, using Eq. (8.33); (2) if VDS < VDSsat, VDS itself is used
in Eq. (8.32) to calculate the current; (3) if VDS ≥ VDSsat, VDSsat is used in Eq. (8.32) to
calculate the current.

As can be seen from Eq. (8.32), the threshold voltage does not appear as a parameter
of the LEVEL 2 model. This is not helpful, given that the threshold voltage is the most
important parameter of a MOSFET used as a voltage-controlled switch.

8.2.3 SPICE LEVEL 3 Model: Principal Effects
The LEVEL 3 model can be obtained by simplifying the equation of the LEVEL 2 model.
Equation (8.32) is approximated by the first three terms of the Taylor series:

ID ≈ ID(0) + I ′
D(0)VDS + I ′′

D(0)
V 2

DS

2
(8.34)

The first three terms of the Taylor series are taken to achieve a good compromise between
accuracy and simplicity. Taking only the first two terms would be even simpler; however,
this would lead to the linear IDS(VDS) dependence, which is obviously not good enough as
a MOSFET model in the complete triode region. ID(0), I ′

D(0), and I ′′
D(0) are obtained as

follows:
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ID(0) = 0

I ′
D = ∂ ID

∂VDS
= β(VGS − VFB − 2φF − VDS) − βγ (2φF + VSB + VDS)

1/2

I ′
D(0) = β(VGS − VFB − 2φF ) − βγ (2φF + VSB)1/2 (8.35)

I ′′
D = ∂2 ID

∂V 2
DS

= ∂

∂VDS

(
∂ ID

∂VDS

)
= −β − 1

2
βγ (2φF + VSB + VDS)

−1/2

I ′′
D(0) = −β − 1

2
βγ (2φF + VSB)−1/2

Putting the obtained ID(0), I ′
D(0), and I ′′

D(0) into Eq. (8.34), the following drain-current
equation is obtained:

ID =β

⎡
⎢⎣VGS − (VFB + 2φF + γ

√
2φF + VSB)︸ ︷︷ ︸

VT

− 1

2

⎛
⎜⎜⎝1 +

FB︷ ︸︸ ︷
γ

2
√

2φF + VSB

⎞
⎟⎟⎠ VDS

⎤
⎥⎥⎦VDS (8.36)

It can be seen that the threshold voltage, as defined by Eq. (3.36), appears in the drain-
current equation. Also, a new factor is introduced to additionally simplify this equation.
This factor is FB and is defined by

FB = γ

2
√

2φF + VSB
(8.37)

Because the original LEVEL 2 Eq. (8.36) is valid only in the triode region (0 ≤ VDS ≤
VDSsat), the simplified LEVEL 3 Eq. (3.36) is also valid only in the triode region. The
saturation drain voltage VDSsat can be determined in analogous way:

∂ ID

∂VDS
= 0 ⇒ VDSsat = VGS − VT

1 + FB
(8.38)

The triode-region current ID reaches maximum for VDS = VDSsat. This maximum current
is considered as the MOSFET saturation current IDsat . Putting Eq. (8.38) for VDSsat in
place of VDS in the current equation (8.36), the saturation current IDsat is obtained as

IDsat = ID(VDSsat) = β

2(1 + FB)
(VGS − VT )2 (8.39)
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Figure 8.13 Comparison of SPICE LEVEL 1,
LEVEL 2, and LEVEL 3 models.

The SPICE LEVEL 3 MOSFET model can be summarized as follows:

ID =
⎧⎨
⎩β(VGS − VT )VDS − (1 + FB)

V 2
DS
2 if 0 ≤ VDS < VDSsat

β
2(1+FB)

(VGS − VT )2 if VDS ≥ VDSsat

(8.40)

where the drain saturation voltage is

VDSsat = VGS − VT

1 + FB
(8.41)

whereas the threshold voltage VT , the gain factor β, and the factor FB are given by
Eqs. (8.9), (8.22), and (8.37), respectively.

Analogous equations apply to the case of P-channel MOSFETs. The form of these
equations is presented in the tables summarizing SPICE models and parameters (Sec-
tion 11.2.1).

Comparing LEVEL 3 and LEVEL 2 models, it can be concluded that the equations
of the LEVEL 3 model are much simpler. Moreover, the LEVEL 3 equations are very
similar to the simplest LEVEL 1 equations. The only difference between the LEVEL 3 and
LEVEL 1 equations is in the factor (1+FB): replacing FB by zero, the equations of LEVEL
3 model are reduced to the equations of LEVEL 1 model. In practice, FB is not negligible
compared to 1, so the accuracy of LEVEL 3 model is much higher. A comparison between
LEVEL 1, LEVEL 2, and LEVEL 3 models is shown in Fig. 8.13. In this example, FB =
0.95/(2

√
0.75) = 0.55, and as the results show, this leads to a significant difference be-

tween LEVEL 1 and LEVEL 3 models. Both the drain current and the saturation voltage are
overestimated by the LEVEL 1 model. On the other hand, the difference between LEVEL 3
and LEVEL 2 models is much smaller. It should be noted that the same set of parameters
is used to compare the characteristics in Fig. 8.13. Independent fitting of the LEVEL 2 and
LEVEL 3 parameters would produce an even smaller difference between the two models.

In conclusion, the equations of the SPICE LEVEL 3 model resemble the simple
LEVEL 1 equations that are typically used in circuit-design books. The only difference
is due to the appearance of the factor (1+ FB). This factor, however, is needed to approach
the accuracy of the LEVEL 2 model that is presented in many semiconductor-device books
as the MOSFET model.
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EXAMPLE 8.2 Drain-Current Calculations with the LEVEL 3
and LEVEL 1 Models

A depletion-type N-channel MOSFET has zero-bias (VSB = 0) threshold voltage of VT =
−2.5 V. Calculate the drain current of this MOSFET if it is biased with VGS = 5 V, VDS = 10 V,
and VSB = 0 V, using the SPICE LEVEL 3 and LEVEL 1 models, and compare the results.
The MOSFET channel-width-to-channel-length ratio is 25, γ = 0.85 V1/2, φF = 0.35 V,
Cox = 7 × 10−4 F/m2, and μ0 = 1000 cm2/V · s.

SOLUTION

The first step is to determine whether the MOSFET operates in the triode or the saturation region.
To be able to calculate the saturation voltage VDSsat using Eq. (8.41), the factor FB needs to be
determined:

FB = γ /
(
2
√

2φF
) = 0.85/

(
2
√

0.70
) = 0.51

Because the saturation voltage,

VDSsat = (VGS − VT )/(1 + FB) = [5 − (−2.5)] /(1 + 0.51) = 5.0 V

is smaller than the applied drain voltage VDS = 10 V, the MOSFET is in saturation. By
calculating the gain factor

β = μ0CoxW/Leff = 0.1 × 7 × 10−4 × 25 = 1.75 × 10−3 A/V 2 = 1.75 mA/V2

we obtain the saturation current, according to the LEVEL 3 model, as

ID = β

2(1 + FB)
(VGS − VT )2 = 32.6 mA

Because FB is neglected in the LEVEL 1 model, the current according to the LEVEL 1 model is

ID = β

2
(VGS − VT )2 = 49.2 mA

Obviously, the currents is significantly overestimated by the LEVEL 1 model.

EXAMPLE 8.3 MOSFET in the Linear Region

A MOSFET operating in its linear region can be used as a voltage-controlled resistor. Determine
the sensitivity of the resistance on the gate voltage (∂ R/∂VGS) at VGS = 5 V if the depletion-type
MOSFET, considered in Example 8.2, is used as a voltage-controlled resistor.
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SOLUTION

Based on the equation for drain current in the linear region,

ID = β(VGS − VT )VDS

the resistance can be expressed as

R = VDS/ID = 1

β(VGS − VT )

Therefore, the sensitivity of this voltage-controlled resistor is

∂ R

∂VGS
= ∂

∂VGS

[
1

β(VGS − VT )

]
= − 1

β

1

(VGS − VT )2 = − 1

1.75 × 10−3(5 + 2.5)2 = 10.2 �/V

8.3 SECOND-ORDER EFFECTS

This section describes the second-order effects included in the SPICE LEVEL 3 model.
The term “second-order” should not be confused with “negligible,” because some of these
effects are very important in terms of simulation accuracy. The importance of some of the
second-order effects would also depend on a particular application. Therefore, the decision
to neglect a particular second-order effect can appropriately be made only if the effect is
properly understood.

8.3.1 Mobility Reduction with Gate Voltage
This is a second-order effect that can rarely be neglected. The effect is related to the gate
voltage and appears even at the smallest drain-to-source voltages. Figure 8.14a shows the
transfer characteristic of a MOSFET in the linear region (VDS = 500 mV). Due to the small
VDS value, the parabolic term (V 2

DS/2) in Eq. (8.40) can be neglected, which leads to the
linear-region model given by Eq. (8.3). The linear ID–VGS dependence predicted by the
model is plotted by the dashed line in Fig. 8.14a. However, experimental data frequently
show a deviation from the predicted linear dependence, with the actual drain current falling
increasingly bellow the predicted values as the gate voltage increases. The solid lines in
Fig. 8.14 illustrate this effect.

This smaller-than-expected drain current is due to reduction of the channel-carrier
mobility. The principal model assumes constant (gate-voltage-independent) mobility μ0 of
the carriers in the channel [refer to Eq. (8.16)]. In reality, the gate-voltage-induced vertical
field influences the carrier-scattering mechanisms in the channel. The carrier-scattering
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Figure 8.14 Influence of mobility reduction with gate voltage on (a) transfer and (b) output
characteristics.

mechanisms in the very thin inversion layer are multiple and rather complex. However,
a number of those scattering mechanisms depend on the inversion-layer thickness, and
consequently on the applied gate voltage. Because the physically based equations of the
mobility dependence on the gate voltage are complex, the following widely accepted
semiempirical equation is used in SPICE:

μs = μ0

1 + θ(VGS − VT )
(8.42)

where the so-called surface mobility μs is now used instead of the low-field mobility μ0
to calculate the transconductance parameter and consequently the gain factor [Eq. (8.22)].
In simple terms, KP is calculated as KP = μsCox instead of KP = μ0Cox. The parameter
θ is a SPICE parameter that has to be experimentally determined. It is referred to as the
mobility modulation constant.

Zero value of the θ parameter effectively eliminates this effect from the SPICE model,
because μs = μ0 in this case. Also, the added θ(VGS − VT ) term does little in the near-
threshold region (small VGS − VT values). However, at moderate and high gate voltages,
the effect becomes pronounced. Figure 8.14b illustrates the importance of this effect for
accurate modeling of the output characteristics. Very frequently, it is impossible to achieve
an acceptable agreement between the model and the experimental data without the help of
the θ parameter.

8.3.2 Velocity Saturation (Mobility Reduction with Drain Voltage)
Channel-carrier mobility can also be reduced by a high lateral field in the channel. As
explained in Section 3.3.2 [Eq. (3.23)], the carrier mobility relates the drift velocity to the
electric field. At small electric fields |E |, the drift velocity vd increases linearly with the
electric field, which leads to the appearance of a lateral-field-independent carrier mobility
μs = vd/|E |. Long-channel MOSFETs may operate in the low-field region, where the
linear vd −|E | dependence is observed. At higher electric fields, the drift velocity deviates
from linear dependence and even saturates, which is illustrated in Fig. 3.6. As explained
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in Section 8.1.4, this can be the mechanism responsible for the current saturation in short-
channel MOSFETs.

The drain-current model is derived from Ohm’s law, which assumes a linear depen-
dence of the drift current (thus drift velocity) on the electric field [Eq. (8.14)]. To account
for the effect of the velocity saturation with electric field increase, the mobility in the drain-
current model has to be reduced. As the lateral electric field is proportional to VDS/Leff ,
the mobility reduction can be expressed in terms of the drain voltage VDS and the effective
channel length Leff :

μeff = μs

1 + μs
vmax

VDS
Leff

(8.43)

Obviously, the surface mobility μs is divided by the 1+μs VDS/(vmax Leff ) term to give
the so-called effective mobility μeff that depends on VDS/Leff . It is the effective mobility
μeff , and not μs , that is directly used to calculate the transconductance parameter KP and
consequently the gain factor β, which appears in the drain-current equation. Therefore, the
general form of Eq. (8.22) is

β = μeff WCox

Leff
= KP

W

Leff
(8.44)

The strength of the considered effect is controlled by the vmax parameter, which has
the physical meaning of maximum drift velocity. Although the typical value of vmax is
1–2 × 105 m/s in silicon, it can freely be adjusted in SPICE, like any other parameter.
Setting vmax = ∞ would completely eliminate this effect from the SPICE MOSFET model
because μeff = μs in this case.

The velocity saturation also affects the saturation voltage VDSsat. This effect is not
covered by the effective mobility Eq. (8.43). To include this effect, the saturation voltage
Eq. (8.41) is modified in SPICE. The modified equation is presented in Table 11.9
(Section 11.2.1).

8.3.3 Finite Output Resistance
The principal model assumes perfectly saturated current (horizontal ID–VDS characteristics
in the saturation region), which means that it assumes that the dynamic output resistance of
the MOSFET in saturation is infinitely large (�VDS/�ID → ∞). Real MOSFETs exhibit
finite output resistances. For some applications, it is very important to use the real value
of the output resistance during circuit simulation. There are at least two effects that cause
an increase of the drain current in the saturation region: (1) channel length modulation and
(2) drain-induced barrier lowering (DIBL).

Channel-length modulation is basically the shortening of the actual channel when
saturation happens due to the channel pinch-off at the drain end. The principal model is
derived for the triode region, where the channel extends from the source to the drain,
so that the average lateral field is ≈ VDS/Leff . In the saturation, the voltage across the
channel remains approximately constant (VDSsat). However, the channel becomes shorter
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as VDS “pushes” the pinch-off point away to a distance Lpinch from the drain. This leads
to a higher field VDSsat/(Leff − Lpinch) in the shortened channel and therefore leads to a
current increase with VDS. This effect is modeled by changing (modulating) the channel
length:

β = μeff WCox

Leff − Lpinch
= KP

W

Leff − Lpinch
(8.45)

where the length of the pinch-off channel Lpinch depends on VDS (the SPICE LEVEL 3
equation is given in Table 11.9). The equation for Lpinch is based on the depletion-layer
width of an abrupt P–N junction [Eq. (6.45)], where VDS − VDSsat is the voltage across the
depletion layer and κ is a fitting parameter (SPICE input parameter). Because the channel-
length shortening is applied abruptly when VDS becomes larger than VDSsat, the modeled
current may not be “smooth” (a first-derivative discontinuity) around the saturation voltage.

Drain-induced barrier lowering (DIBL) is a more appropriate model for the finite
output resistance in the case of short-channel MOSFETs. This effect is due to a strong
lateral electric field. The principal model assumes that the gate voltage fully controls
the surface potential in the channel region. In terms of the energy-band diagram, the
assumption is that the channel current depends on how much is the barrier lowered by
the gate voltage: in Fig. 8.4, the barrier has its full height, and there is no current flow;
in Fig. 8.5b, the gate voltage lowers the barrier and the inversion-layer electrons flow
from the source into the drain. In reality, the electric field from the drain can also cause
some barrier lowering, which is called drain-induced barrier lowering. This is illustrated in
Fig. 8.15. The DIBL adds to the barrier lowering due to the gate voltage; if pronounced, it
can significantly enhance the electron injection from the source into the channel, leading to
a noticeable increase in the channel current. Furthermore, this current increases with VDS,
which leads to the appearance of the finite dynamic resistance in the saturation region.

The “help” from the drain in injecting carriers from the source into the channel can be
modeled by a drain-voltage-induced reduction of the threshold voltage. It was empirically
established that the simplest linear relationship is quite satisfactory:

VT = VFB + 2φF + Fsγ
√

2φF + VSB − σD VDS (8.46)

Source

Drain

VDS � 0

VDS � 0

EV

EC

DIBL Figure 8.15 Energy-band dia-
grams along the channel of a
MOSFET, illustrating drain-
induced barrier lowering (DIBL).
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 VFB � �1.0 V
 2fF � 0.75 V
     g � 0.95 V1/2

     b � 1.0 mA/V2

     u � 0.15 V�1

  Leff � 3 mm
  Cox � 1.15 � 10�3 F/m2
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Figure 8.16 Output characteristics with
(solid lines) and without (dashed lines) the
influence of VDS on VT.

The coefficient expressing the strength of the VT dependence on VDS, σD , is not a SPICE
parameter itself. It is calculated in SPICE by an equation that involves Leff , Cox, and a
SPICE parameter η (frequently referred to as the coefficient of the static feedback). This
equation is given in Table 11.10. Setting the parameter η to zero eliminates this effect from
the model (the dashed lines in Fig. 8.16), whereas a larger η value expresses a stronger VT

dependence on VDS, therefore a smaller output resistance (solid lines in Fig. 8.16).

8.3.4 Threshold-Voltage-Related Short-Channel Effects
The threshold voltage VT of a MOSFET, as given by the principal model [Eq. (8.9)], is
independent on the channel length or width. In reality, this is observed when the channel
length and width are much larger than the channel region affected by the fringing field at
the channel edges (edge effects). However, when the channel length or width is reduced
to dimensions that are comparable to the edge-affected region, the threshold voltage
experiences dependence on the channel length or width.

Figure 8.17 illustrates the edge effects by the electric field lines (the arrows in the
figure) appearing in the MOSFET depletion layer (the clear area). The electric field lines
originate at positive charge centers in the gate or the N-type drain/source regions, and

P-substrate

(a) (b)

P-substrate

N� N�N� N�

Figure 8.17 Illustration of the threshold-voltage-related short-channel effect. A part of the
depletion-layer charge under the channel is created by the source and drain electric field (note the
arrow origins). This helps the gate voltage to create the depletion layer under the channel, effectively
reducing the threshold voltage. The effect is insignificant in (a) long-channel MOSFETs, but quite
pronounced in (b) short-channel MOSFETs.
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Figure 8.18 Threshold-voltage dependence on
MOSFET channel length.

they terminate at negative charge centers (negative acceptor ions) in the depletion layer
of the P-type body. It can be seen that the electric field lines at the ends of the channel
originate from the source/drain regions and not from the gate. Consequently, some charge
at the edges of the depletion layer is linked to source and drain charge and not to the gate
charge. This means that less gate charge, and consequently less gate voltage, is needed to
create the depletion layer under the channel.

The depletion-layer charge induced by the gate voltage is given by Qd/Cox and
γ
√

2φF + VSB terms in Eqs. (8.7) and (8.9), respectively, where Cox is the gate-oxide
capacitance per unit area, and Qd is the depletion-layer charge per unit of channel area. Qd

is related to the total charge Q∗
d (in C) as Qd = Q∗

d/(Leff W ), where Leff W is the channel
area. Noting that Q∗

d involves all the charge centers under the channel (the rectangular area
in Fig. 8.17), it is easy to see that Qd/Cox (and consequently γ

√
2φF + VSB) overestimates

the gate voltage needed to create the depletion layer under the channel. The gate voltage
should be related to the charge inside the trapezoidal area, and not the whole (rectangular)
area under the channel.

In long-channel MOSFETs, such as the one in Fig. 8.17a, the edge charge created
by the source and drain is much smaller than the total charge Q∗

d . This can be seen
by comparing the rectangular and the trapezoidal areas in Fig. 8.17a. Consequently, the
Q∗/(Leff WCox) = Qd/Cox = γ

√
2φF + VSB term fairly correctly expresses the voltage

needed to create the depletion layer under the channel. As the edge effects are negligible in
the long-channel MOSFETs, the threshold voltage does not show a dependence on the gate
length (Qd/Cox is independent of gate length). In Fig. 8.18, this is the case for MOSFETs
with channels longer than approximately 2 μm.

In the case of short-channel MOSFETs (Fig. 8.17b), the charge enclosed in the
trapezoidal area is significantly smaller than the charge inside the rectangular area. This is
because the edge effect is now pronounced: the source- and drain-related fields are creating
an observable portion of the depletion layer under the channel.

To model this effect, the depletion layer charge Q∗
d is multiplied by a charge-sharing

factor Fs that can be obtained as the ratio between the trapezoidal and the rectangular
areas; this is to convert the total charge in the depletion layer under the channel (Q∗

d )
into the charge that is created by the gate (the charge enclosed in the trapezoidal area).
As Fs Q∗

d/(Leff WCox) = Fs Qd/Cox = Fsγ
√

2φF + VSB, the threshold-voltage equation



328 CHAPTER 8 MOSFET

N� N�

P-substrate

W

Figure 8.19 Illustration of the
narrow-channel effect. Fringing electric
field wastes the gate voltage, causing
a threshold-voltage increase in
narrow-channel MOSFETs.

[Eq. (8.9)] is modified to

VT = VFB + 2φF + Fsγ
√

2φF + VSB (8.47)

A number of different equations for the charge-sharing factor Fs have been developed. The
equation that is used in SPICE is given in Table 11.10 (Section 11.2.1). SPICE uses the
source and drain P–N junction depth x j , the lateral diffusion x j–lat , and the P–N junction
built-in voltage Vbi as parameters to calculate the charge-sharing factor Fs .

8.3.5 Threshold-Voltage-Related Narrow-Channel Effects
Threshold voltage can also become dependent on the channel width W , if the channel width
is reduced to levels that are comparable to the edge-effect regions. Figure 8.19 illustrates
the edge effect at the channel ends that determine the channel width. As mentioned earlier,
the principal threshold-voltage equation is derived under the assumption that the gate
voltage creates the depletion-layer charge in the rectangular area under the channel. In
reality, the gate voltage depletes a wider region, due to the fringing field effect (Fig. 8.19).
This increases the threshold voltage.

To include this effect, the threshold-voltage equation is expanded again, its final form
being as follows:

VT = VFB + 2φF + γ Fs
√

2φF + VSB − σDVDS + Fn(2φF + VSB) (8.48)

The new term Fn(2φF + VSB) models the threshold-voltage increase in narrow-channel
MOSFETs. The parameter Fn is calculated from the channel width W , the gate-oxide
capacitance Cox, and a SPICE parameter δ modulating the strength of this effect. The actual
equation is given in Table 11.10. For δ = 0, or wide channels (W large), the parameter Fn

approaches zero, eliminating this effect from the threshold-voltage equation.

8.3.6 Subthreshold Current
The principal model assumes that the channel carrier density is zero for VGS ≤ VT ,
appearing abruptly for gate voltages larger than the threshold: QI = (VGS − VT )Cox.
In reality, the transition from full depletion to strong inversion is gradual (the term strong
inversion itself indicates that there could be a moderate, and even a weak, inversion). There
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Figure 8.20 The use of a logarithmic drain
axis emphasizes the subthreshold region of
a transfer characteristic (the subthreshold
current cannot be seen with a linear axis).
The subthreshold swing is 60 mV/decade,
corresponding to ns = 1 in Eq. (8.49).

are mobile carriers in the channel, even for subthreshold gate voltages. Of course, their
concentration is very small, and it rapidly decays as the gate voltage is reduced below VT .
Nonetheless, their effect is observable, because they account for the gradual decay of the
drain current from the above-threshold levels toward zero.

The vertical field is very low in the subthreshold region, and it does not take a large
drain voltage to fully remove the carriers from the drain end. This creates a concentration
gradient. Because of this, and because of the low level of the carrier concentration, the
diffusion current dominates over the drift current in the subthreshold region. Consequently,
a diode-like, exponential current–voltage equation is used to model the subthreshold
current:

ID−subth = ID0eVGS/ns kT (8.49)

Figure 8.20 shows drain-current plots in both the above-threshold and subthreshold
regions. Because the subthreshold current cannot be observed on the plot corresponding
to the linear current axis, a logarithmic current axis is used to present the subthreshold
current. Given that the subthreshold current depends exponentially on the gate voltage
[Eq. (8.49)], the semilogarithmic plot corresponding to the subthreshold current appears as
a straight line. The slope of this straight line is referred to as the subthreshold swing. The
subthreshold swing is the voltage increment needed to change the subthreshold current by
an order of magnitude (one decade). Accordingly, the subthreshold swing is expressed
in V/decade. The theoretical limit for the subthreshold swing at room temperature is
60 mV/decade (refer to Example 8.4). This value corresponds to ns = 1 in Eq. (8.49).
In reality, different leakage mechanisms add subthreshold current to the pure diffusion
component, which increases the subthreshold swing (a slower current reduction with
reducing gate voltage). In Eq. (8.49), this effect is modeled by setting ns to a value that is
larger than 1.
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Together with the threshold voltage, the subthreshold swing fully characterizes the
subthreshold region. It is a very important parameter for MOSFETs used as switches
because it shows the voltage range that is needed to separate the on and off modes of
the switch.

The form of Eq. (8.49) that is used in SPICE LEVEL 3 is shown in Table 11.7. The
constant ID0 is selected so as to provide a continual transition from the subthreshold to the
above-threshold drain current. ID calculated by the above-threshold model is identical to
the subthreshold current at VGS = VT + nskT . For smaller gate voltages, the subthreshold
model is used, whereas the above-threshold model is used for larger gate voltages. The
coefficient ns is analogous to the emission coefficient n of diodes. The SPICE LEVEL 3
equation for ns is given in Table 11.10. There is an input SPICE parameter, NFS, that can
be used to control the value of ns .

EXAMPLE 8.4 Subthreshold Swing

Show that 60 mV/decade is the theoretical limit for the subthreshold swing at room temperature.
What value of the ns parameter in Eq. (8.49) corresponds to the subthreshold swing of
100 mV/decade?

SOLUTION

The subthreshold swing is the voltage range �VGS that corresponds to a tenfold increase in the
current (ID2/ID1 = 10). Applying Eq. (8.49) to two current levels (ID1 and ID2) and dividing
these current equations, we obtain

ID2

ID1
= e(VGS2−VGS1)/nskT = e�VGS/ns kT

Taking logarithms with the base 10 of both sides leads to

�VGS = nskT log

(
ID2

ID1

)/
log(e)

For the case of ID2/ID1 = 10 (log 10 = 1),

�VGS = nskT/ log(e) (in V/decade)

The smallest �VGS is for ns = 1. This is the case when the subthreshold current is purely
diffusion current, meaning that no additional current mechanisms exist. For ns = 1, �VGS =
0.026/ log(2.7183) = 60 mV/decade. For �VGS = 100 mV/decade, ns = �VGS log e/kT =
0.1 log(2.7183)/0.026 = 1.67.
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†8.4 NANOSCALE MOSFETs

CMOS technology has undergone unmatched progress during the last five decades. In a
way, this is illustrated by the names given to describe different levels of integration: small-
scale integration (SSI), medium-scale integration (MSI), large-scale integration (LSI),
very-large-scale integration (VLSI), and ultra-large-scale integration (ULSI). Although
every one of these phases appears as an era in economic terms, it is a remarkable fact
that the device and technology principles have not changed. The principles of modern
MOSFETs are essentially the same, although critically important features have been
added to enable aggressive dimension downscaling. This section describes the benefits
of dimension reduction, the problems it opens, and the solutions that have been developed.

8.4.1 Downscaling Benefits and Rules
The switching speed (maximum operating frequency) was initially a disadvantage of the
CMOS circuits. The vOU T versus t diagram of Fig. 8.6b illustrates the times needed to
achieve the high/low output level due to the charging/discharging of the load capacitance
CL . These times are determined by the value of the load capacitance and the value of the
charging/discharging current supported by the MOSFETs. As illustrated by Example 11.6b
(Section 11.2), the loading capacitance consists of the output and the input capacitances
of the MOSFETs in the driving and the loading inverters, respectively. Both the loading
capacitance and the charging/discharging current change favorably when the channel
length Lg is reduced. A reduction of the channel length by a factor of S reduces the
input capacitance of the CMOS cell S times, due to reduced gate area. It also increases
the charging/discharging current S times as the MOSFET current increases proportionally
with the channel-length reduction. This means a speed improvement by a factor of S2.
Additionally, this means a smaller cell area, thus the possibility of integrating more logic
cells to create more powerful ICs. These are extremely motivating and economically
extremely rewarding benefits.

However, a successful reduction of the channel length requires some other device
parameters to be appropriately adjusted to avoid possible adverse effects. One of the
things that may happen when the channel is reduced is that the drain field will start
taking electrons directly from the source (punch-through effect). To prevent this from
happening, the substrate doping is increased, which shortens the penetration of the drain
field into the substrate. As Eq. (6.44) shows, to reduce a depletion-layer width S times, the
doping concentration has to be increased S2 times. However, the increased substrate doping
increases the body factor γ and consequently the threshold voltage, as can be seen from
Eqs. (7.22) and (8.9), respectively. A MOSFET that turns on at a voltage higher than 25%
of the supply-voltage level is generally not acceptable. To keep the threshold voltage down,
it is necessary to reduce the thickness of the gate oxide S times. Because this increases the
input capacitance, the channel width is also reduced S times as a compensation. Table 8.1
summarizes these steps as a set of downscaling guidelines, more frequently referred to as
downscaling rules, and their effects.

It has not been always possible to avoid all the important adverse effects of the
scaling down by applying these general rules. The channel-length reduction, along with
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TABLE 8.1 General Downscaling Rules and Their Effects

Rules

Channel length L −→ L/S
Channel width W −→ W/S
Gate-oxide thickness tox −→ tox/S
Substrate doping NA,D −→ NA,D × S2

Effects

Drain current ID ∝ W/(Ltox) −→ ID × S
Input capacitance Cin ∝ W L/tox −→ Cin/S
Maximum switching frequency f ∝ ID/Cin −→ f × S2

Cell area A ∝ W L −→ A/S2

the associated substrate doping increase, results in an increase of the lateral electric field in
the channel. Equation (6.31) and Fig. 6.17c illustrate the electric-field dependence on the
doping level in the case of an abrupt P–N junction. This increase in the electric field means
that the breakdown voltage (Section 6.1.4) is reduced, reducing the maximum operating
voltage. Reductions of the maximum operating voltage of CMOS integrated circuits have
already occurred; initially, the CMOS integrated circuits could operate at voltages higher
than 20 V, then the standard was 5 V, followed by 3.3 V, and nowadays we have limitations
of 1.5 V and 1.0 V.

To reduce the problem of high electric field in the MOSFET channel, the abrupt-
like N+-drain and source–P-substrate junctions are modified. Lightly doped regions are
introduced to linearize the junctions—that is, to reduce the maximum doping level at
the junctions. An N-channel MOSFET with lightly doped drain and source extensions is
shown in Fig. 8.21. As the doping concentration is reduced at the drain extension–substrate
junction, the maximum lateral field appearing at the drain end of the channel is reduced as
well. MOSFETs with this type of doping structure are referred to as lightly doped drain
(LDD) MOSFETs.

The drain and source extensions of the LDD MOSFET are doped by implanting
arsenic or antimony ions, which have lower diffusion constants than phosphorus. The lower
diffusion constants make it possible to achieve shallow drain/source extensions, which

Poly 
silicon

Spacer

Silicide

N-type 
source and drain 

extensions

P-type substrate

N� N�

Figure 8.21 Deep-submicron MOSFET
structure.
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minimizes the penetration of the drain field under the channel (punch-through effect). The
drain/source extensions are implanted with the polysilicon gate as a mask to achieve self-
alignment between the gate and the drain/source areas. The spacer layer shown in Fig. 8.21
is created afterward to be used as a mask when the N+ regions are created by phosphorus
implantation. The spacer layer is created by deposition of either oxide or silicon nitride,
which fills the polysilicon–substrate corner, and by subsequent etching to remove the
deposited layer from the top of the polysilicon and outside the corner region of the silicon
substrate.

Channel-length reduction leads to an undesirable increase in the resistance of the gate
line. To minimize this effect, the MOSFET structure is further modified by creating a
silicide layer at the top of the gate (Fig 8.21). The silicide can be created by depositing
titanium and by subsequent annealing which leads to a reaction between the deposited
titanium and the underlying silicon to create a layer of TiSi2. The resistivity of the silicide
is much smaller than the resistivity of the polysilicon, which reduces the gate resistance.
The silicide is also created in the drain and the source regions to improve the contact
between the metalization and the silicon—that is, to reduce the contact resistance.

8.4.2 Leakage Currents
MOSFETs with channel lengths less than 100 nm were experimentally demonstrated as
early as 1987 by IBM researchers,2 followed by a demonstration of sub-50-nm MOSFET
by Toshiba researchers in 1993.3 Although operational, and potentially applicable in a
number of specific areas, these MOSFETs could not be used as building blocks for CMOS
ULSI circuits.

Figure 8.22a shows simulated transfer characteristics of a 100-nm MOSFET with
parameters and characteristics similar to the one published by the IBM researchers.
Because the problems with such a short-channel MOSFET are mostly in the subthreshold
region, the left-hand drain-current axis is presented in a logarithmic scale so that the
subthreshold current can be seen over several orders of magnitude. According to the basic
theory, the subthreshold current is due to diffusion and should not depend on VDS voltage
[Eq. (8.49)]. If that were the case, the subthreshold transfer characteristics for VDS = 0.1 V
and VDS = 1.0 V in Fig. 8.22a would overlap one another. The observed shift of the
transfer characteristic by VDS indicates a short-channel effect due to too deep penetration
of the drain-to-substrate depletion layer under the gate. The energy-band diagram and the
equipotential contours in Fig. 8.23 illustrate that there is too strong influence from the drain
voltage in the region that should be controlled by the gate.

2G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, E. Ganin, S. Rishton, D. S. Zicherman, H. Schmid,
M. R. Polacri, H. Y. Ng, P. J. Restle, T. H. P. Chang, and R. H. Dennard, Design and experimental
technology for 0.1-μm gate-length low-temperature FET’s, IEEE Electron Dev. Lett., vol. EDL-8,
pp. 463–466 (1987).
3M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, Sub-50 nm gate length n-
MOSFET’s with 10 nm phosphorus source and drain junctions, IEDM Tech. Dig., pp. 119–122,
(1993).
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Figure 8.22 Transfer charac-
teristics of 100-nm MOSFETs (the
channel width is 1 μm). (a) Devices
with similar characteristics were
experimentally demonstrated as
early as 1987, but they exhibit
pronounced short-channel effects
and very high off current. (b) As
known from the downscaling rules,
an increase in the substrate doping
eliminates the short-channel
effects, but also increases the
threshold voltage, in this case
above the 1.0-V supply voltage. (c)
Downscaling rules require a 1.1-nm
gate oxide that leaks a very high
input current.

The most important problem with a too-high off current is that the CMOS cells would
start consuming significant power, limiting the number of cells that can be integrated. The
off current in Fig. 8.22a is > 1 μA, which means that the leakage current of a 1-million-
transistor IC would be at the level of > 1 A.

Figure 8.22b shows simulated transfer characteristics of the same MOSFET when
the substrate doping is increased 16 times. The short-channel effects are all but eliminated;
however, the threshold voltage is increased even beyond 1.0 V, which is set as the maximum
supply voltage. Of course, the downscaling rules require a simultaneous reduction in
the gate-oxide thickness by a factor of 4. Comparing the energy-band diagrams and the
equipotential contours in Figs. 8.23 and 8.24, we can see how the increased substrate
doping and reduced gate-oxide thickness eliminate the drain influence in the gate region.
Figure 8.22c shows that this does result in improved transfer characteristics: lower off
current and lower threshold voltage. The new problem here is that an oxide thickness of
about 1 nm is needed. Tunneling of electrons through the 1-nm barrier that such a gate
oxide could provide is quite significant. With a high leakage current through the gate oxide,
the problem with current leakage and power dissipation reappears in just another form.
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Figure 8.23 (a) Energy-band diagram and (b) equipotential contours for the MOSFET with the
transfer characteristics shown in Fig. 8.22a (VGS = 0 V, VDS = 1.0 V).
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Figure 8.24 Energy-band diagram (a) and equipotential contours (b) for the MOSFET with the
transfer characteristics shown in Fig. 8.22c (VGS = 0 V, VDS = 1.0 V).

8.4.3 Advanced MOSFETs
High-k Gate Dielectric

A possible solution to the problem of gate-oxide thickness is replacement of the oxide by
another material with a higher permittivity. For the control over the channel region by the
gate voltage, it does not matter whether the oxide thickness is reduced or the permittivity
is increased. The strength of the field effect is related to the gate-dielectric capacitance per
unit area:

C = εd

td
(8.50)

There are dielectric materials with permittivities hundreds and even thousands of times
higher than the permittivity of silicon dioxide. These materials are commonly called high-
k materials because k is sometimes used as a symbol for the dielectric constant: εd = kε0.
Obviously, the high-k materials enable the same strength of the field effect with much
thicker dielectric layers. Although the increased thickness reduces the tunneling current
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exponentially, there are other leakage mechanisms that cause leakage-current problems
with many potential gate dielectrics, notably ferroelectric materials. Some materials with
high permittivity—in particular, some metal oxides such as HfO2—exhibit acceptable
leakage and breakdown field properties. A big disadvantage of all alternative materials
has always been the much poorer interface between these films and silicon, compared to
the native silicon–silicon dioxide interface. The excellent properties of SiO2 (the quality
of interface to Si, the dielectric strength, the large energy-band discontinuities with respect
to both the conduction and the valence bands in silicon, hence large barrier heights), along
with fair blocking of dopant diffusion, outweigh the comparative disadvantage of low
dielectric permittivity. As a result, SiO2 has remained the superior gate material so far.
However, a solution will be needed for the tunneling limit, and that is where the metal
oxides are expected to play a role.

Metal Gates

Another helpful possibility is to replace the polysilicon gates with a suitable metal so
that two goals are achieved. Primarily, this is to help reduce the threshold voltage by a
selection of a metal with a smaller work function compared to N+ polysilicon. Because the
effect of more negative work-function difference is a parallel negative shift of the transfer
characteristics, this alleviates the need for aggressive scaling down of the gate dielectric
thickness. Secondly, metal gate lines exhibit smaller parasitic gate resistances.

The gate metal has to be compatible with the semiconductor processing—in particular,
the high ion-implant annealing temperatures (the self-aligning technology requires the gate
to be formed before the implant for the drain/source extensions). Several high-melting-
point refractory metals (such as Mo, W, Ti, Ta) and their nitrides (MoN, WN, TiN, TaN)
have been investigated for use as MOSFET gates. In addition to the work-function value,
a very important factor is how well a specific metal integrates in MOSFET technology.
For example, some metals do not exhibit good adhesion to SiO2 (or the gate dielectric
used) and others present etching problems, making it difficult to create well-controlled
small-dimension gates. Molybdenum (Mo) has emerged as the most attractive option for
metal gates. An additional potential benefit with Mo is due to the possibility of controllably
changing its work function. For example, the Mo work function is dependent on the energy
and dose of the nitrogen implant.

Retrograde Substrate and Halo Doping Profiles

Quite a few modifications in the MOSFET structure have been developed to address the
issue of the high leakage current due to penetration of the drain field through the depletion
region under the channel. One approach relates to engineering of the substrate doping
profile. For example, a high doping level is used below the surface region, where the gate
field is not as strong, with a lower doping at the surface. This doping profile, illustrated
in Fig. 8.25, is called retrograde substrate doping. The higher-doped region prevents the
extension of the drain electric field through the lower part of the depletion region where
the gate field is weak. The lower-doped region at the surface helps to prevent unacceptable
increase in the threshold voltage and to prevent channel-mobility reduction that would be
caused by higher surface doping.

Another useful alteration of the substrate doping profile is to increase the doping
around the source and drain areas. This profile, also illustrated in Fig. 8.25, is referred
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to as halo doping. To create the halo profiles, ion implantation is performed at an angle and
with energy high enough to ensure that the implanted atoms are outside the source/drain
regions. The channel area is protected from this implantation by the already formed gate
of the MOSFET. The increased doping around the source leads to an increased source-to-
body barrier for carrier injection, which results in more effective suppression of the leakage
current.

Silicon-on-Insulator (SOI) MOSFETs

Silicon-on-insulator (SOI) substrates have been under development for many years because
of their potential for different applications. The SOI technology (refer to Section 16.2.4)
provides a thin monocrystalline film of silicon on an insulating layer (typically, SiO2).
Because no current can flow through the buried SiO2 layer (Fig. 8.26), much better control
of the leakage current is possible in SOI MOSFETs. For this to work, however, the top
silicon film has to be very thin so that it is fully depleted (MOSFETs are also made
in partially depleted SOI films; but this provides no advantage for leakage control in
short-channel MOSFETs). Notwithstanding fabrication difficulties in terms of achieving
uniform layers, SOI MOSFETs with bodies as thin as 10 nm have been demonstrated.
These MOSFETs are also called ultra-thin-body (UTB) MOSFETs.

Double-Gate MOSFETs: FinFET

Much better control of the MOSFET body in the gate area can be achieved by double-gate
MOSFETs. In this approach, a thin MOSFET body is sandwiched between two gates. The
second gate halves the body thickness; far more importantly, it helps to prevent penetration
of the drain electric field under the channel. A big issue with the double-gate concept has
been the inherent fabrication complexity. A double-gate structure that can be fabricated
with a practical integrated-circuit technology is the so-called FinFET.4 As Fig. 8.27 shows,

4L. Chang, Y.-K. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, and T.-J. King, Extremely
scaled silicon nano-CMOS devices, Proc. IEEE, Vol. 91, pp. 1860–1873 (2003).
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the two MOSFET channels of this double-gate structure are along the vertical sides of the
silicon area etched in the shape of a fin (the height of the fin is labeled by HFIN and the
width of the fin is labeled by WFIN ). To achieve source and drain regions that are self-
aligned to the gate, the ion implantation for the source and drain is performed with the
gate as a mask. Thus, the visible silicon areas are the source and drain regions, whereas the
MOSFET body is under the gate.

The effective channel width of the FinFET is equal to 2HFIN . Given that HFIN is a
technological parameter, it may seem that it is not possible to freely adjust the effective
channel width of a FinFET at the level of two-dimensional layout design. Moreover, it
may seem that the channel width is restricted by the practical fabrication limit for the fin
height. These difficulties are overcome by using MOSFETs with multiple parallel fins. For
n fins, the effective channel width becomes 2nHFIN .

The most critical parameter is the fin width (WFIN ). The half-width, being equal to the
effective body thickness, determines the strength of leakage-current suppression for zero-
biased gates. For very wide fins—for example, for WFIN larger than the depletion-layer
width—there is no current-suppression advantage in comparison to ordinary MOSFETs.
Thus, the FinFET structure is useful with very narrow fins, which by itself presents
fabrication challenges. In single-gate MOSFET structures, the gate length (Lg) is made
equal to the smallest dimension that can be achieved by a given technological process.
FinFETs require WFIN < Lg to utilize the current suppression advantages of this structure.
To set WFIN as the minimum design dimension would mean to increase Lg , which
would result in undesirable reduction of MOSFET current. To avoid this disadvantage,
sophisticated “fin trimming” techniques have to be used to enable fabrication of fins with
widths that are smaller than the minimum design dimension (Lg).

Assuming that fabrication of FinFETs with WFIN ≈5 nm is possible, and limiting the
equivalent thickness of the gate dielectric to ≈ 1 nm, the desired leakage-current targets
can be met at gate lengths down to ≈ 10 nm.5 At these dimensions, quantum-mechanical
effects will become important. In particular, carrier confinement in the thin body may cause

5L. Chang, S. Tang, T.-J. King, J. Bokor, and C. Hu, Gate-length scaling and threshold voltage
control of double-gate MOSFETs, IEDM Tech. Dig., pp. 719–722 (2000).



8.5 MOS-Based Memory Devices 339

an intolerable shift in the threshold voltage. On the positive side, the carrier transport in
the channel will approach the ballistic limit because the carrier scattering can be ignored.

*8.5 MOS-BASED MEMORY DEVICES

Information storage is a very important function in a variety of electronic systems and
definitely of essential importance in computers. Although the memory function can be
implemented with a number of nonsemiconductor devices, the progress made in the
area of semiconductor technologies is having a very strong impact on the performance,
cost, reliability, and physical size of semiconductor-based memory devices. Consequently,
semiconductor memories are both expanding memory-based applications and replacing
nonsemiconductor memory devices in a number of existing applications.

The essential characteristics of a good memory are (1) large number of fast reading/
programming cycles, (2) long retention of the stored information, and (3) high memory
capacity. No currently available memory is superior in terms of all the three essential
characteristics. Accordingly, different types of semiconductor and nonsemiconductor
memories are used in electronic systems. The semiconductor memories can be classified
into three categories: static random-access memories (SRAMs), dynamic random-access
memories (DRAMs), and flash memories. The main nonsemiconductor memories are
optical disks (CD/DVD) and magnetic disks.

SRAMs are based on bistable electronic circuits, known as flip-flops. These memories
provide a practically unlimited number of very fast reading/programming cycles. They
retain the information for as long as an uninterrupted power supply is connected to the
memory cells. The big disadvantage of these memories is a relatively low memory capacity.
This results from the fact that the circuit of each memory cell consists of many transistors,
leading to a relatively large area per cell. Although still used, SRAMs are not as widespread
as DRAMs and flash memories. Given that DRAM and flash memory cells are specific
MOS-based devices, this section describes these two types of memory cell.

8.5.1 1C1T DRAM Cell
Stored charge in a capacitor is utilized as information storage in DRAMs. To enable access
to this charge for information reading and programming, one of the capacitor plates is
connected to a MOSFET acting as a controlled switch. Thus, a capacitor connected to
a MOSFET switch creates what is referred to as a 1C1T (one-capacitor, one-transistor)
memory cell. Figure 8.28 shows that 1C1T cells can be connected in a memory array
that enables an arbitrary (random) access to each individual cell. As Fig. 8.28 shows, the
gates of the MOSFETs in one column of the array are connected to create a word line.
Application of a positive voltage to a word line sets all the MOSFETs in that column in
on mode. A single cell is selected from the word line by selecting a single bit line to either
sense the charge stored in the capacitor of this cell (reading) or set the charge at desired
level (programming). This memory array is referred to as random-access memory because
an arbitrary cell can be selected at the cross between a word and a bit line.
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The capacitor in a 1C1T cell can be implemented as a MOS capacitor. To increase
the capacitance value without a proportional increase in the cell area, the MOS capacitors
can be formed in trenches etched inside the silicon substrate. The alternative approach is
to implement the capacitor as a metal–dielectric–metal capacitor. In the latter case, the
capacitor is created on the top of the MOSFET, as illustrated in Fig. 8.29. Provided there
is negligible leakage through the capacitor dielectric and negligible leakage through the
MOSFET switch (set in off mode), the capacitor charge will be retained for an indefinite
period of time. The leakage of practical MOSFETs, however, is not negligible. In fact it is
so high that it discharges the capacitor within milliseconds. A millisecond may seem to be
an impractically short time for a memory device, but it is at least hundreds of thousands
times longer than the time needed to perform a single digital operation. This makes it
practical to implement periodic refreshing of the memory cells. Because of the need to
refresh the memory information, this type of memory is called dynamic RAM.
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It may appear that the need for refreshing is a big disadvantage of DRAMs—in
particular, in comparison to SRAMs, which do not need refreshing when operating with
continuous power supply and are typically faster than DRAMs. The big advantage of
DRAMs, however, is in their small cell size, thus large memory capacity. Although there
are nonsemiconductor memories with capacity much larger than that of modern DRAMs,
reading and/or programming of these memories is so slow that their use remains limited to
data storage. DRAMs are the unique type of memory that is used for data processing in
modern computers.

8.5.2 Flash Memory Cell
To create a nonvolatile memory, which will keep information stored even when the power
supply is disconnected from the memory element, significantly modified devices have to
be used. Semiconductor devices that enable electrical erasing and programming are based
on trapping electrons in a deep potential well, so deep that the trapped electrons are very
unlikely to gain enough thermal energy and escape from the potential well. Figure 8.30a
shows the cross section of what is known as a flash memory cell. The deep potential well for
electron trapping is created by inserting a floating polysilicon gate between the MOSFET
gate (now referred to as the control gate) and the silicon substrate. The discontinuity of the
bottom of the conduction band, appearing at the polysilicon–oxide interfaces, is used to
create the trapping potential well. Because this discontinuity is more than 3 eV (Fig. 8.30c)
and because the floating gate is completely surrounded by oxide, the electrons appearing
in the floating gate are trapped.

Figure 8.30c shows the energy bands for the erased state (no trapped electrons in the
floating gate). The electrons in the floating gate in this case are the normal doping-induced
electrons in N-type polysilicon. The MOSFET is designed so that the application of VGS

reading voltage turns the MOSFET on, creating channel of electrons between the drain and
the source. Figure 8.30b shows that the VGS reading voltage is larger than the threshold
voltage of the MOSFET in an erased state.

To program the MOSFET, a large VDS voltage is applied to accelerate the channel
electrons to kinetic energies larger than the energy barrier between the silicon and the
oxide. Thus accelerated electrons are referred to as hot electrons. A number of these hot
electrons will elastically scatter, changing direction toward the oxide, and with their high
kinetic energy they will overpass the energy barrier created by the oxide to appear in the
floating-gate area. With a sufficiently thick floating gate, most of these electrons will lose
their energy inside the floating gate (through nonelastic scattering), becoming trapped in
the potential well created by the floating gate. Although this process does not seem to
be very efficient, with relatively long programming times (on the order of μs), enough
electrons can be collected in the potential well of the floating gate to change the MOSFET
state. Figure 8.30d shows the energy bands of the MOSFET with electrons trapped in the
floating gate. The electric field of these electrons shifts the floating-gate energy bands
upward; as a consequence, it changes the band bending (and the electric field) at the
substrate surface. This increases the threshold voltage of the MOSFET. Figure 8.30b shows
that the threshold voltage of the programmed MOSFET can be larger than the VGS reading
voltage.



342 CHAPTER 8 MOSFET

0
0.00

0.02

0.04

0.06

0.08

0.10

5

V
G

S 
re

ad
 v

ol
ta

ge

Pr
og

ra
m

m
ed

E
ra

se
d

10 15
VGS (V)

I D
 (

m
A

)

(a)

ID

VGS

N
�

P-
ty

pe
 s

ub
st

ra
te

C
on

tr
ol

 g
at

e

F
lo

at
in

g 
ga

te

So
ur

ce
D

ra
inN
�

(c)

Erased state

qVGS

EC

EV

EF

(d)

Programmed
state

qVGS

EC

EV

EF

Program Erase

(b)

VDS

Figure 8.30 Flash memory MOSFET. (a) The cross section. (b) The transfer characteristics. (c) The
energy bands in the erased state. (d) The energy bands in the programmed state.

To erase a programmed MOSFET, a large negative voltage is applied to the control
gate, which forces the trapped electrons to tunnel back into the silicon substrate through
the thin oxide separating the substrate and the floating gate (Fig. 8.30a).

The flash cell can be programmed and erased thousands of times before the erasing
and programming mechanisms show any observable adverse impact on the MOSFET
characteristics. Nonetheless, oxide stressing during programming and erasing creates oxide
charge and interface traps. This accumulation of oxide charge and interface traps limits the
number of programming and erasing cycles, ruling out any possible use of this nonvolatile
memory for data processing (in addition, the programming and erasing are too slow for
data-processing applications).
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SUMMARY

1. The inversion layer of a MOS capacitor, with source and drain contacts at two ends,
forms a switch in on mode. This is a voltage-controlled switch because the inversion
layer (that is, the channel connecting the source and the drain) exists for as long as
there is appropriate voltage at the gate electrode. In other words, the gate electric field
can attract carriers of the same type as the source and drain regions (the switch in on
mode), and can either deplete the channel region or attract opposite-type carriers, in
which case the switch is in off mode (no conducting channel exists between the source
and the drain terminals). This is known as the field effect, hence the name of the device:
metal–oxide–semiconductor field-effect transistor (MOSFET).

2. There are N-channel MOSFETs (electrons in the inversion layer and N-type source/drain
regions in a P-type substrate) and P-channel MOSFETs (holes in the channel and P-type
source/drain regions in an N-type substrate). The N-channel MOSFETs are on when the
gate voltage is larger, whereas the P-channel MOSFETs are on when the gate voltage is
smaller than the threshold voltage,

VT = VFB ± 2|φF | ± γ
√

2|φF | + |VSB|

where the upper signs are for N-channel and the lower signs are for P-channel
MOSFETs. A reverse-bias voltage across the source-to-substrate junction, |VSB|,
increases the threshold voltage (body effect).

3. N-channel and P-channel MOSFETs that are off for VGS = 0 V are normally off
MOSFETs, also called enhancement-type MOSFETs. MOSFETs with built-in channels
(they can conduct current at VGS = 0 V) are called normally on, or depletion-
type MOSFETs. Enhancement-type N-channel and P-channel MOSFETs are used as
voltage-controlled switches to create complementary MOS (CMOS) logic circuits.

4. The resistance of the channel (switch in on mode) is inversely proportional to QI =
Cox(VGS − VT ). Therefore, Ron = 1/ [β(VGS − VT )], which means that the current is

ID = β(VGS − VT )VDS

At higher VDS voltages, this linear dependence of ID on VDS is not maintained because
the drain starts depleting the drain end of the channel, thereby reducing the current,
which reaches its maximum at VDS = VDSsat. The region 0 ≤ |VDS| ≤ |VDSsat|
is referred to as the triode region, and |VDSsat| < |VDS| < |VBR| is referred to as
the saturation region. The saturation is reached due to either (1) full depletion of the
drain end of the channel (channel “pinch-off”) or (2) drift velocity saturation at high
lateral electric fields in the channel. The saturation region enables the device to work
as a current source whose current is controlled by the gate. Therefore, the MOSFET
provides one possible implementation of the voltage-controlled current source used in
analog circuits.

5. Modeling of the MOSFET current is based on Ohm’s law, which accounts only for
the linear region when applied literally (summary point 4). The rudimentary MOSFET
model (SPICE LEVEL 1 model) modifies the basic Ohm relationship to include the
reduction of channel-carrier density (QI ) by the drain field. A more precise model is
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TABLE 8.2 MOSFET Equationsa

ID =
⎧⎨
⎩β

[
(VGS − VT )VDS − (1 + FB )

V 2
DS
2

]
, for 0 ≤ |VDS| < |VDSsat|

β
2(1+FB)

(VGS − VT )2, for |VDS | ≥ |VDSsat|
VDSsat = VGS − VT

1 + FB
β = μeff

εox

tox︸ ︷︷ ︸
KP

W
Leff −Lpinch

FB = γ Fs
2
√|2φF |±VSB

+ Fn μeff = μs
1+μs |VDS|/(vmax Leff )

μs = μ0
1+θ |VGS−VT |

VT = VT 0 ± γ Fs
(√|2φF | ± VSB − √|2φF |) − σD VDS + Fn VSB

Second-Order Effects Principal Model

Mobility reduction due to vertical field (VGS voltage) θ = 0
Mobility reduction due to lateral field (VDS voltage) vmax = ∞
Channel-length modulation in saturation region Lpinch = 0
Short-channel charge sharing in the depletion layer Fs = 1
Fringing-field widening of a narrow-channel depletion layer Fn = 0
Drain-current increase in saturation due to DIBL σD = 0

aUpper signs, N channel; lower signs, P channel.

obtained when the lateral nonuniformity of the depletion layer, which widens toward
the reverse-biased drain-to-bulk junction, is included. This leads to a computationally
inefficient model (SPICE LEVEL 2 model), involving (VDS+· · · )3/2 terms. Simplifying
this model by the linear and parabolic terms of Taylor series leads to what is referred to
as the SPICE LEVEL 3 model. This model is structurally the same as the rudimentary
model, with an added factor FB to account for the effects of the depletion-layer
variations. The LEVEL 3 model for the above-threshold drain current is summarized
in Table 8.2.

6. A reduction of MOSFET dimensions (L, W , and tox), accompanied by an appropriate
substrate-doping increase, results in faster CMOS cells that occupy a smaller area.
Lower-doped drain and source extensions are used in small-dimension MOSFETs to
reduce the electric field at the drain end of the channel. Deep-submicron MOSFETs
also feature silicide gate layers and silicide source/drain contacts to decrease the gate
and contact resistances. Better control over the channel region by the gate is needed to
suppress excessive leakage current and to enable further scaling down of MOSFET
dimensions. In response to this challenge, a number of potential techniques and
advanced MOSFET structures are being considered, including high-k gate dielectrics,
metal gates, engineered doping profiles in the substrate (retrograde and halo doping),
ultra-thin-body SOI MOSFETs, and double-gate MOSFETs (FinFETs).

7. DRAMs and flash are two types of MOS-based semiconductor memory with a signif-
icant market impact. DRAMs are based on a 1C1T (one capacitor and one transistor)
memory cell, where the capacitor is the charge-storage element and the transistor is the
switch that enables fast and unlimited information reading and programming. Leakage
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through modern MOSFETs, used for switching in DRAMs, is relatively high, so this
type of memory has to be periodically refreshed. Flash is a nonvolatile semiconductor
memory, however, with slow and limited programming cycles. In a flash memory cell,
a polysilicon gate completely surrounded by oxide (floating gate) acts as a trap for
electrons; thus, once it is charged, it remains in this state for a very long time. Charging
(programming) and discharging (erasing) are achieved by injection of hot electrons
and charge-tunneling through the gate oxide, respectively. These are relatively slow
processes that also damage the gate oxide after a limited number of charge transfers.

PROBLEMS

8.1 Figure 8.31 shows five energy-band diagrams,
drawn from the oxide–silicon interface into the
silicon substrate, and the transfer characteristic of a
MOSFET with four labeled points. Identify the four
correct band diagrams and relate them to the four
points on the transfer characteristic.

8.2 Figure 8.32 shows four energy-band diagrams,
drawn from the source to the drain, along the silicon
surface. Identify how the energy-band diagrams
relate to each of the four points, labeled on the
output characteristics of the MOSFET.

8.3 Which of the following statements, related to
MOSFETs, are not correct?

(a) N-type substrate is used to make normally on
P-channel MOSFETs.

(b) The net charge at the semiconductor surface is
zero at VGS = VT .

(c) If a MOSFET is in the linear region, it is also in
the triode region.

(d) Existence of a significant drain current at VGS
= 0 V indicates a faulty MOSFET.

(e) For a MOSFET in saturation, the channel car-
riers reach the saturation drift velocity at the
pinch-off point.

(f) The threshold voltage of an enhancement-type
P-channel MOSFET is negative.

(g) Positive gate voltage is needed to turn a nor-
mally on P-channel MOSFET off.

(h) A MOSFET cannot be in both the triode and the
saturation region at the same time.
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Figure 8.31 Energy-band diagrams and a MOSFET transfer characteristic.
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(i) The above-threshold current in the MOSFET
channel is essentially due to diffusion.

(j) Both electrons and holes play significant roles
in the flow of drain-to-source current.

8.4 For an N-channel MOSFET with uniform substrate
doping of NA = 5 × 1016 cm−3 and gate-oxide
thickness of tox = 5 nm, determine the surface
potential ϕs and the depletion-layer charge Qd at:

(a) VGS = VFB = −0.75 V
(b) VGS = −0.5 V and VGS = 0 V (assume zero

oxide charge and interface trap densities, so that
εox Eox = εs Es = q NAwd ) A

(c) VGS = VT = 0.2 V
(d) VGS = 0.75 V A

Plot ϕs(VGS) and Qd (VGS). (VSB = 0)

8.5 The transconductance of an N-channel MOSFET
operating in the linear region (VDS = 50 mV,
VSB = 0) is gm = d ID/dVGS = 2.5 mA/V. If the
threshold voltage is VT = 0.3 V, what is the current
at VGS = 1 V?

8.6 Design an N-channel MOSFET, used as a voltage-
controlled switch, so that the resistance in on mode
is R = 100 �. The technological and circuit param-
eters are as follows: the threshold voltage is VT =
0.2 V, the gate-oxide thickness is tox = 3 nm,

the electron mobility in the channel is μn = 350
cm2/V · s, the gate voltage in on mode is VGS =
1.0 V, and the minimum channel dimension is
0.2 μm.

8.7 The substrate doping and the body factor of an N-
channel MOSFET are NA = 1016 cm−3 and γ =
0.12 V1/2, respectively. If the threshold voltage,
measured with VSB = 3 V is VT = 0.5 V, what
is the zero-bias threshold voltage?

8.8 For the MOSFET of Problem 8.7, how many times
is the channel resistance increased when VSB is
increased from 0 to 3.3 V? The gate and drain
voltages are VGS = 3.3 V and VDS = 50 mV. A

8.9 Knowing the technological parameters tox =
3.5 nm, ND = 5 × 1015 cm−3, and VFB =
0.2 V, determine the inversion-layer charge density
at VGS = −0.75 V, VGS = 0 V, and VGS = 0.75 V
for

(a) VBS = 0 V
(b) VBS = 0.75 V A

8.10 The body factors of N-channel and P-channel
MOSFETs are determined from body-effect mea-
surements as 0.11 V1/2 and 0.47 V1/2, respectively.
Determine the substrate doping levels in those
MOSFETs. The gate-oxide capacitance is Cox =
1.726 × 10−3 F/m2.
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8.11 The maximum operating voltage of an NMOS
integrated circuit is 10 V and substrate doping
level in the region between the MOSFETs (the
field region) is NA = 5 × 1017 cm−3. Determine
the minimum oxide thickness in the field region
(the field-oxide thickness) needed to prevent current
leakage between neighboring MOSFETs. Neglect
the oxide charge, and consider aluminum gate (the
worst-case scenario).

Hint: The field oxide can be considered as the gate
oxide of a parasitic MOSFET that should be kept
off (the maximum operating voltage should be below
the threshold voltage) to prevent possible leakage.

8.12 The solid line in Fig. 8.33 (labeled by “N”) is for
an N+-poly-N-channel MOSFET with the following
parameters: L = 2 μm, W = 2 μm, tox = 20 nm,
NA = 5 × 1016 cm−3, x j = 0.5 μm, x j−lat =
0.4 μm, μ0 = 750 cm2/Vs, δ = 1, θ = 0, and
η = 0. The other four characteristics are obtained
by changing one of the listed parameters. State the
altered parameter that relates to each of the transfer
characteristics labeled by 1, 2, 3, and 4.

8.13 One set of output characteristics from Fig. 8.34 is
for the nominal MOSFET parameters, as listed in
the text of Problem 8.12, while the other three are
for changed values of θ or η or for a specified
vmax parameter. These parameters determine the
strength of the following second-order effects: θ ,
mobility reduction with gate voltage; η, finite output
resistance due to DIBL; vmax , the drift-velocity
saturation. Relate each of the output characteristics
to the appropriate set of parameters.

8.14 An N-channel MOSFET with VT = 0.25 V is
biased by VGS = 2.5 V and VDS = 500 mV. The

gate-oxide capacitance is Cox = 2.5 mF/m2 and the
effective channel length is L = 1 μm. Calculate:

(a) the average lateral field
(b) the average channel conductivity, assuming

channel thickness xch = 5 nm
(c) current density

Assume μ0 = 750 cm2/V · s for the channel-carrier
mobility.

8.15 If the channel length of the MOSFET from Prob-
lem 8.14 is reduced to L = 0.2 μm, calculate the
average lateral electric field for the same bias condi-
tions and the same value of the threshold voltage.
Assuming drift velocity of vd = 0.08 μm/ps at
this field (Fig. 3.6) and using the average carrier
concentration in the channel (xch = 5 nm), calculate
the current density. What is the channel-carrier
mobility in this case? A

8.16 A P-channel MOSFET has VT 0 = 0.2 V, γ =
0.2 V1/2 (neglect FB assuming FB � 1), and
β = 5 mA/V2. If VGS = −1 V, calculate VDSsat,
IDsat , and ID at VDS = VDSsat/5 for

(a) VSB = 0 V
(b) VSB = −4.1 V, |φF | = 0.45 V A

8.17 (a) Repeat the calculations of Example 8.2 using
θ = 0.1 V−1 to include the effect of mobility
reduction with gate voltage. Use the SPICE
LEVEL 3 model.

(b) Find the change in the drain current if the body
of the MOSFET is biased at VSB = 5 V. A

8.18 The technological parameters of an N+-poly-gate P-
channel MOSFET are L/W = 10, tox = 4.5 nm,
and ND = 1016 cm−3. Find the drain current at
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(a)  L � 1.5 mm
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(d)  NA � 3 � 1016 cm�3

Figure 8.33 MOSFET transfer characteristics.
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Figure 8.34 MOSFET output characteristics.

VGS = −2 V, VDS = −50 mV, and VSB = 0 V.
Assume μ0 = 350 cm2/V · s and Noc = 0.

8.19 Considered is an N-channel MOSFET with the gain
factor β = 600 μ A/V2, the drain-bias factor
FB = 0.7, and the zero-bias threshold voltage
VT 0 = 1.1 V. If the coefficient of the influence
of the drain bias on the threshold voltage is σD =
0.01, determine the dynamic output resistance (ro =
dVDS/d ID) of the MOSFET at VGS = VDS/2 =
5 V. Channel-length modulation can be neglected.

8.20 The output dynamic resistance of an N-channel
MOSFET with σD = 0.01 and negligible channel-
length modulation effect is ro = 1 M� at VGS −
VT = 0.5 V. What is the dynamic output resistance
at VGS − VT = 5 V if

(a) θ = 0 A
(b) θ = 0.05 V−1

8.21 If the saturation current of an N-channel MOSFET
is 1 mA when measured at VGS = 2 V, VSB = 0 V,
and VDS = 5 V, what is the saturation current at
VGS = 2 V, VSB = 0 V, and VDS = 10 V?
The following parameters are known: the gain factor
β = 3 mA/V2, the drain-bias factor FB = 0.5, and
the zero-bias threshold voltage VT 0 = 1.1 V.

8.22 The length of the channel pinch-off region can be
expressed as the depletion layer of an abrupt P–N
junction, modulated by a fitting parameter κ :

Lpinch =
√

κ
2εs

q NA
(VDS − VDSsat)

What is the relative increase (expressed as percent-
age) of the drain current of a 1-μm MOSFET, when
the voltage changes from VDS = VDSsat to VDS =
5 V + VDSsat, if NA = 5×1016 cm−3 and κ = 0.2?
Assume constant threshold voltage (σD = 0).

8.23 The body of a nanoscale N-channel MOSFET is
doped at NA = 5 × 1018 cm−3.

(a) Determine the maximum inversion-layer charge
per unit area (QI ) that can be reached so that
the electric field in the oxide remains below
Eox = 0.6 V/nm. Neglect any interface-trap
and gate-oxide charge.

(b) If the channel length and the channel width are
L = 50 nm and W = 500 nm, respectively,
determine how many electrons are creating this
inversion layer.

(c) Calculate the threshold voltage of a MOSFET
having gate-oxide thickness tox = 1 nm and
flat-band voltage VF B = 1.0 V.

(d) What gate voltage is needed to form the
maximum inversion-layer charge?

8.24 The electron mobility in the channel of a nanoscale
MOSFET is μn = 300 cm2/V · s. The channel
length is L = 50 nm, and the applied voltage
across the channel is VDS = 0.1 V. Determine
the scattering length (average distance between two
scattering events) for the electrons in the channel.
Assuming that an electron moves from the source
toward the drain, calculate the kinetic energy that the
electron gains between two scattering events. The
effective mass of the electrons is m∗ = 0.19m0 and
their thermal velocity is vth = 2 × 107cm/s.
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REVIEW QUESTIONS

R-8.1 What type of substrate (N or P) is used to make normally off N-channel MOSFETs?
Normally on N-channel MOSFETs?

R-8.2 What gate-to-source voltage, positive or negative, is needed to turn a normally on P-channel
MOSFET off ?

R-8.3 Can a single MOSFET be used as both a voltage-controlled switch (digital operation) and a
voltage-controlled current source (analog operation)?

R-8.4 Typically, is the surface potential ϕs zero at VGS = 0 V? What is the condition of ϕs = 0
called?

R-8.5 Can a normally on and a normally off N-channel MOSFET have the same flat-band voltage?
Are the electrical conditions (energy bands) in the silicon of normally off and normally on
MOSFETs equivalent at ϕs = 0?

R-8.6 Is there any charge at the semiconductor side of a MOS structure at VGS = VT ? Is there any
mobile carrier charge?

R-8.7 Is the threshold voltage of a normally on P-channel MOSFET positive or negative?
R-8.8 Why does source-to-bulk reverse-bias voltage (VSB > 0) increase the threshold voltage?

What is this effect called?
R-8.9 Can a MOSFET simultaneously be in both the linear and the triode region?
R-8.10 Do channel carriers face a negligible or infinitely large resistance between the channel pinch-

off point and the drain of a MOSFET in saturation?
R-8.11 Is there analogy between the energy bands of a MOSFET in saturation and a waterfall?
R-8.12 Which SPICE model (LEVEL 1, 2, or 3) would you use to simulate a circuit with MOSFETs?

Why?
R-8.13 The mobility reduction with gate voltage is a second-order effect. Can you, typically, neglect

it?
R-8.14 What is the effect of neglecting the mobility reduction with the drain voltage?
R-8.15 What is the effect of neglecting the threshold-voltage dependence on VDS voltage?



9 BJT

The bipolar junction transistor (BJT) was the first solid-state active electronic device.
Before the BJT, electronic amplifiers were based on vacuum tubes. The BJT concepts were
experimentally and theoretically established by Bardeen, Brattain, and Shockley at the Bell
Telephone Laboratories during 1948. The era of semiconductor-based electronics, which
has had an enormous influence on the way we live today, actually began with the invention
of the BJT.

A number of alternative transistors have been developed since the first BJTs, notably
MOSFETs and MESFETs. Nonetheless, the BJTs are still used because there are applica-
tions in which the BJTs still offer the best performance. In addition, there are applications
in which they are combined with MOSFETs, even in integrated-circuit technology. It
should also be noted that the BJT principles are frequently used in a number of specifically
designed semiconductor devices.

9.1 BJT PRINCIPLES

Different from MOSFETs, the principal operation of a BJT (the normal active mode)
relates to its function as a controlled source of constant current (an analog device).
Nonetheless, BJTs can be operated as voltage-controlled switches (a digital device). Both
digital circuits and semiconductor power-switching circuits were initially developed with
BJTs.1 This section introduces the BJT as a controlled current source, followed by a

1Resistor–transistor logic (RTL), transistor–transistor logic (TTL), and emitter-coupled logic (ECL)
are all digital circuits based on BJTs.

350
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description of its operation as a switch to present all the four modes of operation. At the
end of the section, the BJT is compared to the MOSFET.

9.1.1 BJT as a Voltage-Controlled Current Source
The essential characteristic of an ideal current source is that its current does not depend on
the voltage across the current source. In other words, it delivers a constant current at any
voltage.

A reverse-biased P–N junction is a semiconductor implementation of a constant-
current source, assuming that the current through a reverse biased P–N junction is due
to the minority carriers. The energy-band diagram of Fig. 9.1 shows that the minority
electrons easily roll down and the minority holes easily bubble up through the depletion
layer, making the reverse-bias current. This current is limited by the number of minority
electrons and holes appearing at the edges of the depletion layer per unit time, and not
by the reverse-bias voltage VCB, which sets the energy difference between the P-type and
N-type regions. The flow of minority electrons through the depletion layer is analogous to
a waterfall: the current of the falling water does not depend on the height of the fall but on
the current of water coming to the edge of the fall.

VCB

IC

�

(a)

(d)

EC

EV

EF

qVCB

Electron-fall

VCB

IC

VCB-independent current, but 
very small as minority carrier 
concentration is very low. 

�

VCBIC

NP

(b)

(c)

Figure 9.1 Reverse-biased P–N junction as a current source. (a) Cross section. (b) Energy-band
diagram. (c) I–V characteristic. (d) Current-source symbol.
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Being a device whose current does not change with the voltage across the device, the
reverse-biased P–N junction exhibits the main characteristic of a constant-current source,
at least theoretically. Figure 9.1c and 9.1d illustrates the I–V characteristic and the symbol
of the reverse-biased P–N junction used as a current source. Of course, a very important
question here is whether this current source is at all useful. It may seem that its current is
too small for any realistic application.

It is true that the P–N junction reverse current is only a leakage current, usually
negligible. However, what is important here is the principle of waterfall, or “electron-
fall” as labeled in Fig. 9.1b. The current through the reverse-biased P–N junction can
be increased to a significant level by providing more electrons, in the same way that the
current of a waterfall increases after a heavy rainfall. In fact, it is necessary to have a way
of controlling the number of electrons appearing at the edge of the “fall” so as to create a
controlled current source.

More minority electrons in the P-type region can be created by increased temperature
or exposure to light, which would break additional covalent bonds and generate additional
electron–hole pairs. This would make a temperature-controlled or light-controlled current
source. However, to have an electronic amplifying device, we need a current source that is
electrically controlled, say a voltage-controlled current source.

Thinking of a supply of electrons that is controlled by a voltage, the forward-biased
P–N junction appears as a possibility. As the forward bias causes a significant number
of electrons to move from the N-type region into the P-type region, the forward-biased
P–N junction could be used to supply electrons to the current source. Obviously, this can
work only if the two P–N junctions, the forward-biased (the controlling junction) and the
reverse-biased (the current source), share a common P-type region. This is the case in an
NPN BJT structure, illustrated in Fig. 9.2a. The common P-type region is called a base.
The N-type of the forward-biased P–N junction, which emits the electrons, is called an
emitter, and the N type of the reverse-biased P–N junction is called a collector because it
collects the electrons.

Figure 9.2 summarizes the operation of the NPN BJT as a voltage-controlled current
source. The forward-bias voltage VBE (the input voltage) controls the supply of electrons
from the emitter to the depletion layer of the reverse-biased P–N junction (“electron-fall”).
The output current depends on the input voltage VBE (shown by the transfer characteristic),
but it does not depend on the output voltage VCB (horizontal lines of the output current–
voltage characteristics).

The equivalent circuit in Fig. 9.2d is shown for a BJT in the common-emitter
configuration. In this most frequently used configuration, the input voltage is between
the base and the emitter, whereas the output voltage is between the collector and the
emitter. Practically, there is no qualitative difference between VCE and VCB. Although
VCE involves the input VBE voltage (VCE = VCB + VBE), the changes in input voltage
(the input-voltage signal) are practically very small and can almost always be neglected in
comparison to other voltages in a BJT circuit. The total value of VBE may be important,
but it is almost always sufficient to approximate it by a constant value (the commonly used
value in electronic-design books is VBE = 0.7 V).

To be used as a signal amplifier, a BJT has to be connected to a power-supply circuit.
BJTs cannot generate power to deliver to the amplified signal, but what they can do is



9.1 BJT Principles 353

IC

Forward-biased P–N
junction, controlling IC

�   Reverse-biased P–N junction�(the current source IC)

Emitter Base Collector

Electron-fall

�
�

�

VBB VCB

EC

EF

EV

qVBE

qVCB

VBE4

VBE3

VBE2

VBE1

VCE � VCB � VBE

VBE

 IC  ICTransfer
characteristic

Output
characteristics

Collector (C)
C

B

E

Base (B)

V B
E

1

VBE VCE

I C
 (V

B
E
)

V B
E

3

V B
E

4

VBE

� �

N P NN P N

Emitter (E)

(a)

(b)

(c)

(d)

Figure 9.2 Summary of NPN BJT operation as a voltage-controlled current source. (a) Cross section showing the three
regions, their names, the two junctions, and the biasing arrangement. (b) Energy-band model. (c) Main current–voltage
characteristics. (d) An equivalent circuit (left) and the symbol (right).

convert supplied DC voltage/power into signal voltage/power. The DC voltage/power has
to be supplied to the active device (the BJT in this case) through a loading element.
Figure 9.3a shows the basic amplifying circuit, where the active device is the BJT,
the loading device is the resistor RC , and the power-supply voltage is labeled by V+.
Figure 9.3b provides a graphical analysis of this circuit to illustrate the principle of voltage
amplification by a voltage-controlled current source. The output characteristics of the
voltage-controlled current source (iC–vCE graph) are accompanied by the so-called load
line, which is the iC–vCE dependence as determined by the loading resistor RC and the DC
power supply V+. The load-line equation can be obtained from the fact that V+ voltage is
divided between the resistor (RCiC ) and the BJT output (vCE):

V+ = RCiC + vCE (9.1)

The aim is to present this equation in the form of iC(vCE) so that it can be plotted on the
same graph as the output characteristics of the BJT. From Eq. (9.1),

iC = − 1

RC
vCE + V+

RC
(9.2)
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Figure 9.3 Principles of voltage amplification by a voltage-controlled current source. (a) A BJT is connected to a DC power
supply through a loading resistor to create the principal amplifier circuit. (b) Graphic analysis of the amplifier circuit.

This is the iC–vCE characteristic of the loading RC–V+ circuit that together with the output
iC–vCE characteristics of the BJT determines the output voltage (vCE) and the output
current (iC ). In other words, the actual vCE and iC values are found at the cross sections
between the load line and the output characteristics of the BJT.

With this understanding, we can follow the transition of the small input signal into the
large output signal that is illustrated in Fig. 9.3b. The sinusoidal input signal (vbe) oscillates
the total input voltage around the quiescent point Q that is set in the middle of a linear-
like segment of the transfer characteristic. The links between the transfer and the output
characteristics show that a specific horizontal line of the output characteristics is “selected”
by the input voltage. A horizontal line of the output characteristics means that a “selected”
iC current is possible for a range of vCE voltages. The actual vCE voltage is determined
by the load line and is found at the cross section between the load line and the set iC of
the current source; thus, the current oscillations are converted into voltage oscillation. The
amplitude of the sinusoidal output voltage is inversely proportional on the slope of the load
line. Accordingly, it can be set at an arbitrarily high level, provided the oscillations remain
within the operating regime of the output BJT characteristics. It should be noted that, for
clarity, the slope of the transfer iC–vBE characteristics in Fig. 9.3 is reduced. In practice,
the slope is so much higher that the amplitude of the input sinusoidal voltage is typically
much smaller than the amplitude of the output signal. This means a very large voltage gain,
vce/vbe.

9.1.2 BJT Currents and Gain Definitions
In general, four different currents flow through the two P–N junctions of a BJT. These
currents will be labeled by InE and IpE to denote the electron and hole currents through the
emitter–base (E–B) junction and by InC and IpC to denote the electron and hole currents
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Figure 9.4 Illustration of BJT currents using (a) the BJT cross section and (b) an energy-band
diagram.

through the collector–base (C–B) junction. Figure 9.4 illustrates the relationships between
these currents.

Emitter Efficiency, γE

The N-type emitter of the forward-biased E–B junction emits electrons into the the P-type
base, which is the InE current. The emission of these electrons is controlled by the input
VBE voltage, so it is these electrons that should be supplied to the reverse-biased B–C
junction (the current source) to make the controlled (useful) transistor current. The other
current through the E–B junction is due to the holes emitted from the base into the emitter
(IpE current). This current is not a useful transistor current because it is enclosed in the
input circuit. The total emitter current is the sum of these two currents:

IE = InE + IpE (9.3)
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The ratio between the useful and the total emitter current is called emitter efficiency and is
labeled by γE :

γE = InE

IE
(9.4)

To maximize the emitter efficiency, InE (the useful current) should be as large as
possible compared to IpE , which should be as small as possible. Although both currents
depend exponentially on the forward bias VBE , they also depend on the majority-carrier
concentrations—electrons in the emitter region and holes in the base region. To maximize
InE and minimize IpE , the doping level of the emitter should be as high as possible and
the doping level of the base should be as low as possible.

Transport Factor, αT

Most of the electrons emitted from the emitter pass through the base region to be collected
by the reverse-biased C–B junction as collector current InC . However, some of the electrons
are recombined by the holes in the P-type base, contributing to the base and not to the
collector current. Obviously, the recombined electrons do not contribute to the transistor
current. The ratio of electrons successfully transported through the base region is called
transport factor:

αT = InC

InE
(9.5)

To maximize the transport factor, the recombination in the base has to be minimized,
which is achieved by making the base region as thin as possible. This is well illustrated
by a possible argument that two P–N junction diodes with connected anodes (P-type sides)
electrically make the structure of the NPN BJT. The problem with such a BJT is that it is
useless because of its zero transport factor: all the emitted electrons are recombined in the
base, leaving any output (collector) current unrelated to the input current and voltage.

Transconductance, gm

The collector current is not only due to the electrons arriving from the emitter. There is
a small current due to the minority holes that move from the collector into the P-type
base. This current, labeled IpC in Fig. 9.4, is a part of the reverse-bias current of the C–B
junction. The other part is the current of minority electrons that would exist even when no
electrons are emitted from the emitter (zero- or reverse-biased E–B junction). The reverse-
bias current of the C–B junction is usually labeled by ICB0. It is a small leakage current,
which can most frequently be neglected. It can be noticed only when the BJT is in off
mode (both E–B and C–B junctions are zero- or reverse-biased) and is therefore used
to characterize the leakage of a BJT in off mode. Neglecting ICB0 current, the terminal
collector current becomes equal to the transistor current:

IC ≈ InC (9.6)

The emitter current IE depends exponentially on the input bias voltage VBE , according
to the diode relationship (6.4). The currents InE , InC , and eventually the output current IC
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maintain this exponential relationship:

IC (VBE) = IC (0)eVBE/Vt (9.7)

Equation (9.7) is the transfer characteristic shown in Fig. 9.2c and 9.3b. The slope of the
transfer characteristic determines the gain that can be achieved by the BJT. For a voltage-
controlled current source, the gain is defined as a transconductance (expressed in A/V):

gm = d IC

dVBE
= 1

Vt
IC (0)eVBE/Vt︸ ︷︷ ︸

IC

= IC

Vt
(9.8)

Common-Base and Common-Emitter Current Gains, α and β

Alternatively, a BJT can be considered as a current-controlled current source. This is
possible because the input voltage is related to the input current. By considering the BJT
as a current-controlled current source, the BJT gain is defined as a unitless current gain. If
we specify the collector as the output of a BJT used as an amplifier, the input can be either
the emitter (in which case the base is common) or the base (in which case the emitter
is common). These two configurations (common base and common emitter) lead to two
possible current gain definitions:

common-base current gain: common-emitter current gain:

α = IC/IE β = IC/IB

IC —output IC —output (9.9)

IE —input IB—input

Being current ratios of terminal currents, α and β can be electrically measured, and
because of this they are referred to as electrical parameters. The following equation shows
that α is directly related to the emitter efficiency γE and the transport factor αT , which are
technological parameters:

α = IC

IE
≈ InC

IE
= InC

InE︸︷︷︸
αT

InE

IE︸︷︷︸
γE

(9.10)

α = αT γE (9.11)

The theoretical maximum for γE is 1 (no holes injected back into the emitter), and
the theoretical maximum for αT is 1 as well (no electrons recombined in the base). This
means that the common-base current gain α cannot be larger than 1. Note that this does not
mean that the common-base configuration is useless; it cannot provide a real current gain
(the current gain is ≤1), but it can provide a power gain, for example.
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The α and β factors are related. The following equations show the relationship:

β = IC

IB
= IC

IE − IC
= 1

1

IC/IE︸ ︷︷ ︸
α

− 1
= 1

1

α
− 1

(9.12)

β = α/(1 − α) (9.13)

α = β/(1 + β) (9.14)

Thus, if α is known, β can be calculated using Eq. (9.13), and vice versa; that is, if β is
known, α can be calculated using Eq. (9.14). Typically, α > 0.99 (but always <1), and
β > 100.

Equation (9.10) shows that α and β are independent of any circuit biasing, provided the
BJT is biased to operate as an amplifier—they depend only on αT and γE . Once a BJT has
been made, α and β are set and do not change with circuit conditions. As distinct from this,
the transconductance gain depends on the biasing current IC [Eq. (9.8)]. Consequently, α

and β are used as the main BJT parameters.

EXAMPLE 9.1 BJT Currents

The common-emitter gain of a BJT operating as a voltage-controlled current source is β = 450.
Calculate the base and the emitter currents if the collector current is 1 mA. What is the common-
base current gain α?

SOLUTION

The base current is calculated from the definition of β [Eq. (9.9)]:

IB = IC

β
= 2.22 μA

The emitter current is obtained from Kirchhoff’s first law applied to the BJT:

IE = IC + IB = (β + 1)IB = 1.002 mA

The common-base current gain is

α = β

β + 1
= 0.9978
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Figure 9.5 Profiles of minority carriers in a
BJT (for clarity, the concentration scales in
the base, the emitter, and the collector are
different).

9.1.3 Dependence of α and β Current Gains
on Technological Parameters

Equation (9.10) expresses the current gain(s) in terms of the emitter efficiency γE and
the transport factor αT , which are defined as ratios of electron and hole currents. These
currents depend on technological and physical parameters that ultimately determine the
current gains α and β.

Emitter Efficiency

The currents InE and IpE , defining γE , are the two components of the current flowing
through the forward-biased E–B junction. Consistent with the P–N junction theory
(Chapter 6), InE is limited by the diffusion of electrons as the minority carriers in the base
and IpE is limited by the diffusion of holes as the minority carriers in the emitter. Figure 9.5
illustrates the concentration profiles of the minority carriers that determine the diffusion
currents in a BJT. In general, these profiles are exponential [Eq. (5.18)], but assuming that
the emitter, the base, and the collector widths are much smaller than the diffusion lengths,
the exponential dependencies become close to the linear-like profiles shown in Fig. 9.5.
Applying the diffusion-current equation [Eq. (4.5)] to the minority electrons in the base,

InE = q AJ DB
dn(x)

dx
= q AJ DB

n p(0) − n p(WB)

WB
(9.15)

where AJ is the junction area and DB is the diffusion constant of the minority carriers
in the base.2 The forward-bias voltage VBE increases the minority-carrier concentration
at the edge of the depletion layer exponentially above the equilibrium level. As a result,
n p(0)  n pe. Moreover, n p(WB) < n pe because the reverse bias drops the minority-
carrier concentrations below the equilibrium level at the C–B junction (Fig. 9.5). Therefore,

2Equation (9.15) is analogous to Eq. (6.5), which is the starting equation for derivation of the diode
current. The main difference is in the replacement of the diffusion length Ln by the actual base width
WB because of the assumption that WB � Ln . The minus sign is omitted in Eq. (9.15) because the
chosen direction of the current InE is opposite to the direction of the x-axis in Fig. 9.5.
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n p(WB) can be neglected in comparison to n p(0):

InE = q AJ DB
n p(0)

WB
(9.16)

In analogy with Eq. (6.9):

n p(0) = n peeVBE/Vt (9.17)

With this, Eq. (9.16) becomes

InE = q AJ DB
n pe

WB
eVBE/Vt (9.18)

The equilibrium concentration of the minority carriers in the base is determined by n pe =
n2

i /NB , where NB is the doping level in the base. Therefore,

InE = q AJ n2
i

DB

NB WB
eVBE/Vt (9.19)

The equation for IpE can be written in analogy with Eq. (9.19):

IpE = q AJ n2
i

DE

NE WE
eVBE/Vt (9.20)

where NE is the doping level in the emitter and DE is the diffusion constant of the minority
holes in the emitter.

The ratio of these two currents,

IpE

InE
= DE

DB

NB WB

NE WE
(9.21)

depends on the ratio of the diffusion constant, on the ratio of the base and emitter widths,
and, most importantly, on the ratio between the base and emitter doping levels. This
equation shows that NB � NE will ensure that the unwanted current IpE is much
smaller than the useful current InE . The formal definition for the emitter efficiency can
be expressed in terms of this ratio:

γE = InE

IE
= InE

InE + IpE
= 1

1 + (IpE/InE )
(9.22)

Eliminating IpE/InE from Eqs. (9.21) and (9.22), the emitter efficiency is expressed in
terms of the relevant physical constants and technological parameters:

γE = 1

/(
1 + DE

DB

NB WB

NE WE

)
(9.23)
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Transport Factor

Figure 9.4 illustrates that a small number of the injected electrons do not make it through
the base because they get recombined by holes. The current associated with the flow of the
recombined electrons, Irec, is diverted to the base terminal:

InE = InC + Irec (9.24)

The difference between InE and InC relates to the deviation of the concentration profile
n p(x) (Fig. 9.5) from a perfect straight line. The concentration gradient is somewhat
smaller at x = WB , showing that the diffusion current at the collector end of the base is
somewhat smaller than the diffusion current at the emitter end of the base: InC = αT InE ,
where the transport factor αT < 1.

The transport factor can be expressed in terms of the ratio of the small recombination
current Irec and the diffusion current InC ≈ InE :

αT = InC

InE
= InC

InC + Irec
= 1

1 + (Irec/InC )
≈ 1

1 + (Irec/InE )
(9.25)

The recombination current can be related to the number of excess electrons in the
base and the lifetime of these electrons. The number of excess electrons is AJ WB [n p(0)−
n p(WB)]/2 ≈ AJ WBn p(0)/2. The charge associated with these electrons—the stored
charge of minority carriers in the base—is QS = q AJ WBn p(0)/2. If the average lifetime
of each electron is τn , the average time that it takes to recombine the stored charge QS is
also τn . Under steady-state conditions, the charge QS remains constant over time because
all the recombined electrons and holes are supplied by adequate currents of electrons from
the emitter and holes from the base. This is the recombination current, Irec. Therefore,

Irec = QS

τn
= q AJ

WBn p(0)

2τn
(9.26)

The minority-carrier lifetime is related to the diffusion constant and the diffusion length
[Eq. (5.15)]:

τn = L2
B

DB
(9.27)

Using this relationship, Eq. (9.26) becomes

Irec = q AJ
WB DBn p(0)

2L2
B

(9.28)

The ratio Irec/InE can now be determined from Eqs. (9.28) and (9.16):

Irec

InE
= 1

2

(
WB

L B

)2

(9.29)
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Accordingly, Eq. (9.25) for the transport factor becomes

αT = 1

/[
1 + 1

2

(
WB

L B

)2
]

(9.30)

This equation shows that αT becomes very close to unity in BJTs with a thin base
(WB � L B ).

Common-Base and Common-Emitter Current Gains

Given that α = γEαT , Eqs. (9.23) and (9.30) for γE and αT can be used to relate the
common-base current gain directly to the relevant physical and technological parameters:

α ≈ 1

1 + DE

DB

NB WB

NE WE
+ 1

2

(
WB

L B

)2 (9.31)

Because the terms with NB/NE and (WB/L B)2 ratios in Eqs. (9.23) and (9.30) are small,
their product is even smaller and it is neglected in Eq. (9.31).

The common-base current gain is obtained from Eqs. (9.13) and (9.31) as

β = 1

DE

DB

NB WB

NE WE
+ 1

2

(
WB

L B

)2 (9.32)

EXAMPLE 9.2 Typical BJT Parameters

Typical technological parameters of a BJT are as follows: the emitter doping NE = 1020 cm−3,
the base doping NB = 2 × 1018 cm−3, the emitter width WE = 2 μm, and the base width
WB = 1 μm.

(a) Assuming τn = τp = 10 μs and estimating DE and DB from the mobility graphs
(Fig. 3.8), determine L E and L B and compare them to the emitter and base widths. Are
the conditions WB � L B and WE � L E satisfied?

(b) Determine the emitter efficiency and the transport factor.
(c) Determine the common-base and common-emitter current gains.
(d) Calculate the common-emitter gain by assuming (1) ideal emitter efficiency and (2) ideal

transport factor. Compare these values to the result from part (c) and comment on the
relative importance of the emitter efficiency and the transport factor values.
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SOLUTION

(a) The mobilities of holes in the emitter and electrons in the base, for the given doping
levels, are estimated from the graphs in Fig. 3.8 as follows: μE = 50 cm2/V · s and
μB = 250 cm2/V · s. With this, the diffusion constants are

DE = VtμE = 0.026 × 50 = 1.30 cm2/s

DB = VtμB = 0.026 × 250 = 6.50 cm2/s

The diffusion lengths are [Eq. (5.15)]

L E = √
DEτp =

√
1.30 × 10−4 × 10−5 = 36.1 μm

L B =
√

DBτn =
√

6.50 × 10−4 × 10−5 = 80.6 μm

Given that WE = 2 μm and WB = 1 μm, the conditions WB � L B and WE � L E are
satisfied.

(b) Labeling the ratios of physical and technological parameters in Eq. (9.23) by Rγ ,

Rγ = DE

DB

NB WB

NE WE
= 1.30

6.50

2 × 1018

1020

1

2
= 0.0020

the emitter efficiency is calculated as

γE = 1

1 + Rγ

= 1

1 + 0.0020
= 0.99800

Similarly, with the ratio

Rα = 1

2

(
WB

L B

)2

= 1

2

(
1

80.6

)2

= 7.70 × 10−5

the transport factor [Eq. (9.30)] is

αT = 1

1 + Rα

= 1

1 + 7.70 × 10−5
= 0.99992

(c) From Eq. (9.11)

α = αT γE = 0.99800 × 0.99992 = 0.99793

From Eq. (9.13),

β = α

(1 − α)
= 0.99793

1 − 0.99793
= 481
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(d) For ideal emitter efficiency (γE = 1), α = αT = 0.99992, so

β = α

(1 − α)
= 0.99992

1 − 0.99992
= 12500

For ideal transport factor, α = γE = 0.99800, so

β = α

(1 − α)
= 0.99800

1 − 0.99800
= 499

Comparing these values to β = 481 obtained in part (c), we see that the common-emitter
current gain is largely determined by the value of the emitter efficiency.

9.1.4 The Four Modes of Operation: BJT as a Switch
The voltage-controlled current source is only one possible mode of BJT operation. This is
the mode referred to as the normal active mode. Because each of the two P–N junctions
(E–B and C–B) can be either forward- or reverse-biased, there are four bias possibilities
for the BJT. This is illustrated in Fig 9.6.

Normal Active Mode

With a forward-biased E–B junction and a reverse-biased C–B junction, the BJT is set in
the normal active mode. The reverse-biased C–B junction acts as a current source, and the
forward-biased E–B junction supplies controlled current to the current source (the reverse-
biased C–B junction). Accordingly, the BJT acts as a controlled current source. This is
considered as the main mode of BJT operation and has been considered in detail in the
previous sections.
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Figure 9.6 Two possible bias states of the two
junctions lead to four possible modes of operations
of the BJT.
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Cutoff

If none of the two junctions is forward-biased, the BJT is in cutoff mode. All the terminal
currents are zero (neglecting the reverse leakage) and the output is an open circuit. The
BJT acts as a switch in off mode.

Taking the illustration in Fig. 9.6 literally, it may be concluded that the cutoff region
requires VBE < 0 and VBC < 0 (in the case of the considered NPN structure). There is no
doubt that a BJT would be in cutoff mode under these conditions. The question arises for
biasing that is below the turn-on voltage (VF ≈ 0.7 V in silicon) but not below zero.
Strictly speaking, reverse bias is for VBE < 0 and forward bias exists when VBE reaches
VF . The area between 0 and VF is a gray area that requires special attention when one is
determining the mode of a BJT operation. Nonetheless, it is clear that the E–B junction
does not emit electrons into the base if VBE < VF . With this conclusion, it is clear that the
BJT cannot be in the normal active mode. In addition, if VBC < VF , there is no emission of
electrons or holes by the C–B junction either. With no current flowing through the device
(neglecting reverse leakage), the BJT is classified as being in cutoff mode.

Saturation

If one junction is forward-biased and the other is not reverse-biased, the BJT is in
saturation mode.

The C–B junction is reverse-biased in the normal active mode, thus VCB > 0. The
boundary between the normal active and the saturation modes is defined by the condition
VCB = 0. For VCB > 0 (or, equivalently, VBC < 0) the C–B junction is reverse-biased and
for VCB < 0 it is not.

The output characteristics of a BJT with common emitter are presented as the collector
current versus the collector–emitter voltage. VCE can be related to VCB through the voltage
loop (Kirchhoff’s second law) applied to the BJT: VCE = VCB +VBE . The condition VCB =
0 is equivalent to the condition VCE = VBE . This is the straight line labeled by VCB = 0 on
the output characteristics shown in Fig. 9.7.

To explain the saturation mode, consider a transition from the normal active mode
into saturation. The VCE-independent collector current in the normal active mode is due
to the “electron-fall” effect. The reverse C–B bias (VCB > 0) can change the height of the
fall but it does not cause a significant change in the current. For VCB < 0 (the junction
is not reverse-biased), the “electron-fall” structure no longer exists. The collector is no
longer just collecting electrons diffusing from the base; rather, it starts emitting current in
the opposite direction. As a result, the total collector current drops below the level in the
normal active mode. This will happen when VCB changes from positive to negative even
if the input VBE voltage and the input IB current are kept constant. As a consequence, the
ratio of the output and the input currents is no longer equal to the common-emitter current
gain. Because of the reduction of IC , the saturation region is also defined by the following
condition:

IC < β IB (9.33)

A decrease in VCB beyond zero, which corresponds to a decrease of VCE = VCB +
VBE on the output characteristics, pushes the BJT deeper into saturation. The decrease in
VCB toward the turn-on voltage of the C–B junction increases the carrier emission by the
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Figure 9.8 (a) The circuit of a BJT inverter with resistive load. (b) Graphic analysis showing that the
BJT can be set in either cutoff, normal active, or saturation mode.

collector, which reduces the net current collected by the collector. In Fig. 9.7, this is seen as
the IC reduction toward zero with reduction of VCE from VBE (corresponding to VCB = 0)
to 0 (corresponding to VCB = −VBE). The “depth” of saturation can be characterized by
the ratio β IB/IC , which shows how much is IC reduced below the normal active level
of β IB .

The output characteristic in saturation is very close to the current–voltage character-
istic of a small resistor. This is the parasitic resistance of a switch in on mode. Combined
with the operation as a switch in off mode (the cutoff mode), the BJT can be used as a
digital device. A representative digital circuit is the inverter. Figure 9.8a shows the basic
circuit of the BJT inverter with resistive load. The loading circuit (RC and V+) is the same
as for the voltage-amplifier circuit shown in Fig. 9.3. The difference between digital and
analog operation can be explained by the graphical analysis provided in Fig. 9.8b.
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For a small input voltage VBE < VF , the BJT is in the cutoff mode [point (1) on the
output characteristics in Fig. 9.8b]. This is so because the E–B junction is not forward-
biased and the C–B junction is reverse-biased: VCB = VCE − VBE > 0. The collector
current is IC = 0 and the voltage across the resistor is RC IC = 0, which means that
V+ = VCE . The small input voltage is inverted into a large output voltage (V+ = VCE).

When VBE is increased, the BJT enters the normal active mode. These are points (2)
and (3) on the output characteristics shown in Fig. 9.8b. If the input voltage is oscillated in
the range that corresponds to the normal active mode, the circuit works as an amplifier—
just the same as the circuit and the analysis shown in Fig. 9.3.

If VBE is increased beyond a certain level—for example, to the level labeled as VB E4
in Fig. 9.8b—the BJT enters saturation mode. At this level the collector current is so high
that

VCE = V+ − IC RC (9.34)

is no longer larger than VBE . With VCE < VBE , VCB = VCE − VBE < 0, which is the
condition for saturation when the E–B junction is forward-biased. The small output voltage
VCE , corresponding to point (4), will not change its value even if the input voltage is further
increased to VB E5 and beyond. It is said that the output voltage and current are saturated,
hence the name saturation region.3 Point (4) shows that a large input voltage is inverted
into a small output voltage—the circuit works as an inverter.4

Inverse Active Mode

If the C–B junction is forward-biased and E–B junction is reverse-biased, the BJT operates
as a controlled current source but with swapped emitter and collector: the collector emits
the carriers that are collected by the emitter. This mode is called inverse active mode.

If the NPN structure was symmetrical, the inverse mode of operation would be as good
as the normal active mode. In real BJTs, the doping level of the collector is the lowest,
which means that its efficiency (γE ) is not good when used in the emitter role. Because of
this, α and β values in the inverse active mode are small, and no good gain can be achieved
in this mode of operation.

3The term “saturation” is not consistently used in the case of different types of transistors, namely
the BJT and FETs (including the MOSFET). To avoid possible confusion, this fact should be noted
and remembered. The MOSFET in saturation operates as a voltage-controlled current source (an
analog device), whereas the BJT in saturation operates as a switch in on mode (a digital device).
“Saturation” of the MOSFET output current means that it does not increase with the output (drain-
to-source) voltage. In the case of the BJT, “saturation” means that the output voltage and output
current do not change with the input (base-to-emitter) voltage.
4VBE voltage cannot be increased to the digital high level VH = V+. The proper input voltage that
changes from VL to VH = V+ is connected through the input resistor RB (Fig. 9.8a) to limit the
base current to the levels that will not damage the BJT.
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EXAMPLE 9.3 BJT Modes of Operation

Determine the mode of operation of an NPN BJT with β ≈ 450, if it is known that:

(a) VBE = 0.7 V, VCE = 5.2 V
(b) VBE = 0.7 V, VCE = 0.2 V
(c) VBE = 0.8 V, VBC = 0.3 V
(d) VBE = 0.8 V, VBC = −0.7 V
(e) VBE = −0.8 V, VBC = 0.7 V
(f) VBE = 0.1 V, VBC = −10 V

(g) IC = 455 mA, IB = 1 mA
(h) IC = 455 mA, IE = 502 mA

SOLUTION

(a) VBE = 0.7 V shows that the E–B junction is forward-biased. To conclude about the
biasing of the C–B junction, VCB voltage is needed. It is found as

VCB = VCE − VBE = 4.5 V

A positive collector-to-base voltage shows that this N–P junction is reverse-biased. With
this combination, the BJT is in normal active mode.

(b) In this case, VCB voltage is negative:

VCB = VCE − VBE = −0.5 V

which, in combination with the forward-biased E–B junction (VBE = 0.7 V), sets the
BJT in saturation.

(c) Again, a forward-biased E–B junction (VBE = 0.8 V) and a negative collector-to-base
voltage (VCB = −0.3 V) bias the BJT in saturation mode.

(d) This time, the C–B junction is reverse-biased, which sets the BJT in normal active mode.
(e) This is the reverse situation: the E–B junction reverse-biased (VBE = −0.8 V), while

the C–E junction is forward-biased (VCB = −0.7 V). The collector is emitting electrons,
while the emitter is collecting them. Therefore, the BJT is in inverse active mode.

(f) Given that VBE = 0.1 V is below the forward-bias level of the E–B junction and the
C–B junction is reverse-biased, this BJT is in cutoff mode.

(g) In the normal active mode, the collector and the base currents are related through the
gain factor β:

IC = β IB

This BJT satisfies this criterion.
(h) The base current in this case is

IB = IE − IC = 47 mA

and it is obvious that IC < β IB . This means the BJT is in saturation [refer to Eq. (9.33)].
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9.1.5 Complementary BJT
Figure 9.9 shows the alternative possibility of making a BJT: the emitter and the collector
are P-type, whereas the base is an N-type semiconductor. This type of transistor is called a
PNP BJT.

To set a PNP BJT in the normal active mode, negative VBE and positive VCB voltages
are needed, which is opposite to the case of an NPN BJT. The emitter region is at the
highest potential and the collector is at the lowest potential, which causes holes from the
emitter to be emitted and collected by the collector. With the holes making the transistor
current, as opposed to electrons in the case of an NPN BJT, the emitter and the collector
current directions are opposite to those in the NPN BJT. The same applies to the base
current. Appearing as a mirror image of the NPN, the PNP BJT complements the NPN in
some circuit applications.

9.1.6 BJT Versus MOSFET
Both the BJT and the earlier introduced MOSFET can perform equivalent principal
functions: (1) voltage-controlled current source and (2) voltage-controlled switch. Some
similarities exist even in the principle of operation. This is perhaps best illustrated by the
fact that the energy-band diagram along the channel of a MOSFET in saturation (Fig. 8.9)
is very similar to the energy-band diagram of a BJT (Fig. 9.2b). This certainly means that
any electrical function implemented in MOSFET technology can in principle be achieved
by BJTs, and vice versa. Extremely important differences exist, however, in the perfor-
mances and efficiencies achieved by the two possible technologies. At the surface, these
may seem like simple quantitative differences, but in practice they appear to be qualitative
differences. Although it is theoretically possible to build a complex microprocessor in
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Figure 9.9 (a) The cross section and (b) the symbol of a
PNP BJT.
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BJT technology, the dramatic developments in the information technology would not have
occurred with BJTs due to practical power-dissipation limits. This example illustrates the
importance of understanding the differences between the two devices.

The following descriptions of BJT and MOSFET advantages highlight the differences.

BJT Advantages

1. The energy-band similarity does not apply to the same areas in both devices. The
BJT energy-band diagram of Fig. 9.2b applies to any (x ,z) point, assuming the y-
axis in the direction of the electron flow (along the energy-band diagram). Because
the whole emitter cross-sectional area AJ is effective, a sizable device current can
be achieved. In the case of the MOSFET, the energy-band diagram that can be
altered by the controlling electrode appears only along the channel (Fig. 8.9). The
channel thickness (in x direction) is limited by the electric-field penetration into
the semiconductor to a couple of nanometers. Consequently, the channel cross-
sectional area xch W is severely restricted. The BJT structure is advantageous in
terms of achieving large device currents, which is important in power applications,
both linear and switching.

2. The diode (P–N junction) used as a controlling device in the BJT offers an
advantage over the capacitor (MOS structure) used in the MOSFET in terms
of the sensitivity of the output current to input voltage. This is the concept of
transconductance, mathematically expressed as gm = d Ioutput/dVinput . A small
change in the input VBE voltage—for example, from 0.5 V to 0.8 V—is sufficient
to drive the output current from practically zero to the maximum level. To achieve
this with a MOSFET, an input voltage change of several volts may be necessary.
Adding to these observations, the better current capabilities of the BJT, the picture
of a superior transconductance becomes clear. The higher transconductance of the
device relates not only to higher gains of amplifiers but also to shorter switching
times and superior noise characteristics of both linear and digital circuits.

MOSFET Advantages

1. Here is the other side of the coin: the capacitor (MOS structure) used as the
controlling device in MOSFETs, as opposed to the diode (P–N junction) used in
BJTs, results in unmatched advantages for the MOSFET:

• It enables a MOSFET operated as a switch to be maintained in on mode without
any power consumption: no input current is needed to support the channel
that creates the low-resistance path across the output. This adds to the fact
that the other digital state, the switch in off mode, does not require any power
consumption either. Using complementary MOSFETs, any logic function can
be implemented, and no power consumption would be required to maintain any
logic state. This was explained for the case of CMOS inverter in Section 8.1.2.
The BJT dissipates significant power when in saturation (switch in on mode),
because this state can be maintained only by significant input and output currents.
The problem with the power consumption is not only the heat removal (big
cooling elements, fans, etc. needed), but also an extremely low limit in the
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number of logic cells that can be supported by the current that can be supplied to
a geometrically small IC.

• With the capacitor at the input, MOSFETs do not require biasing resistors, which
are necessary to limit the current through the input diode of BJTs (an example
of an input-biasing resistor is RB in Fig. 9.8a). Both digital and analog functions
can be implemented by circuits consisting of complementary MOSFETs only;
no resistors and capacitors are needed. Since large-value resistors and capacitors
require enormous areas, compared to transistors, this makes the MOSFET
technology much more efficient in terms of area usage, again enabling much
more complex circuits to be integrated.

2. The MOSFET is a single-carrier transistor (also referred to as a unipolar tran-
sistor): only electrons matter in N-channel MOSFETs, and only holes matter in
P-channel MOSFETs. As opposed to this, the holes do matter in NPN BJTs, even
though the main transistor current is due to electron flow. The base current of an
NPN BJT, which is the input current of the common-emitter transistor, is due to
the holes. The fact that both types of carrier are active is reflected in the name
of the device: bipolar junction transistor. The disadvantage of having both types of
carrier in a single circuit (such as the base–emitter circuit) is that the recombination
process, which links the two currents, is relatively slow. This is illustrated in the
best way by the appearance of the stored charge (Section 6.4). Because the excess
charge stored during the on period has to be removed by the recombination process
before the diode (and therefore the BJT) turns off, the associated delay limits the
maximum switching frequency to relatively low values.

Although no general rule can be established, it can be said that BJTs are more suitable
for analog applications, especially when high output power is needed, whereas MOSFETs
are much more suitable for digital circuits, especially in terms of achieving ICs able to
perform extremely complex functions.

9.2 PRINCIPAL CURRENT–VOLTAGE CHARACTERISTICS:
EBERS–MOLL MODEL IN SPICE

The characteristic of a forward-biased P–N junction in a BJT can be modeled by the
Shockley equation for a forward-biased diode [Eq. (6.15)]. The characteristics of a reverse-
biased P–N junction in a BJT correspond to the characteristics of a controlled current
source. Consequently, combinations of diodes and controlled current sources can be used
to create equivalent circuits that account for all four possible modes of operation. The BJT
equations that are derived by the equivalent-circuit approach are known as the Ebers–Moll
model.

The physically based version of the Ebers–Moll model, referred to as the injection
version, is introduced first in this section. The equivalent circuit of this version uses two
diodes and two controlled current sources to model the two junctions. The equivalent
circuit of a BJT that is used in SPICE, as well as in circuit-design and analysis books,
uses one effective controlled-current source. To link the physical effects in a BJT to the
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practically used equivalent circuit and related SPICE parameters, the injection version is
transformed through what is called the transport version into the SPICE version.

9.2.1 Injection Version
In the normal active mode, the collector–base of the BJT plays the role of a current source
controlled by a voltage, or equivalently by the corresponding current. The controlling
emitter–base junction can be modeled by a diode. Therefore, the diode and the current
source of the upper branch of the circuit in Fig. 9.10b (VBE > 0 and VBC < 0) make a proper
equivalent circuit of the BJT in the normal active mode. The current of the controlling
junction (IF ) is directly related to the current injected into the current–source junction.
The current of the current source is labeled αF IF to express this fact, where αF < 1 due to
the carrier losses related to nonideal emitter efficiency and nonideal transport factor. The
current of the controlling junction IF , of course, depends on the voltage applied to the
base–emitter, VBE ,

IF = IE S
(
eVBE/Vt − 1

)
(9.35)

where IE S is the saturation current of the base–emitter junction.
The BJT model should include all the possible bias arrangements, not only the normal

active mode. In the inverse active mode, the roles of the P–N junctions are swapped, and
the BJT can be modeled by a circuit that is a mirror image of the circuit modeling the BJT
in the normal active mode. The current of the current source is analogously labeled αR IR ,
where the controlling current IR depends on the base–collector voltage,

IR = IC S
(
eVBC/Vt − 1

)
(9.36)

where IC S is the base–collector saturation current.
Adding the equivalent circuits for the inverse and normal active modes together,

as shown in Fig. 9.10b, does not introduce any adverse effects. If the BJT is in the
normal active mode, then we have VBC < 0 and the current IR ≈ −IC S � αF IF ≈

NPN�

IE

E

IC

C

IC

C

IB

B

IB

B

(a)

IE

E

(b)

aRIR

aFIF
IF

IR

VBE � 0

VBE 
 0

VBC 
 0

VBC � 0

Figure 9.10 (a) SPICE definition of BJT current directions. (b) Injection version of static BJT
equivalent circuit.
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IE SαF exp(VBE/Vt ). In fact, the corresponding equation for the collector terminal current,
IC ≈ IE SαF exp(VBE/Vt ) + IC S , properly includes the reverse-bias (leakage) current of
the base–collector junction.

Moreover, the circuit of Fig. 9.10b automatically includes the two remaining biasing
possibilities, the saturation and cutoff modes. In saturation, both VBE and VBC voltages are
positive, and both IF and IR currents are significant. In the typical case of VBC < VBE ,
the terminal collector current retains the direction as in the case of the normal active mode;
however, the current value is reduced because IC = α IF − IR . The voltage between the
collector and emitter is very small, VCE = −VBC + VBE . An increase in VBC causes
further reduction in VCE voltage and IC current, according to the IC –VCE characteristic in
saturation (Fig. 8.9).

In cutoff, both P–N junctions are reverse-biased (VBE and VBC negative), allowing
only the flow of the leakage currents IE S and IC S .

When the currents from the two branches of the equivalent circuit are added, the
terminal collector and emitter currents can be expressed as

IC = αF IE S
(
eVBE/Vt − 1

) − IC S
(
eVBC/Vt − 1

)
(9.37)

IE = −IE S
(
eVBE/Vt − 1

) + αR IC S
(
eVBC/Vt − 1

)
(9.38)

whereas the base terminal current is the balance between the emitter and the collector
current:

IB = −IC − IE (9.39)

This set of equations, which is the injection version of the Ebers–Moll model, relates all
three terminal currents to the two terminal voltages (VBE and VBC ) through the following
four parameters: αF , the common-base current gain of a BJT in the normal active mode;
αR , the common-base current gain of a BJT in the inverse active mode; IE S , the emitter–
base saturation current; and IC S , the collector–base saturation current.

9.2.2 Transport Version
The equivalent circuit of the transport version is the same as the injection version of the
Ebers–Moll model. The difference is in the way the internal currents are expressed: they are
now based on the actual current source currents, labeled IEC and ICC in Fig. 9.11, rather
than the currents injected by the P–N junctions as in Fig. 9.10b. Of course, the relationships
between the currents of the controlling P–N junctions and the actual currents of the current
sources have to be retained to correctly model the BJT. Consequently, the P–N junction
currents in Fig. 9.11 cannot be considered as independent but have to be related to IEC and
ICC through the corresponding common-base current gains αF and αR .

The transport version relates the IEC and ICC currents to the terminal voltages in the
following way:

ICC = IS
(
eVBE/Vt − 1

)
(9.40)

IEC = IS
(
eVBC/Vt − 1

)
(9.41)
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ICC�aF IEC�aR

IC

C

IB

B

IE

E

IEC ICC
Figure 9.11 The transport version of static BJT
equivalent circuit.

Therefore, the terminal currents are given as

IC = IS
(
eVBE/Vt − 1

) − IS

αR

(
eVBC/Vt − 1

)
(9.42)

IE = − IS

αF

(
eVBE/Vt − 1

) + IS
(
eVBC/Vt − 1

)
(9.43)

IB = −IC − IE (9.44)

Comparing the two models, it is obvious that the single saturation current IS used in
these equations is equivalent to neither the base–emitter saturation current IE S nor the
base–collector saturation current IC S . The collector current equations [Eqs. (9.42) and
(9.37)] become equivalent under the following conditions:

IS = αF IE S (9.45)

IS = αR IC S (9.46)

The same conditions also lead to the equivalence of the emitter current Eqs. (9.43) and
(9.38). The base–emitter and base–collector saturation currents in real BJTs are different,
due to different areas and different doping levels. Obviously, the single IS current cannot
realistically represent both saturation currents at the same time. For realistic simulations,
the parameter IS should be related to the base–emitter junction (IS = αF IE S ) in the case of
normal active mode and to the base–collector junction (IS = αR IC S) in the case of inverse
active mode.

It appears that the choice of a single IS parameter, instead of two parameters
representing the two P–N junctions, complicates parameter measurement and reduces
the generality of the model. However, it enables the more general and physically based
equivalent circuit of Fig. 9.10b to be related to the equivalent circuit most frequently used
in circuit-design and analysis books. This circuit is discussed in the following text.

9.2.3 SPICE Version
A single current source is used to model the BJT in the circuit-design and analysis books.
The two current sources of Fig. 9.11 can be reduced to one while maintaining the same
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ICT � ICC � IEC

I?2

I?1

C

IE

IC

E

IB
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Figure 9.12 The SPICE version of static BJT
equivalent circuit.

relationships between the terminal currents (IC , IE , and IB ) and the terminal voltages
(VBE and VBC).

The circuit with a single current source is shown in Fig. 9.12. The currents I?1 and
I?2 can be determined so that the terminal IC and IE currents are equivalent to the ones in
Fig. 9.11:

IC = ICC − IEC

αR︸ ︷︷ ︸
Fig. 9.11

= ICC − IEC − I?1︸ ︷︷ ︸
Fig. 9.12

⇒

I?1 = IEC

(
1

αR
− 1

)
= IEC

1 − αR

αR
, I?1 = IEC

βR

(9.47)

IE = − ICC

αF
+ IEC︸ ︷︷ ︸

Fig. 9.11

= −ICC + IEC − I?2︸ ︷︷ ︸
Fig. 9.12

⇒

I?2 = ICC

(
1

αF
− 1

)
= ICC

1 − αF

αF
, I?2 = IEC

βF

(9.48)

According to Eq. (9.13), βF and βR are common-emitter current gains of the BJT in normal
active and reverse active modes. With these values of I?1 and I?2, the terminal currents can
be expressed as

IC = ICC − IEC − IEC

βR

IE = −ICC + IEC − ICC

βF
(9.49)

IB = −IC − IE
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When we replace ICC and IEC from Eqs. (9.40) and (9.41), the terminal currents are
related to the terminal voltages:

IC = IS
(
eVBE/Vt − 1

) −
(

1 + 1

βR

)
IS
(
eVBC/Vt − 1

)
IE = −

(
1 + 1

βF

)
IS
(
eVBE/Vt − 1

) + IS
(
eVBC/Vt − 1

)
IB = 1

βF
IS
(
eVBE/Vt − 1

) + 1

βR
IS
(
eVBC/Vt − 1

) (9.50)

These are the final and general equations of the principal Ebers–Moll model. The three
parameters, IS , βF , and βR , are all SPICE parameters.

In the case of normal active mode, VBE/Vt  1 and VBC/Vt � −1, which means
exp(VBE/Vt )  1 and exp(VBC/Vt ) − 1 ≈ −1. This simplifies the general equations to
the following form:

IC = ISeVBE/Vt

IE = −
(

1 + 1

βF

)
ISeVBE/Vt = − IC

αF

IB = 1

βF
ISeVBE/Vt = IC

βF

(9.51)

In the normal active mode, the output collector current IC depends exponentially on the
input voltage VBE through the IS parameter and the thermal voltage Vt . The emitter and
the base currents, IE and IB , are related to the collector current through the current gains
αF and βF , originally defined by Eq. (9.9). The minus sign in the IE equation appears
due to the fact that the IE current direction in the SPICE models is defined into the BJT
(Fig. 9.12), which is opposite to the actual direction of the conventional IE current used in
Section 9.1 (Fig. 9.4).

EXAMPLE 9.4 Ebers–Moll Model for a PNP BJT

In analogy with the Ebers–Moll model of an NPN BJT, draw the equivalent circuit and write
down the general equations of the Ebers–Moll model for the case of a PNP BJT. Simplify these
equations for the case of a PNP BJT in the normal active mode. In SPICE, the directions of the
terminal currents of a PNP BJT are defined to be opposite to their NPN counterparts.
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ICT � ICC � IEC

ICC�bF

IEC�bR
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IE

IC
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IB
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Figure 9.13 SPICE equivalent circuit of a
PNP BJT.

SOLUTION

A PNP BJT is a mirror image of an NPN BJT in the sense that the diode (P–N junction) terminals
are swapped, all the currents are in the opposite directions, and all the voltages are with the
opposite polarities. When we swap the diode terminals and reverse the current directions in the
circuit of Fig. 9.12, the SPICE equivalent circuit of a PNP BJT is obtained as in Fig. 9.13.

To avoid using negative voltages, the terminal voltages can be expressed as VE B and VCB,
rather than −VBE and −VBC . With these changes in Eq. (9.50), the Ebers–Moll model of a PNP
BJT is obtained as

IC = IS
(
eVE B/Vt − 1

) −
(

1 + 1

βR

)
IS
(
eVCB/Vt − 1

)
IE = −

(
1 + 1

βF

)
IS
(
eVE B/Vt − 1

) + IS
(
eVCB/Vt − 1

)
IB = 1

βF
IS
(
eVE B/Vt − 1

) + 1

βR
IS
(
eVCB/Vt − 1

)
The simplified equations for the case of normal active mode can be deduced in a similar way:

IC = ISeVE B/Vt

IE = −
(

1 + 1

βF

)
ISeVE B/Vt = − IC

αF

IB = 1

βF
ISeVE B/Vt = IC

βF
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EXAMPLE 9.5 Ebers–Moll Model for Inverse Active Mode

Simplify Eq. (9.50) for the case of the inverse active mode.

SOLUTION

In this case, exp(VBC/Vt )  1 and exp(VBE/Vt ) − 1 ≈ −1, which leads to

IC = −
(

1 + 1

βR

)
ISeVBC/Vt = − IE

αR

IE = ISeVBC/Vt

IB = 1

βR
ISeVBC/Vt = IE

βR

EXAMPLE 9.6 Fundamental BJT Parameters

The results of measurements performed on an NPN BJT are given in Table 9.1. Calculate the
following SPICE parameters: IS , βF , and βR .

TABLE 9.1 Measurement Data

VBE VBC IB IC
(V) (V) (μA) (mA)

0.80 −5.0 2.6 0.49
−5.0 0.72 353.3 0.90

SOLUTION

Voltages VBE and VBC indicate that the first raw of data is for the BJT in the normal active mode,
whereas the second raw is related to the inverse active mode. According to Eqs. (9.51),

βF = IC/IB = 490

2.6
= 188.5

and

ln IS = ln IC − VBE/Vt = ln 4.9 × 10−5 − 0.80

0.02585
= −40.87 ⇒ IS = 1.78 × 10−17 A

In the case of the inverse active mode, the results of Example 9.5 can be used to find βR :

βR = IE

IB
= IC − IB

IB
= 900.0 − 353.3

353.3
= 1.55

Another value for the saturation current can be obtained for the case of the inverse active mode;
however, this value is less relevant as the BJT normally operates in the normal active mode.
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9.3 SECOND-ORDER EFFECTS

This section describes the most important second-order effects (again a distinction should
be made between a second-order effect and a negligible effect). Different mathematical
equations have been developed as models for the second-order effects. SPICE-based
equations are selected for presentation in this section. Although lengthy arguments can
be made about the advantages and disadvantages of particular models, there is no doubt
that the SPICE-based equations are of unchallenged practical importance.

9.3.1 Early Effect: Finite Dynamic Output Resistance
The output collector current IC in the normal active mode, as predicted by the principal
Ebers–Moll model [Eq. (9.51)], does not depend on the output voltage. This is the
case of ideal current source, illustrated by the dotted horizontal lines on the IC –VCE

plot of Fig. 9.14a. The real BJTs, however, do not have perfectly horizontal IC –VCE

characteristics: IC always increases to some extent with an increase in VCE . The reciprocal
value of the slope of the output IC –VCE characteristic is defined as dynamic output
resistance:

ro = 1

/(
d IC

dVCE

)
(9.52)

The ideal current source has infinitely large ro.
In the case of a BJT acting as a controlled current source, ro is not the same for

every input voltage/current. As the input voltage/current is increased, ro is reduced, which
is observed as a more pronounced slope on the corresponding IC –VCE line. This effect,
known as the Early effect, is illustrated in Fig. 9.14a by the solid lines.

�VA� VCE � VCB

VCE � VCB

VBE � 0.7 V VCB �� VBE

IC

(a) (b)

C

B

E

��

�

N� P N

WB

Figure 9.14 Illustration of Early effect. (a) Ideal output characteristics (dashed lines) and output characteristics with
pronounced Early effect (solid lines). (b) BJT cross section illustrating base narrowing due to increased base–collector
depletion-layer width by increased VCB voltage.
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Proper inclusion of the real dynamic output resistance is very important in the simu-
lation and design of analog circuits. Consequently, the Early effect appears as the most
important second-order effect.

Figure 9.14b illustrates that it is in fact the reverse voltage of the base–collector
junction VBC = −VCB that is directly related to the IC current increase. Practically,
however, the difference between VCE and VCB, which is VBE ≈ 0.7 V, is insignificant
at the relatively large VCE and VCB voltages needed to observe the Early effect. The IC

current increase with an increase in VCE , and therefore VCB voltage, is due to effective
shortening of the base width WB , caused by the associated depletion-layer expansion. This
is reflected in the alternative name for the Early effect, which is the base modulation effect.
The narrower base leads to increased saturation current IS , which causes the IC increase
[Eq. (9.50)].

A physical insight into this effect can be provided by referring to Fig. 9.5 and
Eq. (9.19), which can be rewritten as

IC ≈ InE = ISeVBE/Vt (9.53)

where

IS = q AJ n2
i

DB

NB WB
(9.54)

Therefore, the Early effect can be explained by the following sequence of effects, initiated
by a VBC (or VCE) increase: (1) The depletion-layer width at the base–collector junction is
increased, (2) WB is reduced, and (3) the concentration gradient of minority carriers in the
base is increased, which increases the diffusion current as shown by Eqs. (9.54) and (9.53)
for IS and IC , respectively.

Early suggested a way of modeling the output resistance itself, and its variation with
the level of output current, by a single parameter. Figure 9.14a shows that this is possible
if it is assumed that the extrapolated IC –VCE characteristics (the dashed lines) intersect in
a single point on the VCE ≈ VCB axis, which is known as Early voltage VA. Obviously, a
larger absolute value of the Early voltage means that the output resistance is higher (ICE–
VCE lines are closer to the horizontal level), and vice versa. In the ideal case of ro → ∞,
we have the following Early voltage: VA → ∞.

Using the rule of similar triangles, the following relationship can be written with the
definition of |VA| as in Fig. 9.14a:

IC (|VBC | = 0)

|VA| = IC (|VBC |)
|VA| + |VBC | (9.55)

which, with regard to the related comments and Eq. (9.51), leads to the following equation
for the saturation current:

IS = IS0
|VA| + |VBC |

|VA| = IS0

(
1 + |VBC |

|VA|
)

(9.56)
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IS becomes the VBC-dependent saturation current, used in Eq. (9.50), the Ebers–Moll
equation, and the zero-voltage saturation current IS0 becomes the SPICE parameter.

Analogous theory applies to the case of inverse active mode, when the base–emitter
junction is reverse-biased, with the base–collector junction being forward-biased. The
Early voltage in this case is denoted by VB .

EXAMPLE 9.7 Early Effect

It has been found that the collector current of an NPN BJT increases from 1 mA to 1.1 mA if the
collector-to-emitter voltage is increased from 5 V to 10 V. Calculate the Early voltage and the
dynamic output resistance of this BJT.

SOLUTION

With the availability of two measurement points, the following set of two equations can be solved:

IC1 = IC(0)

(
1 + |VC B1|

|VA|
)

IC2 = IC(0)

(
1 + |VC B2|

|VA|
)

The solution can be expressed as

VA =
(

VC B2 − VC B1
IC2

IC1

)/(
IC2

IC1
− 1

)

where VCB1 = VCE1 − VBE and VCE2 = VCE2 − VBE . Therefore,

VA = (10 − 0.7) − (5 − 0.7) × 1.1

0.1
= 45.7 V

The reciprocal value of the dynamic output resistance is

1

ro
= d IC

dVCE
≈ d IC

dVCB

The first derivative of the IC –VCB dependence leads to

1

ro
= d

dVCB

⎡
⎢⎣IS0eVBE/Vt︸ ︷︷ ︸

IC (0)

(
1 + |VCB|

|VA|
)⎤⎥⎦ = IC (0)

|VA|

which means that the output resistance is

ro = |VA|
IC (0)
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Find IC (0) from the first measurement point:

IC (0) = IC1

/(
1 + |VC B1|

|VA|
)

= 1

/(
1 + 4.3

45.7

)
= 0.914 mA

The output resistance is now obtained as

ro = 45.7

0.914
= 50 k�

9.3.2 Parasitic Resistances
Another second-order effect included in SPICE is due to the parasitic resistances. Very
similarly to the case of the diode, series resistors rE , rB , and rC are added to the emitter,
base, and collector, respectively, to account for the contact resistances and the resistances
of the respective regions in the silicon (Fig. 9.15). The resistances rE , rB , and rC are direct
SPICE parameters.

IE IC

rE rC

rB

E

B

C

IB

Basic Model

Figure 9.15 The equivalent circuit of the
Ebers–Moll model is extended to include the
parasitic resistances.

9.3.3 Dependence of Common-Emitter Current Gain
on Transistor Current: Low-Current Effects

The common-emitter current gains βF and βR , which are SPICE parameters themselves,
are constants in the Ebers–Moll model. However, Fig. 9.16 shows that the measured
common-emitter current gain βF of a BJT is different at different current levels. The
common-emitter current gain increases with the collector current, slowly reaching the
maximum value at medium currents and then rather rapidly decreasing at high currents.
Noting that βF is plotted versus the logarithm of IC in Fig. 9.16, we can see that the Ebers–
Moll assumption of constant βF can satisfactorily be used in a range of IC current about
2 orders of magnitude wide. However, if the BJT is operated in extreme conditions, very
high or very low current levels, the changes of the common-emitter current gain cannot be
neglected. There are equations in SPICE, based on what is known as the Gummel–Poon
model, which account for this type of second-order effects.



9.3 Second-Order Effects 383

60

80

100

120

140

160

b
F

�4

Ebers–Moll model

Experimental data

�6�8�10

10�210�310�410�5

�12
ln[IC (A)]

IC (A)

Figure 9.16 The common-emitter current
gain at different levels of the collector
current. The experimental data are mea-
sured on an NPN BJT from a 3086 IC.

According to the Ebers–Moll model, both IC and IB are proportional to exp(VBE/Vt),
which results in the expected constant βF = IC/IB . The diffusion component of the
base current does follow the exp(VBE/Vt ) dependence. However, at low biasing levels,
the recombination of the carriers in the bulk and surface depletion layer, as well as other
surface leakage mechanisms, lead to an increase of the base current. The increased base
current is observed as the βF reduction at low bias levels. To model this effect, Eq. (9.50)
for the base current is modified in the following way:

IB = IS0

βF M

(
eVBE/Vt − 1

) + C2 IS0
(
eVBE/(nE L Vt ) − 1

)

+ IS0

βRM

(
eVBC/Vt − 1

) + C4 IS0
(
eVBC/(nCL Vt ) − 1

)
(9.57)

Obviously, C2 IS
[
exp(VBE/(nE L/Vt ) − 1)

]
and C4 IS

[
exp(VBC/(nC L/Vt ) − 1)

]
terms

are added to include the base-current increase for the cases of forward-biased base–emitter
and forward-biased base–collector junctions, respectively. This introduces four SPICE
parameters: C2, the base–emitter leakage saturation current coefficient; nE L , the base–
emitter leakage emission coefficient; C4, the base–collector leakage saturation current
coefficient; and nC L , the base–collector leakage emission coefficient. The current gains
βFM and βRM are not additional SPICE parameters, they have the same values as βF

and βR in the Ebers–Moll model. The subscript M is added to indicate that these are the
constant mid-current values of the current gains and not the variable current gains.

For a BJT in the normal active mode and when the leakage current dominates,
Eq. (9.57) is simplified to

IB ≈ C2 IS0eVBE/nE L Vt (9.58)

If plotted as ln IB–VBE, straight line with the slope equal to 1/nE L Vt is obtained. If
the recombination current dominates, then nE L ≈ 2 (this is explained in Section 6.2.2).
This slope is smaller than the slope for the pure diffusion current, which is 1/Vt
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Figure 9.17 Semilogarithmic plots
of the base and collector currents
versus VBE for an NPN BJT in the
normal active mode.

[Eq. (9.51)]. Figure 9.17 shows that the leakage current dominates when the diffusion
current, characterized by the section with the slope 1/Vt , is very small.

9.3.4 Dependence of Common-Emitter Current Gain on Transistor
Current: Gummel–Poon Model for High-Current Effects

To include the effects of high VCE bias (the Early effect), the saturation current IS was
modified. Analogously, IS can be modified to include the effects of high VBE bias, which
causes the collector current to fall below the exp(VBE/Vt ) level, and therefore causes the
common-emitter current gain reduction at high-bias levels. Equation (9.54) shows that the
saturation current IS is inversely proportional to the two relevant technological parameters:
the doping level in the base NB and the base width WB . The physical meaning of the
NB WB is the number of doping atoms in the base per unit of junction area; consequently,
QB0 = q NB WB is the charge density due to the majority carriers (expressed in C/m2).
QB0 is known as the base Gummel number.

Gummel and Poon suggested that the effects of both VBE and VBC bias can be included
through a modification of the base Gummel number:

QBT = QB0︸︷︷︸
q NB WB

+ Cd E VBE + CdC VBC
AE

AC︸ ︷︷ ︸
depletion-layer charge

+ QB0

QBT
τF IS

(
eVBE/Vt − 1

) + QB0

QBT
τR IS

(
eVBC/Vt − 1

)
︸ ︷︷ ︸

stored charge

(9.59)

where AE and AC are the areas of the base–emitter and the base–collector junctions,
respectively, and τF and τR are the normal mode and inverse mode transit times [refer
to Eq. (6.58)]. The modification by the depletion-layer charge is related to the Early effect,
and the modification by the stored charge is related to the drop in the current gain at high-
injection levels.
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Dividing IS by QBT /QB0 effectively replaces NB WB by the modified Gummel
number to include the contribution of the depletion-layer charge and the stored charge.
Accordingly, the collector current IC in the normal active mode is expressed as

IC ≈ IS0

qb
eVBE/Vt (9.60)

where

qb = QBT

QB0
(9.61)

When we define the parameters

IK F = QB0

τF
, IK R = QB0

τR
(9.62)

|VA| = QB0

CdC

AC

AE
, |VB | = QB0

Cd E
(9.63)

the factor qb can be expressed as

qb = q1

2
+

√
q2

1 + 4q2

2
≈ q1

2

(
1 +

√
1 + 4q2

)
(9.64)

where

q1 = 1 + VBE

|VB | + VBC

|VA| ≈ 1

1 − VBE

|VB | − VBC

|VA|
(9.65)

and

q2 = IS0

IK F

(
eVBE/Vt − 1

) + IS0

IK R

(
eVBC/Vt − 1

)
(9.66)

The first equations of qb and q1 correspond directly to the original Gummel–Poon model,
while the approximate equations correspond to those used in SPICE. Derivation of qb is
given in the following books: (1) R. S. Muller and T. I. Kamins, Device Electronics for
Integrated Circuits, 2nd ed., Wiley, New York, 1986, pp. 359–362, and (2) G. Massobrio
and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd ed., McGraw-Hill,
New York, 1993, Chapter 2. Both books provide more detailed description of the Gummel–
Poon model, while the second book also lists the equations used in SPICE. IKF and
IKR are additional SPICE parameters, which are used to fit the high-level IC current
to the experimental data. The measurement of these parameters is described in Sec-
tion 11.3.2. |VA| and |VB | are equivalent to the earlier described normal and reverse Early
voltages.
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Equations (9.61)–(9.66) are general: they cover all the possible BJT modes of
operation. To generalize the collector current given by Eq. (9.60), the effects of VBC

voltage should be added in a way analogous to the case of Ebers–Moll model. The general
IC equation is given here along with IB [Eq. (9.57)] and the corresponding IE equations,
to show the complete set of BJT equations at the Gummel–Poon level in SPICE:

IB = IS0

βFM

(
eVBE/Vt − 1

) + C2 IS0
(
eVBE/(nE L Vt ) − 1

)
+ IS0

βR

(
eVBC/Vt − 1

) + C4 IS0
(
eVBC/(nCL Vt ) − 1

)
IC = IS0

qb

(
eVBE/Vt − eVBC/Vt

)
− IS0

βRM

(
eVBC/Vt − 1

) − C4 IS0
(
eVBC/(nCL Vt ) − 1

)
IE = − IS0

qb

(
eVBE/Vt − eVBC/Vt

)
− IS0

βFM

(
eVBE/Vt − 1

) − C2 IS0
(
eVBE/(nE L Vt ) − 1

)

(9.67)

The Ebers–Moll equations are included in Eqs. (9.67) of the Gummel–Poon level
in SPICE. Default values of the second-order effect parameters reduce Eqs. (9.67) to
Eqs. (9.50). IKF = IKR → ∞ turns q2 into zero and |VA| = |VB | → ∞ turns q1 into
unity, which means qb = 1. The default value of C2 and C4 is zero, which, along with
qb = 1, clearly eliminates all the additions in Eqs. (9.67) compared to Eqs. (9.50).

It is useful to analyze the Gummel–Poon equation for the collector current in the
normal active mode and without the Early effect [Eq. (9.60)]. At low and medium current
levels, IS0 exp(VBE/Vt ) � IKF , which means that Eq. (9.64) reduces to qb ≈ 1 because
4q2 � 1. With qb ≈ 1, Eq. (9.60) becomes equivalent to the corresponding Ebers–Moll
equation, which predicts the 1/Vt slope of the ln IC –VBE line. However, at high current
levels, 4q2  1 and 2

√
q2  1. This means that Eqs. (9.64) and (9.60) can be simplified as

qb ≈ √
q2 =

√
IS0

IK F
eVBE/2Vt (9.68)

and

IC ≈
√

IS0 IKFeVBE/2Vt ⇒ ln IC ≈ ln
√

IS0 IKF + 1

2Vt︸︷︷︸
slope

VBE (9.69)

The semilogarithmic plot of the collector current in Fig. 9.17 shows the two regions
characterized by the two slopes: 1/Vt where βF ≈ βFM, and 1/2Vt , where βF < βFM.
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9.4 HETEROJUNCTION BIPOLAR TRANSISTOR

In homojunctions, which are P–N junctions created in the same type of semiconductor,
the bottom of the conduction band (EC ) and the top of the valence band (EV ) are parallel
throughout the whole structure because they are always separated by the constant energy
gap. As a result, the energy barrier at the P–N junction has the same value for both the
electrons on the N type and the holes on the P-type side. For the case of zero bias (thermal
equilibrium), this is illustrated in Fig. 6.3a where the barrier is labeled by qVbi . With
forward-bias VD, the barrier height is reduced to q(Vbi − VD) for both the electrons and
the holes, as shown in Fig. 6.6a. This means that the same fractions of both the electrons in
the N-type and the holes in the P-type region possess sufficient energy to pass through the
barrier. To focus on the effect of the barrier height, assume equal concentrations of majority
electrons and holes (equal N-type and P-type doping levels) and neglect any differences
in the physical parameters (such as the diffusion constants, the diffusion lengths, or the
lengths of the neutral regions when shorter than the diffusion lengths) as second-order
effects. With these assumptions, the currents of the electrons and the holes through the
junction are equal. If this P–N junction was the base–emitter junction of a BJT, the emitter
efficiency would be γE = 0.5, as can be seen from Eqs. (9.19), (9.20), and (9.22). To
achieve emitter efficiency that is close to 1, BJTs with homojunctions are made with much
lower doping in the base (NB � NE ). Although this approach works, it has important
limitations for some applications. An important limitation is due to the relatively high
resistance of the low-doped base, which causes relatively large RC time constants and
limits the high-frequency operation of the device.

The energy barriers for electrons and holes at a heterojunction are in general different,
because of the existence of different band offsets. This enables us to create a heterojunction
bipolar transistor that has both heavily doped base and excellent emitter efficiency.

A specific and frequently used heterojunction is the junction between N-type AlGaAs
and P-type GaAs. Figure 9.18a shows the energy-band diagram of this junction under
the flat-band condition. The figure shows that forward-bias voltage VF B would have to
be applied to split the Fermi levels by qVF B that is necessary to create the flat-band
condition. The energy-band diagram under the flat-band condition is drawn because it
clearly illustrates the band offsets between the wider gap of AlGaAs and the narrower
gap of GaAs. The energy-band diagram shown in Fig. 9.18a is in principle the same
as the energy-band diagram at the interface between the wider energy gap of SiO2 and
the narrower energy gap of Si, shown previously in Fig. 7.4b. In practice, the flat-band
condition cannot be reached at the N–P heterojunction because damagingly high forward
current would be forced through the junction.

The energy gaps of AlGaAs and GaAs are 1.85 eV and 1.42 eV, respectively. These
are material constants that cannot be changed by doping or biasing. The positions of the
energy bands of AlGaAs and GaAs with respect to the vacuum level, and with respect
to one another, are also material constants. The positions of the energy bands of these
two materials are such that there are a conduction-band offset of �EC = 0.28 eV and a
valence-band offset of �EV = 0.14 eV. Neither doping nor applied bias can change these
band offsets.
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Figure 9.18 Energy-band diagrams of
the AlGaAs–GaAs heterojunction. (a) The
diagram under the flat-band condition,
illustrating the band offsets �EC and
�EV as material constants. (b) An incom-
plete diagram at thermal equilibrium,
illustrating the process of diagram con-
struction. (c) The complete diagram at
thermal equilibrium, illustrating different
barrier heights for the electrons in the
N-type AlGaAs and the holes in the
P-type GaAs.

The following steps can be used to construct the energy-band diagram of a hetero-
junction:

1. The constant Fermi-level (EF ) line, corresponding to the case of thermal equilib-
rium, is drawn first. Just as in the case of a homojunction, the energy bands of
the two neutral regions are drawn away from the junction. In this case, the energy
bands of N-type AlGaAs are drawn with the appropriate energy gap (Eg−AlGa As )
and are placed so that EC is quite close to EF to express the N-type doping. The
energy bands of GaAs are drawn with the energy gap of EGa As and are placed so
that EV is close to EF to express the P-type doping.
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2. The energy-band discontinuities, �EC and �EV , are indicated at the junction
(Fig. 9.18b). The exact energy positions of �EC and �EV depend on the doping
levels in AlGaAs and GaAs, which leads to different degrees of field penetration
and band bending. In this specific case, �EV and �EC are shifted slightly above
EV and EC of AlGaAs to indicate the much smaller band bending in the heavier
doped AlGaAs. The energy position of �EC with respect to �EV , however,
corresponds to Eg−AlGa As and Eg−Ga As and is the same as in Fig. 9.18a.

3. To complete the diagram, the EC levels from each material are connected to the
�EC ends and the EV levels are connected to the �EV ends by curved lines that
indicate the built-in electric field in the depletion layer at the junction.

Figure 9.18c shows that the energy barrier for the electrons in the N-type AlGaAs is
qVF B −�EC , whereas the energy barrier for the holes in the P-type GaAs is qVF B +�EV .
With forward-bias VD , both these barriers will be reduced by qVD because EF of the
neutral AlGaAs region is moved up by qVD, with respect to EF in the neutral region
of GaAs. Importantly, the difference between the energy barriers for holes and electrons
remains the same: �EC + �EV . If this AlGaAs–GaAs heterojunction is the emitter–
base junction of a BJT, the injection of electrons into the base (InE current) is much
higher than the injection of holes into the emitter (IpE current). To focus on this effect,
we can again assume equal emitter and base doping and neglect any differences in
the physical parameters as second order effects. With these assumptions, InE /IpE =
exp [(�EC + �EV )/kT ]. Even relatively small �EC and �EV offsets can lead to a very
large InE/IpE ratio and, according to Eq. (9.22), to emitter efficiency that is close to 1.

Given that there is no need to reduce the doping level of the base to achieve good
emitter efficiency, it is possible to significantly reduce the resistance of the base in
heterojunction bipolar transistors. This adds to a number of other favorable parameters
of GaAs structures, such as higher electron mobility and reduced parasitic capacitances.
As a result, heterojunction bipolar transistors are frequently used for high-frequency
(microwave) and high-power applications.

SUMMARY

1. A BJT in the normal active mode acts as a voltage-controlled current source. In
the case of an NPN BJT, the forward-biased E–B junction emits electrons into the
base, which diffuse through the very narrow base region to be collected by the
electric field of the reverse-biased C–B junction. Even the smallest positive collector
voltage collects the electrons efficiently enough so that IC does not increase with
VCB ≈ VCE (a constant-current source). However, IC strongly depends on the bias of
the controlling E–B junction. A good analogy is a waterfall current, which does not
depend on the height of the fall but on the amount of the incoming water.

2. In addition to the emitter electron current InE , there is also IpE , the current due to the
holes emitted from the base back into the emitter, which reduces the emitter efficiency:
γE = InE /(InE + IpE ). Some of the electrons are recombined in the base, leading
to a nonideal base transport factor: αT = InC/InE . The reverse-bias current of the
C–B junction, IC B0, can usually be neglected, so that emitter-to-collector and base-to-
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collector current gains can be related to γE and αT as follows:

α = IC

IE
= αT γE , β = α

1 − α

3. To maximize emitter efficiency, the emitter of a good BJT will be much more heavily
doped than the base:

γE = 1

/(
1 + DE

DB

NB WB

NE WE

)

and to maximize the transport factor, it will have a very narrow base:

αT = 1

/[
1 + 1

2

(
WB

L B

)2
]

4. When the collector and the emitter are swapped (inverse active mode), α and β are
significantly smaller. If none of the junctions is forward-biased, no significant current
flows through the BJT (cutoff mode). When one junction is forward-biased but the
other is not reverse-biased, the BJT is in saturation mode. With a forward-biased E–B
junction, the saturation mode in an NPN BJT is for VCB < 0—the negatively biased
collector does not collect the emitted electrons but rather begins to emit electrons on
its own, reducing the IC current. The cutoff and saturation modes enable a BJT to be
used as a voltage-controlled switch in digital and power-switching circuits.

5. There is a complementary PNP BJT. It is a mirror image of the NPN: opposite doping
types, opposite voltage polarities, and opposite current directions.

6. There are strong similarities between the energy-band diagrams and therefore between
operation principles of BJTs and MOSFETs. However, there are also very important
differences. The concentration of carriers in the MOSFET channel is controlled by an
electric field (no input current is needed and no input power is wasted); a significant
input current, and consequently input power, is needed to keep a BJT in the saturation
mode (switch in on mode). On the other hand, a very shallow field penetration through
the channel charge severely limits the cross-sectional area of the MOSFET channel;
in the case of BJTs, the input control is over the entire P–N junction area—hence,
superior current capability.

7. The general version (accounting for all the modes of operation) of the principal Ebers–
Moll model for an NPN BJT is

IC = IS
(
eVBE/Vt − 1

) −
(

1 + 1

βR

)
IS
(
eVBC/Vt − 1

)
IE = −

(
1 + 1

βF

)
IS
(
eVBE/Vt − 1

) + IS
(
eVBC/Vt − 1

)
IB = 1

βF
IS
(
eVBE/Vt − 1

) + 1

βR
IS
(
eVBC/Vt − 1

)
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The assumed current directions are into the transistor—hence the reverse signs of
the emitter current. The only difference in the PNP model is that the polarities of
the voltages are opposite (VBE → VE B , VBC → VCB), and the current directions
are assumed out of the transistor. In the normal active mode, exp(VBE/Vt)  1 and
exp(VBC/Vt ) − 1 ≈ 1, which simplifies the principal Ebers–Moll equations to

IC = ISeVBE/Vt

IE = −
(

1 + 1

βF

)
ISeVBE/Vt = − IC

αF

IB = 1

βF
ISeVBE/Vt = IC

βF

8. The principal model assumes a perfect current source (the collector current fully
independent of the collector voltage). In reality, the expansion of the C–B depletion
layer due to an increased reverse bias leads to narrowing of the effective base width
(base width modulation), resulting in an increase of the collector current (a finite out-
put dynamic resistance). This is known as the Early effect and is modeled through IS ,

IS = IS0

(
1 + |VBC |

|VA| + |VBE |
|VB |

)

where IS0 is the SPICE parameter, and not IS itself. The forward and reverse Early
voltages |VA| and |VB | are also parameters.

9. Additional second-order effects relate to β dependence on the collector current: it has
a maximum at medium currents, being smaller at small collector currents, but with a
lot more dramatic reduction at high-level injection. The reduction at small currents is
modeled by adding “leakage” components to the base-current equation:

IB = IS0

βF M

(
eVBE/Vt − 1

) + C2 IS0
(
eVBE/(nE L Vt ) − 1

)
+ IS0

βRM

(
eVBC/Vt − 1

) + C4 IS0
(
eVBC/(nCL Vt ) − 1

)
where the maximum current gains βF M and βRM are parameters in the model, with the
other parameters being C2, C4, nE L , and nC L . The reduction at high-level injection
is modeled by equations that include a modified Gummel number in the base. The
modifications include additions of the depletion-layer charge (the Early effect) and
the stored charge (the reduction of β at high injection levels). The complete equations
are referred to as the Gummel–Poon model. In the normal active mode and without
the Early effect, the Gummel–Poon equation for the collector current is simplified to

IC ≈
{

IS0eVBE/Vt for IC < IK F√
IS0 IK F eVBE/2Vt for IC > IK F
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where the high-level knee current IKF is a parameter. An analogous parameter IKR

relates to the inverse active mode.
10. The energy-barrier heights for injections of majority electrons and holes at a ho-

mojunction (a P–N junction with the P-type and N-type regions made of the same
semiconductor) are equal. To achieve a high InE /IpE ratio and good emitter efficiency
in an NPN BJT with homojunctions, the base doping has to be much lower than the
emitter doping. The energy-barrier heights for injections of majority electrons and
holes at a heterojunction are different due to the energy-band discontinuities �EC

and �EV . In some heterojunctions, such as AlGaAs–GaAs, the InE /IpE ratio is
proportional to exp [(�EC + �EV )/kT ]. This means that excellent emitter efficiency
can be achieved even with a highly doped base.

PROBLEMS

9.1 Find the most suitable description for each of the
concentration diagrams shown in Fig. 9.19. Electron
concentrations are presented with solid lines, while
the hole concentrations are presented with dashed
lines.

9.2 Figure 9.20 shows four energy-band diagrams,
drawn from the emitter to the collector. Explain how
the energy-band diagrams relate to each of the four
points, labeled on the output characteristics of the
BJT.

9.3 Assign each of the energy-band diagrams from
Fig. 9.21 to the proper description of the BJT type
and mode of operation.

9.4 (a) List and briefly describe the voltage dependen-
cies of the current of majority and minority
carriers that flow through the emitter and the
collector of an NPN BJT biased in the normal
active mode.

(b) If the common-base current gain is 600, what is
the common-emitter current gain?

(c) If the emitter efficiency is ≈ 1, what is the value
of the transport factor through the base?

9.5 An NPN BJT with base–emitter and base–collector
junction areas AJE and AJC , respectively, has the
following parameters: the transport factor αT =
0.9999 and the emitter efficiency γE = 0.9968. The
ratings of the transistor are as follows: the maximum
collector current Imax is 10 mA, and the maximum
collector–base voltage Vmax is 25 V. What would
the BJT parameters and ratings be if both junction
areas (AJE and AJC) are doubled?

(a) β = 604, Imax = 10 A, Vmax = 25 V
(b) β = 302, Imax = 20 mA, Vmax = 25 V
(c) β = 604, Imax = 20 mA, Vmax = 50 V
(d) β = 151, Imax = 10 mA, Vmax = 25 V
(e) β = 302, Imax = 20 mA, Vmax = 12.5 V
(f) β = 604, Imax = 20 mA, Vmax = 25 V

9.6 Which of the following statements, related to BJTs,
are not correct?

(a) The relationship α = β
β+1 cannot be used when

a BJT is in saturation.
(b) The emitter of an NPN BJT is grounded, and

the collector is connected to V+ through a
loading resistor. VBE voltage is such that the
BJT is in the saturation mode. An increase in
VBE will increase ICE and reduce VCE .

(c) The transport factor αT and the common-
base current gain α are different and unrelated
parameters.

(d) The emitter efficiency γE depends on the dop-
ing level in the base.

(e) The concentration of the minority carriers in
the base is significantly higher compared to the
equilibrium level when the BJT is in normal or
inverse active mode.

(f) The minority-carrier lifetime in the base does
not affect the transport factor αT .

(g) The fact that the collector current IC does
not depend on the output voltage VCE in the
normal active mode is related to the fact that the
saturation current of a diode does not depend on
the voltage drop across the diode.
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(a)

(1)  Normal active mode
(2)  Too small gE

(3)  Too small aT

(4)  Cutoff
(5)  Saturation
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Figure 9.19 NPN concentration diagrams.
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Figure 9.20 Energy-band diagrams and BJT output characteristics.
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Figure 9.21 Energy-band diagrams of NPN and PNP BJTs.

9.7 (a) Calculate γE for an NPN and a PNP BJT using
the following technological parameters: NE =
1019 cm−3, NB = 1017 cm−3, WE = WB =
2 μm, Dn(1019 cm−3) = 2.5 cm2/s, Dp

(1019 cm−3) = 1.5 cm2/s, μn(1017 cm−3) =
800 cm2/V · s, μp(1017 cm−3) = 320
cm2/V · s.

(b) Assuming αT = 1, calculate the common-
emitter current gain for both BJTs.

9.8 (a) Design the base–emitter area of an NPN BJT
so that the current rating of the BJT operating
in the normal active mode is 100 mA at
VBE = 0.70 V. The technological parameters
are as follows: the emitter doping is ND =
1020 cm−3, the base doping is NA = 5 ×
1017 cm−3, the base width is W = 1 μm,
and the electron mobility in the base is μn =
300 cm2V/s.
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(b) What would the normal active current be at
VBE = 0.7 V if the BJT was made in GaAs
with the same base width and doping levels?
The electron mobility in the GaAs base is μn =
2500 cm2/V · s. A

9.9 (a) Design the base–emitter area of an NPN BJT so
that its transconductance gain is gm = 2 A/V at
VBE = 0.70 V. The technological parameters
are as follows: the emitter is heavily doped, the
base doping is 5×1017 cm−3, the base width is
W = 0.5 μm, and the electron mobility in the
base is μn = 300 cm2/V · s.

(b) Room temperature (300 K) is assumed in part
(a). What would be the transconductance gain
at T = 55◦C? Assume that the electron
mobility does not change and that ni ≈ 7.5 ×
1010 cm−3. A

9.10 Table 9.2 lists the four possible combinations of two
measured parameters (the common-emitter current
gain and the collector current at VBE = 0.7 V)
for two NPN BJTs, one made in Si and the other
in GaAs. Assuming that the doping levels and the
geometric parameters of the two BJT are similar,
determine the correct combination.

TABLE 9.2 Possible Data Combinations
for Si and GaAs NPN BJTs (IC
Measured at VBE = 0.7 V)

Si GaAs

β IC β IC

1 500 0.1 μA 2000 300 mA
2 500 300 mA 2000 0.1 μA
3 2000 0.1 μA 500 300 mA
4 2000 300 mA 500 0.1 μA

9.11 Determine the modes of operation of a PNP BJT on
the basis of the following sets of measurements:

(a) VBE = 0.7 V, VCE = −5.2 V
(b) VBE = 0.7 V, VBC = −0.7 V
(c) VBE = −0.7 V, VCE = −0.2 V
(d) VBE = 0.7 V, VCE = −0.2 V
(e) VBE = −5.2 V, VCE = 0.7 V A

9.12 The NPN BJT in the circuit of Fig. 9.8 has β = 550.
The circuit parameters are RC = 1 k� and V+ =
5 V. Find the minimum base current iB that ensures

that the BJT is in saturation (switch in on mode).
Assume VBE = 0.7 V.

9.13 A PNP BJT with β = 300 is used in a circuit that
is similar to the circuit of Fig. 9.8: the resistor is
the same (RC = 1 k�) but V+ is replaced by
V− = −5 V. Find the maximum base current |IB |
to ensure that the BJT is in the normal active mode.
Assume VBE = −0.7 V. A

9.14 NPN BJTs in integrated injection logic (I2L) circuits
operate in the inverse active mode. Calculate the
common-emitter current gain (βR) if the technologi-
cal parameters are as follows: NC = 5×1014 cm−2,
NB = 1016 cm−3, WC = 10 μm, WB = 2 μm,
μn = 1250 cm2/V · s, and μp = 480 cm2/V · s.
Assume ideal transport factor of the base. A

9.15 The parameters of the Ebers–Moll model are IS0 =
10−12 A, βF = 500, and βR = 1. Find the values
of the emitter, base, and collector currents for

(a) VBE = 0.65 V and VCB = 4.35 V (the normal
active mode)

(b) VBE = 0.65 V and VCE = 0.1 V (the saturation
mode)

(c) VE B = 4.65 V and VBC = 0.65 V (the inverse
active mode) A

9.16 For the BJT of Problem 9.15, calculate the
transconductance gm in the normal active mode.

9.17 The measured dynamic output resistance of an NPN
BJT is ro = 35.7 k�. Calculate the Early voltage
if IS0 = 1.016 × 10−16 A and the measurement
is taken at VBE = 0.8 V. Estimate the resistance at
VBE = 0.7 V.

9.18 An increase in the reverse-bias base–collector
voltage reduces the base width (base modulation
effect). At what voltage would the base width be
reduced to zero (“punch-through” breakdown), if the
zero-bias base width is 0.937 μm and the doping
levels are Nbase = 1016 cm−3 and Ncollector =
5 × 1014 cm−3? Assume that the junction is
abrupt.

9.19 The breakdown voltage of the BJT considered
in Problem 9.18 can be increased by increasing
the zero-bias width of the base. What breakdown
voltage can be achieved in this way before
avalanche breakdown of the collector–base junction
is reached? Assume that avalanching is triggered at
Emax = 30 V/μm. A
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Figure 9.22 BJT output characteristics (IB = 0, 20, 40, and 60 μA in every diagram).

TABLE 9.3 SPICE Model and Experimental Results

Model Experiment

(a) ro = 10 M� ro = 80 k�

(b) IC = 1 mA, IB = 10 μA IC = 6.4 mA, IB = 10 μA
(c) IC1 = 1.5 mA, IB1 = 10 μA IC1 = 1.6 mA, IB1 = 10 μA

IC2 = 30.0 mA, IB2 = 200 μA IC2 = 19.2 mA, IB2 = 200 μA

9.20 One set of output characteristics from Fig. 9.22 is
for IS0 = 10−15 A and βFM = 200 as nominal
BJT parameters, whereas the other three are either
for changed value of βFM or for specified VA or IKF
parameter. Relate each of the output characteristics
to the appropriate set of parameters.

9.21 Which SPICE parameter should be changed in order
to achieve better matching between the model and
the experimental results in each of the cases shown
in Table 9.3? The options are

(1) increase IS0
(2) increase C2 IS0
(3) increase βF
(4) decrease VA
(5) decrease IKF
(6) decrease nEL

9.22 Are the following statements correct or incorrect?

(a) The current gain βF is the only principal SPICE
parameter for a BJT in the normal active mode.

(b) The saturation current IS0 is the only principal
SPICE parameter for a BJT in the saturation
mode.

(c) The parasitic resistances rE and rC are used to
set the dynamic output resistance.

(d) IKF parameter (the normal knee current) is
important to model the effects at large VCE
voltages.

9.23 The emitter–base junction of a BJT is implemented
as

(a) N–P homojunction in GaAs
(b) N–P AlGaAs–GaAs heterojunction

Determine the emitter efficiency in each case.
The technological parameters satisfy the following
conditions: DE /DB = 0.1, NB/NE = 1, and
WB/WE = 1.
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REVIEW QUESTIONS

R-9.1 Increased reverse-bias voltage increases the slope of energy bands—that is, the electric
field—in the depletion layer of a P–N junction. Why does not this significantly increase
the reverse-bias current?

R-9.2 The equilibrium concentration of electrons in the base of an NPN BJT is n pe. Is the
concentration of electrons significantly higher when this BJT is biased in the normal active
mode? Is this concentration related to the collector current?

R-9.3 Does the doping level in the base affect the emitter efficiency γE ? If so, why?
R-9.4 Does it affect the transport factor αT ? If so, why?
R-9.5 Is the transport factor αT different from the common-base current gain α? Are they related?

If so, how?
R-9.6 Is the common-base current gain α related to the common-emitter current gain β?
R-9.7 Does the relationship between α and β apply in saturation and cutoff?
R-9.8 A change in the base–emitter voltage VBE drives an NPN BJT from the normal active mode

into saturation. Is VBE increased or decreased? If the BJT biasing circuit is as in Fig. 9.8, is
VCE increased or decreased? Is IC increased or decreased?

R-9.9 The measured voltage between the base and collector of a BJT connected in a circuit is
VBC = −5 V. Provided the BJT is not broken down, can you say whether this is an NPN or
a PNP BJT?

R-9.10 What parameters are essential for a proper SPICE simulation of a circuit with a BJT in the
normal active mode? Inverse active mode? Saturation?

R-9.11 Which SPICE parameter is used to adjust the dynamic output resistance?
R-9.12 Is the IKF parameter used to model the effects of a large VCE voltage or the effects of a large

IC current?



10 Physics of Nanoscale Devices

The small size of modern semiconductor devices means that only a small number of
electrons or holes appear in each device. For example, nonvolatile memories may leak
only a few electrons over a period of 10 years. In fact, almost no modern semiconductor
device has more than one minority carrier in the neutral regions. To be able to understand
and deal with the effects associated with a small number of particles, we need to refine
and upgrade the concepts of classical device physics, which are limited to continuous
current flow, continuous carrier concentration, continuous generation/recombination rates,
and continuous balance between generation and recombination in thermal equilibrium.
Accordingly, Section 10.1 introduces the physics of single-carrier events.

The demand for an increase in the complexity of integrated electronic systems and
the associated reduction in device dimensions have led to the development and use of
devices with one or more dimensions in the nanoscale region. As this downscaling trend
continues and device operation enters deeper into the quantum-mechanical world, the
modern electronics engineer is exposed to confusing claims that vary from extreme gloom-
and-doom scenarios to extremely optimistic promises that harnessing quantum effects
will revolutionize not only electronics systems but technology in general. In spite of the
inherent mystery, the relevant quantum-mechanical effects are well established and can be
presented in a way that simply upgrades existing knowledge of semiconductor phenomena
by incorporating unambiguous facts. Section 10.2 shows how to incorporate the effects of
quantum confinement in the standard MOSFET models. Section 10.3, which is devoted
to one-dimensional systems (nanowires and carbon nanotubes), includes the physics of
transport without carrier scattering (ballistic transport) when the current is determined by
the ultimate quantum-mechanical conductance limit.

397
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10.1 SINGLE-CARRIER EVENTS

10.1.1 Beyond the Classical Principle of Continuity
Let us begin by recalling the specific question from Example 1.8b. In this case, take a
typical neutral P-type silicon region with p = 1018 cm−3 and calculated concentration
of electrons of n = n2

i /p = 1020/1018 = 100 cm−3. Let the size of the neutral P-
type region be 100 nm in each dimension (V = 10−15 cm3), which means that the total
number of electrons in this P-type region is N = nV = 10−13. This result is clearly
inconsistent with the well-established quantum fact that the number of electrons should be
either zero or one but cannot be 10−13. Yet, this result cannot be ignored because neither
Nactual = 0 nor Nactual = 1 corresponds to the condition of thermal equilibrium, and
the equilibrium condition cannot be ignored because the carrier balance is not affected by
external forces. To address the question about the implications of this result, we have to
establish a workable meaning of the calculated numbers.

The meaning of N = 10−13 cannot be the number of electrons in this device; however,
it can be the average number of these electrons. One way to define the average number of
electrons is to consider 1015 of these devices, which will provide the total volume of 1 cm3.
Then we can have M1 = 100 devices with Nactual = 1 in each of their P-type regions.
Most of the remaining devices will be with Nactual = 0, although it is possible to have M2
devices with Nactual = 2. According to this scheme, the average number of electrons is

N = 0 × M0 + 1 × M1 + 2 × M2 + · · ·
M0 + M1 + M2 + · · · =

Nmax∑
Nactual =0

Nactual p(Nactual) (10.1)

where p(Nactual) is the probability that the P-type region in a device will contain Nactual

electrons. Probability p(Nactual) defined in this way relates to the statistics of a large
number of devices; that is, it does not establish the physics of a single device. Furthermore,
this approach does not address the issue that none of these devices is in thermal equilibrium
with Nactual = 0, 1, 2, . . . .

Focusing on the physics of a single device, we may think of N = 10−13 as the average
number of electrons over a period of time. Referring to Fig. 10.1, consider a period of
time t0 when the actual number of electrons in the P-type region is Nactual = 0, which
implies actual concentration of nactual = 0. Thermal generation and recombination are not
balanced during this period because the probability of a recombination event is zero (there
are no electrons to be recombined) and the probability of a generation event is higher. This
period will last until a generation event occurs, setting the beginning of a period of time t1
when the actual number of electrons is Nactual = 1 and the implied actual concentration
is nactual = Nactual/V = 1015 cm−3. During t1, the recombination probability becomes
much higher than the generation probability, so we can assume that this period will be
terminated by a recombination event. This sets the state of Nactual = 0 again, which will
last until another generation event occurs. In principle, the state with Nactual = 1 may also
be changed by another generation event, leading to the state with Nactual = 2, which will
last for the period t2 until one of the electrons is recombined. With a significant number of
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Figure 10.1 Time balance of nonequilibrium generation and recombination events: a refined equilibrium concept that can
meaningfully account for the result that the average number of electrons can be N < 1.
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Figure 10.2 The distributions of the actual
number of occurrences (Nactual) for three
different average numbers of occurrences:
N = 0.1, N = 1, and N = 10.

generation and recombination events, we can establish the average values τ0 = t0, τ1 = t1,
τ2 = t2, . . . to define the average number of electrons in the following way:

N = 0 × τ0 + 1 × τ1 + 2 × τ2 + · · ·
τ0 + τ1 + τ2 + · · · =

Nmax∑
Nactual =0

Nactual p(Nactual) (10.2)

If the external conditions that impact the generation and recombination events do not
change, the probability that Nactual electrons will appear at an instant of time, p(Nactual),
is given by the Poisson distribution:

p(Nactual) = N
Nactual e−N

Nactual !
(Nactual = 0, 1, 2, . . .) (10.3)

This distribution is plotted in Fig. 10.2 for three different values of N . The Poisson
distribution can also be applied in space to determine the probability that Nactual particles
will appear in a single device if the average number of particles per device is N and the
particles are uniformly distributed (i.e., the space conditions that impact the appearance of
a particle are identical across the considered space). In general, this distribution provides
the probability for an integer number of occurrences, Nactual (Nactual = 0, 1, 2, 3, . . .),
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for a given average number of occurrences, N , that is in general a noninteger number. The
mean of this distribution (or the expected number of occurrences) is E(Nactual) = N ,

whereas the standard deviation is σNactual =
√

N . For large values of N , this distribution
can be approximated by the Gaussian function with the same values for the mean and the
standard deviation:

p(Nactual) = 1√
2π N

e−(Nactual −N )2/2N (10.4)

The approximation of the Poisson distribution by Gaussian function for a large number
of particles is useful because it becomes difficult to calculate Nactual! for large values of
Nactual .

Let us focus again on the case of a single P-type silicon region with the doping level of
NA = 1018 cm−3 and the volume of V = 10−15 cm3. In this example, the number of holes
in the P-type region is P = pV = 1018 × 10−15 = 1000. This number is large enough to
make the continuous approximation of a “sea” of holes and to allow us to conclude that τ1
is equal to the minority-carrier lifetime. This time will not change if the size of the P-type
region is increased, provided τ1 is not dominated by surface recombination.

As distinct from the minority-carrier lifetime, the average generation time τ0 does
depend on the size of the considered P-type region. If the volume of the P-type region
doubles in this example, the average number of electrons will double to nV = N =
2 × 10−13, which will halve the time needed to generate an electron because N ≈
τ1/(τ0 + τ1) ≈ τ1/τ0.1 This is consistent with the understanding that the time constant
in the generation process is the average time required for a single R–G center to generate
an electron–hole pair (τt ), as discussed in Section 5.3.3. If the number of R–G centers in
the volume V is Mt , the time τ0 is obtained as the total probability per unit time that a
generation event will occur:2

1

τ0
=

Mt∑
i=1

1

τt
= Mt

τt
(10.5)

If the volume is doubled, Mt is doubled and τ0 is halved.
Equation (10.2) provides the meaning for N < 1. It can also be applied for the case of

N > 1. For example, the state of N = 99.3 corresponds to the Gaussian function of Nactual

with the mean of N = 99.3 and the standard deviation of σNactual = √
99.3 = 10.0.3

Although the absolute variation in the actual number of occurrences is now increased to

1The times τ2, τ3, . . . , are neglected. The probability for the occurrence of Nactual = 2 electrons,
according to Eq. (10.3), is p(2) = 5 × 10−27. This is a much smaller value than p(1) = 10−13, so
τ2 � τ1.
2This assumes Mt >1, which corresponds to a concentration of R–G centers exceeding > 1015cm−3.
The case of Mt < 1 is considered in Section 10.1.4.
3The Poisson distribution given by Eq. (10.3) can be approximated by Gaussian function with the
same mean and standard deviation for large values of N .
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about σNactual = 10.0, the relative variation is reduced to σNactual /N = 0.10. Furthermore,
the times that correspond to different Nactual values, τNactual , are reduced. Take the example
of Nactual = 100 electrons in a P-type silicon region. The state of Nactual = 100 will
change to the state of Nactual = 99 if any of the 100 available electrons is recombined,
and the time needed to recombine any of the available 100 electrons is 100 times shorter
than the minority-carrier lifetime. The state of Nactual = 100 can also change to the
state of Nactual = 101 if an additional electron is generated. Once the times τNactual

have been reduced well below the shortest period of time that we are interested in, �t ,
it becomes more convenient to work with the classical concepts of generation rate (number
of generation events/�t) and recombination rate (number of recombination events/�t) and
with the classical concept of thermal equilibrium, which is defined by equal generation and
recombination rates.

It should be noted that the use of the thermal equilibrium equation np = n2
i to calculate

N = nV < 1 can be considered only as an extrapolation-based estimate of N . This
is similar to the practice of extrapolating equilibrium-based generation or recombination
rates to calculate nonequilibrium generation or recombination currents. Section 10.1.5
will introduce the idea of direct modeling of single generation and recombination events
without the assumption of thermal equilibrium.

EXAMPLE 10.1 Generation Time in a Neutral Semiconductor

The minority-carrier lifetime in the P-type silicon region considered in this section is 1 μs.
Using the estimate for the average number of electrons in this P-type region (N = 10−13),
obtained from the thermal equilibrium equation np = n2

i , calculate the average time that it takes
to generate an electron.

SOLUTION

The minority-carrier lifetime is the average time needed to recombine an excess minority carrier
in the “sea” of majority carriers. Accordingly, τ1 is equal to the minority-carrier lifetime. Based
on Eq. (10.2), the average time to generate an electron can be expressed in terms of τ1:

N ≈ τ1

τ0 + τ1

τ0 ≈ 1 − N

N
τ1 ≈ τ1

N
= 10−6

10−13 = 107 s = 115.7 days

This time is much longer than the time a single defect in a depletion layer takes to generate
an electron–hole pair (Example 5.7) because most levels in the energy gap of a P-type
semiconductor are occupied by holes, which significantly reduces the availability of electrons
at the R–G levels, hence the probability for an electron to be emitted into the conduction band.



402 CHAPTER 10 PHYSICS OF NANOSCALE DEVICES

10.1.2 Current–Time Form of the Uncertainty Principle
The demand for increased complexity of modern electronic systems requires faster access
to smaller devices conducting smaller currents. However, the simultaneous reduction in
both access time and current value is ultimately limited by the following condition:

I�t  q (10.6)

This condition is a form of uncertainty principle expressing the fact that it is not possible
to indefinitely reduce both the observation time and the current value, while maintaining
the certainty in the current value, because electrons behave as quantum particles and not
as a continuous fluid. The limiting condition I�t  q emerges from the fundamental
frequency–time form of the uncertainty principle, establishing that the frequency of a
repeating event, f , cannot be determined within a time interval �t that is shorter than the
period between two events, τ ; therefore, �t > τ , which is the same condition as f �t > 1.
In the case of electric current, the period between two events can be defined as the time
between the collection of two electrons by a device contact, τ = q/I , which means that the
relevant frequency is f = I/q and the condition f �t > 1 can be expressed as I�t > q .
The general condition I�t > q is specified as I�t  q because the period between two
events in this case is not a set constant, and to reduce the uncertainty in the current value, a
large number of electrons must be collected. This will be explained and quantified shortly,
using the examples of diffusion current in both reverse- and forward-biased P–N junctions.

The P-type region, considered in Section 10.1.1 and Example 10.1, will dominate
the reverse-bias current of a P–N junction if the N-type doping is much higher than the
P-type doping. For a start, ignore the generation current in the depletion layer to focus
on the reverse-bias current due to minority carriers, which is dominated by the minority
electrons in the P-type region (the effect related to the dominance of the generation current
is considered in the next section). Using the basic equation for P–N junction saturation
current [Section 6.2.1, Eq. (6.16)], the reverse-bias current is

IS = q AJ n2
i

Dn

Ln NA
(10.7)

where ni = 1010 cm−3, Dn = 9 cm2/s (from the solution of Example 6.3), NA =
1018 cm−3, AJ = (100 nm)2 = 10−10 cm2, and Ln = √

Dnτn . Taking the value of
τ1 = 10−6 s for the minority-carrier lifetime τn , the diffusion length is Ln = 30 μm.
With this, the calculated saturation current is IS = 4.800 × 10−24 A. Such a current
value is not possible if our observation time is 1 s because it corresponds to the flow of
IS/q = 3.0 ×10−5 electron/s. This shows that the concept of continuously flowing current
can lose its meaning. The number 4.800 × 10−24 A maintains its meaning if the shortest
period of time that we are interested in is �t = 1 year = 3.15576 × 107 s. If a current
measurement takes �t = 1 year, the average number of collected electrons during each
measurement is N = IS�t/q = 946.7. This means that some measurements will show
947 × q/�t = 4.801 × 10−24 A, and other measurements will show 946 × q/�t =
4.796 × 10−24 A, which is a small variation. However, if the shortest period of time that
we are interested in is �t = 1 h, which corresponds to N = IS�t/q = 0.108 electron,
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89.8% of the measurements will show no current, 9.7% will show 1.6 × 10−19/3600 =
4.44 × 10−23 A, and 0.5% will show 2 × 1.6 × 10−19/3600 = 8.89 × 10−23 A.4 To
avoid these complications when we use the concept of current, we can simply specify
that the average time between the flow of minority electrons through the P–N junction is
τ = q/IS = 3.33 × 104 s = 9.26 h.

It may be observed that the diffusion length, Ln = 30 μm, is much longer than the
assumed width of the P-type region, which is Wanode = 100 nm. In a case like this, the
reverse-bias current would be calculated from the saturation-current equation for a P–N
junction with a short anode [Section 6.2.1, Eq. (6.17)],

IS = q AJ n2
i

Dn

Wanode NA
(10.8)

The result is IS = 1.44 × 10−21 A, which corresponds to τ = q/IS = 111.1 s, still a fairly
long average time between the flows of two electrons.

Consider now that this P–N junction is forward-biased with VD = 0.8 V. Given
that the built-in voltage is Vbi = Vt ln(ND NA)/n2

i = 1.0 V, this forward-bias voltage
corresponds to a very small barrier height of q(Vbi − VD) = 0.2 eV. Because the width
of the neutral P-type region (Wanode = 100 nm) is smaller than the diffusion length of
electrons (Ln = 30 μm), the result obtained by Eq. (10.8) should be used as the value for
IS when calculating the forward-bias current:

ID = ISeVD/Vt = 1.44 × 10−21 × e0.8/0.02585 = 39.7 nA (10.9)

The current ID ≈ I = 40 nA means that the average time between two events of
electron collection by the anode contact is τ = q/I = 4 ps. If this current is measured over
�t = 10 ps, the average number of collected electrons is N = �t/τ = 2.5. In this case, the
actual current values appear in multiples of q/�t = 16 nA with probabilities in accordance
with the Poisson distribution [Eq. (10.3)]; this scenario is illustrated in Fig. 10.3. The
probability distributions for �t = 100 ps, 1 ns, and 10 ns, also shown in Fig. 10.3, are
obtained from the Gaussian function [Eq. (10.4)] and the following conversion of particle
numbers into currents: Iactual = q Nactual/�t .

Based on the relationship between the current and the number of particles (Iactual =
q Nactual/�t), and knowing that the standard deviation of Nactual is σNactual =

√
N , we

can obtain the standard deviation of the current:

σI = q

�t
σNactual = q

�t

√
N = q

�t

√
I�t

q
=

√
q I

�t
(10.10)

4This is according to the Poisson distribution for N = 0.108 and the probabilities for Nactual = 0, 1,

and 2 electrons.
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Figure 10.3 Distributions of 40-nA current for observation times from �t = 10 ps to �t = 10 ns.
The current exhibits discrete and random values for short observation times; with the increase in
observation time, the distribution of current values becomes almost continuous and narrows down
toward the expected value of 40 nA.

In this equation, I is the average current (I = q N/�t). The coefficient of current variation,
which is the relative error in the terminology of current measurements, is

cv ≡ σI

I
=

√
q

I�t
(10.11)

This quantifies the uncertainty relationship I�t  q in the following way:

I�t = q

c2
v

(10.12)

The variability of measured/observed current that is quantified by the coefficient of
variation cv and illustrated in Fig. 10.3 is known as shot noise. For the case of I = 40 nA,
the variation of 100 × σI /I = 2.0% (cv = 0.02) requires �t = 10 ns, which means that
the operating frequency of this device has to be smaller than 1/�t = 100 MHz. Clearly,
the designers of modern electronic systems need to check the validity of the assumption of
continuous current before implementing a solution obtained by any standard equation for
device current.
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10.1.3 Carrier-Supply Limit to Diffusion Current
The equations used to calculate both the forward- and the reverse-bias currents in the
preceding section are derived from the diffusion-current equation. The parameter in this
equation, the diffusion constant Dn,p , can be expressed in terms of thermal velocity and
the average scattering length of the current carriers. This is because the random thermal
motion of the current carriers is the driving force of diffusion current. The derivation of the
Einstein relationship in Section 4.2.1 shows that

Dn,p = vthlsc

3
(10.13)

Replacing the diffusion constant in the equation for the forward-bias current,

ID = q AJ n2
i

Dn

Wanode NA
eVD/Vt (10.14)

leads to the following equation for the forward-bias current as determined by the diffusion
of minority electrons in the P-type region of a P–N junction:

ID = q AJ
n2

i vth

6NA

2lsc

Wanode
eVD/Vt (10.15)

The minority electrons, supplied to the diffusion process in the neutral P-type region,
arrive from the N-type region of the P–N junction. Because the diffusion current cannot
exceed the rate of electron supply from the N-type region, there is a limit to the applicability
of the diffusion-current equation. The rate of electron supply is basically the thermionic
emission current from the N-type region. To estimate this current, we focus on the electrons
as majority carriers in the N-type region that hit the depletion layer at the P–N junction.
The number of these hits per unit area and unit time can be determined by the reasoning
applied in the derivation of Einstein relationship (Section 4.2.1). In analogy with Eq. (4.6),
the number of these hits per unit area and unit time is NDvth/6, where ND is equal to
the concentration of electrons in the N-type region. The number of hits per unit time
is AJ NDvth/6. The barrier height at the P–N junction is qVB = q(Vbi − VD) and the
probability that an electron will possess energy higher than the barrier height is

Te =
∫ ∞

qVB
e−E/kT∫ ∞

0 e−E/kT
= e−qVB/kT = e−(Vbi−VD)/Vt (10.16)

Therefore, the thermionic emission current from the N-type region is

Ith = q AJ
NDvth

6
Te = q AJ

NDvth

6
e−(Vbi−VD)/Vt (10.17)
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Replacing the built-in voltage by Vbi = Vt ln(ND NA/n2
i ), we obtain

Ith = q AJ
NDvth

6eVbi/Vt
eVD/Vt = q AJ

n2
i vth

6NA
eVD/Vt (10.18)

Equations (10.15) and (10.18) show that the diffusion current can be expressed in terms of
the thermionic emission current as follows:

ID = Ith
2lsc

Wanode
(10.19)

Equation (10.19) shows that the diffusion current ID limits the current through the
P–N junction to a fraction of the thermal-supply current Ith when Wanode > 2lsc.
In fact, when Wanode > Ln , the diffusion length Ln should be used in Eq. (10.19).
However, for Wanode < 2lsc, the diffusion-current equation predicts current values that
are larger than the current of electron supply to the diffusion process. Clearly, this is not
possible. This problem with the diffusion-current equation occurs under the assumption of
continuous electron fluid. This assumption does not provide any limit on the increase in
the concentration gradient, and consequently does not limit the diffusion current when the
width of the neutral P-type region (Wanode) is reduced toward zero. However, when particle
scattering and the concept of scattering length are included in the analysis of diffusion
current, Eq. (10.19) shows that reducing the dimensions of the device below the scattering
length cannot increase the diffusion current because the scattering events cannot be reduced
below zero. When scattering is eliminated, the forward-bias current through a P–N junction
is limited by the thermionic current given by Eq. (10.17).

The average scattering length can be estimated from the carrier mobility and the
effective mass in the following way:

lsc = vthτsc (10.20)

μn = qτsc

m∗ (10.21)

m∗v2
th

2
= 3

2
kT (10.22)

vth =
√

3kT

m∗ (10.23)

lsc = μn

q

√
3kT m∗ (10.24)

Assuming that the electron mobility in the considered P-type region is μn = 300 cm2/V · s
and that the effective mass is m∗ = 0.26m0, the average scattering length is lsc = 10.2 nm.
Given that Wanode > 2lsc, we conclude that the diffusion-current equation can be applied
in the considered example. We can also find that the thermionic current limit is Ith =
Wanode ID/2lsc = 196 nA, which is not too far from the diffusion current of 40 nA.
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Let us analyze now the reverse-bias currents due to minority electrons, calculated by
Eqs. (10.7) and (10.8) in the preceding section. The result in Example 10.1 shows that
the average appearance of a single minority electron in the neutral P-type region is once
in τ0 = 107 s = 115.7 days. Assume that each minority electron that is generated in
the neutral P-type region crosses the P–N junction to contribute to the minority-electron
current. This assumption shows that the current of minority electrons is limited to

IS = q

τ0
= 1.6 × 10−19

107 = 1.6 × 10−26 A (10.25)

Comparison of this value to the numbers obtained by the diffusion-current equations
(IS = 4.80 × 10−24 A and IS = 1.44 × 10−21 A) shows that the assumption of continuous
electron fluid significantly overestimates the minority-carrier current in P–N junctions; it
results in current values that are higher than the carrier-supply limit. However, this issue is
not practically important because the reverse-bias current is dominated by the generation
current. Although this was shown earlier, in Section 6.2.2, it is useful to estimate the
generation current for the considered example to complete the analysis of the reverse-bias
current. With ND  NA , and assuming reverse bias of VR = 1 V, the depletion-layer
width is

wd =
√

2εs(VR + Vbi )

q NA
=

√
2 × 11.8 × 8.85 × 10−12(1 + 1)

1.6 × 10−19 × 1024 = 51.1 nm (10.26)

The volume of the depletion layer is Vd = AJ wd = 5.1 × 10−16 cm3. Assuming that the
concentration of the fastest R–G centers is Nt = 1016 cm−3, the average number of these
centers in the depletion layer is Mt = Nt Vd = 5.1 (the case of Mt < 1 will be considered
in Section 10.1.4). If the time a single R–G center takes to generate an electron–hole pair is
labeled by τt , the average time between generation events in this depletion layer [according
to Eq. (10.5)] is τ0d = τt/Mt . With the assumption that the depletion-layer field sweeps
away every generated electron–hole pair, the generation current is

IG = q

τ0d
= Mt

q

τt
(10.27)

Equations for the direct calculation of τt are introduced in Section 10.1.5. At this stage,
we can use the relationship between τt and the minority-carrier lifetime that is derived
in Section 5.3.3: τt ≈ 2τ1(Nt /ni ), assuming that the minority-carrier lifetimes for the
electrons (τn) and holes (τp) are the same (τ1 = τn = τp).5 With this equation,
τt = 2 × 10−6 × 1016/1010 = 2 s. This means that the average time between electron–
hole generation events in the depletion layer is τ0d = 2 s/5.1 = 0.39 s and the average
generation current is IG = 4.1 × 10−19 A. This is a much larger value than any of the
estimated IS values for the minority-carrier current.

5With this relationship, Eq. (10.27) can be transformed into the standard generation-current equation,
shown in Section 6.2.2: IG = q Mt ni/2τ1 Nt = (qni /2τ1)wd AJ .
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10.1.4 Spatial Uncertainty
It is quite possible that the average number of fixed particles, such as doping atoms and
R–G centers, will become smaller than unity when the device dimensions are reduced. For
the doping level of 1015 cm−3, this effect will occur when the dimensions of that region
are reduced below 1/1015 cm−3 = 10−15 cm−3 = 100 nm × 100 nm × 100 nm. In fact,
significant randomness appears even when the average number of particles is larger than
unity. The data plotted in Fig. 10.2 show that even for an average number of particles as
large as N = 10, only 12.5% of devices contain Nactual = 10 particles, and as many
as 9% of devices contain Nactual = 7 particles (which is a variation of 30%). Given that

the standard deviation of the actual number of particles is σNactual =
√

N , the normalized
variability in the number of particles drops with the square root of the average number of

particles: σNactual /N =
√

N/N = 1/
√

N .
It should be clarified that there is neither spatial localization nor spatial variation of

free electrons in crystals, even at distances that are comparable to the distance between
the doping atoms. Take the example of ND = 1015 cm−3 when the average distance
between the doping ions is (1/ND)1/3 = 100 nm. When the electron of this donor
appears in the conduction band, it appears as a uniformly spread wave across the whole
crystal, as described in Section 2.2.2 (Fig. 2.8), and no fluctuation in the electron
concentration/density can be observed even at 50 nm from the donor ion.

Spatial uncertainty in small-size devices causes device-to-device fluctuations in the
number of fixed particles even in the case of uniformly distributed particles. This effect
is illustrated in Fig. 10.4. Take again the doping of ND = 1015 cm−3, which is uniform
across many devices in a large silicon wafer. Assume that the volume of individual N-type
regions, belonging to individual devices and separated by P-type areas and/or dielectric,
is V = 215 nm × 215 nm × 215 nm = 10−14 cm3. With this, the average number of
donor ions per individual N-type region is N = ND V = 10. Based on the results shown in
Fig. 10.2, only 12.5% of these N-type regions will have the expected doping concentration
of 10/10−14 = 1015 cm−3; as many as 9% of the N-type regions will have a doping
concentration 30% lower: 7/10−14 = 7 × 1014 cm−3.

Turning to the R–G centers as fixed particles, let us consider the impact of a reduction
of the P–N junction area on the reverse-bias current, which is the generation current given

Figure 10.4 Illustration of the uncertainty in the actual number
of particles per device (square) for the average value of N = 3.0
particles/device.
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by Eq. (10.27). The generation-current density is

jG = IG

A
= Mt

A

q

τt
= Ntwd

q

τt
(10.28)

where wd is the depletion-layer width, Awd is the depletion-layer volume, and Nt =
Mt /(Awd) is the concentration of the fastest R–G centers. By its definition and purpose,
the current density should not depend on the device area. This is correct when the device
area is large enough that Mt = Nt Awd  1. If we take the same specific values
for the doping levels and the depletion layer as in the section on reverse-bias current
(wd = 51.1 nm) and the same type of R–G center with τt = 2 s, but a much cleaner crystal
with Nt = 1014 cm−3, the generation-current density will be jG = 4.1 × 10−7 A/m2. This
current density will be observed for P–N junctions with areas of 1 mm × 1 mm, 100 μm ×
100 μm, 10 μm×10μm, . . . , because the average number of R–G centers in the depletion
layer remains much greater than 1: 5.1 × 106, 5.1 × 104, 511, . . . , respectively. There is
also insignificant device-to-device variation.

If the area of the diode is reduced to 100 nm × 100 nm, however, the average number
of R–G centers in the depletion layer drops to Mt = 0.05. According to Eq. (10.3), 95.1%
of P–N junctions will be free of this type of R–G center (Mt = 0), 4.8% of devices will
have Mt = 1, and 0.1% of devices will have Mt = 2 R–G centers in the depletion layer.
Equation (10.28) can no longer be applied to calculate the current density. To determine
what current densities would be measured in the case of 4.8% of devices with Mt = 1 and
0.1% of devices with Mt = 2, we can first use Eq. (10.27) to calculate the corresponding
currents and then divide the result by the area. The results are jG = 8 × 10−6 A/m2 and
1.6 × 10−5 A/m2 for Mt = 1 and Mt = 2, respectively. These current densities are 20 and
40 times larger, respectively, than the large-area current density of jG = 4.1 × 10−7 A/m2.
Although the percentage of devices with increased current densities seems small, it is these
devices that may determine the design of an electronic system with a large number of P–N
junctions.

Regarding the 95.1% of P–N junctions with Mt = 0, note that the reverse-bias current
in these devices will not be zero because there are likely to be R–G centers of other types
with an average generation time of τt > 2 s. The current density of these devices will be
reduced in comparison to the large-area value; indeed, in a large fraction of these devices
it may be significantly reduced because of the exponential dependence of τt on the energy
level of the responsible R–G center.

In conclusion, the current density in small-area devices is not constant but appears as
a distribution when a large number of devices are considered. The tail of this distribution
exhibits a significant current-density increase compared to the constant large-area value.

10.1.5 Direct Nonequilibrium Modeling of Single-Carrier Events
Irreversible processes can be modeled directly and independently of equilibrium conditions
if we assume that the irreversible processes consist of irreversible events. The following
specific examples can clarify the meaning of this statement: (1) collections of electrons
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by the collector contact of a BJT are irreversible events that create the process of
collector current; (2) electron–hole generations in a depletion layer are irreversible
events that make the process of generation current; and (3) electron-scattering events are
irreversible events that can be modeled to determine average scattering time, mobility, and
ultimately resistivity, which is the main model parameter for the process of drift current.6

Irreversible events define discrete intervals of time, τi (i = 1, . . . , M), corresponding to
each of the M events that form a process. A process that results in an irreversible outcome
becomes an event, which will be referred to as a composite event to distinguish it from the
constituent events. If a process consists of consecutive events, then the time needed for the
composite event is simply

τ =
M∑

i=1

τi (10.29)

If a process consists of simultaneous and independent events, then the probabilities per
unit time for each of these events are added to obtain the probability per unit time for the
composite event:

1

τ
=

M∑
i=1

1

τi
(10.30)

This approach is applicable to both macroscopic and microscopic events and processes.
Furthermore, if the time intervals for the constitutent events are not known, this approach
can be applied hierarchically to simpler levels until events with known times have been
identified.

Carrier Capture Time, Minority-Carrier Lifetime, and Recombination Rate

An event of indirect recombination, or recombination through an R–G center, can be
considered as a composite event consisting of two consecutive carrier capture events: either
electron capture by an R–G center followed by a hole-capture event by the same center or
a hole capture followed by an electron capture. This is according to the illustration in
Fig. 5.1b. The time needed to capture an electron that has been emitted in the conduction
band can be obtained by considering the probability per unit time for the electron
capture by an R–G center. The probability that a moving electron will hit an R–G center
per unit length, with a chance of being captured, is proportional to the concentration
of R–G centers (Nt ) and the capture cross section of the R–G centers (σn). Given that
the length traveled per unit time is the thermal velocity (vth), the probability that the
electron will hit an R–G center per unit time is vthσn Nt . Multiplying this probability by
(1 − ft ), the probability that the R–G center is empty, gives the probability that a single
electron is captured per unit time. The reciprocal value of this probability is the average

6It may be more convenient to take measured values of resistivity, but even so, it is scattering events
that determine the value of drift current.
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electron-capture time:

τc,n = 1

vthσn Nt (1 − ft )
(10.31)

The average capture time can be used to establish the time needed to recombine an
excess electron in a P-type semiconductor, which is the minority-carrier lifetime for excess
electrons. In Eq. (10.31), 1− ft ≈ 1 for (E−EF )/kT  1, which is most of the energy gap
in a P-type semiconductor. Therefore, for the dominant R–G centers, τc,n = 1/(vthσn Nt ).

An event of electron capture by an R–G center, which takes the average time of τc,n ,
can be followed by one of two events: (1) emission of this electron back into the conduction
band or (2) capture of a hole by this R–G center to complete the composite recombination
event. The average times for emission of electrons into the conduction band (the first
possible event) are very short for R–G centers with energy levels close to the conduction
band. This means that these R–G centers will not be contributing to recombination, which
sets the upper energy boundary for the R–G centers that contribute to recombination. The
R–G centers with energy levels between this upper boundary and the lower boundary
around EF are the effective recombination centers, as shown in Fig. 5.4. When an electron
is captured by one of these centers, the average time that a hole will be captured by this
center can be determined in a similar way as for the electron capture, except that in this
case the concentration of R–G centers (Nt ) is replaced by the concentration of holes (p)
because the focus is on a single R–G center, and the capture by any of the available
holes is a relevant capture event that will complete the recombination process. Therefore,
τc,p = 1/(vthσp p). If we assume sufficiently clean crystal so that the position of the Fermi
level is set by p and not by Nt , then p  Nt and τc,n  τc,p . Accordingly, the minority-
carrier lifetime τn is

τn ≈ τc,n = 1

vthσn Nt
(10.32)

This is the same result we found earlier in Section 5.3.3. The analysis in this section
provides deeper insight into the recombination process, the constituent events, and
accordingly clarifies the inherent assumptions for the validity of this result.

Recombination of any existing electrons is an event that contributes to the recombina-
tion process. If there are N electrons, the average time between two recombination events,
according to Eq. (10.30), is τn/N . In other words, the number of electrons recombined per
unit time is N/τn . Furthermore, the number of electrons recombined per unit time and unit
volume, which is the effective recombination rate, is

U = N

V

1

τn
= n

τn
= vthσn Nt n (10.33)

Again, this result is consistent with the result shown in Section 5.3.3, except that it is
obtained by the bottom-up approach.
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Carrier Emission Time, Generation Time, and Generation Rate

Carrier emission is usually not modeled independently of recombination. As shown in
Section 5.3.1, the modeling of carrier emission and generation is based on the carrier
emission rate that is determined from the conditions of thermal equilibrium with the
recombination rate. The considerations in this chapter show that the meaning of the
concepts associated with this approach can be lost in small-dimension devices where
the single-carrier events become apparent. It is obvious from the considerations in
Section 10.1.1 that the concept of balanced emission and capture rates loses its meaning if it
takes 1 μs to capture the only electron in a P-type region and then, on average, 115.7 days
to emit another electron (Example 10.1). In addition, this approach relates the emission
and generation events to the parameters of independent capture events, specifically to
the capture cross section and the thermal velocity of a free carrier. Although this logical
problem is believed to be resolved by the mathematical symmetry of the detailed balance
principle, specific examples show that the meaning of capture parameters is lost when they
are used to explain emission events. For example, the capture cross section for electrons is
larger for positively charged traps than for neutral traps because of Coulomb attraction.
A positively charged trap can capture an electron more easily, but this does not mean
that the electron can be released more easily from that trap, as implied by Eq. (5.28) in
Section 5.3.1. Likewise, it is harder to emit an electron from a deeper trap, but this does
not mean that it is harder for an electron to fall into a deeper trap. In general, it is easier to
fall into a wider trap and it is harder to get out of a deeper trap; however, it is not easier to
get out of a wider trap and it is not harder to fall into a deeper trap.

The problem with the direct modeling of the emission time has resulted from the
difficulty of granulating an emission event to the point at which the times of the constituent
events are known. It has recently been suggested that the transfer of energy from a phonon
to the electron to be emitted can be taken as an elementary event that limits further time
granulation. Specifically, it has been observed that the time needed for the event of energy
transfer from a phonon to the R–G center that holds the electron to be emitted cannot
be shorter than the period of the phonon considered as a wave: h/E . Based on this and
considerations of the related phonon statistics, the following equation has been established
for the average electron emission time:7

1

τe,n
= η(EC − Et + kT )

h
e−(EC−Et )/kT (10.34)

In Eq. (10.34), EC − Et is the energy difference between the bottom of the conduction
band and the energy level of the captured electron, h is the Planck constant, and η is a
parameter whose value is shown to be very close to the reciprocal value of the average

7S. Dimitrijev, Irreversible event-based model for thermal emission of electrons from isolated traps,
J. Appl. Phys., vol. 105, p. 103706-1 (2009).
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number of phonons needed to emit a single electron from a midgap R–G center in silicon
(η = 0.07).8

An electron–hole generation is a composite event that consists of two consecutive
emission events: an electron emission and a hole emission in either order. According to
Eq. (10.29), the times taken by each consecutive event (τe,n for the emission of an electron
and τe,p for the emission of a hole) are added to obtain the time for the composite event
(τt ):

τt = τe,n + τe,p (10.35)

For Mt R–G centers that act simultaneously, Eq. (10.30) is applied to obtain the average
time for the generation of a single electron–hole pair: τt/Mt . Looking at this result another
way, Mt/τt is the number of electron–hole pairs generated per unit time. The number of
electron–hole pairs generated per unit time and unit volume, which is the generation rate,
is then

|U | = Mt

V

1

τt
= Nt

τt
= Nt

τe,n + τe,p
(10.36)

With the equation for τe,p that is analogous to Eq. (10.34) for τe,n , the generation rate is
expressed as

|U | = Nt

Aee(EC−Et )/kT + Ahe(Et−EV )/kT
(10.37)

where Ae = h/η(EC − Et ), Ah = h/ηh(Et − EV ), EV is top of the valence band, and ηh

is analogous parameter to the parameter η. The only difference between Eq. (10.37) and
the widely used Shockley-Read-Hall equations, which are derived from the equilibrium
model (Section 5.3.3), is in the parameters Ae and Ah . This difference can be reconciled
by adjusting the values of the capture cross sections in the Shockley-Read-Hall equations.
In other words, the widely established experimental evidence for the Shockley-Read-Hall
equation is just as valid for Eq. (10.37).

The Thermal Equilibrium Condition and the Degeneracy Factor

Application of the equilibrium-independent equations for the emission and capture events
to equilibrium conditions can provide a deeper insight into the equilibrium parameters.
Take the case of thermal equilibrium where the number of electron emission events per
unit time (the emission rate, re,n) is balanced by the number of captured electrons per unit
time (the capture rate, rc,p). This is the condition that is used to derive the emission time
in the absence of the nonequilibrium Eq. (10.34), as shown in Section 5.3.1. In the spirit

8In silicon, the maximum energy of phonons is E p−max = 0.066 eV (this energy corresponds to
the minimum phonon wavelength set by the crystal-lattice constant). The value of 1/η = 14.3 and
the energy of EC − Et = 0.593 eV correspond to the average phonon energy of E p = (EC −
Et )/(1/η) = 0.041 eV.
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of Eq. (10.30), the capture rate is rc,n = n0/τc,n , where n0 is the equilibrium electron
concentration. Therefore,

rc,n = n0

τc,n
= vthσn Nt (1 − ft )n0 (10.38)

This equation is the same as Eq. (5.22) in Section 5.3.1. Similarly, the emission rate is

re,n = Nt ft

τe,n
(10.39)

Based on Eqs. (10.38), (10.39), and (10.34), the equilibrium condition rc,n = re,n becomes

vthσn Nt (1 − ft )n0 = Nt ft
η(EC − Et + kT )

h
e−(EC−Et )/kT (10.40)

With n0 = NC exp−(EC − EF )/kT , Eq. (10.40) is transformed into

vthσn NC (1 − ft ) = ft
η(EC − Et + kT )

h
e(Et−EF )/kT (10.41)

The dependent variable in this equation is the occupancy probability of the R–G center, ft .
From Eq. (10.41), the following equation is obtained for ft :

ft = 1

1 + η(EC − Et + kT )/(hvthσn NC )e(Et−EF )/kT
(10.42)

A comparison to the Fermi–Dirac distribution for donors, given in Example 2.15, shows
that this is the Fermi–Dirac distribution with the degeneracy factor

g = hvthσn NC

η(EC − Et + kT )
(10.43)

According to Eq. (10.42), ft depends on both capture and emission parameters and, for
example, is higher for larger capture cross sections. This result is logical because a larger
capture cross section and an increased capture rate should shift the equilibrium balance
toward a higher population of R–G centers. Therefore, the nonequilibrium equation for
the emission probability clarifies the need for the degeneracy factor in the Fermi–Dirac
distribution applied to trapped electrons (including electrons on donor and R–G centers).
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EXAMPLE 10.2 Emission, Capture, and Generation Times
in a Neutral Semiconductor

Consider neutral P-type silicon with p = 1018 cm−3, V = 100 nm × 100 nm × 100 nm,
and a single donor-type R–G center with EC − Et = 0.6 eV, η = 0.07, ηh = η = 0.07,
σp = 10−15 cm2, and σn = 10−13 cm2. Assume that vth = 107 cm/s.

(a) Using the nonequilibrium emission equation, calculate the average electron and hole
emission times from the R–G center.

(b) Calculate the average time this R–G center requires to capture a hole after a hole
emission event.

(c) Use the values for hole capture and hole emission times to determine the probability that
an electron will occupy the R–G center.

(d) Based on the electron occupancy probability and the electron emission time, determine
the average time required for an electron–hole pair to be generated by the R–G center
(τ0). Compare the result with the result obtained in Example 10.1.

(e) Assuming that the considered R–G center is the only defect in the P-type region
(including the boundaries) that can capture an electron from the conduction band,
calculate the average electron capture time. Based on the result, determine the average
number of electrons in the P-type region.

(f) Use the equations for the hole capture and hole emission times to determine the
degeneracy factor in the Fermi–Dirac function for hole occupancy of the R–G center.

SOLUTION

(a) Based on Eq. (10.34), the average time needed to emit an electron from the R–G center is

τe,n = h

η(Ec − Et + kT )
e(Ec−Et )/kT

= 6.62 × 10−34

1.6 × 10−19 × (0.6 + 0.026)
× e0.52/0.02585 = 1.1 ms

The distance of the R–G center from the valence band is Et − EV = Eg − (EC − Et) =
1.12 − 0.6 = 0.52 eV. The hole emission time is

τe,p = h

ηh(Et − EV + kT )
e(Et−EV )/kT

= 6.62 × 10−34

1.6 × 10−19 × (0.52 + 0.026)
× e0.52/0.02585 = 59.0 μs

τc,p = 1

vthσp p
= 100 ps(b)
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(c) An electron appears at the R–G center when a hole is emitted from the center. This
electron appears at the R–G center for the period of time needed to capture a hole, τc,p .
Therefore, the probability that the R–G center is occupied by an electron is

ft = τc,p

τc,p + τe,p
= 10−10

10−10 + 5.9 × 10−5
= 1.69 × 10−6

(d) This question is not about generation in a depletion layer but about generation in a
neutral P-type semiconductor. Because of that, τ0 is not equal to τt = τe,n + τe,p . There
are two possible events that can occur when a hole is emitted from this R–G center: (1)
electron emission to complete the electron–hole generation process and (2) hole capture.
There are many holes in this P-type region, so the capture time for this R–G center is
very short: τc,p = 100 ps. Accordingly, hole capture and hole emission are the dominant
events. These events determine the probability that the R–G center is occupied by an
electron, as determined in part (c). The probability per unit time that an electron–hole
pair is generated by the R–G center is equal to the probability that the R–G center is
occupied by an electron ( ft ) multiplied by the probability per unit time that the electron
will be emitted into the conduction band (1/τe,n):

1

τ0
= ft

τe,n

Therefore,

τ0 = τe,n

ft
= 1.1 × 10−3

1.69 × 10−6 = 649 s

Although this time is much shorter than the result obtained in Example 10.1, it is still
much longer than the time that this type of R–G center would need to generate an
electron–hole pair in a depletion layer: τt = τe,n + τe,p = 1.1 ms.

(e) The capture cross section for electrons of this donor-type R–G center is σn = 10−13 cm2.
This corresponds to the radius of 1.8 nm, which is much smaller than the dimensions of
the P-type region. The probability per unit length for a free electron to hit the R–G center
is σn/V . This is equivalent to σn Nt , given that Nt for the case of one R–G center inside
volume V is Nt = 1/V = 1015 cm−3. Because the electron travels with the thermal
velocity vth , the probability of hitting the R–G center per unit time is vthσn Nt . This is
also the probability per unit time that the electron is captured, because the R–G center is
not occupied by an electron. Therefore,

τc,n = 1

vthσn Nt
= 1

105 × 10−17 × 10−21
= 1.0 ns

The average number of electrons is

N = τc,n

τc,n + τe,n
= 10−9

10−9 + 649
= 1.5 × 10−12
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Using the equilibrium equation n = n2
i /p = 100 cm−3, the average number of

electrons is N = nV = 10−13.
(f) The R–G center is occupied by a hole after a hole capture event. This hole appears at

the R–G center for time needed to emit it into the valence band, τe,p . Therefore, the
probability for hole occupancy is

fht = τe,p

τe,p + τc,p
= 1

1 + τc,p/τe,p

With the equations for τc,p and τe,p , given in parts (a) and (b), we obtain

τc,p

τe,p
= ηh(Et − EV + kT )

hvthσp p exp(Et − EV )/kT

Taking into account that p = NV exp [−(EF − EV )/kT ], we write

τc,p

τe,p
= ηh(Et − EV + kT )

hvthσp NV
e(EF −Et )/kT

fht = 1

1 + ηh(Et − EV + kT )/(hvthσp NV )e(EF −Et )/kT

Given that the Fermi–Dirac distribution for occupancy of isolated centers is

fht = 1

1 + (1/g)e(EF−Et )/kT

the degeneracy factor is

g = hvthσp NV

ηh(Et − EV + kT )
= 6.62 × 10−34 × 105 × 10−19 × 3.1 × 1025

0.07 × 1.6 × 10−19 × (0.52 + 0.026)
= 0.034

10.2 TWO-DIMENSIONAL TRANSPORT IN MOSFETs AND HEMTs

The classical electron-gas model, which considers electrons as mobile particles, can be
applied as long as the electron wavelengths are much smaller than the dimensions of the
space in which the electrons can freely move. When the size of the potential-energy well
that contains the electrons becomes comparable to the electron wavelength, the electrons
do not move as free particles but appear as standing waves. This effect is called quantum
confinement. With one-dimensional quantum confinement, the electrons are free to move
in the other two directions, and they are referred to as a two-dimensional electron gas.
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This situation appears in the channel of MOSFETs and other field-effect devices such
as the high-electron mobility transistor (HEMT). With two-dimensional confinement, the
electron gas becomes one-dimensional. This is the case with nanowire transistors and
carbon nanotubes, which are considered in Section 10.3. The situation with the holes—the
second current carrier in semiconductors—is fully analogous to the case of electrons, so
we deal with the concepts of two-dimensional and one-dimensional hole gases. The effect
of one-dimensional quantum confinement is not so dramatic that it completely replaces the
classical understanding of carrier transport, and in fact the classical device equations can be
used with some adaptation of the model parameters. The effects of quantum confinement
are introduced in this section to the level that is necessary for a modern engineer to under-
stand the meaning of the terminology used, to learn how to incorporate these effects into
the existing MOSFET equations, and to learn how to model HEMTs with these equations.

10.2.1 Quantum Confinement
The current carriers in field-effect transistors appear in approximately triangular potential
wells, such as the one illustrated in Fig. 10.5. This is the case with the ordinary MOSFETs
and also with the HEMT. In the case of silicon MOSFETs, the wide energy gap of SiO2
grown on Si creates the conduction-band discontinuity (offset) that forms the triangular
potential-energy well. This effect is achieved by what is known as energy-gap engineering
in the case of compound semiconductors such as GaAs and GaN. Figure 10.6 illustrates
the cross section and the energy-band diagram of the AlGaAs–GaAs heterojunction.9 The
energy gap of AlGaAs is wider, and it creates a conduction-band offset at the interface with
GaAs. This leads to the formation of a triangular potential well.

Because the width of the triangular potential well approaches zero at the tip, we have a
device dimension (the width of the potential well) that must become smaller than the elec-
tron wavelength. As a consequence, the wave properties of electrons become important. In
the direction along the width of the potential well, which is the x-direction in Fig. 10.5,
electrons cannot move freely and appear as standing waves. The first standing wave that
can be formed corresponds to half of the electron wavelength and appears at the energy

EF

1st energy
subband

2nd energy
subbandEC

EV

EF

x

E0

E1

Figure 10.5 Illustration of energy level
quantization that creates two-dimensional
electron gas (2DEG).

9Section 9.4 describes the drawing of the energy-band diagram of the AlGaAs–GaAs heterojunction.
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Figure 10.6 Cross section and energy-band diagram of
an AlGaAs–GaAs system.

level that is above the bottom of the conduction band by a value labeled by E0 (Fig. 10.5).
The second standing wave corresponds to the full electron wavelength and appears at
energy level E1. As distinct from the quantized energy levels in the x-direction, the electron
energy in the y- and z-directions can still take almost continuous values that depend on the
py and pz components of the electron momentum. Accordingly, the total electron energy
can be expressed as

E = En + p2
y

2mn,y
+ p2

z

2mn,z
(n = 0, 1, 2, . . .) (10.44)

where mn,y and mn,z are the electron effective masses in y and z directions, respectively.
Therefore, what is seen as a single energy level in the x-direction appears as a two-
dimensional energy continuum in the y and z dimensions. Each energy level En (n =
0, 1, 2, . . .) represents the bottom of a two-dimensional energy continuum that is called
an energy subband. Each of these subbands is two-dimensional, which means that the
electrons can move and be scattered like particles in two dimensions and that the electron-
gas concept can be applied only to these two dimensions. Consequently, the electrons in a
two-dimensional subband are referred to as the two-dimensional electron gas (2DEG).

The values of the electric field forming the triangular potential well, which corre-
sponds to the slope of the EC line in Fig. 10.5, and the electron wavelength determine
the quantized energy levels En (n = 0, 1, 2, . . .). The energy levels En can be obtained
by solving the Schrödinger equation, analogously to the case of electrons confined
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in a rectangular potential well presented in Example 2.2. Because of fairly involved
mathematics in the case of triangular potential well, it is sufficient to present the final
result:10

En ≈
(

h2q2

8π2mx

)1/3 [
3π

2

(
n + 3

4

)]2/3

E2/3
eff (n = 0, 1, 2, . . .) (10.45)

In Eq. (10.45), mx is the electron effective mass in the x direction and Eeff is the effective
electric field defining the triangular potential well (the slope of EC lines in Figs. 10.5 and
10.6), which can be approximated by

Eeff = QI /2 + Qd

εs
(10.46)

where QI is the mobile charge per unit area in the two-dimensional electron gas (equivalent
to the inversion-layer charge in MOSFETs), Qd is the fixed depletion-layer charge per unit
area, and εs is the semiconductor permittivity.

The effective mass of electrons in GaAs is isotropic and very small: mx = my =
mz = 0.067m0 (Fig. 2.13 and Section 2.3.1). With this effective mass and QI /2 + Qd =
2 × 1012 cm−2, which corresponds to Eeff = 1.4 × 105 V/cm, the values of En for n = 0
and 1 are E0 = 112 meV and E1 = 197 meV, respectively. This means that these two
two-dimensional subbands are separated by E1 − E0 = 85 meV, which is more than three
times higher than the thermal energy at room temperature. For sufficiently high doping
level [high Qd in Eq. (10.46)] the Fermi level can appear between E0 and E1 for low and
moderate values of QI (as shown in Fig. 10.5) so that most of the electrons are confined
in the first subband. For higher values of QI , electrons will also populate the second
two-dimensional subband (see Example 10.4). We refer to this situation as a quasi-two-
dimensional electron gas.

The effective mass of electrons in Si is anisotropic, corresponding to six ellipsoidal
E–k minima, as shown in Fig. 2.14 (Section 2.3.1). Projections of these six ellipsoids
onto a two-dimensional plane that corresponds to two-dimensional subbands lead to two
circular and four elliptical E–k minima. In the third dimension, the electrons appear as
standing waves with the following effective masses in Eq. (10.45): mx = ml = 0.98m0 for
the two circular subbands and mx = mt = 0.19m0 for the four elliptical subbands. With
mx = 0.98m0 and QI /2 + Qd = 2 × 1012 cm−2, the bottoms of the first and the second
circular subbands are obtained from Eq. (10.45) as E0 = 86 meV and E1 = 49 meV,
respectively. In this case, the separation between these two subbands (37 meV) is just above
the thermal energy, which means that a considerable fraction of the electrons occupies the
second circular subband. As shown in Example 10.4, the first elliptical subband is also
occupied by electrons because its bottom is very close to the bottom of the second circular
subband. Again, this is the case of quasi-two-dimensional electron gas.

To obtain the actual electron-charge density in a two-dimensional subband, we
multiply the density of the electron states [D(Ekin )] by the probability that an energy

10T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod.
Phys., vol. 54, pp. 437–672 (1982).



10.2 Two-Dimensional Transport in MOSFETs and HEMTs 421

level Ekin is occupied by an electron [ f (Ekin )] and then integrate to include all the energy
levels in the subband:

QI n = −q
∫ ∞

0
D(Ekin ) f (Ekin )d Ekin (10.47)

The two-dimensional density of electron states can be determined by a procedure that
is analogous to the three-dimensional case described in Example 2.5. The result is
(Problem 2.15):

D(Ekin ) = M
4πm∗

h2 (10.48)

where M is the degeneracy factor that accounts for the number of equivalent E–k minima
(M = 1 for the electrons in GaAs, M = 2 for the electrons associated with the circular
subbands in Si, and M = 4 for the electrons associated with the elliptical subbands in
Si) and m∗ is the density-of-states effective mass (m∗ = 0.067m0 for the electrons in
GaAs, m∗ = 0.19m0 for the electrons associated with the circular subbands in Si, and
m∗ = √

mlmt = 0.417m0 for the electrons associated with the elliptical subbands in Si).
With f (Ekin) = 1/{1 + exp [(Ekin − EF )/kT ]} and D(Ekin ) given by Eq. (10.48), the
integration in Eq. (10.47) results with the following equation:

QI,n = −M
4πqm∗kT

h2 ln
[
1 + e(EF −En )/kT

]
(10.49)

The energy En in Eq. (10.49) is the bottom of the two-dimensional subband with respect to
the bottom of the conduction band at the surface, EC−s—the tip of the triangular potential
well in Fig. 10.5. To establish the Fermi level with respect to EC−s , we observe that EC−s

is below the bottom of the conduction band in the body of the crystal (EC ) by the band
bending due to the surface potential (qψs):

EF − EC−s = EF − (EC − qψs) = qψs − (EC − EF ) (10.50)

Next we recall that EF in the body of a P-type semiconductor is further away from the
intrinsic Fermi-level position (EC − Ei ) by the value of the Fermi potential (qφF ):

EC − EF = EC − Ei + qφF (10.51)

From Eqs. (10.50) and (10.51) we obtain

EF − EC−s = qψs − (EC − Ei ) − qφF (10.52)

Given that En in Eq. (10.49) is with respect to EC−s , EF − En in Eq. (10.49) is equal to
qψs − (EC − Ei ) − qφF − En:

QI,n = −M
4πqm∗kT

h2 ln
{

1 + e[qψs−(EC −Ei )−qφF −En]/kT
}

(10.53)
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EXAMPLE 10.3 Separations Between Two-Dimensional Subbands in GaAs and Si

If the effective electric field that forms the triangular potential well is Eeff = 5 × 105 V/cm in
both an Si MOSFET and a GaAs HEMT, calculate E0 and E1 in (a) GaAs, (b) Si for circular
subbands and (c) Si for elliptical subbands.

SOLUTION

(a) For the case of GaAs, where mx = 0.067×9.1×10−31 = 6.097×10−32 kg, Eq. (10.45)
gives the following results:

E0 =
[
(6.62 × 10−34)2 × (1.6 × 10−19)2

8π2 × 6.097 × 10−32

]1/3 (
9π

8

)2/3

× (5 × 107)2/3

= 4.424 × 10−20 J = 276.5 meV

E1 =
[
(6.62 × 10−34)2 × (1.6 × 10−19)2

8π2 × 6.097 × 10−32

]1/3 (
9π

8

)2/3

× (5 × 107)2/3

= 7.782 × 10−20 J = 486.4 meV

(b) For the case of circular subbands in Si, mx = 0.98m0, which gives E0−c = 113.2 meV
and E1−c = 199.1 meV.

(c) For the case of elliptical subbands in Si, mx = 0.19m0, which gives E0−e = 195.4 meV
and E1−e = 343.8 meV.

EXAMPLE 10.4 Position of Fermi Level and Population of Subbands

Assuming that QI  Qd in Example 10.3 and that all the electrons occupy the lowest subband,
determine the corresponding positions of the Fermi level for both GaAs and Si. The dielectric
constant of GaAs is 12.9. Is the assumption that only the lowest subband is occupied correct?

SOLUTION

From Eq. (10.46) we can obtain the electron density in 2DEG:

NI = QI

q
= 2εs Eeff

q

The results are NI = 2 × 12.9 × 8.85 × 10−12 × 5 × 107/1.6 × 10−19 = 7.13 × 1016 m−2 for
GaAs and NI = 2 × 11.8 × 8.85 × 10−12 × 5 × 107/1.6 × 10−19 = 6.53 × 1016 m−2 for Si.
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Assuming that exp [(EF − E0)/kT ]  1 in Eq. (10.49),

NI = M
4πm∗

h2 (EF − E0)

EF − E0 = NI h2

4π Mm∗

In the case of GaAs (M = 1 and m∗ = 0.067m0),

EF − E0 = 7.13 × 1016 × (6.62 × 10−34)2

4π × 0.067 × 9.1 × 10−31 = 4.08 × 10−20 J = 255.1 meV

In the case of Si (M = 2 and m∗ = 0.19m0),

EF − E0 = 6.53 × 1016 × (6.62 × 10−34)2

4π × 2 × 0.19 × 9.1 × 10−31 = 6.59 × 10−21 J = 41.2 meV

We can see that for these conditions EF would be above the bottom of the second subband
in GaAs (E1 − E0 = 486.4 − 276.5 = 209.9 eV), which means that the population of the
second subband cannot be ignored. In the case of Si, EF is close to both E1−c (E1−c − E0−c =
199.1 − 113.2 = 85.9 meV) and E0−e (E0−e − E0−c = 195.4 − 113.2 = 82.2 meV), meaning
that the populations of the second circular and the first elliptical subbands cannot be ignored.

10.2.2 HEMT Structure and Characteristics
As shown in Fig. 10.6, the 2DEG in HEMTs results from conduction-band discontinuity at
the AlGaAs–GaAs interface. The quality of the AlGaAs–GaAs interface is extraordinary. It
is created by a continuous process of molecular-beam epitaxy, which enables us to change
from GaAs to AlGaAs within a single atomic layer by changing the gas composition inside
the epitaxial chamber. In addition, no doping atoms appear in the area of 2DEG, and a thin
AlGaAs layer can be inserted to separate the 2DEG from the heavily doped N+ AlGaAs.
Consequently, both interface roughness scattering and Coulomb scattering from the doping
ions are virtually eliminated. Thus any form of scattering is eliminated in one of the three
spatial dimensions. The reduction in scattering means high electron mobility in the 2DEG,
and it also means reduced noise. The properties of high electron mobility and low noise
associated with the 2DEG are very useful for high-frequency and low-noise applications.

The 2DEG created at the AlGaAs–GaAs heterojunction makes the HEMT channel.
As Fig. 10.7 illustrates, the channel is contacted at the ends to create source and drain
terminals. Also a gate in the form of Schottky contact is created between the source and
drain to provide a means of controlling the device current. Negative gate voltages reduce
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Figure 10.7 HEMT structure and energy bands at source and drain contacts.

the electron concentration in the channel and can completely repel the electrons, turning
the device off. Therefore, the HEMT appears as a depletion-type FET. The transfer and
output characteristics are analogous to those previously described for the depletion-type
MOSFET.

The electron path from the source to the drain is indicated by the line and the arrows in
Fig. 10.7. Electrons pass through a couple of heterojunctions between the source terminal
and the 2DEG, as well as between the 2DEG and the drain terminal. The energy-band
diagrams illustrate the barrier shapes associated with these heterojunctions at typical drain-
to-source bias VDS . It can be seen that electrons have to tunnel from the N+ GaAs
source into the N+ AlGaAs layer and then tunnel again from the drain end of the 2DEG
back into the N+ AlGaAs layer. This introduces significant source and drain resistances,
which adversely affect the high-speed and noise performance of the HEMT. Consequently,
numerous modifications to source and drain contacts have been introduced to minimize
the adverse effects of the source and drain resistances. The gate resistance is also very
important, especially in terms of noise performance. The gate is typically made in a
mushroom shape to cut its resistance without increasing the input capacitance, which
improves the noise figure of the HEMT.
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10.2.3 Application of Classical MOSFET Equations to
Two-Dimensional Transport in MOSFETs and HEMTs

The threshold voltage (VT ) is a defining concept in MOSFETs used as switches and is
therefore the central parameter in the classical MOSFET equations. The threshold voltage
determines whether mobile carriers do or do not exist in the MOSFET channel,

QI =
{

0 for VGS ≤ VT

−(VGS − VT )Cox for VGS ≥ VT
(10.54)

where QI is the density of mobile charge in the channel, Cox is the gate-oxide capacitance,
and VGS is the gate voltage.

Assuming that most of the mobile charge is located in the lowest two-dimensional
subband, the density of mobile charge based on the model of two-dimensional electron gas
is given by Eq. (10.53) for n = 0:

QI ≈ QI,0 = −M
4πqm∗kT

h2 ln
{

1 + e[qψs−(EC−Ei )−qφF −E0]/kT
}

(10.55)

For qψs � (EC − Ei ) + qφF + E0, exp{[qψs − (EC − Ei ) − qφF − E0] /kT } ≈ 0 and
QI,0 ≈ 0. For qψs  (EC−Ei ) + qφF+E0, exp{[qψs − (EC −Ei )−qφF − E0] /kT } 
1 and QI,0 ≈ (4Mπqm∗/h2) [qψs − (EC − Ei ) − qφF − E0]. The boundary between
these two regions can be defined as ψs = (EC − Ei )/q + φF + E0/q and QI expressed
analogously to Eq. (10.54):

QI =
{

0 for ψs ≤ (EC − Ei )/q + φF + E0/q
(4Mπq2m∗/h2)

[
ψs − (EC − Ei )/q − φF − E0/q

]
for ψs ≥ (EC − Ei )/q + φF + E0/q

(10.56)

Clearly, in the case of a two-dimensional gas, the threshold condition of the surface po-
tential, ψs−th , can be defined as

ψs−th = (EC − Ei )/q + φF + E0/q (10.57)

As distinct from this, the threshold condition of the surface potential in the case of classical
three-dimensional model is

ψs−th ≈ 2φF (10.58)

Based on Eqs. (7.18) and (7.19) and labeling the surface potential at the threshold condition
by ψs−th , the following form of the threshold-voltage equation accounts for both values of
ψs−th :

VT = VF B + ψs−th + γ
√

ψs−th (10.59)
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In nondegenerate semiconductors, φF < (EC − Ei )/q , which means that the 2DEG
value of ψs−th is higher than the classical value of ψs−th = 2φF . Nonetheless, 2φF

is a parameter in the classical MOSFET model and can be adjusted so that the classical
threshold-voltage equation corresponds to the 2DEG threshold condition.

Equation (10.59) can also be used to determine the threshold voltage in HEMTs, with
a note that Cox in γ = √

2εsq NA/Cox is now the capacitance per unit area of the AlGaAs
layer: εs/tAlGa As .

Similarly, the channel-carrier mobility (μ0) or the transconductance parameter (K P =
μ0Cox ) in the gain factor β [Eq. (8.22)] can be adjusted so that the classical MOSFET
models provide a good fit even when there is a pronounced carrier confinement so that the
electron gas is purely two dimensional. This is because the classical equations are derived
from the application of Ohm’s law to the inversion layer, which is already assumed to have
negligible thickness; hence the density of the inversion-layer charge QI is expressed per
unit area. Equations (8.13) to (8.16) show how the differential form of Ohm’s law leads to
the following general relationship between the current through the inversion layer ID and
the voltage that drives this current VDS:

ID = μ0W

Leff
QI VDS (10.60)

In this equation, QI is the average charge density along the channel. The need to use
the average value is because VDS impacts the charge density so that QI varies along the
channel. For the case of small VDS , this impact is insignificant: QI is given by Eq. (10.54),
and ID is linearly dependent on VDS. For larger VDS values, however, Eq. (10.54) for QI

has to be modified to include the impact of VDS. Because the electric potential due to VDS

varies between source and drain, changing from 0 V at the source end of the channel to
VDS itself at the drain end, a position-dependent electric-potential term V (y) has to be
included in the equation for QI :

QI (y) =
{

0 for VGS ≤ VT − V (y)

−[VGS − VT − V (y)]Cox for VGS ≥ VT − V (y)
(10.61)

As a result, QI becomes position-dependent and has to be averaged so that Eq. (10.60) can
be used to determine the total drain current:

QI = 1

L

∫ L

0
QI (y)dy (10.62)

Many different approaches and assumptions are utilized to perform the averaging shown
in Eq. (10.62), which results in many different MOSFET models. Nonetheless, they are all
able to predict the departure from the linear ID–VDS relationship and eventual saturation of
ID . These models can also be used when the quantum confinement is pronounced, resulting
in 2DEG, because the effects of the quantum confinement can be included by adjustments
of the model parameters, in particular the threshold voltage VT and the channel-carrier
mobility μ0.
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EXAMPLE 10.5 Comparison of 2DEG and 3DEG Threshold Voltages in Si MOSFET

The body doping of a silicon N-channel MOSFET is NA = 5 × 1017 cm−3.

(a) Determine the 3DEG and 2DEG threshold values of the surface potential (ψs−th).
(b) If tox = 2 nm and VF B = 0.2 V, determine the 2DEG and 3DEG threshold voltages.

SOLUTION

(a) Equation (10.58) specifies the threshold condition for the surface potential in the case of
the classical three-dimensional model:

ψs−th ≈ 2φF

where the Fermi potential [see Eq. (2.88)] is

φF = Vt ln
NA

ni
= 0.02585 ln

5 × 1017

1010 = 0.46 V

Therefore, the threshold value of the surface potential with the 3DEG model is ψs−th =
0.92 V.

Equation (10.57) specifies the threshold condition for the surface potential in the
case of two-dimensional gas,

ψs−th = Eg/2q + φF + E0/q

where Eg/2 = EC − Ei in the case of Si, E0 is given by Eq. (10.45) for n = 0,

E0 =
(

h2q2

8π2mx

)1/3 (
9π

8

)2/3

E2/3
eff

and Eeff is given by Eq. (10.46) with QI = 0 at the threshold condition:

Eeff = Qd

εs
= 1

εs
q NAwd =

√
2q NAψs−th

εs

It can be seen that the calculation of ψs−th requires E0 and Eeff, which depend on ψs−th

itself. An iterative process has to be applied to solve these equations. We can begin the
iterative process with ψs−th = 1 V as the input parameter in the equation for Eeff and
then calculate E0 and ψs−th from the other two equations, which provide us with a new
value for ψs−th to begin a new iteration. This process converges to a stable value of
ψs−th very quickly:

Input Output
ψs-th (V) Eeff (V/m) E0 (eV) ψs-th (V)

1.0000 3.91 × 107 0.1336 1.1518
1.1518 4.20 × 107 0.1400 1.1538
1.1583 4.21 × 107 0.1403 1.1586
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Therefore, the threshold value of the surface potential with the 2DEG model is ψs−th =
1.16 V.

(b) The threshold voltage is given by Eq. (10.59) where the body factor γ is

γ =
√

2εsq NA

Cox
= tox

√
2εsq NA

εox
= 0.24 V1/2

For the case of 3DEG,

VT = VF B + ψs−th + γ
√

ψs−th = 0.2 + 0.92 + 0.24
√

0.92 = 1.35 V

For the case of 2DEG,

VT = VF B + ψs−th + γ
√

ψs−th = 0.2 + 1.16 + 0.24
√

1.16 = 1.62 V

EXAMPLE 10.6 The Question of Ballistic Transport

The standard MOSFET equations cannot be applied for ballistic transport, which occurs when the
carriers are not scattered as they pass through the MOSFET channel. To check the applicability
of the standard MOSFET equations, estimate the number of scattering events for each electron
in the channel of a nanoscale MOSFET having a channel length of L = 50 nm and an applied
voltage between drain and source of VDS = 0.1 V. The mobility of the electrons in the channel
is μn = 300 cm2/V · s, and their effective mass for conductivity is m∗ = 0.19m0.

SOLUTION

The time between two scattering events (τsc) can be determined from the mobility value:

μn = qτsc

m∗

τsc = m∗

q
μn = 3.24 × 10−14 s

The scattering length is related to the scattering time and the thermal velocity,

lsc = vthτsc

The thermal velocity can be determined from the following condition:

m∗v2
th

2
= kT
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Note that the average thermal energy for the two-dimensional case is used (kT ) instead of the
usual three-dimensional term (3kT/2). From the preceding equations, the following equation can
be obtained for the relationship between scattering length and mobility:

lsc = μn

q

√
2kT m∗ = 7.1 nm

The scattering length is smaller than the channel length. For an electron that moves along the
channel only, the average number of scattering events would be L/ lsc. However, this estimate
gives the smallest number of scattering events because the electrons scatter in random directions,
meaning that they travel a longer path than the channel length. Following the insights from
Section 10.1, the number of scattering events (Nsc) can be estimated as the ratio between the
average time that an electron travels from the source to the drain τT and the scattering time:
Nsc = τT /τsc. The time τT can be determined from the drift velocity, which is obtained from the
mobility and the electric field:

vdr = μn E = μn
VDS

L
= 6.0 × 104 m/s

τT = L

vdr
= 8.33 × 10−13 s

Nsc = τT

τsc
= 8.33 × 10−13

3.24 × 10−14 = 25.7 scattering events

This is a sufficient number of scattering events to allow us to conclude that the MOSFET is not
in ballistic mode and that the standard MOSFET equations, based on Ohm’s law, are applicable.
From the analysis presented, it is obvious that the number of scattering events reduces with an
increase in mobility:

Nsc = τT

τdr
= q L

μ2
nm∗E

This means that ballistic transport is most likely to occur in materials with high carrier mobility.

10.3 ONE-DIMENSIONAL TRANSPORT IN NANOWIRES
AND CARBON NANOTUBES

Recent progress in terms of techniques for growth of semiconductor nanowires and carbon
nanotubes has generated considerable interest in their potential to enable the ultimate
size reduction of electronic devices. The atomic structure of semiconductor nanowires
is the same as in the common three-dimensional crystals. The nanowires exhibit distinct
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properties, however, because their diameter is smaller than the electron wavelength so
that the electrons are under the condition of two-dimensional quantum confinement. This
results in one-dimensional electron gas, the only dimension for electron transport being
along the wire. The atomic structure of carbon nanotubes is described in Section 1.1.3; it is
different from that of the nanowires because carbon nanotubes are hollow cylinders whose
walls have the two-dimensional graphene structure. Another difference having practical
importance is due to significantly reduced carrier scattering in the two-dimensional
graphene-type crystal, which results in very high carrier mobilities. Yet another difference
is due to the fact that carbon nanotubes can appear as both metallic and semiconductive,
depending on their helicity. Similar to nanowires, however, carbon nanotubes are so small
in diameter that the electrons appear as a one-dimensional electron gas due to the two-
dimensional quantum confinement.

Since the electron transport in semiconductor nanowires and carbon nanotubes is
one-dimensional, the standard MOSFET equations must be adapted for application to
nanowire and carbon-nanotube FETs. This issue is considered in Section 10.3.1, under
the assumption that the ohmic nature of electron transport is maintained. Because
semiconductor nanowires and carbon nanotubes are of practical interest due to their
potential for the ultimate size reduction, it is very important to consider the case of ballistic
transport, which emerges when the length of the wires or the tubes becomes smaller than
the carrier-scattering length, with the result that ohmic resistance no longer exists. Because
of the absence of ohmic resistance, ballistic transport has generated considerable hype
in terms of potential applications. Section 10.3.2 describes the ultimate limit in terms of
resistance reduction (quantum conductance limit), since a modern engineer cannot properly
consider potential applications of nanowires and nanotubes without this effect of quantum
resistance.

10.3.1 Ohmic Transport in Nanowire and Carbon-Nanotube FETs
To enable continuous reduction in channel length while avoiding short-channel effects due
to penetration of the electric field from the drain to the source regions, MOSFET structures
that enable better gate control of the channel region are needed. The SOI MOSFET with
ultrathin body (Fig. 8.26) and the FinFET (Fig. 8.27) demonstrate that the evolution of
these structures is moving toward the thinnest possible body, fully surrounded by the gate
electrode, as shown by the conceptual diagram in Fig. 10.8.11

In the nanowire implementation of a coaxially gated FET, the body is a semiconductor
nanowire exhibiting two-dimensional carrier confinement. This means that the electron gas
is one-dimensional (1DEG) and QI in these FETs is the channel charge per unit length,
expressed in C/m. In the carbon-nanotube implementation of the coaxially gated FETs
from Fig. 10.8, the body is a carbon nanotube. This enables the FET to have the thinnest
possible body. The atomic thickness of the tube enables us to reduce the length between the
source and drain contact to several nanometers while avoiding the short-channel effects.

QI can be determined by the quantum-mechanical approach described in Sec-
tion 10.2.1 for the case of 2DEG. In the case of 1DEG, the density of states in Eq. (10.47)

11J. Appenzeller, Carbon nanotubes for high-performance electronics—Progress and prospect, Proc.
IEEE, vol. 96, pp. 201–211 (2008); IEEE Trans. Electron Devices, Special Issue on Nanowire
Transistors: Modeling, Device Design, and Technology, vol. 55 (2008).
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Figure 10.8 Conceptual diagram
of an array of coaxially gated FETs
where the body is either semi-
conductor nanowire (nanowire FET)
or carbon nanotube (carbon-
nanotube FET).

is one-dimensional, expressed in eV/m, which leads to QI in C/m. Similar to the 2DEG,
the one-dimensional QI can also be related to applied voltage and the capacitance through
Eq. (10.54), provided the threshold-voltage value is adjusted to account for the carrier-
confinement effects. In the case of 1DEG, however, Cox in Eq. (10.54) is the capacitance
per unit length (expressed in F/m). This is consistent with the fact that the resultant QI

should be in C/m.
Because the free-carrier density (QI ) in 1DEG becomes charge per unit length, there

is no channel width (W ) in Eq. (10.60). In the case of transistor arrays (N nanowires or
carbon nanotubes running in parallel between the source and the drain), W in Eq. (10.60)
is replaced by the number of nanowires or carbon nanotubes N :

ID = N
μ0

Leff
QI VDS (10.63)

Apart from the use of Cox as capacitance per unit length in Eq. (10.54) and the
replacement of W by N in Eq. (10.63), the classical MOSFET equations can still be used
to model the current–voltage characteristics of nanowire and carbon-nanotube FETs, but
only if the current remains limited by carrier scattering and the concept of mobility can be
applied. Because the reason for considering nanowires and carbon nanotubes is to reduce
the channel length, it may happen that the free carrier path between two scattering events
becomes longer than the channel length. When this occurs, the current carriers moving
from the source to the drain do not experience ohmic resistance and the concept of mobility
cannot be applied. In this case, we deal with ballistic transport of carriers between the
source and the drain, which is considered in the next section.

EXAMPLE 10.7 Resistance of Semiconductor Nanowire

Determine the resistance of a coaxially gated semiconductor nanowire with length L = 20 nm,
diameter d = 3 nm, gate-dielectric thickness tox = 2 nm, and dielectric permittivity ε = 10ε0 if
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the effective gate voltage is VGS − VT = 0.1 V and the carrier mobility is μ0 = 100 cm2/V · s.
The capacitance per unit length of a coaxial cable is given by C = 2πε/ ln(D/d), where d is the
outside diameter of the inner conductor and D is the inside diameter of the shield.

SOLUTION

Based on the equation for capacitance per unit length of a coaxial cable, the gate-dielectric
capacitance of the nanowire is

Cox = 2πε

ln(d + tox)/d
= 2π × 10 × 8.85 × 10−12

ln(3 + 2)/3
= 1.1 × 10−9 F/m

The charge per unit length is obtained from Eq. (10.54):

QI = (VGS − VT )Cox = 0.1 × 1.1 × 10−9 = 1.1 × 10−10 C/m

The resistance can be determined from Eq. (10.63):

R = VDS

ID
= Leff

μ0 QI
= 20 × 10−9

100 × 10−4 × 1.1 × 10−10 = 18.4 k�

10.3.2 One-Dimensional Ballistic Transport and the Quantum
Conductance Limit

The term ballistic transport describes the transport of current carriers that do not ex-
perience scattering. Such transport occurs when the distance between two contacts, which
is the channel length between the source and drain regions in FETs, is shorter than the
free path between two scattering events. This situation can practically occur in nanowire
and carbon-nanotube FETs because these devices enable a very aggressive reduction in
channel length. In addition to the channel length reduction, carbon nanotubes enable
significant reduction in carrier scattering, which means a significant increase in the mean
free path between two scattering events. Therefore, the most likely devices to exhibit
ballistic transport are those based on carbon nanotubes.

The absence of carrier scattering, which corresponds to zero ohmic resistance, does
not mean that huge currents can be achieved by applying almost negligible voltages. The
factors that limit the current in the absence of scattering are (1) limited density of electron
states, which means limited electron concentration, and (2) limited electron velocity. In
the case of a one-dimensional electron gas, the concentration of electrons is the number of
electrons per unit length, n→ (the arrow in the subscript indicates that we are focusing on
the electrons moving in the positive x-direction only). If the electrons move with velocity
vx along the x-direction, we can determine the current of these electrons as the number of
electrons that reach a selected point per unit time. The electrons that can reach the selected
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point during time �t are within the distance L = vx�t . The number of electrons within
the distance L is equal to n→L and the number of electrons reaching the selected point
per unit time is n→L/�t = n→vx . This is the particle current; the electric current of the
electrons moving in the x-direction is

I→ = −qn→vx (10.64)

Consider first the ultimate quantum-mechanical limit to the number of electrons per
unit length (n→). This limit relates to the finite one-dimensional density of possible
electron states. The concept of density of states, and their inherent limitation, was
introduced in Section 2.3.3. Nonetheless, full derivation of the one-dimensional density of
states is provided in the following text so that the real reason for the ultimate conductance
limit can be clearly seen. Furthermore, this derivation begins with the fundamental reason
for this conductance limit, which is that electron size is finite. If we label the smallest
possible electron size in one dimension by �x , the maximum number of electrons per
unit length is C = 2/�x because only two electrons with different spins can share a
single state defined by �x . Although �x itself is not a physical constant, the product
between �x and the smallest possible momentum granulation, �px , is equal to the
Planck constant:

�x�px = h (10.65)

This is, of course, the fundamental quantum-mechanical principle expressed in the form of
the Heisenberg uncertainty relationship between particle position and particle momentum.
Including this relationship, the maximum possible number of electrons per unit length
becomes

C = 2

h
�px (10.66)

Particle momentum is directly related to the particle velocity ( px = m∗vx ), which is
directly related to the kinetic energy (Ekin = m∗v2

x/2). This leads to the following
relationship between the momentum and the kinetic energy:

px = ±
√

2m∗Ekin (10.67)

The first derivative of this equation establishes the following relationship between a small
change in the momentum (dpx) and a small change in the kinetic energy (d Ekin ):

dpx = ±
√

m∗

2
E−1/2

kin d Ekin (10.68)

Given that the momentum change (dpx) cannot be smaller than �px , Eqs. (10.66) and
(10.68) can be used to express the maximum possible number of electrons per unit length
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in terms of the kinetic energy:

C→(Ekin ) =
√

2m∗

h
E−1/2

kin︸ ︷︷ ︸
D→(Ekin )

d Ekin (10.69)

Note that only electrons with positive px (velocities along x direction) are included in
Eq. (10.69), which is indicated by the arrows in the symbol subscripts. This means that
D→ in Eq. (10.69) is half the value of the one-dimensional density of electron states
per unit energy (to obtain the total density of states, as required in Problem 2.16, D→
should be doubled to include D←, which corresponds to the negative momenta). Both
D→(Ekin) and C→(Ekin) express the maximum possible number of electrons per unit
length, the difference being that C→(Ekin) is the total number within a small energy range
d Ekin , whereas D→(Ekin ) is the number per unit energy. The actual number of electrons
is smaller than the maximum possible number when some of the electron states are not
occupied by electrons. This means that the actual number of electrons per unit length
(moving in the x-direction) is C→(Ekin) f (Ekin), where f (Ekin) is the probability that
an electron state is actually occupied by an electron. It should also be noted that this is the
actual number of electrons with kinetic energies in the small energy range between Ekin

and Ekin + d Ekin ; in other words, this is a fraction of the actual number of electrons per
unit length that will be labeled by dn→:

dn→(Ekin) =
√

2m∗

h
E−1/2

kin f (Ekin )d Ekin (10.70)

Having established that the number of electrons per unit length depends on the kinetic
energy, we can modify Eq. (10.64) to account for this effect:

d I→(Ekin) = −qvxdn→(Ekin) = −q

√
2Ekin

m∗ dn→(Ekin ) (10.71)

Eliminating dn→ from Eqs. (10.70) and (10.71), we obtain

d I→(Ekin) = −2q

h
f (Ekin)d Ekin (10.72)

This equation gives the fraction of the current due to the electrons with kinetic energies
in the range between Ekin and Ekin + d Ekin . To obtain the total current, we integrate the
current fractions along the whole range of kinetic energies:

I→ = −2q

h

∫ ∞

0
f (Ekin)d Ekin (10.73)

This current is illustrated by the shaded area in Fig. 10.9 corresponding to the source end
of a nanowire or nanotube. To simplify this integration, we will assume that f (Ekin) = 1
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Figure 10.9 Illustration of energy
distributions of ballistic electron
currents in a nanowire/nanotube, as
defined by Eq. (10.72). I→ originates
at the source end, whereas I←
originates at the drain end of the
nanowire/nanotube.

for Ekin ≤ EF and f (Ekin ) = 0 for Ekin > EF ,12 where EF is the Fermi level. Taking
the bottom of the one-dimensional subband (Ekin = 0) as the reference energy level for
EF , we obtain

I→ = −2q

h

∫ EF

0
d Ekin = −2q

h
EF (10.74)

This is the ultimate limit for the current of electrons moving from the source toward the
drain (assuming transport through a single one-dimensional channel). This is also the limit
for the effective current that could be observed if no electrons were moving in the opposite
direction.

The current of electrons that are moving in the negative x-direction, from the drain
contact toward the source contact, can be obtained by fully analogous derivation. In this
case, however, the energy distribution of I← is integrated over a different energy range. As
illustrated in Fig. 10.9 (the diagram for the drain contact), the integration should begin at
Ekin = qVDS, where VDS is the applied voltage between the drain and source contacts. It
can be seen from this diagram that the electrons with energies below qVDS at the drain end
cannot ballistically move to the source contact because there are no electron states below
Ekin = 0 at the source end of the nanotube/nanowire. Analogously to the source end, the
upper limit for the integration is assumed to be the Fermi level. With this, we obtain the
following result:

I← = −2q

h

∫ EF

qVDS

d Ekin = −2q

h
(EF − qVDS) (10.75)

The effective current in the positive x direction is

I = I→ − I← = −2q2

h
VDS (10.76)

12This is the abrupt Fermi–Dirac distribution that is strictly correct for T = 0 K.
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The minus sign in Eq. (10.76) simply indicates that the electric current is in the negative
x-direction when the electrons are moving in the positive x-direction (from the source to
the drain). It should be stressed that Eq. (10.76) can be used when 0 ≤ qVDS ≤ EF . For
larger applied voltages, the current from the drain toward the source drops to zero because
EF − qVDS drops below zero and, as a consequence, there are no electron states below
Ekin = 0 at the source end to accept the electrons from the drain end (refer to Fig. 10.9).
This means that the current saturates at the maximum level given by Eq. (10.74).

The dependence between the current and the applied voltage in Eq. (10.76) is linear,
which enables us to define a corresponding quantum resistance RQ = VDS/(−I ):

RQ = h

2q2 = 12.93 k� (10.77)

The derivation that leads to the result expressed by Eq. (10.77) assumes that the
electrons populate a single one-dimensional subband. If the subband is degenerated
because of multiple E–k minima or because more subbands are populated, degeneracy
factor M is introduced to account for the multiple transport channels:

RQ = h

2Mq2 (10.78)

This is the absolute possible minimum resistance of a one-dimensional wire or tube, which
can also be expressed as the absolute conductance limit (GQ = 1/RQ):

GQ = M
2q2

h
(10.79)

This result comes from a modeling approach first introduced by R. Landauer13 and is
known as the Landauer conductance formula.

The quantum resistance RQ does not depend on the length of the carbon nanotube
or nanowire. Because of that, it is frequently referred to as contact resistance. Ohmic
resistance, contact or otherwise, is associated with carrier scattering, which causes carriers
to give their kinetic energy away as heat. Each carrier reaching the drain contact dissipates
its kinetic energy of Ekin = qVDS as heat inside the drain region. If N carriers reach the
drain contact per unit time, the total energy dissipated per unit time is qVDS N/t = VDS I ,
where we take into account that q N/t = I . This means that the power is dissipated inside
the drain region, or at the drain contact itself if every carrier is scattered and forced to
dissipate its kinetic energy at the contact. It may be argued that the whole VDS voltage
drops across the contact so that VDS I = RQ I 2 correctly reflects that the power is dissipated
at the contact. However, thinking of RQ as an ohmic contact resistance that limits the
current is misleading. If RQ were ohmic contact resistance, we should get symmetrical
power dissipation at the source contact, and it should be possible to alter this resistance by
technological means. In fact, the quantum resistance RQ is a physical constant determined

13R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic
conduction. IBM J. Res. Dev. vol. 1, p. 233 (1957).
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by the Planck constant, since the Planck constant sets the limit to the number of electrons
that can move through a one-dimensional wire. This should be quite obvious from the
foregoing derivation of RQ , which did involve the quantum limit on electron size, hence
the number of electrons, but no carrier scattering.

EXAMPLE 10.8 Quantum Limit for Nanowire Resistance

Compare the quantum resistance limit with the nanowire resistance calculated in Example 10.7.
What is implied if the nanowire resistance in Example 10.7 is calculated for VGS − VT = 0.5 V?

SOLUTION

The result in Example 10.7 shows a nanowire resistance of 18.4 k�, which is not much higher
than the quantum limit of 12.93 k�. If Example 10.7 is solved for VGS − VT = 0.5 V instead
of 0.1 V, the result would be a resistance five times smaller: 18.4/5 = 3.68 k�. This is much
smaller than the quantum limit for a single one-dimensional channel. The nanowire resistance
could drop below 12.93 k� only if there were multiple one-dimensional subbands and/or E–k
minima to contribute to the current flow [M > 1 in Eq. (10.78)]. It is quite possible, however,
that the number of electrons per unit length is overestimated by the capacitance–voltage equation,
n = (VGS − VT )Cox/q .

EXAMPLE 10.9 Carbon Nanotubes as Interconnect Material:
Myth or Future Reality?

A bundle of densely packed, single-wall carbon nanotubes is considered as interconnect material.
Assuming ballistic transport through two one-dimensional subbands, determine the required
density of carbon nanotubes to match the resistance of 1-μm-long copper-interconnecting track
with the same cross-sectional area (the resistivity of copper is 17.2 n�·m).

SOLUTION

The resistance of the copper interconnect is

RCu = ρ
L

A

The resistance of a bundle of N carbon nanotubes is

RC NT = RQ

N
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where RQ is the quantum resistance,

RQ = h

2Mq2 = h

4q2 = 6.46 k�

From the condition RCu = RC NT , we obtain

N

A
= RQ

ρL
= 6.46 × 103

17.2 × 10−9 × 10−6 = 0.376 nm−2

This analysis shows that carbon nanotubes with the currently demonstrated density of 0.1
CNT/nm2 are not competitive as interconnect material. Obviously, the calculation will begin to
favor CNTs for much longer interconnects; when the length is significantly increased, however,
ballistic transport may not be maintained.

SUMMARY

1. The concept of continuous carrier concentration leads to noninteger electron and/or
hole numbers in small devices. Not only this is impossible but also instantaneous
thermal equilibrium conditions that require noninteger carrier numbers are not
possible. Noninteger carrier numbers can be understood as average values over a
sufficiently long period of time, and the thermal equilibrium concept can be refined
as a long-term balance between nonequilibrium carrier generation and recombination
events.

2. The actual number of occurrences Nactual for a given average number of occurrences
N follows the Poisson probability distribution:

p(Nactual) = N
Nactual e−N

Nactual!
(Nactual = 0, 1, 2, . . .)

The mean and the standard deviation of this distribution are N and
√

N , respectively.
For a large number of occurrences, the Poisson distribution can be approximated by
the Gaussian function with the same mean and standard deviation. These distributions
can be used to model the actual number of occurrences in both time and space under
uniform time/space conditions.

3. The concept of continuous current loses its meaning at low current levels when the
average time between two events of single-carrier collections at the device contact
(q/I ) becomes longer than the shortest observation time (�t). In that case, it is more
meaningful to express the average or expected time between two carrier events than
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the average current flow. Even if �t > q/I , but not  q/I , there is significant
uncertainty in the current value. The needed observation time (�t) for a given current
(I ) and specified coefficient of current variation (cv = σI /I ) can be determined from
the following relationship:

I�t = q

c2
v

4. The diffusion-current models may overestimate the actual current in nanoscale devices
when the apparent gradient of the carrier concentration, (n1 − n2)/W , becomes large
because of the small device dimensions, W . The diffusion current is due to a difference
in thermal flow of carriers in two opposite directions:

I→ − I← = AJ qvth(n1 − n2)

Irrespective of how small the device dimensions become (how small W is), the
diffusion current cannot exceed the carrier-supply level I→.

5. The concept of continuous concentrations of fixed particles—in particular, doping
atoms and R–G centers—also loses its meaning in small devices that correspond to
a noninteger number of particles. As distinct from the time effects in the case of
current flow, the small-size effects in the case of fixed particles are observed as spatial
uncertainties.

6. Electron and hole capture and emission events can be modeled as individual events,
separate from any equilibrium assumptions. This provides proper insight into the
processes of carrier generation and recombination in small devices, where the detailed-
balance principle fails because it necessitates dealing with instantaneous balance of
noninteger number of particles.

7. Electrons in crystals are held in potential wells. When one dimension of the potential
well becomes comparable to the electron wavelength, the separation between the
allowed energy levels becomes larger than the thermal energy of the electrons, and
the electrons can no longer jump freely from one energy level to another. It is said that
the electrons are confined as standing waves in this dimension, whereas the model of
free electrons as particles that form an electron gas can still be applied in the other
two dimensions. Accordingly, the one-dimensional quantum confinement results in a
two-dimensional electron gas (2DEG). The concepts and equations of free electrons
in the conduction band now apply to two-dimensional subbands whose bottoms are
positioned at the energy levels En set by the allowed energy levels in the confined
direction:

E = En + p2
y

2mn,y
+ p2

z

2mn,z︸ ︷︷ ︸
2D subbands

(n = 0, 1, 2, . . .)

Analogous concepts apply to the case of holes.
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8. Two practically important devices that exhibit pronounced one-dimensional quantum
confinement are the MOSFET and the HEMT. The 2DEG in HEMTs is formed due to
the conduction-band discontinuity at the AlGaAs–GaAs heterojunction and appears
even when no voltage is applied. As a result, HEMTs are typically normally on FETs,
used in applications that can utilize high mobility of the electrons in the 2DEG.

9. The classical MOSFET equations are valid even with pronounced one-dimensional
confinement. This is because they are derived with the assumption of a two-
dimensional electron sheet whose charge density per unit area is given by

QI =
{

0 for VGS ≤ VT

−(VGS − VT )Cox for VGS ≥ VT

The threshold voltage (VT ) is a parameter in this equation that can be adjusted to
account for the quantum-mechanical effects. As long as the carrier-scattering length is
smaller than the device-channel length (Leff), Ohm’s law can be applied and the device
current can be modeled by the following equation:

ID = μ0W

Leff
QI VDS

The carrier mobility μ0 is the second important device parameter that can be adjusted
to account for numerous physical effects (including the wave properties of carriers).
The average value of charge density (QI ) is used so that the effects of the drain
voltage on the charge density can be incorporated. Different methods are used for
this averaging, which is the reason for the existence of different MOSFET models.

10. Semiconductor nanowires and carbon nanotubes confine electrons and holes in two
dimensions, resulting in one-dimensional electron/hole gases. Coaxially gated FETs
based on either semiconductor nanowires or carbon nanotubes provide the best
possible gate control of the channel carriers; this reduces the short-channel effects
due to the drain voltage and enables the most aggressive reduction of the channel
length. As long as the channel length does not drop below the carrier-scattering length
and Ohm’s law can be applied, the device current can be modeled by the following
equation:

ID = μ0 N

Leff
QI VDS

There is no channel width W in the case of 1DEG, which is replaced by the number
of nanowires or nanotubes (N) connected in parallel. In this equation QI , the channel
charge per unit length (in C/m), can also be calculated as (VGS − VT )Cox , with a note
that Cox is the coaxial capacitance per unit length.

11. When the channel length becomes shorter than the length between two scattering
events and the carriers no longer experience scattering in the channel, the transport is
said to be ballistic. In spite of the absence of ohmic resistance due to carrier scattering,
the channel conductance is not infinite. The conductance in this case is limited by
the quantum limit on the number of carriers per unit length (this limit relates to
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the finite size of electrons) and the finite carrier velocity. This ultimate conductance
limit is determined by the Planck constant and the number of populated subbands M
(conducting channels):

GQ = M
2q2

h

Using GQ , which is also called the Landauer conductance, the current can be
calculated as I = GQ V , but only for small applied voltages V. For large voltages, the
current saturates at the value set by the limited number of carriers per unit length and
the finite carrier velocity. For conduction through a single channel (a single populated
subband), the current limit is I = (2q/h)EF .

PROBLEMS

10.1 Consider a silicon wafer with diameter D =
300 mm and thickness tw = 1 mm that is N-
type doped with ND = 1020 cm−3. Calculate the
number of holes in the entire wafer.

10.2 A test structure consists of 109 P–N junctions
connected in parallel. The measured reverse-bias
current of this test structure is IR = 10.0 pA.
Assuming that the devices are identical, estimate the
time that elapses between the flow of two electrons
in a single device.

10.3 Measured DC current through a device is I =
1 pA. If the electrons flowing through this device
are collected during pulsed (repeated) time intervals
of �t = 1 μs, determine the average number
of collected electrons. What is the probability of
collecting N = 10 electrons?

10.4 The current through Ndev = 106 devices in parallel,
measured over the period of �t = 1 s, is I = 1 fA.
Determine the percentages of devices that contribute
with Nel = 0, Nel = 1, and Nel = 2 electrons to
this current measurement, respectively. A

10.5 Two types of R–G center are uniformly distributed
across reverse-biased P–N junctions. The average
numbers of R–G centers appearing in the depletion
layer of a P–N junction are Mt1 = 2.1 for the first
type and Mt2 = 0.1 for the second type of R–G
center. The average times between two generation
events are τt1 = 25 ms and τt2 = 1 ms for the first
and second type of R–G center, respectively.

(a) Determine probabilities p(Mt1, Mt2), where
Mt1 and Mt2 are the actual numbers of R–G
centers, as indicated in the following table.

Mt1
Mt2 0 1 2 3
0 p(0, 0) p(1, 0) p(2, 0) p(3, 0)

1 p(0, 1) p(1, 1) A p(2, 1) p(3, 1)

(b) Calculate the generation currents that corre-
spond to the probabilities calculated in part (a).

10.6 There are two R–G centers in the depletion layer
of a reverse-biased P–N junction with the following
electron and hole emission times: τe,n−1 =
τe,p−1 = 1 ms for the first R–G center; τe,n−2 =
20 μs and τe,p−2 = 48 ms for the second center.
Determine the average time for each of these R–G
centers to generate electron–hole pairs and the total
average time between two generation events in this
depletion layer.

10.7 Consider a single R–G center in a neutral N-type
silicon. If the average time for electron capture by
this R–G center is τc,n = 1 ps and the average
time for the electron emission from this R–G center
is τe,n = 1 ms, determine the probability that the
R–G center is empty of an electron (occupied by a
hole). If the average time for hole emission is equal
to the average time for electron emission, what is
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the average time this R–G center needs to generate
an electron–hole pair?

10.8 The electron density in a 2DEG formed at the
heterojunction between AlGaAs and undoped GaAs
is NI = 1012 cm2. Assuming that only one
two-dimensional subband is occupied by electrons,
determine the position of the Fermi level with
respect to the bottom of the conduction band of
GaAs at the heterojunction. Based on the determined
Fermi-level position, calculate the electron densities
in the first and the second subbands to verify the
assumption that the population of higher subbands
can be neglected.

10.9 Determine the electric potential at the heterojunction
between AlGaAs and undoped GaAs with respect
to the potential of the neutral undoped GaAs if the
bottom of the lowest subband is at E0 = 70 meV
with respect to the bottom of the conduction band of
GaAs and the Fermi level is EF ≈ E0.

10.10 The following are the parameters of an Al-
GaAs/GaAs HEMT: the thickness of the AlGaAs
film tAlGa As = 100 nm, the dielectric constant of
both AlGaAs and GaAs εs/ε0 = 13, the electron
mobility in the 2DEG μ0 = 10,000 cm2/V · s, the
channel length Leff = 100 nm, and the channel
width W = 100 μm.

(a) If the density of electrons in the 2DEG is NI =
1012 cm−2 at zero gate voltage, determine the
threshold voltage of this HEMT.

(b) Determine the HEMT current for VGS = 5 V
and VDS = 50 mV. A

10.11 Determine the channel resistance of a HEMT if the
electron density in the 2DEG is NI = 1012 cm−2,
the electron mobility is μ0 = 10,000 cm2/V·s, the
channel length is Leff = 100 nm, and the channel
width is W = 100 μm.

10.12 The density of electrons and the electron mobility
in a graphene sheet are NI = 5 × 1012 cm−2 and
μ0 = 20,000 cm2/Vs, respectively.

(a) Determine the sheet resistance of this graphene
film.

(b) How many graphene sheets are needed to match
the sheet resistance of a 100-nm thick copper
sheet (the resistivity of copper is 17.2 n�·m)?
What distance between the graphene sheets is
required so that their effective thickness is also
100 nm? A

10.13 The following parameters are identical for a
MOSFET with a 2DEG channel and a coaxially
gated FET with a 1DEG channel: threshold voltage
VT = 0.2 V, gate-oxide thickness tox = 3 nm,
gate dielectric permittivity εox = 3.9ε0, channel
length Leff = 100 nm, and electron mobility μ0 =
100 cm2/V · s. The channel width of the 2DEG
MOSFET is W = 1 μm and the nanowire diameter
of the 1DEG nanowire FET is d = 3 nm. Identical
gate voltage is applied to both devices: VGS = 1 V.

(a) Determine the channel resistance of the 2DEG
MOSFET. A

(b) Determine the channel resistance of the 1DEG
nanowire FET.

(c) How many nanowire FETs are needed to match
the resistance of the 2DEG MOSFET? Could
the width of the array of coaxially gated
nanowire FETs (refer to Fig. 10.8) match the
channel width of the 2DEG MOSFET?

(d) The advantage of coaxially gated nanowire
FETs is that they enable far more aggressive
scaling of Leff without the detrimental short-
channel effects. Assuming that ohmic conduc-
tion is maintained when the channel length
of the 1DEG nanowire FET is reduced to
Leff = 10 nm, determine the number of
required nanowire FETs to match the channel
resistance of the 2DEG MOSFET. A

10.14 Use the relationship between the scattering length
and scattering time, lsc = vthτsc, to determine
the scattering length at room temperature in a
graphene sheet with electron mobility of μ0 =
100,000 cm2/V · s and effective electron mass m∗ =
0.06m0.

10.15 The resistance of a semiconductor nanowire is R =
12.93 k� for wire lengths up to 100 nm and
increases by d R/d L = 30 �/nm for wire lengths
exceeding 100 nm, measured at room temperature.
If the effective electron mass is m∗ = 0.2m0, what
is the number of electrons per unit length in this
nanowire?

10.16 The current through a semiconductor nanowire
increases linearly with the applied voltage V for
0 < V < 0.25 V and saturates at I = 19.3 μA
for V > 0.25 V.

(a) Determine the position of the Fermi level
with respect to the bottom of the lowest one-
dimensional subband.
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(b) Assuming that the electron states below the
Fermi level are occupied and the electron states
above the Fermi level are empty, determine the
number of electrons per unit length that move
toward the positively biased contact.

(c) In the current-saturation region (V > 0.25 V),
the average electron velocity is set at a satura-
tion-velocity level, vx = vsat . What is the value
of vsat ? A

REVIEW QUESTIONS

R-10.1 If the minority-hole concentration is p = 0.01 cm−3, can we assume that the number of
holes is equal to zero because the volume of a semiconductor device is � 1 cm3? If so,
does that mean that the actual hole concentration can be rounded down to p = 0 cm−3?

R-10.2 If no current is detected through a small device for 10 s, even with a measurement method
that can detect a single electron, does that mean that no current will be detected for the next
1000 s under the same conditions?

R-10.3 If device is designed so that the average current during a switching cycle corresponds to 10
electrons, should we expect the actual current to follow the Poisson distribution? That is,
will the current correspond to 10 electrons exactly in only 12.5% of the cycles?

R-10.4 Considering electrons as particles in a semiconductor device, can we assume that their size
is zero irrespective of the device dimensions?

R-10.5 Consider a triangular potential well for electrons, noting that the width of the well reduces
to zero at the bottom of the well (the triangle tip). Can any electron fit at the bottom of this
well?

R-10.6 An electron appearing in a triangular potential well forms a standing wave at the energy
level E0 needed for the width of the potential well to become equal to the half-wavelength
of the electron. Is E0 related to the kinetic energy of this electron?

R-10.7 Do channel electrons in Si MOSFETs and AlGaAs–GaAs HEMTs appear in triangular
potential wells? If so, does that mean that they appear as standing waves? If so, does that
mean that they cannot move as free particles?

R-10.8 The triangular potential well is formed by a built-in electric field in HEMTs and contains
electrons even at zero gate voltage (normally on FET). Can threshold voltage (VT ) be
associated with this device? If so, can the threshold voltage be defined as the gate voltage
(VG ) needed to repel the electrons from the triangular potential well? If so, can the electron
density be calculated as NI = (VG − VT )C/q? If so, what dielectric thickness should be
used to calculate C?

R-10.9 Can the classical MOSFET equations be used to model HEMT? If yes, how do these
equations account for the structural, technological, and physical differences?

R-10.10 Can the threshold-voltage equation be used in the case of pronounced one-dimensional
quantum confinement?

R-10.11 Can we define channel length (L) and channel width (W ) in the case of coaxially gated
nanowire FETs?

R-10.12 What is the unit for charge density in a carbon-nanotube FET?
R-10.13 In the case of ballistic transport, the ohmic resistance due to carrier scattering becomes zero.

Does that mean infinite conductance? If not, what does limit the conductance?
R-10.14 Is power dissipated in a carbon nanotube due to its quantum resistance RQ? If not, where

is the power V I dissipated?



11 Device Electronics: Equivalent
Circuits and SPICE Parameters

Semiconductor diodes and transistors are complex nonlinear devices. An elegant way
of presenting their overall electrical characteristics is by use of equivalent circuits.
Basically, a nonlinear voltage-controlled current source represents the main function of
a considered device, rendering the additional components in the equivalent circuit as
parasitic elements. Importantly, it is the capacitors in the equivalent circuit that model
the dynamic characteristics of the considered device. Although considered as parasitic
elements, their role in high-frequency analyses and design is quite fundamental.

Large-signal equivalent circuits provide general models, and these are the equivalent
circuits used in SPICE. They include nonlinear I–V and C–V dependencies to provide
adequate models across the whole range of current and voltage values. Small-signal
equivalent circuits and their parameters are extensively used for analyzing and designing
electronic circuits that provide a linear response to a small input signal. Consequently, the
small-signal equivalent circuits are linear circuits themselves, consisting of linear elements
(resistors, capacitors, and inductors). They can be derived by adequate simplification and
transformation from the more general large-signal equivalent circuits.

This chapter is devoted to parameters and equations used in SPICE for both the main
functions and the complete equivalent circuits of diodes, MOSFETs, and BJTs. There is a
special emphasis on parameter measurement or, more specifically, on the graphic method
for determination of the initial parameter values that can be used for nonlinear fitting.
In addition to general large-signal equivalent circuits, simplified small-signal equivalent
circuits for diodes, MOSFETs, and BJTs and simple digital model for MOSFETs are also
described. This enables us to link the device physics and the SPICE models and parameters
to the simple and frequently used equivalent circuits in circuit analysis and design books.

444
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11.1 DIODES

11.1.1 Static Model and Parameters in SPICE
The SPICE model for the static I–V diode characteristic is summarized in Table 11.1.
The diagram in Table 11.1 shows that the diode is modeled as a nonlinear current source,
controlled by the voltage across the current source itself (VD0), connected in series to a
resistor rS . The resistor rS represents the parasitic resistances, whereas the current source
describes the I–V characteristic of the P–N junction. The ID(VD0) equation appears in
three parts. The first part is for VD0 > −BV , and it expresses the normal I–V diode
characteristic, whereas the second and the third parts are for VD ≤ −BV , expressing the
breakdown characteristic of the diode.

TABLE 11.1 Summary of the SPICE Diode Model: Static I–V Characteristic

Static Parameters

Usual
SPICE Typical

Symbol Keyword Parameter Name Value/Range Unit

IS IS Saturation current A
n N Emission coefficient 1–2
rS RS Parasitic resistance �

BV BV Breakdown voltage (positive number) V
IBV Breakdown current (positive number) A

Note: IBV = ISBV
Vt

Temperature-Related Parameters

Eg EG Energy gap 1.12 for Si eV
pt XTI Saturation-current temperature exponent 3

Static Diode Model

rS

A

C

VD0

VD

�

�

I D
 (V

D
0)

ID(VD0) =

⎧⎪⎪⎨
⎪⎪⎩

IS (T )
(
eVD0/NVt − 1

) + VD0GMIN if VD0 > -BV

−IBV if VD0 = -BV

−IS (T )
[
e−(BV +VD0)/Vt − 1 + BV

Vt

]
if VD0 < -BV

IS (T ) = IS
( T

Tnom

)XTI/N exp
[ − qEG

kT

(
1 − T

Tnom

) ]
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The first part of the SPICE ID(VD0) equation is a variation of the previously derived
Eq. (6.22). An important change is that the voltage across the P–N junction (VD0) is
used instead of the terminal diode voltage VD (obviously, this is to include the effects
of the parasitic resistance rS). Therefore, the parameters in this equation are IS , n, and
rS . The additional term VD0GMIN is not important in terms of the diode characteristic
description: it is added to enhance computational efficiency. GMIN is set to a small value
(typically 10−15 A/V) and normally does not show any observable influence on the diode
characteristic. GMIN is a program parameter (not a device parameter), and it can be altered
by the user.

The second and the third parts of the SPICE ID(VD0) equation given in Table 11.1
model the breakdown characteristic of the diode. Figure 6.13 shows the diode characteristic
in breakdown (VD around −BV ). Due to the junction breakdown, the current sharply rises
when the reverse-bias voltage −VD is increased beyond the breakdown voltage −BV . This
sharp rise in the current is modeled by the exponential dependence shown in the third part
of the SPICE ID(VD0) equation of Table 11.1. The second part of this equation defines IBV
as the current at VD0 = −BV . BV and IBV appear as device parameters. SPICE would
accept independently set IBV parameter; however, this may lead to numerical problems
if there is a large discontinuity in the current around the −BV point. The third part of
the SPICE ID(VD0) equation is used for any voltage that is smaller than −BV . For the
points very close to −BV (thus VD0 ≈ −BV ), the exponential term exp−(BV + VD0)/Vt

is approximately 1, which means that the current is approximately −IS
BV
Vt

. To avoid
discontinuity in the current (and therefore possible numerical problems), the parameter
IBV should be set at the value IS

BV
Vt

.
To include the temperature effects, the saturation current IS is multiplied in SPICE by

a semiempirical factor, as shown by the IS(T ) equation in Table 11.1. There is an additional
parameter pt that is called the saturation-current temperature exponent and whose value is
typically pt = 3 for silicon diodes. The operating temperature T is set in SPICE in the
same way as the device parameters, with a limitation that a unique operating temperature
has to be used for the whole circuit. The nominal temperature is set to Tnom = 27◦C,
although this value can also be changed by the user.

11.1.2 Large-Signal Equivalent Circuit in SPICE
The effects of the depletion-layer and stored-charge capacitances (described in Sections 6.3
and 6.4) can be incorporated by adding capacitors in parallel with the current source.
Therefore, the large-signal equivalent circuit of a P–N junction consists of (1) the nonlinear
voltage-controlled current source, modeling the DC I–V characteristic, (2) the series
resistor, modeling the parasitic resistances, and (3) the parallel capacitor, modeling the
capacitance-related effects. This equivalent circuit is shown in Table 11.2.

The reverse-bias voltage VR > 0 in Eq. (6.57) can be converted into VD0. In the
reverse-bias region, VD0 ≈ VD = −VR (the difference VD − VD0 = rS ID is insignificant
due to the very small ID current). Thus, the only difference between Eq. (6.57) and the
SPICE equation shown in Table 11.2 is in the use of −VD0 instead of VR . In addition,
due to the insignificant ID current for VD0 < 0.5Vbi , the concepts applied to derive
the equations for the depletion-layer width and capacitance are still valid. Therefore, the
validity of Cd(VR) equation is expanded by the transformation VR = −VD0, where VD0
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TABLE 11.2 Summary of the SPICE Diode Model: Dynamic
Characteristics

Dynamic Parameters

Usual
SPICE Typical

Symbol Keyword Parameter Name Value/Range Unit

Cd (0) CJO Zero-bias junction capacitance F
Vbi VJ Built-in (junction) voltage 0.65–1.25 V
m M Grading coefficient 1

3 – 1
2

τT TT Transit time s

Large-Signal Diode Model

rS

CD

A

C

VD0

VD

�

�

I D
 (V

D
0)

ID (VD0) is given in Table 11.1

CD = Cd + Cs

Cd = Cd (0, T )
[
1 − (VD0/Vbi (T ))

]−M
(forVD0 < 0.5Vbi )

Cd (0, T ) = CJO
{

1 + M
[
400 × 10−6(T − Tnom) − Vbi (T )−VJ

VJ

]}
Vbi (T ) ≈ T

Tnom
VJ− 2 kT

q ln
( T

Tnom

)1.5

Cs = TT (dI D/dVD0)

is allowed to take values up to 0.5Vbi . SPICE has a different equation to calculate Cd at
voltages VD0 > 0.5Vbi . However, the depletion-layer capacitance in that region is not very
important as the total diode capacitance is dominated by the stored-charge capacitance.

The depletion-layer capacitance depends on temperature, however, this temperature
dependence is less significant than the dependence of the I–V characteristic. The
temperature dependence of Cd is mainly due to the temperature dependence of the built-in
voltage Vbi [refer to Eq. (6.2)], although Cd(0) also depends slightly on the temperature.
Table 11.2 shows the SPICE equations used to calculate the values of Vbi and Cd (0) at
temperature T , which is different from the nominal temperature Tnom.

The stored-charge capacitance is related to the stored charge, as defined by Eq. (6.59).
This is the equation used in SPICE, as shown in Table 11.2. Both the stored-charge
capacitance Cs and the depletion-layer capacitance Cd appear across the P–N junction.
Therefore, the total diode capacitance CD is expressed as a parallel connection of Cs

and Cd :

CD = Cd + Cs (11.1)
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11.1.3 Parameter Measurement
Very sophisticated fitting algorithms and software exist that can be used to fit the nonlinear
SPICE equations to experimental data. These algorithms, however, require a set of initial
values for the fitted parameters to be specified. In some cases, the nonlinear fitting depends
very critically on the initial parameter values. Simple graphic methods can be used to
determine the values of SPICE parameters. The parameter values obtained in this way can
be used as initial values for nonlinear fitting. Importantly, the graphic methods provide a
visual demonstration of how good fit can be achieved between selected SPICE equations
and specific experimental data.

Measurement of IS, n, and rS

The three device parameters involved in the current–voltage equation for VD0 > −BV
are IS , n, and rS . Proper values of these SPICE parameters need to be set to ensure
correct simulation. The default values of these parameters (typically, IS = 10−14 A,
n = 1, rS = 0) cannot guarantee an acceptable agreement between the model and the
real characteristic of any possible type of diode. Figures 6.11 and 6.12 demonstrate the
importance of properly setting the values of n and rS , respectively.

Figure 11.1 illustrates a graphic method for determination of IS , n, and rS parameters
from experimental ID–VD data. Given that the current depends exponentially on the
voltage, a ln ID–VD0 graph is used to linearize the problem. The open symbols show
the raw experimental data—obtained when the measured VD voltage served as the P–N
junction voltage VD0. Because the voltage across rS (which is rS ID) is neglected in this
case, the voltage VD0 is effectively overestimated by rS ID (refer to Fig. 6.12). This effect
is not pronounced at small currents as rS ID � VD0 (the linear part of the graph); however,
it becomes observable at high currents. A good initial guess for rS can be obtained by
judging the maximum deviation rS ID of the raw experimental data from the straight line

0.0 0.2 0.80.60.4
VD0 (V)

ln
 [

I D
 (

A
)]

ln IS

rS ID
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Figure 11.1 Measurement of diode
static SPICE parameters, IS, n, and
rS. The experimental data (symbols)
and the fitting (line) are also shown in
Fig 6.12.
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extrapolated from the low-current linear portion of the ID–VD dependence. The maximum
deviation has to be, obviously, divided by the maximum current ID to obtain rS . Using the
estimated value of rS , the experimental diode voltage points VD are transformed into P–N
junction voltage points as VD0 = VD − rS ID . If a straight line is obtained, the value of
rS is taken as the final value. Alternatively, rS is altered and the process repeated until a
straight line is obtained.

The closed symbols in Fig. 11.1 show the straight line obtained after the extraction of
voltage effect of the parasitic resistance, rS ID , from the raw experimental data. That is, the
closed symbols represent the experimental characteristic of the current source in the SPICE
diode model (Table 11.1). Because the experimental data are collected in the forward-bias
region, where exp(VD0/nVt )  1, the SPICE ID(VD0) equation is reduced to

ID = ISeVD0/nVt (11.2)

Therefore, the logarithm of the current ln ID linearly depends on VD0:

ln ID = 1

nVt
VD0 + ln IS (11.3)

Figure 11.1 illustrates that the parameters IS and n are obtained from the coefficients a0
and a1 of the linear ln ID–VD0 dependence as

IS = ea0

n = 1/a1Vt
(11.4)

EXAMPLE 11.1 Measurement of Static SPICE Parameters

A set of measured ID–VD values for a P–N junction diode are given in Table 11.3. Obtain SPICE
parameters IS , n, and rS for this diode.

SOLUTION

Let us assume that the parasitic resistance rS is on the order of 10 �. In that case, the voltage
across the parasitic resistance is ≤1 × 10−3 × 10 = 0.01 V for currents ≤1 mA. This means that
the parasitic resistance effect can be neglected (0.01 V is much smaller than ≈ 0.7 V appearing
across the P–N junction) for currents ≤1 mA. The measured diode current ID can then be directly
related to the measured voltage VD as ID = IS exp(VD/nVt ). This exponential equation can be

TABLE 11.3 Current–Voltage Measurements

VD (V) 0.67 0.70 0.73 0.76 0.80 0.84 0.91 1.00 1.26 1.65
ID (mA) 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0
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TABLE 11.4 Linearization of Current–Voltage Data

ID y = ln VD x = VD
(mA) ln(mA) (V)

0.1 −2.303 0.67
0.2 −1.609 0.70
0.5 −0.693 0.73
1.0 0.000 0.76

linearized in the following way:

ln ID = ln IS + 1

nVt
VD

that is,

y = a0 + a1x

where y = ln ID , x = VD , a0 = ln IS , and a1 = 1/nVt . The results of this linearization, applied
to the first four experimental points (ID≤1 mA) from Table 11.3, are given in Table 11.4.

The graphic method, explained in the previous section, can be used to find the coefficients
a0 and a1 of this linear relationship. Alternatively, these coefficients can be calculated using
the numerical linear regression method. For the case of a one-variable linear equation (and two
parameters, a0 and a1), the following system of two linear equations has to be solved:

na0 + (∑n
i=1 xi

)
a1 = ∑n

i=1 yi(∑n
i=1 xi

)
a0 + (∑n

i=1 x2
i

)
a1 = ∑n

i=1 xi yi
(11.5)

where n is the number of experimental points used for the linear fitting. Applying the system of
equations (11.5) to the data of Table 11.4, one obtains

4a0 + 2.86a1 = −4.605

2.86a0 + 2.0494a1 = −3.1752

The solution of the foregoing system of equations is a0 = −19.80, and a1 = 26.08. The
parameters IS and n can now be calculated as IS = exp(a0) = 2.52×10−9 mA = 2.52×10−12 A,
n = 1/a1Vt = 1.48.

If the parasitic resistance rS was zero, the voltage VD at the highest current ID = 100 mA
would be VD = 1.48×0.02585× ln(100/2.52×10−9) = 0.93 V. It can be seen from Table 11.3
that the measured voltage is 1.65 V. The difference 1.65 − 0.93 = 0.72 V is due to the voltage
across rS : rS ID = 0.72 V. Using this difference, the parasitic resistance is estimated as rS =
0.72 V/ID = 0.72/100 mA = 7.2 �. If rS = 7.2 � is a proper value, the voltage across the P–N
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TABLE 11.5 Transformed Current–Voltage Data

ID VD0 = VD – rsID VD0 = nVt ln (ID/IS)
(mA) (V) (V)

IS = 2.5×10−12A, n = 1.48, rS = 7.2 �
0.1 0.67 0.67
0.2 0.70 0.70
0.5 0.73 0.73
1.0 0.76 0.76
2.0 0.79 0.78
5.0 0.80 0.82

10.0 0.84 0.84
20.0 0.86 0.87
50.0 0.90 0.91

100.0 0.93 0.93

junction VD0, calculated as VD −rS ID , should closely match the values calculated from the diode
equation nVt ln(ID/IS). The results of these calculations are presented in Table 11.5. It can be
seen that the theoretical values (the third column) closely match the transformed experimental
values (the second column). Therefore, we conclude that IS = 2.5 × 10−12 A, n = 1.48, and
rS = 7.2 � represent a good set of SPICE parameters for the considered diode. If the matching
was not good, the value of rS would be altered to try to improve the matching.

Measurement of Cd(0), Vbi, and m

It is not possible to completely linearize the model for the reverse-biased P–N junction
capacitance, given by Eq. (6.57). Therefore, the graphic or the linear regression methods
cannot be directly applied. The situation is further complicated by the fact that the
measured data contain an additional, parasitic capacitance component. The P–N junction
capacitance can be measured in different ways, perhaps most suitably by means of a bridge.
The measurement frequency can be set low enough that the parasitic series resistance
becomes negligible compared to the impedance of the capacitor. However, the parasitic
capacitance, caused mainly by pin capacitance, stray capacitance, and pad capacitance,
cannot be avoided. Assuming that the parasitic capacitance Cp does not depend on the
voltage applied, the measured capacitance can be expressed as

Cmeas = Cd (0)

(
1 + VR

Vbi

)−m

+ Cp (11.6)

Although the parameter Cp in Eq. (11.6) is not needed as a SPICE parameter, it has to be
extracted from the experimental data.

Curve fitting can be the most effective way of parameter measurement in this case,
provided the initial parameter values are properly determined. There are four parameters
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in Eq. (11.6): Cd (0), Vbi , m, and Cp . The built-in voltage Vbi depends on the doping
levels in the P- and N-type regions, as given by Eq. (6.2). It is useful to estimate the likely
extreme values of this parameter. The lowest value is obtained when the lowest doping
levels are assumed; let this be NA ND = 1015 × 1016 cm−3 × cm−3. With this, Vbi (min) =
0.02585 ln1031/(1.02 × 1010)2 = 0.65 V. The highest value is obtained when the highest
doping levels are assumed, say NA ND = 1020×1021 cm−3 × cm−3. With this, Vbi (max) =
1.25 V. If the value of Vbi = 0.9 V is assumed, the maximum error cannot be much bigger
than 0.3 V, which is 0.3/0.9 × 100 = 33%.

Assuming a constant value for the parameter Vbi enables linearization of the equation
for the reverse-biased P–N junction capacitance in the following way:

log(Cmeas − Cp) = log Cd(0) − m log

(
1 + VR

Vbi

)
(11.7)

where Cmeas − Cp represents the reverse-biased P–N junction capacitance (the depletion-
layer capacitance Cd ). If the parasitic capacitance Cp were zero and Vbi were correctly
assumed, plotting the logarithm of the measured capacitances versus log(1 + VR/Vbi )

would give a straight line. The parameters of the linear relationship y = a0 + a1x would
be related to the parameters m and Vbi : log Cd (0) = a0 and −m = a1. This would
enable the measurement of m and Cd(0) by the graphical or linear regression method.
Although the value of Cp cannot be neglected, Cp = 0 can still be used as the initial value
to enable the measurement of initial values of m and Cd (0).

To illustrate this technique, consider the example of experimental data given in
Table 11.6. Assuming Vbi = 0.9 V and Cp = 0, log(1+ VR/Vbi ) and log(Cmeas −Cp) can
be calculated as shown in Table 11.6 as well. The log(Cmeas −Cp) versus log(1+ VR/Vbi )

graph (for Vbi = 0.9 V and Cp = 0) is shown in Fig. 11.2a by the squared symbols.
The dashed line represents the best linear fit for these data. The parameters of the dashed
line are found to be a1 = −0.25, and a0 = 0.639. This means that m = −a1 = 0.25,

TABLE 11.6 Example of Experimental Data Used to Obtain
Measured Values of the Capacitance-Model
Parameters

VR (V) Cmeas (pF) log(1 + VR
0.9 ) log Cmeas log(Cmeas – 1.26 pF)

0.0 4.45 0.0000 0.6484 0.5038
1.0 3.59 0.3245 0.5551 0.3686
2.0 3.21 0.5082 0.5065 0.2981
3.0 2.98 0.6368 0.4742 0.2379
4.0 2.82 0.7360 0.4502 0.1963
5.0 2.70 0.8166 0.4314 0.1625
6.0 2.61 0.8846 0.4166 0.1340
7.0 2.54 0.9434 0.4048 0.1094
8.0 2.47 0.9951 0.3927 0.0876
9.0 2.42 1.0414 0.3838 0.0682

10.0 2.37 1.0832 0.3747 0.0507
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After curve fitting: Cp � 1.26 pF, Cd(0) � 3.19 pF, m � 0.42, Vbi � 0.91 V

Figure 11.2 (a, b) Measurement of the parameters of the capacitance model: (1) Vbi = 0.9 V and
Cp = 0 is assumed, and the linear regression is applied to estimate m and Cd(0)––the square
symbols and the dashed line in (a); (2) curve fitting is performed using the estimated values as the
initial parameters, which improves the fit (the solid lines) but more importantly provides parameters
that are physically justified.

and Cd (0) = 100.639 = 4.35 pF. This completes the set of possible values of the four
parameters. Using these values, the corresponding theoretical curve (dashed line) for Cmeas

versus VR is compared to the experimental data (symbols) in Fig. 11.2b.
The fit between the dashed line and the symbols in Fig. 11.2b appears as quite

reasonable. However, the value of the parameter m is questionable. It has been shown that
m is the smallest for the extreme case of the linear junction, in which case it is m = 0.33.
The value of m = 0.25 is not physically justified. The good fit is achieved due to the
compensating effect of the assumption Cp = 0. We should not accept this situation. The
value of Cp can be as high as 2 pF, which means that the measured capacitance can be
more than twice as high as the real junction capacitance.

This procedure can be repeated assuming, for example, Cp = 2 pF. If a better fit
is achieved, it would indicate that the real Cp is closer to 2 pF than 0 pF. Making yet
another guess and performing an additional iteration may improve the fit further. This
is in essence the iterative process used for the curve fitting. As mentioned, there are a
number of software packages that automatically perform the iterative process used in the
curve fitting. The initially extracted values of the four parameters can be attempted as
the initial parameters for the curve-fitting procedure. Using Cp = 0, Cd(0) = 4.35 pF,
m = 0.25, and Vbi = 0.9 V as the initial values, the following final values are obtained
by the curve fitting available in SigmaPlot scientific graphing software: Cp = 1.26 pF,
Cd (0) = 3.19 pF, m = 0.42, Vbi = 0.91 V. The solid lines in Fig. 11.2 represent the model
with these parameters. It can be seen that the fitting is improved (the fact that the iterative
process used for the curve fitting converged indicated that the best fit was achieved). More
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importantly, the parameter m = 0.42 is now within the extreme limits of 0.33 and 0.5,
and the value Cp = 1.26 pF appears as practically reasonable. When log(Cmeas − Cp) is
plotted versus log(1 + VR/Vbi ) (the solid line in Fig. 11.2a), a straight line is obtained,
which confirms that the measurement procedure is successfully completed.

EXAMPLE 11.2 Linear Regression Analysis

Use the data given in columns 3 and 5 of Table 11.6 to apply linear regression analysis to obtain
the parameters m and Cd (0) in Eq. (11.6).

SOLUTION

To be able to apply linear regression analysis, the linear form of Eq. (11.6) has to be used, as
given by Eq. (11.7). If the numbers from the third and fifth columns of Table 11.6 are used as
the experimental xi and yi data, respectively, the system of two linear equations (11.5) can be
applied directly. Upon transforming the parameters as log Cd (0) = a0 and −m = a1, the system
of two equations can be written as

11a0 + 7.9698a1 = 2.2108

7.9698a0 + 6.8982a1 = 1.1314

In solving this system, it is found that a0 = 0.504 and a1 = −0.42. Therefore, Cd (0) = 10a0 =
100.504 = 3.19 pF, and m = −a1 = 0.42.

11.1.4 Small-Signal Equivalent Circuit
The term small signal is applied to indicate that a device is used in a linear region; the
signals have to be small enough to permit approximately linear relationships to exist
between all the signal voltages and currents in the considered device/circuit. Accordingly,
a small-signal equivalent circuit of a device has to consist of linear elements. A frequency-
dependent linear ratio between a signal voltage and a signal current is called small-signal
impedance; a frequency-dependent ratio between signal current and signal voltage is called
small-signal admittance. In the specific case of no pronounced frequency dependence,
these ratios are called small-signal resistance and small-signal conductance, respectively.
If possible, it is convenient to express a small-signal impedance (or admittance) as a circuit
consisting of small-signal resistances, capacitances and, if necessary, inductances.

Small-Signal Resistance

Figure 11.3 illustrates how linear behavior can be obtained from an essentially nonlinear
characteristic. In this example, the nonlinear characteristic is the exponential iD–vD

dependence of the diode. Referring to Fig. 11.3, let us assume that a signal voltage vd

is applied across the diode and that the signal voltage is a sinusoid with a small amplitude.
If the voltage amplitude is small enough, the corresponding signal current oscillates within
a nearly linear segment of the iD–vD characteristic. As a result, the signal current is
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also a sinusoid. Assuming that the voltage and the current sinusoids are in phase, the
ratio between the signal current (id) and the signal voltage (vd ) defines the small-signal
conductance:1

gd = id

vd
(11.8)

Given that this ratio depends on the slope of the linear iD–vD segment, the small-signal
conductance is equal to the slope of the iD–vD characteristic at the quiescent/offset voltage
VDQ:

gd = diD

dvD

∣∣∣∣
@VDQ

(11.9)

The current–voltage characteristic of the diode is given by Eq. (6.22). In the forward-bias
region, this equation can be expressed in the form

iD = IS exp(vD/nVt ) (11.10)

to indicate that it applies to the total variable current iD and voltage vD . Therefore,

gd = d
(
ISevD/nVt

)
dvD

∣∣∣∣∣
@VDQ

= 1

nVt

[
ISevD/nVt

]
@VDQ

= 1

nVt
ISeVDQ/nVt︸ ︷︷ ︸

IDQ

= IDQ

nVt
(11.11)

1Small-signal quantities are usually labeled with lowercase letters.
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Given that resistance is equal to the reciprocal value of conductance, the small-signal
resistance is

rd = 1

gd
= n

Vt

IDQ
(11.12)

Therefore, the small-signal equivalent circuit of a forward-biased diode can be as
simple as a resistor with the resistance rd . Of course, this equivalent circuit can be used
when the assumption is satisfied that the signal current and the signal voltage are in phase.
At higher frequencies, the capacitances (and perhaps even inductances) associated with
the diode structure cause a phase shift between the signal current and voltage, so the small-
signal capacitances/inductances have to be added to the small-signal equivalent circuit.

Equation (11.12) shows that the small-signal resistance depends on the DC current,
IDQ. The current IDQ is the quiescent/offset current that corresponds to the quiescent/offset
voltage VDQ, and they together define the quiescent point (Q) on the current–voltage
characteristic. In absence of any signal, the applied voltage across the diode is equal to
the DC level VDQ and the corresponding current is equal to the DC level IDQ. When a
signal voltage is superimposed on the DC voltage, the total voltage vD = VDQ + vd and
the total current iD = IDQ + id starts oscillating around the quiescent point (VDQ, IDQ).

The fact that rd depends on the quiescent point Q [Eq. (11.12)] can easily be visualized
by keeping in mind that rd is equal to the reciprocal value of the slope of the iD–vD

characteristic at Q. From Fig. 11.3 we can see that the slope of the characteristic is smaller
for smaller currents and voltages, so a shift of Q toward the knee of the characteristic
would increase the small-signal resistance. Therefore, rd can be electrically controlled by
the value of the applied DC offset (VDQ).

Small-Signal Capacitances

The two capacitances associated with a P–N junction are described in Section 6.3 (the
depletion-layer capacitance) and Section 6.4 (the stored-charge capacitance).

The depletion-layer capacitance dominates for reverse-biased P–N junctions, so the
large-signal equivalent circuit becomes simply a voltage-dependent capacitor. The C–V
dependence was illustrated in Figs. 6.16 and 11.2 and is modeled by Eq. (6.57). For a
small enough signal, the capacitance variation with signal voltage can be neglected, so
that the reverse-biased P–N junction acts as a constant-value capacitor with capacitance
equal to

cd = Cd (0)

(
1 − VDQ

Vbi

)−m

(11.13)

Analogously to the case of small-signal resistance, the value of this capacitor can be set
by the DC offset voltage VR = −VDQ (the Q point). This enables us to use reverse-biased
P–N junctions as varactors (Example 6.6).

The stored-charge capacitance becomes pronounced in forward-biased junctions when
the flowing current causes significant levels of stored charge. Given that this capacitance
is inseparable from a significant current flow through a forward-biased diode, it appears in
parallel with the small-signal resistance in any small-signal equivalent circuit for a forward-
biased diode. The stored-charge capacitance is also voltage-dependent, so for small-signal
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analyses, the value of the capacitance at the quiescent point is used. Based on Eqs. (6.59),
(6.65), and (11.9),

cs = τT
diD

dvD

∣∣∣∣
@VDQ

= τT gd =
{ τn

2 gd for N+–P junction
τp
2 gd for P+–N junction

(11.14)

where τn and τp are the minority-carrier lifetimes.

11.2 MOSFET

The current–voltage characteristics of a MOSFET can be represented by a voltage-
controlled current source, ID(VGS, VDS, VSB), where the ID dependence on VGS , VDS,
and VSB is according to the DC model considered in Section 8.2. This voltage-controlled
current source is added to the parasitic elements in the structure of a MOSFET to obtain
an equivalent circuit that models the electrical response to both large and small signals at
both low and high frequencies.

11.2.1 Static Model and Parameters: LEVEL 3 in SPICE
Regarding the voltage-controlled current source, there is a need both to summarize the
MOSFET equations used in SPICE and to present the hierarchy of MOSFET parameters.
This section provides a series of tables designed to enable an intuitive reference to
MOSFET parameters. Multiple tables are used because it is not very useful to present
the MOSFET SPICE parameters in a single list. Not only would the list be rather long,
but the relationships and (in)compatibilities between the parameters could not be clearly
expressed. The following hierarchy is used to classify the MOSFET parameters presented
in this section:

• Static LEVEL 3 Model (Table 11.7)

• Principal effects (Table 11.8)
• Channel-related second-order effects (Table 11.9)
• Depletion-layer-related second-order effects (Table 11.10, parts I and II)

• Dynamic model (the complete large-signal equivalent circuit, including the para-
sitic elements) (Table 11.11, parts I and II)

The first variables that need to be specified when using a MOSFET are the gate length
and width (referred to as geometrical variables in Table 11.7). Different MOSFETs can
have different gate lengths and widths even in the integrated circuits, where the MOSFETs
are made by the same technological process and all the other MOSFET parameters are
identical. In SPICE, the gate length and width are considered as device attributes, and they
are typically stated for every individual MOSFET. However, the gate length and width can
also be specified as MOSFET parameters, together with all the other device parameters.

Generally, there is a difference between the gate length Lg and the channel length
Leff . The MOSFET diagram given in Table 11.7 illustrates this difference. Although a self-
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TABLE 11.7 Summary of SPICE LEVEL 3 Static MOSFET Model

Geometric Variables

Leff

Lg

xj-lat xj-lat

W

xj

Leff = Lg − 2x j−lat (x j−lat is a parameter; refer to Table 11.10)

Symbol SPICE Keyword Variable Name Default Value Unit

Lg L Gate length 100 × 10−6 m
W W Channel width 100 × 10−6 m

Note: L and W can also be specified as parameters.

Static LEVEL 3 Model

D

B

S

V D
S

V S
B

�

�

G

V G
S

�

ID

D

B

V D
S

V S
B

�

�

G
V G

S

�

ID

S

NMOS (VTs = VT + nskT/q) PMOS (VTs = VT – nskT/q)

sub-VT : VGS ≤ VT s
triode: VGS > VT s , and 0 < VDS < VDSsat
satur.: VGS > VT s , and VDS ≥ VDSsat > 0

sub-VT : VGS ≥ VT s
triode: VGS < VT s , and 0 > VDS > VDSsat
satur.: VGS < VT s , and VDS ≤ VDSsat < 0

ID =

⎧⎪⎪⎨
⎪⎪⎩

f (VGS) =
⎧⎨
⎩ β

[
(VGS − VT )VDS − (1 + FB )

V 2
DS
2

]
triode region

β
2(1+FB)

(VGS − VT )2 satur. region

f (VGS = VT s) × e−qVsubth/ns kT , sub-VT region

Vsubth = VT s − VGS ≥ 0 Vsubth = VGS − VT s ≥ 0

FB = γ Fs
2
√|2φF |+VSB

+ Fa
n FB = γ Fs

2
√|2φF |−VSB

+ Fa
n

Second-Order Effects

Principal Depletion-
Effects Channel-Related Layer-Related All

β, VDSsat Table 11.8 Table 11.9 Table 11.8 Table 11.9
VT , |2φF |, γ , Fs , Fn , ns Table 11.8 Table 11.8 Table 11.10 Table 11.10

aBy error, Berkeley SPICE, PSPICE, and HSPICE use factor 4 instead of 2 in front of the square root. (Source: D. Foty, MOSFET
Modeling with SPICE: Principles and Practice, Prentice-Hall, Upper Saddle River, NJ, 1997, p. 173).
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TABLE 11.8 Summary of SPICE LEVEL 3 Static Parameters: Principal
Effects

Principal Static Parameters

SPICE
Typical Value

Symbol Keyword Parameter Name NMOS PMOS Unit

KP (or KP Transconductance 1.2 × 10−4 A/V2

parametera

μ0 and Uo Low-field mobilityb 700 cm2/V · s
tox) Tox Gate-oxide thicknessb 20 × 10−9 m
VT 0 Vto Zero-bias threshold 1 −1 V

voltage
|2φF | Phi Surface potential in 0.70 V

strong inversion
γ Gamma Body-effect parameter >0.3 V1/2

β, VT, VDSsat, Fs , Fn , and ns Equations

NMOS PMOS

β =
⎧⎨
⎩
KP W

Leff
if KP is specified

μ0
εox
tox

W
Leff

if KP is not specified

L pinch = 0 (KAPPA = 0)

VT = Vto+ γ (
√
Phi+ VSB − √

Phi), VT = Vto− γ
(√

Phi+ VBS − √
Phi

)
VDSsat = VGS−VT

1 + FB

Fs = 1 (Xj = 0)

Fn = 0 (DELTA = 0)

ns = 1 + γ Fs(Phi+|VSB|)−1/2

2Cox
(NFS = 0)

Constant: εox = 3.9 × 8.85 × 10−12 F/m

a,bIncompatible parameters.

aligned technique is typically used to define the channel as the source and drain regions are
created, the lateral-diffusion effect leads to the difference between the masking gate and
the effective channel. The SPICE input variable is the gate length Lg , whereas the current–
voltage equations use the effective channel length Leff . The relationship between Lg and
Leff is shown in Table 11.7. If the lateral-diffusion parameter x j−lat is not specified (set to
zero), the gate and channel lengths become equal.

To model the static characteristics, the MOSFET is considered as a voltage-controlled
current source. The current is ID , whereas the controlling voltages are the voltage across
the current source VDS and the two separate voltages VGS and VSB. Zero current is assumed
between the G and S as well as between the B and S terminals. Table 11.7 shows a
compact form of the LEVEL 3 ID(VGS, VDS, VSB) equation that appears in three parts
corresponding to the three different modes of operation: subthreshold, triode (including
the linear mode), and saturation. It also shows the equations used to calculate the factor
FB . The equations for β, VT , VDSsat, |2φF |, γ , Fs , Fn , and ns that are obviously needed to
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TABLE 11.9 Summary of SPICE LEVEL 3 Static Parameters: Channel-Related
Second-Order Effects

Channel-Related Static Parameters

SPICE Typical
Symbol Keyword Parameter Name Value Unit

KP (or KP Transconductance 1.2 × 10−4 A/V2

parametera

μ0 and Uo Low-field mobilityb 700 cm2/V · s
tox) Tox Gate-oxide thicknessb 20 × 10−9 m
θ THETA Mobility modulation constant 0.1 —

vmax Vmax Maximum drift velocity 105 m/s
κ KAPPA Channel-length modulation 0.2 —

coefficient (needs Nsub)
NA , ND Nsub Substrate doping concentration 1015 cm−3

β and VDSsat Equations

NMOS PMOS

⇒ β = μeff
εox
Tox

W
Leff −L pinch

μeff = μs
1+μs |VDS |/(VmaxLeff

)
μs = μ0

1+THETA|VGS−VT |

μ0 = KPTox
εox

if KP is specified; else μ0 = Uo

L pinch =

⎧⎪⎪⎨
⎪⎪⎩

La =
√
KAPPA 2εs

qNsub |VDS − VDSsat| if Vmax is not specifiedc[(
εs

qNsub
VDSsat

Leff

)2 + L2
a

]1/2
− εs

qNsub
VDSsat

Leff
if Vmax is specified

⇒ VDSsat =
{

VGS−VT
1+FB

if Vmax is not specifiedc

VDSsat−corr if Vmax is specified

VDSsat–corr = Va + Vb −
√

V 2
a + V 2

b ,d VDSsat–corr = Va − Vb +
√

V 2
a + V 2

b

d

Va = VGS−VT
1+FB

, Vb = VmaxLeff
μs

d

Constant: εox = 3.9 × 8.85 × 10−12 F/m

a,bIncompatible parameters.
cD. Foty, MOSFET Modeling with SPICE: Principles and Practice, Prentice-Hall, Upper Saddle River, NJ, 1997,
p. 599.
d G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd ed., McGraw-Hill, New York,
1993, p. 208.

calculate ID(VGS, VDS, VSB) are given in Tables 11.8, 11.9, and 11.10. Different equations
(given in different tables) are used at different levels of complexity.

Table 11.8 represents the simplest choice, covering the principal effects only. All
the parameters shown in Table 11.8 are considered as essential. Although any version
of SPICE is expected to have sensible default values of these parameters, no simulation
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should be trusted unless the values of these parameters are checked and properly specified.
Note that the MOSFET gain factor β can be influenced in two ways: one is to specify the
transconductance parameter KP, and the other is to specify the low-field mobility μ0 and
the gate-oxide thickness tox. Because these two options are mutually exclusive, SPICE will
ignore μ0 and/or tox when calculating β if KP is specified.

The parameters and equations are common for the enhancement-type (normally off )
and depletion-type (normally on) MOSFETs. The typical values of the zero-bias threshold
voltage, shown in Table 11.8, are for the enhancement-type MOSFETs. If a negative
VT 0 is specified for an N-channel MOSFET, it automatically becomes a depletion-type
MOSFET (refer to Fig. 8.2). Analogously, a positive VT 0 indicates a depletion-type P-
channel MOSFET.

As described in Section 8.3, some second-order effects significantly influence MOS-
FET characteristics. In particular, the mobility reduction with the gate voltage (Fig. 8.14)
is so important that it can rarely be neglected. Table 11.9 summarizes the three channel-
related second-order effects; they all influence the gain factor β. Additionally, VDSsat is
modified for the case of pronounced velocity-saturation effect.

The depletion-layer-related static parameters (Table 11.10) involve the finite output
resistance (η parameter), the gate-oxide charge influence on VT (Noc parameter), the
short-channel (x j , x j−lat , and Vbi parameters), and the narrow-channel (δ parameter)

TABLE 11.10 Summary of SPICE LEVEL 3 Static Parameters:
Depletion-Layer-Related Second-Order Effects

PART I
Depletion-Layer-Related Static Parametersa

SPICE Typical
Symbol Keyword Parameter Name Value Unit

tox Tox Gate-oxide thickness 20 × 10−9 m
η ETA Static feedback 0.7 —

Note: This parameter can be used with VT 0, 2|φF |, and γ ; tox should
also be specified.

NA , ND Nsub Substrate doping concentration 1015 cm−3

Note: This parameter has to be specified to include the parameters
below.

Noc Nss Oxide-charge density 1010 cm−2

TPG Gate material type —
Same as drain/source: TPG = 1
Opposite of D/S: TPG = −1
Metal: TPG = 0

x j Xj P–N junction depth 0.5 × 10−6 m
x j−lat Ld Lateral diffusion 0.8 × x j m

Vbi PB P–N junction built-in voltage 0.8 V
δ DELTA Width effect on threshold voltage 1.0 —

NFS Subthreshold current-fitting parameter 1011 cm−2

a Incompatible parameters: VT 0, |2φF |, and γ .
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TABLE 11.10 (Continued)

PART II
VT, 2|φF|, γ, Fs , Fn , and ns Equations

NMOS PMOS

Cox = εox/Tox

⇒ VT = VT 0 + γ Fs
(√|2φF | + VSB − VT = VT 0 − γ Fs

(√|2φF | + VBS −
√|2φF |) − σDVDS + Fn(VSB + 2φF )

√|2φF |) − σDVDS − Fn(VBS + |2φF |)
VT 0 = φms − qNss

Cox
+ |2φF | + γ Fs

√|2φF | VT 0 = φms − qNss
Cox

− |2φF | − γ Fs
√|2φF |

φms =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− Eg
2q − |φF | if TPG = 1

Eg
2q − |φF | if TPG = −1

φ∗ − |φF | if TPG = 0

φms =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eg
2q + |φF | if TPG = 1

−Eg
2q + |φF | if TPG = −1

φ∗ + |φF | if TPG = 0

σD = 8.15 × 10−22ETA
/(

Cox L3
eff

)a

⇒ γ = 1
Cox

√
2εsqNsub

⇒ |2φF | = 2 kT
q ln Nsub

ni

⇒ Fs = 1 − Xj
Leff

(
Ld+wc
Xj

√
1 − wp

Xj+wp
− Ld

Xj

)a

wp =
√

2εs
qNsub (Vbi + VSB) wp =

√
2εs

qNsub (Vbi + VBS)

wc = 0.0631353Xj + 0.8013929wp − 0.0111077w2
p/Xj a

⇒ Fn = DELTA εsπ/(4CoxW)(1)

⇒ ns = 1 + qNFS
Cox

+ γ Fs(|2φF |+|VSB|)−1/2−Fn
2Cox

b

Constants:

εox = 3.45 × 10−11 F/m, k = 8.62 × 10−5 eV/K, ni = 1.4 × 1010 cm−3

q = 1.6 × 10−19 C, φ∗ = φm − 4.61 V, εs = 1.044 × 10−10 F/m

aG. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd ed., McGraw-Hill, New
York, 1993, pp. 205–206.
bD. Foty, MOSFET Modeling with SPICE: Principles and Practice, Prentice-Hall, Upper Saddle River, NJ,

1997, p. 597.

effects. Because the gate-oxide charge and the short-channel and narrow-channel effects
modify the zero-bias threshold voltage VT 0, the parameters associated with these effects
are incompatible with VT 0 as well as with |2φF | and γ . To properly include these effects,
NA,D must be specified, while VT 0, |2φF | and γ must not be specified (they are calculated
by SPICE). When NA,D is specified, a proper “type of gate” (TPG parameter) should be
used to ensure that the zero-bias threshold voltage VT 0 is properly calculated by SPICE.
The static feedback parameter η (modeling the effect of finite output resistance) can be
used with either group of parameters, provided tox is specified.
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11.2.2 Parameter Measurement
This section describes graphic methods for measurement of the most important MOSFET
parameters. As mentioned before, the graphic method is a valuable tool for establishing the
initial values of the parameters needed in any nonlinear fitting algorithm.

Measurement of VT0 and KP

The parameters VT 0 and KP can be obtained from the linear part of transfer characteristic
ID–VGS. The MOSFET is in the linear mode for small VDS voltages, when the quadratic
term (1 + FB)V 2

DS/2 is negligible compared to (VGS − VT )VDS, and for small VGS–VT

voltages, when μeff ≈ μ0 because the mobility modulation factor θ(VGS − VT ) � 1. To
simplify the following considerations, define a low-field gain factor β0

β0 = μ0Cox
W

Leff
(11.15)

that is a constant, as opposed to the generally voltage-dependent gain factor β used in
Tables 11.7 and 11.9:

β = μeff Cox
W

Leff
(11.16)

Therefore, the MOSFET model in the linear region can be written as

ID ≈ β0(VGS − VT )VDS (11.17)

Note that the range of VGS voltages in which ID–VGS characteristic is approximately linear
can be expressed as VDS(1 + FB) � VGS − VT � 1/θ .

Figure 11.4 provides an example of a MOSFET transfer characteristic measured at
VDS = 50 mV. The linear part appears approximately between VGS = 0.8 V and VGS =
2.0 V. This part of the transfer characteristic is modeled by Eq. (11.17) and can be used
to obtain VT 0 = VT (VSB = 0) and KP. The zero-bias threshold voltage VT 0 is obtained
at the intersection between the VGS axis and the straight line extrapolating the linear part
of the transfer characteristic. It can also be obtained analytically, applying Eq. (11.17) to
two different measurement points (ID1, VGS1) and (ID2, VGS2) to obtain a system of two
linear equations. Eliminating β0 from these two equations, the zero-bias threshold voltage
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Figure 11.4 MOSFET transfer
characteristics in the linear region.
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Figure 11.5 (a) Graph used to obtain VT(VSB) data. (b) Graphical extraction of the body-effect parameter γ and the
surface-inversion potential 2φF .

is obtained as

VT 0 = VGS1 − (IDS1/IDS2)VGS2

1 − IDS1/IDS2
(11.18)

The slope of the linear part of the transfer characteristic is, according to Eq. (11.17),
β0VDS. Therefore, factor β0 is obtained when the slope is divided by the voltage VDS.
The transconductance parameter KP can then be calculated as KP = β0 Leff /W .

Measurement of γ and 2φF

Measurement of the parameters γ and 2φF is based on the dependence of the threshold
voltage VT on the source-to-substrate voltage VSB (the body effect). To collect experimental
VT -versus-VSB data, the threshold voltage is measured by the previous procedure with a
difference that the MOSFET is biased by different VSB voltages. Figure 11.5a gives an
example of transfer characteristics measured with different VSB voltages that are used to
obtain the corresponding VT voltages.

The equation modeling VT (VSB) dependence is shown in Table 11.8. It can be
seen that for a properly chosen 2φF , VT versus (

√
2φF + VSB − √

2φF ) exhibits linear
dependence having the slope γ . Therefore, making an initial guess for 2φF , the VT -versus-
(
√

2φF + VSB − √
2φF ) plot can be used to verify the validity of the assumed 2φF value.

If the plotted line is not straight, a second guess for 2φF is made and the plot is redone.
Note that a concave curve indicates that 2φF should be increased, whereas a convex curve
indicates that 2φF should be decreased. This process is continued until an appropriate
straight line is obtained, as illustrated in Fig. 11.5b. The slope of this line is γ .

When the second-order effects from Table 11.10 are to be employed, the substrate
doping NA,D and the gate-oxide-thickness tox have to be specified instead of VT 0, 2φF ,
and γ . If the gate-oxide thickness is not known, it can be obtained from gate-oxide-
capacitance (Cox) measurements. The gate-oxide-capacitance can be measured using a
large-area MOSFET biased in accumulation. With the gate-oxide-capacitance value and
the already obtained body factor γ , the doping level is calculated using the equation given
in Table 11.10.
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Figure 11.6 MOSFET transfer characteristics at (a) higher VGS voltages and (b) extraction of θ parameter.

Measurement of θ

Figure 11.6a illustrates that the linear model [Eq. (11.17)] overestimates the actual
current at higher VGS voltages. The deviation of the measured ID current from the
linear dependence is due to the mobility-reduction effect and is taken into account by
the mobility-modulation coefficient θ in the SPICE LEVEL 3 model. Therefore, to
properly describe the drain current ID at larger VGS voltages, but still small VDS voltages
VDS(1 + FB) � VGS − VT , an equation more general than Eq. (11.17) is used:

ID ≈ β(VGS − VT )VDS (11.19)

The gain factor β in Eq. (11.19) is related to β0 as

β = β0

1 + θ(VGS − VT )
(11.20)

By using Eq. (11.19), a set of β values can be calculated from the experimental ID points
measured at different VGS voltages. Of course VDS is known, and the threshold voltage
VT 0 needs to be obtained first. Having the set of β values for different VGS values and
having measured β0 and VT 0 as previously described, the θ parameter can be obtained from
Eq. (11.20). To enable application of the graphical method, Eq. (11.20) is transformed to

β0

β
− 1 = θ(VGS − VT 0) (11.21)

It is obvious that plotting β0/β − 1 versus VGS–VT should produce a straight line with the
slope equal to the parameter θ , as illustrated in Fig. 11.6b.

Measurement of Effective Length and Parasitic Resistances

Lateral diffusion leads to a difference between the gate length Lg and the effective channel
length Leff . This is illustrated in Table 11.7. Although Lg is the SPICE input parameter,
the gate length is not necessarily equal to the nominal gate length, specified at the design
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level. This is due to imperfections of the manufacturing process (over- or underexposed
photoresist, over- or underetched polysilicon, etc.).

The difference between the nominal and the effective channel lengths,

�L = Lnom − Leff (11.22)

can electrically be measured if special test structures consisting of MOSFETs with equal
widths and scaled lengths are available. Because the MOSFET current in the linear region
is given by Eq. (11.17), the on resistance of the MOSFET can be defined and expressed as
follows:

Ron ≡ VDS

ID
= 1

β0(VGS − VT )
(11.23)

Replacing β0 by KP(W/Leff ) = KPW/(Lnom − �L) shows that the on resistance is
linearly dependent on Lnom:

Ron = Lnom − �L

KPW(VGS − VT )
(11.24)

Figure 11.7 provides an example of measured on resistances for MOSFETs with
four different channel lengths and all the other parameters identical. Zero on resistance
corresponds to Leff = 0 or, equivalently, to Lnom = �L [refer to Eq. (11.24)]. The
intersection between the extrapolated linear dependence and the Lnom-axis (this is Ron =
0) directly shows �L. Once �L has been determined, the effective channel length is
obtained as Leff = Lnom −�L and the gate length can be specified as Lg = Leff +2x j−lat ,
where x j−lat is also specified as an input parameter.

The method illustrated in Fig. 11.7 is based on the assumption that the on resistance is
equal to the channel resistance, which implicitly assumes that the parasitic series resistance
is zero. When the parasitic series resistance is not negligible, a measured VDS/ID is not
equal to the channel resistance but to the sum of the channel resistance and the parasitic
series resistance: VDS/ID = Rch + Rpar . Obviously, using VDS/ID data as Rch when Rpar

is not negligible leads to errors; in this case, the following, extended version of Eq. (11.24)
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should be used:

VDS/ID = Lnom − �L

KPW(VGS − VT )︸ ︷︷ ︸
Rch

+Rpar (11.25)

The channel resistance [the first term of Eq. (11.25)] depends on the gate voltage, whereas
the parasitic resistance does not. This helps to distinguish between the contributions of the
channel resistance and the parasitic resistance to VDS/ID values. It is necessary to measure
the set of VDS/ID-versus-Lnom data for one or more additional gate-to-source voltages VGS.
Figure 11.8 shows an additional set of data points (labeled as VGS2) added to the plot pre-
viously shown in Fig. 11.7. According to Eq. (11.25), different Rch resistances at different
VGS voltages correspond to different VDS/ID values. However, there is one point where the
influence of VGS on Rch does not exist and the VDS/ID value is the same for any VGS volt-
age. This point is Lnom = �L because it turns Rch into zero for any VGS voltage. Therefore,
the straight lines of the linear VDS/ID versus Lnom dependencies, measured at different VGS

voltages, intersect at a single point that is defined by Lnom = �L and VDS/ID = Rpar .
When �L has been determined, the gate length Lg can accurately be specified. In

addition, the determined value of the parasitic series resistance Rpar shows the combined
effect of the source and drain parasitic resistances RS and RD . Assuming symmetrical
MOSFET, these two parameters can be specified as RS = RD = Rpar/2.

EXAMPLE 11.3 Effective Channel Length

Two adjacent MOSFETs have the following design dimensions: Lnom1 = 1 μm, Lnom2 = 2 μm,
and W1 = W2. The drain currents, measured at VGS − VT = 2.5 V and VDS = 50 mV, are
ID1 = 495 μA and ID2 = 180 μA. Neglecting the parasitic series resistance, determine the
effective channel lengths.

SOLUTION

The measurement conditions (VGS − VT = 2.5 V and VDS = 50 mV) indicate that the
currents ID1 and ID2 are measured in the linear region. Corresponding on resistances are
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Ron1 = VDS/ID1 = 101.0� and Ron2 = 277.8 �. Because the on resistance is given by
Eq. (11.24),

Ron = 1

KP W (VGS − VT )︸ ︷︷ ︸
a

(Lnom − �L)

the following system of two equations and two unknowns (a and �L) can be written:

Ron1 = a(Lnom1 − �L)

Ron2 = a(Lnom2 − �L)

To find �L, these two equations are divided:

Ron1/Ron2 = (Lnom1 − �L)/(Lnom2 − �L)

and �L expressed as

�L =
(

Lnom2
Ron1

Ron2
− Lnom1

)/(
Ron1

Ron2
− 1

)
= 0.43 μm

Therefore, the effective channel lengths are Leff 1 = Lnom1 − �L = 1 − 0.4 = 0.6 μm, and
Leff 2 = 2 − 0.4 = 1.6 μm.

EXAMPLE 11.4 Static Feedback on the Threshold-Voltage (η)

To extract the static feedback on the threshold voltage η (SPICE parameter), the dependence of
the threshold voltage on the drain-to-source voltage has been measured and the following data
obtained: VDS = 2 V, VT = 0.68 V; VDS = 3 V, VT = 0.66 V; VDS = 4 V, VT = 0.63 V;
VDS = 5 V, VT = 0.61 V. Determine the static feedback on the threshold voltage η for this
MOSFET. The effective channel length is 2 μm, and the oxide capacitance is 1.726×10−3 F/m2.

SOLUTION

According to Table 11.10 (Part II), the threshold-voltage dependence on the drain-to-source
voltage is given by

VT = VT 0 − σD VDS

where VT 0 is the zero-bias threshold voltage, and σD is a coefficient that can be determined as
the slope of the linear VT − VDS dependence. Figure 11.9 shows that σD is found to be 0.024.

The relationship between σD and η is also given in Table 11.10 (Part II). Using that equation,
η is calculated as

η = σDCox L3
eff /8.15 × 10−22 = 0.024 × 1.726 × 10−3(2 × 10−6)3/8.15 × 10−22 = 0.41
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EXAMPLE 11.5 Effective Channel Width

The MOSFET channel width can also differ from the nominal value, which can be significant in
narrow-channel MOSFETs. To obtain this difference, the channel conductance Gon = ID/VDS

is measured in the linear region for MOSFETs having different channel widths and all the other
parameters identical. Determine �W = Wnom − W, using the following results: Wnom = 4 μm,
Gon = 0.40 �−1; Wnom = 6 μm, Gon = 0.58 �−1; Wnom = 0.8 μm, Gon = 0.76 �−1.

SOLUTION

The channel conductance Gon in the linear region is

Gon = KP
W

Leff
(VGS − VT ) = KP

Leff
(VGS − VT )(Wnom − �W )

The Gon–Wnom plot of Fig. 11.10 shows the linear dependence predicted by this equation. As the
zero channel conductance appears at Wnom = �W , �W is found at the intersection between the
linear Gon–Wnom dependence and the Wnom-axis. From Fig. 11.10, �W = −0.44 μm.
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Figure 11.10 Dependence of the chan-
nel conductance on channel width.
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11.2.3 Large-Signal Equivalent Circuit
and Dynamic Parameters in SPICE

There are a number of parasitic elements in the MOSFET structure that can significantly
influence the MOSFET characteristics under certain conditions. Perhaps the most impor-
tant are the parasitic capacitances that directly determine the high-frequency performance
of the MOSFET. The large-signal equivalent circuit of the MOSFET, as used in SPICE,
is shown in Table 11.11 (Part II). Table 11.11 also lists the parameters associated with all

TABLE 11.11 Summary of SPICE Dynamic MOSFET Model

PART I
Geometric Variables

SPICE Default
Symbol Keyword Variable Name Value Unit

AD ; PD AD; PD Drain diffusion area; . . . perimeter 0; 0 m2; m
AS ; PS AS; PS Source diffusion area; . . . perimeter 0; 0 m2; m

Parasitic-Element-Related Parameters

Related
SPICE Parasitic Typical

Symbol Keyword Element Parameter Name Value Unit

RD Rd RD Drain resistance 10 �

RS Rs RS Source resistance 10 �

RG Rg RG Gate resistance 10 �

RB Rb RB Bulk resistance 10 �

Rds Not Drain–source leakage ∞ �

shown resistance
tox Tox CS1; CD1 Gate-oxide thickness 20 × 10−9 m

|2φF | Phi CS1; CD1 Surface potential 0.7 V
(or NA,D ) (or Nsub) (substrate doping) (1015) (cm−3)

CGD0 Cgdo CD2 Gate–drain overlap capacitance 4 × 10−11 F/m
per channel width

CGS0 Cgso CS2 Gate–source overlap capacitance 4 × 10−11 F/m
per channel width

CGB0 Cgbo Not Gate–bulk overlap capacitance 2 × 10−10 F/m
shown per channel length

IS (or JS) IS (or JS) DB Saturation current 10−14 A
(current density) (10−8) (A/m2)

Vbi PB/PBSW DB /DP Built-in voltage 0.8 V
Cd (0) Cj/Cjsw DB /DP Zero-bias capacitance 2 × 10−4 F/m2

per unit area (length) 10−9 (F/m)
m Mj/Mjsw DB /DP Grading coefficient 1

3 – 1
2 —

CB D; CBS Cbd; Cbs DB /DP Drain/source-to-bulk capacitance F
[incompatible with Vbi , Cd (0), and m]
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TABLE 11.11 (Continued)

PART II
Large-Signal Equivalent Circuit

RD

DP

DB

DP

DB

RB

ID(VGS, VDS, VSB)

D

RG

G

B

RS

S 1

2

Note:
Diodes shown for NMOS.
Reverse for PMOS.

CS1 CD1CS2 CD2

ID (VGS, VDS, VSB) is given in Table 11.7
DB /DP is according to diode model of Table 11.2
CS2 = CGS0W
CD2 = CGD0W
CG B = CGB0Leff ; CG B appears between points 1 and 2 (not explicitly shown)
CS1 and CS2 calculated by SPICE from the terminal voltages, and tox and |2φF |

(or NA,D ) parameters
(|2φF | = kT

q ln NA,D
ni

)
IS = JS AD (drain–bulk)
IS = JS AS (source–bulk)

the elements of the equivalent circuit but the current source, which is the only nonparasitic
element.

The pairs of gate-to-source and gate-to-drain capacitors in Table 11.1 have different
origins, and consequently different models and parameters are associated with these
capacitors. The gate-to-source capacitance CS2 and the gate-to-drain capacitance CD2 are
due to overlap between the gate and source/drain regions. SPICE parameters that include
these capacitances are CGS0 and CGD0 (overlap capacitances per unit width). They have
to be specified in F/m, and SPICE then multiplies the specified values by the channel
width W , to convert them into capacitances expressed in F. Assuming overlap of lolp , these
parameters can be estimated as CGS0,GD0 = lolpεox/tox. Gate-to-body overlap capacitance
is not shown explicitly in the figure; however, it exists, and it is connected between points
1 and 2 in the equivalent circuit. The MOSFET cross section along the channel width
is shown in Fig. 8.19. The gate-to-body overlap capacitance is due to the gate extension
outside the effective channel width (W ). Assuming overlap of lolp , the parameter of this
capacitance can also be estimated as CGB0 = lolpεox/t f −ox . This parameter, however, has
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the meaning of capacitance per unit length, and SPICE multiplies it by the effective channel
length Leff to convert the capacitance into farads.

The gate-oxide capacitance inside the active channel area is included by the capacitors
CS1 and CD1. These capacitances vary with the applied voltages, and SPICE calculates
them accordingly. In the linear region, when the channel expands from the source to the
drain, CS1 and CD2 each makes half of the total gate-oxide capacitance CoxW Leff . In
saturation, the channel is pinched off at the drain side, and CD1 capacitance is smaller.
Although no specific parameters are needed to calculate these capacitances, the gate-oxide
thickness tox and the doping level (|2φF | or NA,D ) have to be specified.

In addition to the parasitic capacitors, there are parasitic resistors as well. Although the
origins can be different (contact resistances and/or neutral-body resistances), they can be
expressed by four parasitic resistors associated with each of the four terminals. The values
of these parasitic resistors are direct SPICE parameters.

Finally, the source-to-body and drain-to-body P–N junctions create parasitic diodes.
Although these diodes are normally off, they can create leakage currents; more impor-
tantly, they introduce depletion-layer capacitances. As described in Section 6.3, these
capacitances depend on the reverse-bias voltage. The SPICE MOSFET model includes
the full diode model (equivalent circuit) for these two P–N junctions. Additionally, each of
these junctions is represented by two independent diodes, the body and perimeter diode.
The zero-bias capacitance (as diode parameter) can be specified per unit area (for the case
of the body diode DB ) or per unit length (for the perimeter diode DP ). Of course, these
parameters necessitate properly specified geometrical variables (drain and source diffusion
area/perimeter). As an alternative to the complete P–N junction capacitance models, the
body-to-drain and body-to-source capacitances can directly be specified (CB D and CBS

parameters). In this case, however, the capacitance dependence on the reverse-bias voltage
is not included.

11.2.4 Simple Digital Model
Both digital and analog circuits with MOSFETs can be analyzed by the SPICE simulator.
As described in Section 11.2.1, the MOSFET is represented in SPICE by its large-
signal equivalent circuit with the associated equations and parameters. Assuming properly
set parameters, SPICE simulations enable the fairly precise electrical characterization
of a circuit. The simulation results can be utilized in many different ways during
the design process. The question that is important for this section relates to the need
for simplified equivalent circuits. If the large-signal equivalent circuit used in SPICE
can be used to solve and analyze digital circuits, why do we need a simple digital
model?

Precise SPICE simulations, obtained by the trial-and-error method, are not very
helpful for a number of the very important decisions that a circuit/system designer has
to make in the early stages of the design process. For this purpose, the designer has to
rely on insights and hand calculations based on the simplest possible models. In the case
of digital circuits, the simplest model for a MOSFET is the voltage-controlled switch.
An ideal switch has zero resistance in on mode, infinite resistance in off mode, and zero
parasitic capacitances. The concept of ideal switch is an abstraction that can help with the
functional design of a digital circuit but is totally inadequate when it comes to the reality
of implementation constraints. The parasitic resistance and the parasitic capacitances
should be added to the ideal switch to enable considerations related to power/energy
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dissipation and time response (energy and time are the two fundamental concepts that
impose implementation constraints).

Figure 11.11 shows the equivalent circuit of a simple digital model that includes
the parasitic resistance of the switch in on mode, the input capacitance, and the output
capacitance.2 The resistance of the switch in off mode is assumed to be infinite, which is
appropriate for most applications where the MOSFET is used in series with much smaller
resistances. Naturally, the input and output capacitances are ignored when DC or low-
frequency analyses are performed.

The question now is how to relate the components of this simple equivalent circuit
to the physically based components of the large-signal equivalent circuit. Starting with
the resistor (R), consider a “sudden” change in the gate voltage of an N-channel MOSFET
from 0 to V+. In a digital circuit, such as the CMOS inverter shown in Fig. 8.6a, this should
cause the drain-to-source voltage of the MOSFET to change from V+ to 0. Looking at the
output characteristics (Fig. 11.12), the instantaneous current–voltage point has to move
from (VDS = V+, ID = 0) to (VDS = 0, ID = 0). The actual path of the current–voltage
point is also illustrated in Fig. 11.12. Because of the parasitic capacitance between the drain
and the source, VDS voltage cannot be changed instantly while the “sudden” change in input
voltage from VGS = 0 to VGS = V+ changes the current from 0 to IDsat . Accordingly, this
transition is shown by the vertical arrow. The saturation-drain current, corresponding to
VGS = V+, starts discharging the drain-to-source capacitance. This reduces the drain-to-
source voltage; when the voltage reaches the VDSsat value at time t1, the discharging path
enters the triode region.

The actual discharging path is nonlinear, which is not consistent with the linear
equivalent circuit (Fig. 11.11) whose resistance R we need to establish. Nonetheless,
the arguments for the usefulness of even a coarse but simple digital model remain valid.
As discussed earlier, simple equivalent circuits would not be used to achieve the precise
calculations that would be needed for circuit optimization. SPICE simulations would be
used for this type of analysis. The simple equivalent circuits are needed at the conceptual
level, where many important decisions are typically made. Given that simplicity and not
precision is of ultimate importance at the conceptual level, we use the best linear path as
the model for the voltage–current changes associated with the discharging of the drain-to-
source capacitance. This linear path is also illustrated in Fig. 11.12. Based on this linear

2R. J. Baker, H. W. Li, and D. E. Boyce, CMOS: Circuit Design, Layout, and Simulation, IEEE
Press, New York, 1998.
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path and the MOSFET equation for saturation current, the resistance R in the equivalent
circuit of Fig. 11.11 can be expressed as

R = V+
IDsat(VGS = V+)

= RSeff
L

W
(11.26)

where the kind of effective sheet resistance RSeff includes the voltage V+ and all the
relevant technological parameters. In the case of the LEVEL 3 SPICE model, RSeff =
2(1 + FB)V+/KP(V+ − VT )2.

The remaining two components of the simple digital MOSFET model are the input
(CIN ) and output (COUT ) capacitances. Basically, these capacitances have to replace and
represent the capacitances of the large-signal equivalent circuit shown in Table 11.11
(Part II). Labeling the gate length and width by Lg and W , respectively, and the gate-
oxide capacitance per unit area by Cox, we can clearly see that one component of CIN is
CS1 + CS2 = CoxW Lg/2. The other component of CIN is due to CD1 + CD2. Although
CD1 + CD2 = CoxW Lg/2, its contribution to the effective input capacitance is different
from this value because the drain is not short-circuited to the source and VGD voltage is
not equal to the voltage across CIN . To turn the MOSFET on, VGS has to change from 0 to
V+ while VDS has to change from V+ to 0. The change of VGD is �VGD = �VGS − �VDS

= (V+ − 0) − (0 − V+) = 2V+. Assuming linear transitions, the current through the
gate-to-drain capacitance CD1 + CD2 is

IG→D = CoxWLg

2

�VGD

�t
= CoxWLg

2
2V+ = CoxWL

�VGS

�t︸ ︷︷ ︸
=−�VDS/�t

(11.27)

Equation (11.27) means that the gate-to-drain capacitance CD1 + CD2 can be split into
components from the gate to ground and from the drain to ground, each of them of value
(CD1 + CD2) = CoxWLg .3 Therefore, the total input capacitance (due to both the gate-to-

3The effective input and output capacitances are larger than the real value of the capacitance
connected between the input and the output. This effect is due to increased voltage changes across
the bridging capacitance. In linear circuits, this effect is known as the Miller effect. In this case, the
voltage change of 2V+ across CD1 + CD2 = CoxWLg/2 is equal to twice as small voltage change
(V+) across twice as large a capacitance [2(CD1 + CD2) = CoxWLg].
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source and drain-to-gate components) is CIN = CoxWLg/2 + CoxWLg = 3CoxWLg/2,
whereas the output capacitance is COUT = CoxWLg . These are the values shown in
Fig. 11.11.

EXAMPLE 11.6 Time Response of CMOS Inverter

The saturation current of the NMOS transistor in a CMOS technology is IDsat = 8 mA. The
following parameters are also known: Lg−NMOS = Lg−PMOS = 0.25 μm, WNMOS = 0.5 μm,
WPMOS = 1.5 μm, tox = 5 nm, and V+ = 3.3 V. A sharp 0-to-V+ voltage transition is achieved at
the inverter input. Using the simple digital MOSFET model, calculate the fall time if the inverter
output is

(a) open (intrinsic fall time)
(b) connected to the input of an identical inverter (cascade connection)

Note: The fall time is defined as the time that is needed for the output voltage to drop from 0.9V+
to 0.1V+, as illustrated in Fig. 11.13.

vS(t)

vO(t)

Time

Time

VH0.9(VH � VL )

0.1(VH � VL )

0.5(VH � VL )

tf tr

tPHL tPLH

0.5(VH � VL )

Figure 11.13 Practical definitions of
rise (tr), fall (tf), and propagation (tPHL

and tPLH) times associated with an in-
verter (vS is the input voltage, vO is
the output voltage, VH is the logic high
level, and VL is the logic low level).

SOLUTION

(a) Although the inverter output is open, the MOSFET capacitances have to be charged/
discharged as the inverter changes states. The output capacitance of the NMOS transistor
is connected between the inverter output and ground, which means that its voltage has
to change from V+ to zero as the inverter changes the output level from high to low.
The output capacitance of the PMOS transistor is connected between the output and V+,
which means that the voltage across this capacitance has to change from 0 V to −V+.
The charging/discharging current of both these capacitances flows through the NMOS
transistor (the PMOS transistor is off). This means that the capacitances are effectively
connected in parallel, with the total capacitance being

COUT−INV = 6.9 × 10−3 × 0.25 × 10−6 × (0.5 + 1.5) × 10−6 = 3.45 fF
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As the voltage between the drain and source of the NMOS transistor changes from V+
to 0, the current changes from IDsat to 0. This means the average resistance is

R = V+
IDsat

= 3.3

8 × 10−3 = 412.5 �

The capacitance COUT−INV and the resistance R create the simple R–C discharging cir-
cuit. In this circuit, the voltage drops exponentially with time constant τ = RCOUT−INV :

vO = V+e−t/τ

Applying the definition of fall time, we have

t1 = −τ ln 0.9

t2 = −τ ln 0.1

t f = t2 − t1 = τ (− ln 0.1 + ln 0.9) = τ ln
0.9

0.1
= 2.2τ

t f = 2.2 × 412.5 × 3.45 × 10−15 = 3.13 ps

(b) In this case the input capacitances of the NMOS and PMOS transistors creating the
inverter connected to the output of the first inverter have to be added to the intrinsic
loading capacitance COUT−INV :

CL = COUT−INV + 3

2
Cox Lg−NMOSWNMOS + 3

2
Cox Lg−PMOSWPMOS

CL = 3.45 × 10−15 + 1.5 × 6.9 × 10−3 × 0.25 × 10−6 × (0.5 + 1.5) × 10−6 = 8.625 fF

t f = 2.2 × RCL = 2.2 × 412.5 × 8.625 × 10−15 = 7.8 ps

EXAMPLE 11.7 Design of CMOS Transistors for Large Capacitive Loads

The parameters of the simple digital models for N-channel and P-channel MOSFETs in a
minimum-size CMOS inverter are RNMOS = RPMOS = 400 �, CIN−PMOS = 2CIN−NMOS =
10 fF, and COUT−PMOS = 2COUT−NMOS = 7 fF.
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(a) Estimate the total delay time tdelay = tPHL + tPLH if this inverter drives external load
of equivalent capacitance CL = 10 pF. (Note: The propagation times tPHL and tPLH are
defined in Fig. 11.13.)

(b) Estimate tdelay if CL is driven by the cascade connection of three inverters with scaled-
up channel widths, so that WNMOS and WPMOS are increased by S = 10 times in each
subsequent inverter. Compare the result to the case of single-inverter driver of part (a).

SOLUTION

(a) To estimate tPHL we note that CL is discharging from VH = V+ to VL = 0 through
RNMOS. The output voltage is decaying exponentially, V+ exp(−t/τPHL), and tPHL is
defined as the time when the output voltage drops to 0.5V+:

0.5V+ = V+e−tPHL/τPHL

tPHL = τPHL ln 2

where

τPHL = RNMOS(COUT−NMOS + COUT−PMOS + CL)

Similarly, we can find that

tPLH = (ln 2)RPMOS(COUT−NMOS + COUT−PMOS + CL)

Therefore,

tdelay = (ln 2)(RNMOS + RPMOS)(COUT−NMOS + COUT−PMOS + CL)

tdelay = 0.693 × 800 × (3.5 × 10−15 + 7 × 10−15 + 10 × 10−12) = 5.55 ns

(b) As channel widths in the cascaded inverters are increased by factor S toward the load,
the capacitances are also increased by factor S, whereas the resistances are reduced by
factor S compared to the previous inverter. To obtain the total delay time, we have to add
the delay times after each of the inverters:

tdelay = (ln 2)(RNMOS + RPMOS)

× COUT−NMOS + COUT−PMOS + S(CIN−NMOS + CIN−PMOS) 1st inverter

+ (ln 2)
RNMOS + RPMOS

S
× S(COUT−NMOS + COUT−PMOS) + S2(CIN−NMOS + CIN−PMOS) 2nd inverter

+ (ln 2)
RNMOS + RPMOS

S2

× S2(COUT−NMOS + COUT−PMOS) + CL 3rd inverter
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tdelay = ln 2 × 800 × 10.5 × 10−15 + ln 2 × 800 × 10 × 15 × 10−15

+ ln 2 × 800 × 10.5 × 10−15 + ln 2 × 800 × 10 × 15 × 10−15

+ ln 2 × 800 × 10.5 × 10−15 + ln 2 × 800 × 10×10−12

102

= 239.3 ps

It can be seen that the triple-inverter driver provides much shorter delay (0.24 ns �
5.55 ns), even though the pulse has to propagate through three inverter stages.

11.2.5 Small-Signal Equivalent Circuit
In analogy with the arguments presented in Section 11.2.4 for the need of a simple
equivalent circuit for digital applications, there is a need for a simplified equivalent circuit
applicable to analog applications. As described in Section 11.1.4, the term small signal is
used to designate that a device is used in a small linear-like region of its characteristics.

The general small-signal equivalent circuit of a MOSFET is shown in Fig. 11.14. The
components of this circuit can be related to the components of the large-signal equivalent
circuit, shown in Table 11.11 (Part II). The resistances rG , rS , and rD are equivalent to their
large-signal counterparts, RG , RS , and RD , respectively. These are the parasitic contact and
body resistances of the gate, source, and drain regions. These resistances are small and can
usually be neglected.

The small-signal capacitance Cgs is equal to the large-signal capacitance CS1 + CS2
at the specific quiescent point (DC bias). In general, CS1 + CS2 capacitance depends on
VGS voltage, but in a linear circuit the DC component of the gate-to-source voltage is fixed
at a selected quiescent point VGSQ. Because the variations of the signal voltage vgs around
the quiescent point VGSQ are small, it is assumed that the small-signal capacitance Cgs has
a constant value that is equal to the value of CS1 + CS2 at VGS = VGSQ. Analogously, the
small-signal capacitance Cgd is equal to the value of the large-signal capacitance CD1 +
CD2 at VGD = VGDQ.

Typically, no signals are applied between the body and source terminals of MOSFETs
used in linear circuits. This means that the body and the source terminals are effectively

rG

rS

rDCgd

Cgs
gmvgvg Cdbro

�

G D

S

Figure 11.14 The general small-signal
equivalent circuit of a MOSFET.
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short-circuited as far as the signals are concerned.4 Accordingly, the small-signal capaci-
tance Cdb should be related to the parasitic capacitance between the drain and body termi-
nals (any capacitance between the body and the source terminals is short-circuited). As can
be seen from the large-signal equivalent circuit shown in Table 11.11 (Part II), the capaci-
tance between the drain and the body terminals is due to the reverse-biased diodes DB and
DP . Therefore, the small-signal capacitance is equal to the value of the depletion-layer ca-
pacitance of the reverse-biased drain-to-body P–N junction at the quiescent voltage VDSQ.

As in the case of the simple digital model (Section 11.2.4), the input–output bridging
capacitance can be split into effective input and output components. Assuming the
common-source configuration, the input is between the gate and source terminals and
the output is between the drain and source terminals. In this case, Cgd is the bridging
input–output capacitance. Analogously to the digital case, the effective input capacitance
will appear larger than Cgd to account for the fact that the voltage changes between the
gate and drain (the output signal) are larger than the voltage changes between the gate
and source (the input signal). This is the Miller effect. Defining the ratio between the
output and input signals as the gain, A = vds/vgs , the effective input component of Cgd

is equal to (1 + A)Cgd . The effective output component of the bridging capacitance is
approximately equal to Cgd itself, under the assumption that vds  vgs for a high gain
(A  1). The effective input and output components of Cgd have to be added to Cgs and
Cdb, respectively, to obtain the total effective input and output capacitances of a MOSFET
used as an amplifier with common source:

Ci = Cgs + (1 + A)Cgd
(11.28)

Co = Cdb + Cgd

The capacitances are important for high-frequency analyses. If the frequencies of
interest are small enough, the impedances associated with the parasitic capacitances
become so large that the capacitances can be neglected (replaced by open circuits in
the equivalent circuit). This leaves us with the two essential components of the small-
signal equivalent circuit: the voltage-controlled current source (gmvg) and the output
resistance (ro). As described in Section 11.1.4, a small-signal resistance is different from
the static resistance.5 In this case the small-signal resistance vds/ id is different from the
static resistance VDSQ/IDQ. The static resistance relates to the slope of a line connecting
a selected quiescent point (IDQ, VDSQ) to the (0, 0) point (the origin of the output
characteristics). An example is the line labeled as “linear resistor model” in Fig. 11.12.
The small-signal resistance relates to the slope of the actual ID–VD line at the selected
quiescent point. The mathematical definition is

ro =
(

dID

dVDS

∣∣∣∣
@VDSQ

)−1

(11.29)

In the ideal case, the saturation current of a MOSFET does not change with VDS , so
ro → ∞. This means that the MOSFET acts as a perfect voltage-controlled current source.

4Even when a DC bias is applied between the body and the source, the voltage source providing this
DC bias acts as a short circuit in terms of any signal analysis.
5The small-signal resistance is also called dynamic resistance.
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In practical MOSFETs, however, there is always a slight increase of ID with VDS , so
the small-signal output resistance is not infinite. Section 8.3 describes the most important
second-order effects that lead to the finite output resistance.

The single most important component of the small-signal equivalent circuit is the
voltage-controlled current source. The controlling factor is the transconductance gm . The
transconductance relates the signal drain current to the signal gate-to-source voltage. In
other words, it shows how much change in the drain current is caused by a certain change
in the gate-to-source voltage. Therefore, the transconductance relates to the transfer ID–
VGS characteristic in the following way:

gm = dID

dVGS

∣∣∣∣
@VGSQ

(11.30)

EXAMPLE 11.8 Small-Signal Transconductance

Determine the transconductance of the MOSFET from Example 8.2 at the following bias points:

(a) VGSQ = 5 V, VDSQ = 10 V, and VSBQ = 0 V
(b) VGSQ = 0 V, VDSQ = 10 V, and VSBQ = 0 V

Compare and comment on the results.

SOLUTION

Using the LEVEL 3 equation in the saturation region and Eq. (11.30), we obtain

(a) gm = ∂

∂VGS

[
β

2(1 + FB)
(VGS − VT )2

]
@VGSQ

= β

1 + FB
(VGSQ − VT )

(b) gm = 1.75

1 + 0.51
(5 + 2.5) = 8.7 mA/V

gm = 1.75

1 + 0.51
(0 + 2.5) = 2.9 mA/V

The transconductance is smaller for the smaller VGS because the slope of the transfer character-
istic is smaller.

11.3 BJT

11.3.1 Static Model and Parameters: Ebers–Moll
and Gummel–Poon Levels in SPICE

The Ebers–Moll and Gummel–Poon levels in SPICE are two levels of model complexity
that differ in the way the common-emitter current gains βF and βR are treated. At the
Ebers–Moll level, they are considered as constants whose values can be specified by the
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user. At the Gummel–Poon level, the specified values are considered as the maximum
values only (βFM , and βRM ), while modified IC and IB equations account for the variation
of the current gain IC/IB at different bias conditions. The more complex equations at
the Gummel–Poon level include the simpler Ebers–Moll equations. Consequently, and
unlike the MOSFET case, the BJT levels do not need to be explicitly specified by the
user.

The Ebers–Moll parameters and equations are summarized in Table 11.12. They
include the principal effects and the most important second-order effect, which is the
Early effect. The Early voltages can be ignored if precise modeling of the output dynamic
resistance is not important. For completeness, the equations are given for the case of
both NPN and PNP BJT. If the approximation of constant common-emitter current gain
is satisfactory and Table 11.12 is used, then the Gummel–Poon parameters and equation
in Table 11.13 should be ignored. However, Table 11.15 is still relevant, because it
summarizes the parasitic elements that may need to be added to the Ebers–Moll parameters
for more precise simulation.

In the extreme biasing conditions, when the current gain reduction at very low or
high current levels cannot be neglected, the parameters and equations of the more complex
Gummel–Poon level, summarized in Table 11.13, should be used instead of the parameters
and equations from Table 11.12.

11.3.2 Parameter Measurement
This section uses the example of a 3086 NPN BJT biased in the normal active mode to show
practical techniques of BJT parameter measurement. Analogous techniques are employed
for measurement of the parameters related to the inverse active mode. The techniques
described are useful for obtaining estimated parameter values, which can then be used
as the initial values for nonlinear parameter fitting.

Measurement of the Saturation Current and the Current Gain

To find the saturation current IS0 and the current gain βF , a set of measured IC and IB

values over a range of VBE voltages is needed. The voltage VCE is kept constant, and it is
set at neither too low a value (to avoid the saturation region) nor too high a value (to avoid
the influence of the Early effect).

In the normal active mode, IC and IB dependencies on VBE are given by Eqs. (9.51).
Because these are exponential relationships, they can be linearized in the following
way:

ln IC = ln IS0 + 1

Vt
VBE (11.31)

ln IB = ln IS0 − ln βF + 1

Vt
VBE (11.32)
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TABLE 11.12 Summary of SPICE BJT Model: Static Ebers–Moll Level

Ebers–Moll Parameters

Usual SPICE Typical
Symbol Keyword Parameter Name Value Unit

IS0 IS Saturation current 10−16 A
βF BF Normal common-emitter current gain 150 —
βR BR Inverse common-emitter current gain 5 —
VA VA Normal Early voltage >50 V
VB VB Inverse Early voltage V

Ebers–Moll Model

NPN BJT

V B
C

V B
E

IE

IC

IB�

�
B

C

E

IS = IS
(
1 − VBC

VA − VBE
VB

)
IC = IS

(
eVBE/Vt − 1

) − (
1 + 1

BR

)
IS
(
eVBC /Vt − 1

)
IE = −(

1 + 1
BF

)
IS
(
eVBE/Vt − 1

) + IS
(
eVBC /Vt − 1

)
IB = 1

BF IS
(
eVBE/Vt − 1

) + 1
BR IS

(
eVBC /Vt − 1

)
PNP BJT

V C
B

V E
B

IE

IC

IB

�

�

B

C

E

IS = IS
(
1 − VCB

VA − VEB
VB

)
IC = IS

(
eVEB/Vt − 1

) − (
1 + 1

BR

)
IS
(
eVCB/Vt − 1

)
IE = −(

1 + 1
BF

)
IS
(
eVEB/Vt − 1

) + IS
(
eVCB/Vt − 1

)
IB = 1

BF IS
(
eVEB/Vt − 1

) + 1
BF IS

(
eVCB/Vt − 1

)
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TABLE 11.13 Summary of SPICE BJT Model: Static Gummel–Poon Level

Gummel–Poon Parameters

Usual SPICE Typical
Symbol Keyword Parameter Namea Value Unit

IS0 IS Saturation current 10−16 A
βFM BF Maximum normal current gain 150 —
βRM BR Maximum inverse current gain 5 —
VA VA Normal Early voltage >50 V
VB VB Inverse Early voltage V
IKF IKF Normal knee current >10−2 A
IKR IKR Inverse knee current A

C2 IS0 ISE B–E leakage saturation current <IS0 A
nEL NE B–E leakage emission coefficient 2 —

C4 IS0 ISC B–C leakage saturation current <IS0 A
nC L NC B–C leakage emission coefficient 2 —

Gummel–Poon Model

NPN BJT (equivalent circuit as in Table 11.12)

λBE = eVBE/Vt − 1, λBC = eVBC /Vt − 1
λBEL = eVBE/(NEVt ) − 1, λBCL = eVBC /(NCVt ) − 1

q1 = (
1 − VBC

VA − VBE
VB

)−1
, q2 = IS

IKFλBE + IS
IKRλBC , qb = 0.5q1

(
1 + √

1 + 4q2
)

IB = IS
BFλBE + ISEλBEL + IS

BRλBC + ISCλBCL

IC = IS
qb

(λBE − λBC ) − IS
BRλBC − ISCλBCL

IE = −IS
qb

(λBE − λBC ) − IS
BFλBE − ISEλBEL

PNP BJT (equivalent circuit as in Table 11.12)

λEB = eVEB/Vt − 1, λCB = eVCB/Vt − 1
λEBL = eVEB/(NEVt ) − 1, λCBL = eVCB/(NCVt ) − 1

q1 = (
1 − VCBVA − VEB

VB

)−1
, q2 = IS

IKFλEB + IS
IKRλCB, qb = 0.5q1

(
1 + √

1 + 4q2
)

IB = IS
BFλEB + ISEλEBL + IS

BRλCB + ISCλCBL

IC = IS
qb

(λEB − λCB) − IS
BRλCB − ISCλCBL

IE = −IS
qb

(λEB − λCB) − IS
BFλEB − ISEλEBL

aB–E, base–emitter; B–C, base–collector.

Figure 11.15 shows that the linear ln IC –VBE and ln IB–VBE dependencies, with the slope
of 1/Vt , are observed over a wide range of output currents. As Eq. (11.31) shows, the
logarithm of the saturation current is obtained as ln IC at VBE = 0.

It is obvious from Eqs. (11.31) and (11.32) that ln IC − ln IB = ln βF . Therefore,
the logarithm of the current gain is obtained as the difference between the ln IC –VBE and
ln IB–VBE lines.
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Figure 11.15 Measurement of IS0

and βF.

Measurement of the Early Voltage

It may seem from Fig. 9.14 that VA measurement is as simple as the extrapolation of several
IC –VCE lines. However, a number of important points are not immediately obvious. To
begin with, Eq. (9.55) cannot directly be used to calculate VA because the IC (VBC = 0)

point is not in the active region. Using another reference point and assuming that VBC ≈
VCE , for convenience, we modify Eq. (9.55) as follows:

IC−ref

VCE−ref + VA
= IC

VCE + VA
(11.33)

This equation can further be transformed into the following form:

VCE = VCE−ref + VA

IC−ref︸ ︷︷ ︸
slope

IC − VA (11.34)

Only two points, (VCE−ref , IC−ref ) and (VCE, IC ), are needed to construct the line
defined by Eq. (11.34). It is important, however, that the two points span the entire
operating range of VCE voltages.

The range of input voltages VBE , or alternatively input currents IB , should also
cover the entire operating range. The importance of this point is the best illustrated by
Table 11.14, which shows significant differences between Early voltages obtained by
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TABLE 11.14 Early Voltages Obtained
by Extrapolation of
Different IC–VCE Lines

IB (μA) VA (V)

20 200.3
40 146.4
60 115.7
80 98.9

100 86.0
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 (

m
A

)
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m
A

)

VCE  (V)

VCE  (V)

VA

Figure 11.16 Early voltage VA of a 3086 NPN BJT.

extrapolation of IC –VCE lines corresponding to different IB currents. Obviously, if the
input current IB is restricted to a too small value, the Early voltage will be overestimated.

Of course, the results from Table 11.14 raise the question of whether it is possible
to establish a unique VA, which will properly represent the complete set of IC –VCE

characteristics. Given that the Early effect is the most pronounced at the highest IB current,
the corresponding Early voltage can be used as the first estimate. Using VA = 86.0 V as
the initial value, Eq. (11.34) was fitted to the experimental data shown in Fig. 11.16. The
best fit was achieved with VA = 87.7 V, which is a very close value to the initial one.
Figure 11.16 illustrates that this unique value can properly represent the complete set of
output characteristics.

Measurement of the High-Level Knee Current and the Leakage Parameters

The first problem that appears at high current levels is the difference between the applied
VBE voltage and the voltage that actually appears across the P–N junction. This difference
is due to the voltage drop across the parasitic resistances, as described in Section 6.2.2.
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Figure 11.17 The effect of rE on ln IB–VBE

dependence.

In the case of the BJT, the voltage across rB is negligible because the base current is very
small; however, the voltage across rE can become pronounced. Although this voltage is
rE IE , it can be approximated by rE IC , since IC ≈ IE . Following the procedure described
in Section 6.2.2, the value of rE is determined to calculate the effective base–emitter
voltage VBE − rE IC that linearizes the high-current part of the ln IB–VBE dependence
(Fig. 11.17).

Plotting ln IC versus the effective base–emitter voltage VBE − rE IC , as in Fig. 11.18,
shows that the actual ln IC data still depart from the linear dependence at high current
levels. The reduced slope of the ln IC –VBE dependence causes the reduction in the current
gain observed at high IC currents in Fig. 9.16.

The related parameter in the Gummel–Poon equations [Eqs. (9.60) and (9.64)–(9.66)]
is IKF . To estimate the value of this parameter, ln IC –VBE measurements are extended into
the high-current region. Again, the measurements are performed with properly selected
VCE value so that the Early effect is avoided, simplifying Eq. (9.65) to q1 ≈ 1.
Equation (9.69) for the collector current at high current levels shows that a plot of ln IC

versus VBE should be a straight line with the slope 1/2Vt . Figure 11.18 shows that IKF

can be determined in one of the following two ways: (1) as the logarithm of the current at
which the high-current line with the slope of 1/2Vt intersects the low-current line with the
slope of 1/Vt and (2) from ln

√
IS0 IKF that is determined as value of the high-current line

at VBE = 0, using the earlier determined value of IS0.
At very low current levels, a significant reduction of the current gain βF can occur due

to the increase of base leakage current, which is modeled by Eq. (9.57) and the associated
parameters C2 and nEL. The leakage component results in a deviation of the ln IB–VBE

dependence from the line with the 1/Vt slope. This situation is not observed in Fig. 11.17,
and therefore the parameter C2 is assumed to be zero. When the effect does appear, the
changed slope of the line and its value at VBE = 0 are used to estimate nEL and C2 IS0,
respectively. This is equivalent to the procedure for the measurement of n and IS , as
described in Section 11.1.3.

The validity of the measured parameters is checked in Fig. 11.19, where the model
predictions (the dashed lines) are compared to the experimental data (the solid lines).
As mentioned earlier, the estimated parameter values can be used as initial values for
nonlinear curve fitting. Figure 11.19 also shows that the curve fitting changed slightly
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Figure 11.19 Comparison between the experimental data and the SPICE model with parameter values as estimated by the
described techniques (before fitting), as well as with parameter values after nonlinear curve fitting.

some parameter values to ensure the best fit between the model (open symbols) and the
experimental data (the solid lines).

11.3.3 Large-Signal Equivalent Circuit
and Dynamic Parameters in SPICE

Two P–N junctions are inherently present in any BJT structure, and they bring along
the associated capacitances. As described in Chapter 6, there are two capacitances
associated with every P–N junction: the depletion-layer capacitance Cd and the stored-
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charge capacitance Cs , the latter of which is important only in the case of forward-biased
mode when significant current flows through the P–N junction. The depletion-layer and
the stored-charge capacitances of the base–emitter and base–collector junctions appear
in parallel with the respective diodes, as shown by the equivalent circuit in Table 11.15.
Subscripts E and C are used for the base–emitter and the base–collector junctions,
respectively. All these capacitances are voltage-dependent, as described in Chapters 6.

There is an additional P–N junction in the standard bipolar IC structure of the BJT,
which is the isolating N-epi–P-substrate, or collector–substrate junction (shown later:
Fig. 16.15). This junction is always reverse-biased, which means that the stored-charge
capacitance never becomes important. However, the depletion-layer capacitance is always
there, and it can definitely influence the high-frequency characteristics of the BJT. The
depletion-layer capacitance of the collector–substrate junction is included in the large-
signal equivalent circuit used in SPICE, which is Cd S in the equivalent circuit shown in
Table 11.15. It appears connected between the collector and the lowest potential in the
circuit (V−), which is effectively zero level for the signal voltages and currents.

The equivalent circuit in Table 11.15 also includes the parasitic resistances in the base
(rB ), the emitter (rE ), and the collector (rC ), which are all direct SPICE parameters.

11.3.4 Small-Signal Equivalent Circuit
Consider the specific case of the normal active mode to simplify the large-signal equivalent
circuit from Table 11.15 into a small-signal equivalent circuit that is frequently used
for circuit design and analysis. Table 11.16 summarizes the relationships between the
components of the large-signal and the small-signal equivalent circuits.

To begin with, the base–collector junction is reverse-biased, so the diode DC and the
stored-charge capacitance CsC can be removed because no diode current flows through
this junction. What remains between the base and the collector is the depletion-layer
capacitance CdC , which in general depends on the voltage across the junction VCB

(analogous to the equation given in Table 11.2). However, as we are considering the small-
signal situation, we are interested in the voltage VCB that corresponds to the DC bias point
(quiescent point) Q. Therefore, a single value of the capacitance between the base and the
collector can be obtained and used in the small-signal equivalent circuit. This capacitance,
labeled as Cμ in the circuit of Fig. 11.20, is known as Miller capacitance. Its importance
lies in the fact that it makes a feedback between the output (collector) and the input (base)
when the BJT is used in the common-emitter configuration.

The base–emitter junction is forward-biased, and both capacitances are important. The
values of the depletion-layer capacitance CdE and the stored-charge capacitance Cs E at the
DC bias voltage VBE (quiescent point Q) are summed to obtain the capacitance Cπ .

The I–V characteristic of the forward-biased diode DE is not linear; however, in the
small range of the small input voltage change, it can be approximated by a linear segment,
which is basically the slope of I–V characteristic at the operating point. The reciprocal
value of this slope is equivalent to the resistance that the small input signal is facing.
Therefore, for the small signals, the diode DE is replaced by its small-signal resistance
at the quiescent point, rπ .
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TABLE 11.15 Summary of SPICE BJT Model: Parasitic Elements

Parasitic-Element-Related Parameters

Usual SPICE Related Parasitic Typical
Symbol Keyword Element Parameter Namea Value/Range Unit

rB RB rB Base resistance 10 �

rE RE rE Emitter resistance 2 �

rC RC rC Collector resistance 15 �

CdE(0) CJE CdE Zero-bias B–E capacitance F
Vbi E VJE CdE B–E built-in voltage 0.8 V
mE MJE CdE B–E grading coefficient 1

3 – 1
2 —

τF TF Cs E Normal transit time 10−9 s
CdC(0) CJC CdC Zero-bias B–C capacitance F

VbiC VJC CdC B–C built-in voltage 0.75 V
mC MJC CdC B–C grading coefficient 1

3 – 1
2 —

τR TR CsC Inverse transit time 10−9 s
Cd S(0) CJS Cd S Zero-bias C–S capacitance F

VbiS VJS Cd S C–S built-in voltage 0.7 V
mS MJS Cd S C–S grading coefficient 1

3 – 1
2 —

Large-Signal Equivalent Circuit

C

B

E

CdC

CdS

CsC DC

DECdE

ICT

rB

rE

rC

CsE

Note: The diodes and the current-source direction
are shown for NPN BJT. Reverse current direction
and diode polarities apply in the case of PNP BJT.

CdE
CdC
Cd S

⎫⎬
⎭According to Cd equation of Table 11.2

Cs E
CsC

}
According to Cs equation of Table 11.2

aB–E, base–emitter; B–C, base–collector; C–S, collector–substrate.
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TABLE 11.16 Relationship Between the Components of
Large-Signal and Small-Signal Equivalent
Circuits

Large-Signal Equivalent Circuit Small-Signal Equivalent Circuit
(General case, Table 11.15) (Normal active mode, Fig. 11.20)

DC Neglected
CsC Neglected
CdC at VCB Cμ

(CdE + Cs E ) at VBE Cπ

DE at VBE rπ

ICT at VBE gmvπ and ro
Cd S at VC S Co (common emitter)
rB rB
rE rE
rC rC

rB

rE

rCCm

Cp
gmvpvp Cororp

�

B C

E

Figure 11.20 Small-signal equivalent circuit of a
BJT.

Similarly, the current of the current source ICT is a nonlinear function of VBE , and
through the Early effect, a nonlinear function of VCE . For small signals, however, the
ICT –VBE dependence can be approximated by a linear segment ic = gmvπ , where ic is
the small-signal output current, vπ is the small-signal input voltage, and gm is the slope
of the ICT –VBE characteristic at the quiescent point. The concept of gm , which is called
transconductance, is explained in Section 11.2.5. The dependence of ICT on VCE shows
through the dynamic, or small-signal, output resistance ro. The relationship between ro

and ICT ≈ IC is given by Eq. (9.52). Again, the derivative dIC/dVCE is calculated at the
quiescent point to obtain the value for the small-signal equivalent circuit.

The capacitance Co is due to any parasitic capacitances between the collector and the
emitter, such as the depletion-layer capacitance Cd S . Finally, the parasitic resistances rB ,
rE , and rC are the same in both the large-signal and small-signal equivalent circuits.
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EXAMPLE 11.9 gm and rπ

For the BJT of Example 9.6, calculate the transconductance gm and the small-signal input
resistance rπ at VBE = 0.80 V and VBC = −5 V.

SOLUTION

This BJT is in normal active mode:

gm = d IC

dVBE
= d

dVBE

(
ISeVBE/Vt

)
= 1

Vt
ISeVBE/Vt︸ ︷︷ ︸

IC

gm = IC

Vt

gm = 0.49 × 10−3

0.02586
= 18.95 mA/V

rπ = dVBE

dI B
= βF

dVBE

d IC
= βF

1
d IC

dVBE︸ ︷︷ ︸
1/gm

= βF

gm

rπ = 188.5

18.95
= 9.95 k�

SUMMARY

1. Equivalent circuits utilize elementary components (resistors, capacitors, controlled
sources, etc.) to model the characteristics of more complex devices such as the
diode. In the large-signal equivalent circuit of the diode, the nonlinear current–
voltage characteristic is represented by a voltage-controlled current source. Two parallel
capacitors represent the depletion-layer and stored-charge capacitances, whereas a
series resistor represents the parasitic (contact and body) resistances.

2. The small-signal equivalent circuit is a linear circuit, applicable to a narrow volt-
age/current range that is centered at a DC bias (or quiescent) point. The values of
the small-signal elements—the resistance and the parallel capacitances—depend on the
applied DC bias. For example, the small-signal resistance is rd = nVt/IDQ, where IDQ

is the DC-bias (quiescent) current.
3. The first estimation of SPICE parameters can be obtained by applying mathematical

transforms that “linearize” the model equations. This enables the use of the graphic
method, where the parameters or their mathematical transformations are related to the
coefficients a0 and a1 of the general linear dependence: y = a0 + a1x . For the case of
forward-bias current, ID = IS exp(VD/nVt ) is linearized as ln ID = ln IS + VD/nVt ,
which means a0 = ln IS and a1 = 1/nVt for x = VD and y = ln ID . For the case
of reverse-biased capacitance, Cd = Cd (0)(1 − VD/Vbi )

−m is linearized as log Cd =
log Cd(0) − m log(1 − VD/Vbi ), which means a0 = log Cd (0) and a1 = −m for
x = log(1 − VD/Vbi ) and y = log Cd .



492 CHAPTER 11 DEVICE ELECTRONICS: EQUIVALENT CIRCUITS AND SPICE PARAMETERS

4. The threshold voltage VT and the transconductance parameter KP of a MOSFET are
obtained from the transfer characteristic in the linear region: ID = KP(W/Leff )(VGS −
VT ). The transconductance parameter is determined from the slope KP(W/Leff ), and
the threshold voltage is determined from the intercept with the VGS-axis. A particularly
useful technique employs measurements of VT for different VSB voltages (body effect)
to obtain the body factor γ (it involves the substrate doping concentration and the gate-
oxide thickness).

5. The MOSFET structure has a number of inherent parasitic elements: source-to-body
and drain-to-body diodes, resistors in series with all the four terminals, gate–source
overlap capacitor, gate–drain overlap capacitor, and the central MOS capacitor that is
modeled by two parts: gate–source (Cox/2 in strong inversion) and gate–drain (Cox/2
in series with Cd , with its value becoming smaller as the drain voltage expands the
depletion layer). The parasitic capacitances are especially important because they
determine the high-frequency behavior.

6. The base–emitter and base–collector P–N junctions introduce the associated parasitic
capacitances in a BJT, both the depletion-layer and stored-charge capacitances. Also,
there are parasitic resistances in series with all the BJT terminals. It is these parasitic
elements that determine the high-frequency linear and switching performance of BJTs.

PROBLEMS

11.1 Determine the static SPICE parameters (the satura-
tion current IS , the emission coefficient n, and the
contact resistance rS) from the ID–VD data shown
in Table 11.17.

TABLE 11.17 Current–Voltage Data

VD (V) 0.65 0.70 0.76 0.81 0.89
ID (μA) 79 264 879 2925 9685

11.2 Find the appropriate set of parameters for each of
the lines in Fig. 11.21.

(1 � VR�Vbi)

(1)  m � 0.33    Cd(0)  � 8 pF
(2)  m � 0.39    Cd(0)  � 6 pF
(3)  m � 0.36    Cd(0)  � 4 pF
(4)  m � 0.50    Cd(0)  � 6 pF
(5)  m � 0.43    Cd(0)  � 8 pF
(6)  m � 0.50    Cd(0)  � 4 pF

1 10 100

C
m

ea
s �

 C
p 

(p
F)

1

10

(a)

(b)

(c)

Figure 11.21 Three sets of capacitance–voltage mea-
surements.

(1 � VR�Vbi)
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(1)  Vbi � 0.50 V
(2)  Vbi � 0.80 V
(3)  Vbi � 1.10 V

(a)
(b)
(c)

Figure 11.22 A set of measured Cd–VR points (sym-
bols) is plotted with three different assumptions for Vbi.
The lines show the best linear fits.

11.3 A set of Cd–VR data is plotted in Fig. 11.22 with
three different assumptions for Vbi .

(a) Identify the set of data that corresponds to each
of the Vbi values.

(b) Determine the grading coefficient m.

11.4 Using the data from Table 11.18 and assuming
parallel parasitic capacitance C p = 1 pF and built-in
voltage Vbi = 0.9 V, obtain the best estimate of the
grading coefficient m and the zero-bias capacitance
Cd (0).
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TABLE 11.18 Capacitance–Voltage
Measurements

P–N Junction Capacitance Voltage
(pF) (V)

3.33 −1
2.72 −3
2.44 −5
2.28 −7
2.16 −9

11.5 The SPICE equation for the temperature dependence
of the saturation current of a P–N junction is

IS (T ) = IS

(
T

Tnom

)pt/n
exp

[
−q Eg

kT

(
1 − T

Tnom

)]

Using the following theoretical dependencies for the
intrinsic carrier concentration and the mobility on
temperature:

NC = AC T 3/2, NV = AV T 3/2,

ni =
√

NC NV e−Eg/2kT μn,p = Cn,pT −3/2

and assuming n = 1, find the theoretical value
of the parameter pt (saturation-current temperature
exponent). A

11.6 The saturation current of a Schottky diode can be
expressed as [Eq. (7.4)]

IS = AJ A∗T 2 exp−qφB/(kT )

where AJ is the junction area and A∗ is effective
Richardson constant. Assuming n = 1, find the
theoretical value of the parameter pt (saturation-
current temperature exponent), so that the SPICE
equation given in Problem 11.5 can be used for this
Schottky diode. A

11.7 Obtain the zero-bias threshold voltage VT 0 and the
transconductance parameter KP of an N-channel
MOSFET using the data given in Table 11.19.
The channel-width-to-channel-length ratio of the
transistor is 100.

TABLE 11.19 ID–VGS Data

Drain Current (mA) Gate Voltage (V)

VS = 0, VB = 0, VDS = 50 mV

0.18 1
0.50 1.5

11.8 To determine the value of the body factor γ of an N-
channel MOSFET, the threshold voltage dependence
on

√
2φF + |VSB| − √

2φF is analyzed. This
dependence becomes linear for 2φF = 0.82 V. Two
points of this dependence are given in Table 11.20.
Determine the body factor of this MOSFET.

TABLE 11.20 Body-Effect Data

VT (V)
(√

2φF + |VSB| − √
2φF

)
(V1/2)

1.0 0.0
2.0 1.0

11.9 For the N-channel MOSFET considered in Prob-
lem 11.7, obtain the best estimate of the drain
current at VGS = 5 V, to complete Table 11.21. A

TABLE 11.21 ID–VGS Data

Drain Current (mA) Gate Voltage (V)

VS = 0, VB = 0, VDS = 50 mV

0.18 1
0.50 1.5

? 5.0
2.49 8.0

11.10 A set of measurements of β versus VGS–VT is given
in Table 11.22. Determine the mobility-modulation
coefficient θ , used to express the mobility reduction
with the gate voltage in the SPICE LEVEL 3
MOSFET model.

TABLE 11.22 β–(VGS–VT) Data

VGS–VT (V) 0.5 1.0 3.0 5.0 7.0 9.0
β (mA/V2) 455 455 385 333 294 263
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11.11 The gate of a MOSFET overlaps the source and
drain regions by 100 nm each, and it overlaps the
field oxide by 500 nm. The gate-oxide thickness is
tox = 10 nm, whereas the field-oxide thickness is
Tox = 100 nm. Determine the following SPICE
parameters: CGD0 (gate–drain overlap capacitance
per channel width), CGS0 (gate–source overlap
capacitance per channel width), and CGB0 (gate–
bulk overlap capacitance per channel length). ( A
for CGD0)

11.12 The source–bulk and drain–bulk junction depth is
x j = 100 nm and the lateral diffusion is x j−lat =
0.8x j . What are the gate–drain and the gate–source
overlap capacitances per channel width? The gate-
oxide thickness is 8 nm, and the gate itself is used as
a mask for source/drain implantation (self-aligned
structure). What is the total gate capacitance if
Lgate = 0.3 μm and W = 3 μm? (Ignore any gate–
bulk overlap capacitance.)

11.13 To extend the result obtained in Example 11.7b
for the case of N cascaded inverters that drive
load capacitance CL , we assume that CL =

SN (CIN−NMOS + CIN−PMOS). Express the delay
time in terms of the simple-model parameters of
the minimum-size inverter and generalized number
of scaled-up and cascaded inverters, N . Plot tdelay
versus N and discuss the result.

11.14 The maximum operating frequency, also called
cutoff frequency, of a FET is defined by

fmax = gm

2π(Cgs + Cgd)

where gm is the transconductance and Cgs and
Cgd are small-signal gate–source and gate–drain
capacitances. Find fmax at the onset of saturation
and VGS − VT 0 =1 V for an N-channel MOSFET
with Lgate = 250 nm, Leff = 200 nm, W =
20 μm, tox = 5 nm, μeff = 350 cm2/V · s, and
FB � 1.

11.15 Using the data from Table 11.23, estimate the
following parameters: IS0, βF , and IKF . (Use Vt =
26 mV).

TABLE 11.23 Input and Transfer Characteristics Data

VBE (V) IB (A) IC (A) VBE (V) IB (A) IC (A)

0.60 1.2 × 10−7 1.2 × 10−5 0.78 1.3 × 10−4 7.3 × 10−3

0.62 2.6 × 10−7 2.6 × 10−5 0.80 2.8 × 10−4 1.2 × 10−2

0.64 5.5 × 10−7 5.6 × 10−5 0.82 6.0 × 10−4 2.0 × 10−2

0.66 1.2 × 10−6 1.2 × 10−4 0.84 1.3 × 10−3 3.1 × 10−2

0.68 2.7 × 10−6 2.6 × 10−4 0.86 2.8 × 10−3 4.8 × 10−2

0.70 5.8 × 10−6 5.5 × 10−4 0.88 6.1 × 10−3 7.3 × 10−2

0.72 1.2 × 10−5 1.1 × 10−3 0.90 1.3 × 10−2 1.1 × 10−1

0.74 2.7 × 10−5 2.2 × 10−3 0.92 2.9 × 10−2 1.6 × 10−1

0.76 5.9 × 10−5 4.1 × 10−3 0.94 6.2 × 10−2 2.4 × 10−1
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TABLE 11.24 Output Characteristics Data

VCE IC (mA)
(V) @IB = 20 μA @IB = 40 μA @IB = 60 μA @IB = 80 μA @IB = 100 μA

3.0 2.73 5.05 7.07 8.82 10.2
6.0 2.79 5.21 7.34 9.24 11.0
9.0 2.85 5.34 7.54 9.53 11.4

12.0 2.90 5.46 7.74 9.81 11.7
15.0 2.95 5.58 7.93 10.1 12.1

11.16 Using the data from Table 11.24, estimate the Early
voltage VA.

11.17 IB–VBE measurements taken at low bias level
are given in Table 11.25. Determine the related
parameters C2 IS0 and nEL (Vt = 26 mV).

TABLE 11.25 Transfer Characteristic Data

VBE (V) IB (nA) VBE (V) IB (nA)

0.60 5.0 0.63 9.50
0.61 6.3 0.64 12.0
0.62 7.6 0.65 15.0
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REVIEW QUESTIONS

R-11.1 What are the two essential SPICE parameters that determine the current–voltage character-
istic of a diode?

R-11.2 How is the SPICE model related to the theoretical equations for depletion-layer capaci-
tances of abrupt and linear junctions?

R-11.3 Ideally, what is the small-signal resistance of a reverse-biased P–N junction? What if the
reverse-biased P–N junction is operated in the breakdown region?

R-11.4 What are the origins of the two parasitic capacitances in the diode structure? Are there any
other parasitic elements? How are they connected in the large-signal equivalent circuit?

R-11.5 What are the parasitic capacitances in the large-signal equivalent circuit of a MOSFET?
Relate these capacitances to the MOSFET structure.

R-11.6 Draw the equivalent circuit of the simple digital MOSFET model. How do the circuit
elements relate to the MOSFET structure and the physical parameters?

R-11.7 Draw the small-signal equivalent circuit of a MOSFET for high frequencies (capacitors
included) and low frequencies (capacitors replaced by open circuits).

R-11.8 How is the high-level knee current (IKF ) determined from measured IC –VBE data?
R-11.9 What are the capacitances in the large-signal equivalent circuit of a BJT?
R-11.10 Draw the small-signal equivalent of a BJT and compare it to the equivalent circuit of a

MOSFET. Are there similarities between these two circuits? What are the differences?



12 Photonic Devices

Electrons can interact with light through the following fundamental mechanisms: (1)
spontaneous light emission, (2) light absorption, and (3) stimulated light emission. Each
of these three effects is exploited for very useful devices: light-emitting diodes (LED),
photodetectors/solar cells, and lasers, respectively. A common name for these devices is
optoelectronic devices or photonic devices. These devices cover a range of very important
applications: displays, sensors, optical communications, control, and so on.

Photons are quanta of light energy: hν, where h is Planck’s constant, and ν is the light
frequency. To emit a photon, an electron has to give away energy equal to hν, whereas after
a photon absorption an electron gains energy equal to hν. In semiconductors, electrons lose
and gain energy through the processes of recombination with the holes and electron–hole
generation, respectively. The generation and recombination mechanisms are described in
Chapter 5. This chapter provides specifics on the applications and structure of diodes used
as LEDs, photodetectors/solar cells, and lasers.

12.1 LIGHT-EMITTING DIODES (LED)

The energy-band diagram of a forward-biased diode, shown previously in Fig. 6.6a, is
reproduced again in Fig. 12.1b to specifically illustrate the light emission by recombination
of the minority carriers. As illustrated in this figure, the electrons with high enough energy
to overpass the energy barrier at the depletion layer and appear on the P-type side as
minority carriers will sooner or later recombine with majority holes. Analogously, the
holes appearing in the N-type region are recombined with the majority electrons. In the
process of electron–hole recombination, the electrons change their energy status from the
high energy levels in the conduction band to the low energy levels in the valence band. The
energy difference between a free electron and a recombined electron must be released, and

497
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Figure 12.1 (a) Cross section and (b) energy-band diagram of a forward-biased LED, illustrating
emission of photons due to the electron–hole recombination.
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Figure 12.2 Different energy gaps are needed
to produce LEDs emitting light of different
colors.

it can be released in the form of a photon. As mentioned earlier, a photon is a quantum of
light energy, given as

Ephoton = hν = hc

λ
(12.1)

where h is Planck’s constant (h = 6.626 × 10−34 J · s), ν is the light frequency, c is the
speed of light (c = 3 × 108 m/s), and λ is the light wavelength.

Figure 12.1 illustrates the photons produced by electron–hole recombination. It is
obvious that the photon energy hν is approximately equal to the energy gap Eg . There are
a variety of compound semiconductor materials that provide different energy-gap values
suitable for different colors of the visible light. Figure 12.2 shows the energy gap values
needed to produce different colors of light.

Ternary and quaternary compound semiconductors, such as the GaAsP and InAlGaP
systems, exhibit energy-gap values that correspond to visible light. In addition, the energy
gap changes with the composition, enabling adjustments for specific light colors. For
example, GaAs0.6P0.4 is typically used for red LEDs (≈1.9 eV). The InAlGaP system
is useful for yellow and green LEDs. Blue LEDs have been the hardest to develop. GaN,
with its energy gap of about 3.4 eV, emits blue light very efficiently, but it has not been
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possible to develop monocrystalline GaN wafers. The recently developed blue LEDs use
GaN deposited on either SiC or sapphire wafers.

Another important characteristic of LEDs is the light intensity, which is the number of
photons emitted per unit time. It is directly related to the optical power, Popt AJ , where
Popt is the optical power density in W/m2 and AJ is the junction area. By observing
that the optical power is equal to the energy of photons emitted per unit time and by
knowing that the energy of each photon is hν, we find that the number of photons emitted
per unit time—the light intensity—is equal to Popt AJ /hν. If every recombined minority
carrier was emitting a photon, Popt AJ /hν would be equal to the number of injected (and
consequently recombined) minority carriers per unit time, ID/q . However, only a fraction
ηQ of the recombination events will result in light emission, so that

Popt

hν
AJ = ηQ

q
ID (12.2)

The parameter ηQ expresses the efficiency of an LED and is referred to as radiative
recombination efficiency.

The radiative recombination efficiency is not equal to 1 because some of the recom-
bination events inevitably release the energy in the form of phonons (heat). Section 5.1
describes that the ratio of energy released as photons (light) and phonons (heat) depends to
a large extent on whether the semiconductor is direct or indirect. In direct semiconductors,
the top of the valence band and the bottom of the conduction band appear for the same wave
vector k, so the radiative band-to-band recombination is very likely. In the case of indirect
semiconductors, the top of the valence band and the bottom of the conduction band appear
for different wave vectors k. Requiring changes in both the energy and the wave vector,
recombination in indirect semiconductors typically occurs through R–G centers (Fig. 5.1)
and involves phonons so that the energy is typically released to the phonons.

Given a certain radiative recombination efficiency, the light intensity is directly
proportional to the concentration of electron–hole pairs recombined per unit time, which is
the recombination rate. The recombination rate is directly proportional to the concentration
of available electrons and the concentration of available holes. In the P-type region, there
are plenty of available holes, so the recombination rate is basically limited by the excess
concentration of minority electrons. In the N-type region, there are plenty of electrons,
so the recombination rate is limited by the excess concentration of holes (again, the
minority carriers). The excess concentrations of the minority carriers make the stored
charge discussed in Section 6.4 and illustrated in Fig. 6.19. In a steady-state situation
(constant diode current ID), the stored-charge density does not change in time. This is
because the recombined minority carriers are replaced by the new minority carriers that
are injected over the junction barrier as the forward-bias current ID . Therefore, the light
intensity is directly proportional to the diode current ID .

Figure 12.3a shows a simple LED driving circuit, whereas Fig. 12.3b indicates the
operating point on the ID–VD characteristic. If vIN  VDO, the light intensity becomes
directly proportional to the input voltage vIN :

Light intensity ∝ IDO = vIN − VDO

R
≈ vIN

R
(12.3)
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Figure 12.3 (a) LED driving circuit. (b)
Operating point.

This enables us to use LEDs as binary indicators, that is, to visualize the two (yes and
no) logic states. In this case the diodes are operated in two points: zero current (light off)
and the optimum (recommended) operating current IDO (light on). The resistor R of the
driving circuit is used to adjust the on level of the input voltage to the optimum operating
current IDO.

Given that visible LEDs are made of semiconductor materials with larger energy
gaps than silicon, they exhibit proportionally larger turn-on voltages. This is because the
energy barriers at LED junctions are significantly higher than is the case with silicon
P–N junctions. This means that the 0.7 V, which is the typical turn-on voltage in silicon
diodes, cannot reduce the barrier height sufficiently for the electrons and holes to be able
to overpass it, and in turn produce the forward-bias current.

12.2 PHOTODETECTORS AND SOLAR CELLS

In addition to emitting light, diodes can absorb light to generate electrons and holes. This
process of light conversion into electric current is useful not only for electronic light
detection, but also for conversion of solar power into electric power, using specifically
designed P–N junctions called solar cells.

12.2.1 Biasing for Photodetector and Solar-Cell Applications
Photodetector diodes, or photodiodes, are biased in the reverse-bias region, as illustrated
in Fig. 12.4. In the dark, the current–voltage characteristics of photodiodes are the same
as the characteristics of rectifying diodes. This means that only the leakage current flows
in the reverse-bias region. When exposed to light, the reverse current of the photodiode
increases proportionally to the light intensity. This current is referred to as photocurrent.
Figure 12.4b illustrates that the photocurrent, similar to the normal reverse-bias current,
does not depend on the reverse-bias voltage.

The circuit of Fig. 12.4a converts the light intensity into voltage Vo. In the dark, the
current through the circuit is approximately zero, and therefore the voltage across R is zero
as well. The load line in Fig. 12.4b intersects the diode characteristics at 0 mA and −7 V,
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which is the assumed reverse-bias voltage VR; therefore, Vo = VR − VD = 7 − 7 = 0.
With an increase in the light intensity and consequently the photocurrent, the voltage across
the resistor—that is, the output voltage Vo—increases as well. This is accompanied by a
corresponding reduction in the reverse bias of the photodiode. The load line in Fig. 12.4b
illustrates that the maximum output voltage is approximately limited to the reverse-bias
voltage VR . If the light intensity is increased beyond this point, the diode is pushed toward
the forward-bias region, where the appearance of the normal forward-bias current, which
flows in the opposite direction, limits the output voltage increase.

As opposed to photodetectors, the diodes used as solar cells operate in the forward-
bias region. Figure 12.5a shows that the diode as a solar cell is directly connected to a
loading element (resistor R).

Two extreme biasing conditions of the solar-cell diode are short circuit (R = 0) and
open circuit (R = ∞). At short circuit (VDO = 0), the only current flowing through the
diode is the photocurrent. Although this condition is useful to measure the value of the
photocurrent, it produces no power as VDO IDO = 0.
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With some load resistance R, the voltage across the diode VDO becomes positive,
whereas the current IDO still remains negative. The negative power value Pd = VDO IDO

indicates that the diode acts as a power generator. The power generated by the diode is
indicated by the shaded area in Fig. 12.5b.

The current IDO in the circuit of Fig. 12.5a remains negative because the photocurrent
is larger than the normal forward-bias current. The total current IDO can never become
positive because the source of the forward bias is the photocurrent itself. In the extreme
case, the normal forward-bias current can become equal to the photocurrent making the
total current IDO equal to zero, which is the open-circuit condition. Although the open-
circuit condition provides the maximum voltage drop VDO, it produces no power because,
again, VDO IDO = 0.

It is obvious that the value of the load resistance R directly influences the power that
is delivered to the loading element. The maximum delivered power corresponds to a single
value of the load resistance R. However, any change in the photocurrent (that is, the light
intensity) will change the value of the load resistance that is needed to maximize the power.

12.2.2 Carrier Generation in Photodetectors and Solar Cells
The photodetector and solar-cell diodes operate by the mechanism of light-induced
electron–hole generation. In this process, which is the opposite of light emission, the
photon energy hν is used to destroy a covalent bond, liberating an electron and creating a
hole. If the generated electron and hole diffuse to or are generated in the depletion layer
of the diode, the existing electric field sweeps them away before they get a chance to
recombine, creating the photocurrent.

The photodetector and the solar-cell application circuits shown in Fig. 12.4a and
Fig. 12.5a, respectively, are presented in Fig. 12.6a and 12.6b with the diode symbol
replaced by cross sections illustrating electron–hole generation by light. It is shown that the
electrons and holes generated in the depletion layer move toward their respective majority-
carrier regions, like the minority carriers, due to the direction of the electric field (E) in the
depletion layer. Therefore, the current due to the light-generated electrons and holes adds
up to the thermal reverse-bias current IS . The light also generates electrons and holes in
the neutral N-type and P-type regions that can diffuse to the depletion layer, contributing
to the photocurrent.

Clearly, to maximize photodiode sensitivity, the depletion layer should be as wide as
possible. The depletion-layer width depends on the doping level: wdepl ∝ 1/

√
NA,D in the

case of an abrupt P–N junction (Section 6.3.2). Therefore, the lowest doping level that can
technologically be achieved is the most favorable in terms of maximizing depletion-layer
volume. The most common photodetectors are made with such a layer between the P-type
and N-type regions, which are needed as the diode terminals (the anode and the cathode).
To distinguish this very lightly doped, almost intrinsic region from the N-type and P-
type regions, it is labeled I; consequently, the diode is specifically referred to as a PIN
photodiode. The thickness of the I region is such that it is completely depleted.

The energy-band diagrams of the photodetector and the solar-cell diodes, also given in
Fig. 12.6, provide deeper insight into the exploitation of the carrier-generation mechanism
for light detection and solar-power conversion. Remembering that electrons roll down
and the holes bubble up along the energy bands, we can clarify the first important point,
which is the direction of the photocurrent flow. This is a simple question as far as the
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photodetector circuit is concerned, and the energy bands are not necessary to answer it: the
reverse-bias voltage VR (that is, the associate electric field E) drives the electrons generated
in the depletion layer toward the neutral N-type region and the holes toward the neutral P-
type region. The situation is not as obvious in the case of the solar-cell circuit. The question
is: What drives the light-generated electrons and holes if there is only a resistor connected
to the diode?

The energy-band diagram of Fig. 12.6b shows that there is a slope in the energy bands;
hence the electrons generated in the depletion layer roll down toward the N-type region
and holes bubble up toward the P-type region. This energy-band slope and the associated
field are due to the ionized doping atoms in the depletion layer (the built-in electric field),
as explained in Section 6.1.1. The splitting of the Fermi levels in the photodetector and
the solar-cell diodes (Figs. 12.6a and 12.6b, respectively) is in the opposite directions,
indicating the reverse bias of the photodetector and the forward bias of the solar cell.
However, the energy-band slopes in the depletion layers are in the same direction, which
means that the photocurrents are in the same direction as well. This is consistent with the
basic application circuits. The photodiode is reverse-biased by the DC voltage source VR ,
and the photocurrent flows in the same direction as the reverse-bias current. There is no
DC bias in the solar-cell circuit, but the photocurrent causes voltage Iphoto R across both the
resistor and the diode itself. It can be seen from the circuit in Fig. 12.5a that the negative
photocurrent, flowing in the direction from the anode through the resistor into the cathode,
causes a forward-biased voltage (positive voltage between the anode and the cathode).
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As a result, the power dissipated by the diode is negative, which means that the diode
acts as a generator of electrical power (in fact it converts the solar power into electrical
power).

The second point that can easily be explained by the energy-band diagrams is the
independence of the photocurrent on the reverse-bias voltage applied (refer to the current
voltage characteristics of Fig. 12.4a). Although an increase in the reverse-bias voltage
does increase the steepness of the energy bands in the depletion layer, the photocurrent
is not increased because it is not limited by the steepness of the energy bands. The built-in
bending of the bands (the built-in electric field) alone is good enough for every generated
electron or hole to easily roll down or bubble up through the depletion layer. What
determines the photocurrent is the rate of electron–hole pairs generated by the light. This
number is increased by the light intensity but not by an increase in the reverse-bias voltage.

The third point that becomes obvious from the energy-band diagrams is that light with
photon energies smaller than the energy gap Eg of the semiconductor cannot possibly move
an electron from the valence band into the conduction band to generate free electron–hole
pairs. From the condition Eg = hνmin = hc/λmax, the maximum wavelength of the light
that can generate electrons and holes is found as

λmax = hc

Eg
(12.4)

The energy gap of silicon corresponds to λmax = 1.1 μm. Because almost the complete
spectrum of the solar radiation is below this maximum wavelength, silicon appears to be an
excellent material for solar cells. The fact that silicon is an indirect semiconductor does not
prevent light absorption, so solar cells are most frequently made of silicon. Photodetectors,
similarly to LEDs, are made of different materials to maximize device sensitivity to the
light of a designated color while minimizing sensitivity to the other colors.

An additional difference is in the design of the diode structure. To provide a quick
response, the capacitance of the photodetector is minimized by minimizing the diode
area and increasing the depletion-layer width by inserting the “I” region. Solar cells are
essentially large-area P–N junctions, designed to maximize the current generated by the
incoming light.

12.2.3 Photocurrent Equation
In this section, a photocurrent equation is derived, assuming uniform carrier generation in
the area of interest (around the P–N junction). Let us first deal with the photocurrent due to
carrier generation in the depletion layer. Given that the electric field in the depletion layer
immediately separates the generated electrons and holes, we basically need to convert the
external generation rate Gext into photocurrent. The generation rate Gext is the number
of electron–hole pairs generated in a unit of the depletion-layer volume per second. The
generation rate multiplied by the unit charge, qGext , expresses the charge generated in
a unit of the depletion-layer volume per second. As the electrons generated in the entire
volume of the depletion layer contribute to the photocurrent, qGext is multiplied by the
depletion-layer volume AJ wd , which gives the electric charge generated per unit time:
qGextwd AJ . The charge generated per unit time is the photocurrent (C/s = A):
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Iphoto−d = q AJ Gextwd (12.5)

The carriers generated in the neutral regions, far from the P–N junction, recombine
because there is neither electric field nor concentration gradient to produce drift or diffusion
currents. With ∂ jn/∂x = 0 and ∂n p/∂ t = 0, we find from the continuity equation
[Eq. (5.1)] that Gext = U . The effective thermal generation–recombination rate U is
related to the excess concentration of minority carriers and the minority-carrier lifetime.
In analogy with Eq. (5.8), U = δn/τn in the P-type region. This means that the steady-
state level of excess electron concentration δn = n p − n pe, due to a uniform generation
rate Gext , is equal to Gextτn . However, at the edge of the depletion layer, the concentration
is n p(wp) = n pe exp(VD/Vt ) � n pe, because VD/Vt � −1. This means that there is
a concentration gradient around the P–N junction, as illustrated in Fig. 12.7. In the dark,
the concentration gradient is small, leading to a small reverse-bias diffusion current Is ,
which is the already well-known saturation current of the diode. The carrier generation
lifts the concentration in the neutral region to Gextτn + n pe, increasing the concentration
gradient and therefore the reverse-bias diffusion current. To determine the component of
the photocurrent due to the diffusion of excess electrons, Iphoto−n , we can again assume a
linear concentration gradient in the diffusion equation [Eq. (4.5)]. In analogy with Eq. (6.5),
∂n p/∂x ≈ (Gextτn + n pe)/Ln . Clearly, this leads to the following result:

In = q AJ Dn
n pe

Ln︸ ︷︷ ︸
IS−n

+ q AJ Dn
Gextτn

Ln︸ ︷︷ ︸
Iphoto−n

(12.6)

Given that L2
n = Dnτn , the diffusion component of the photocurrent can be expressed as

Iphoto−n = q AJ Gext Ln (12.7)

An analogous equation would be obtained for the diffusion current of holes in the N-type
region: Iphoto−h = q AJ Gext L p .
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Upon adding the three components of the photocurrent together, we have the total
photocurrent:

Iphoto = q AJ Gext(wd + Ln + L p) (12.8)

It should be noted that the drift photocurrent Iphoto−d responds almost instantly to changes
in light intensity. On the other hand, the response of the diffusion photocurrents Iphoto−n
and Iphoto−p is limited by the rate of establishing the concentration profiles. For a fast-
response photodetector, it is desirable to have wd  Ln + L p , so that the drift photocurrent
dominates. To achieve this, the PIN structure is used. The very low doping of the “intrinsic”
region enables very wide depletion layers, which not only helps satisfy the condition
wd  Ln + L p but also increases the magnitude of the photocurrent. The width of the
“intrinsic” region is designed so that it is fully depleted at very small reverse-bias voltages.
Because the total depletion-layer width is dominated by the “intrinsic” region, this means
that the widening of the depletion layer with the reverse-bias voltage is negligible, and so
the photocurrent is approximately voltage-independent (a light-controlled constant-current
source).

EXAMPLE 12.1 Derivation of the Link Between Optical Power Density
and the External Generation Rate

The absorption of light in a semiconductor material is characterized by the optical absorption
coefficient, α. The absorption coefficient is a wavelength-dependent material constant that
expresses the fraction of absorbed photons per unit length.

(a) If the incident optical power density is Popt(0), derive the equation for the change of the
optical power density Popt(x) as the light is absorbed inside the material (x > 0).

(b) Derive the link between the absorbed optical power density and the external-generation
rate.

SOLUTION

(a) Considering a distance interval dx , the product αdx shows the fraction of absorbed
light across dx . Therefore, Popt(x)α dx is the reduction of the optical power density
[d Popt(x)] across dx :

dPopt(x) = −Popt(x)α dx

dPopt(x)

Popt(x)
= −α dx
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Integrating both sides of this equation and assuming the integration constant in the form
C = + ln A, we obtain

ln Popt(x) = −αx + ln A

ln
Popt(x)

A
= −αx

Popt(x) = Ae−αx

where the integration constant A is determined from the boundary condition (x = 0) to
be equal to the incident power density Popt(0):

Popt(x) = Popt(0)e−αx

(b) The generation rate is the number of generated electron–hole pairs per unit volume and
unit time. Dividing the absorbed optical power density by the energy of each photon,
−dP(x)/hν, we obtain the number of photons absorbed per unit area and unit time.
This is equal to the number of electron–hole pairs generated per unit area and unit time.
To obtain the generation rate, we divide −dP(x)/hν by dx :

Gext(x) = − 1

hν

dP(x)

dx

It was shown in part (a) that dPopt(x)/dx = −αPopt(x). Therefore,

Gext(x) = αPopt(x)

hν

EXAMPLE 12.2 Light Absorption and Drift Photocurrent

Due to the absorption of light in the semiconductor material, the assumption of a uniform
carrier generation is not always acceptable. Assuming that wN = 10 μm of N-type region is
at the surface of the PIN diode, calculate the photocurrent generated in the depletion layer. The
surface generation rate is Gext(0) = 1019 cm−3 s−1, and the optical absorption coefficient is
α = 0.01 μm−1. The width of the fully depleted “intrinsic layer” is wd = 100 μm and the
junction area is AJ = 1 mm2.

SOLUTION

Based on the results from Example 12.1, the nonuniform generation rate can be expressed as

Gext(x) = Gext(0)e−αx



508 CHAPTER 12 PHOTONIC DEVICES

In this case, Gext(x) cannot simply be multiplied by q AJwd to obtain the photocurrent. However,
we can find the average generation rate inside the depletion layer:

Gext = 1

wd

∫ wN +wd

wN

Gext(x) dx = 1

wd
Gext(0)

∫ wN +wd

wN

e−αx dx

Note that the depletion-layer edges are at wN and wN + wd , which are the integration limits.
Solving the integral leads to

Gext = Gext(0)

wdα

[
e−αwN − e−α(wN +wd )

]
The photocurrent is then

Iphoto = q AJ wd Gext = q AJ
Gext(0)

α

[
e−αwN − e−α(wN +wd )

]
Iphoto = 91.5 μA

EXAMPLE 12.3 Concentration Diagrams for a Reverse-Biased Photodiode and
Diffusion Photocurrents

Solve the continuity equation to obtain the equations for the concentration gradients plotted in
Fig. 12.7, and then use the result to derive the diffusion photocurrents.

SOLUTION

For the steady-state case, ∂n p/∂ t = 0. With this and U = n p(x) − n pe/τn , the continuity
equation [Eq. (5.1)] becomes

0 = 1

q

d jn
dx

+ Gext − n p(x) − n pe

τn

where jn = q Dndn p/dx [Eq. (4.5)]. Given that L2
n = Dnτn [Eq. (5.15)], we have

d2
[
n p(x) − n pe

]
dx2 − n p(x) − n pe

L2
n

+ Gext

Dn
= 0

The only difference between this equation and Eq. (5.14) is the added constant Gext/Dn . Because
of that, the general solution of this equation can be expressed as the solution of Eq. (5.14), plus
an additional constant:

n p(x) − n pe = A1ex/Ln + A2e−x/Ln + A3
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As in Section 5.2.3, A1 has to be zero to have a finite concentration for x → ∞. A3 is not an
independent constant: it has to be set so to ensure that n p(x) − n pe = A2 exp(−x/Ln) + A3
is a solution of the differential equation. Replacing the solution expressed in this form into the
differential equation, we obtain

A2

L2
n

e−x/Ln

︸ ︷︷ ︸
d2[n p(x)−n pe]/dx2

− A2

L2
n

e−x/Ln − A3

L2
n︸ ︷︷ ︸

[n p(x)−n pe]/L2
n

+ Gext

Dn
= 0

− A3

L2
n

+ Gext

Dn
= 0

A3 = Gext
L2

n

Dn
= Gextτn

Therefore,

n p(x) − n pe = A2e−x/Ln + Gextτn

where A2 has to be determined so that the boundary condition n p(wp) is satisfied:

n p(x) − n pe = [
n p(wp) − n pe − Gextτn

]
e−(x−wn)/Ln + Gextτn (x ≥ wp)

In the case of a reverse-biased P–N junction, n p(wp) = exp(VD/Vt ) � n pe:

n p(x) = (n pe + Gextτn)
[
1 − e−(x−wn)/Ln

]
(x ≥ wp)

This is the equation for the concentration profile of minority electrons, plotted in Fig. 12.7.
Clearly, if there is no external generation (Gext = 0), the equation is simplified to

n p(x) = n pe

[
1 − e−(x−wn)/Ln

]
(x ≥ wp)

Using this result in the diffusion-current equation

In = q AJ Dn
dn p(x)

dx
x = wn

the following equation is obtained:

In = q AJ Dn
n pe + Gextτn

Ln
= q AJ

Dnn pe

Ln︸ ︷︷ ︸
IS−n

+ q AJ Gext Ln︸ ︷︷ ︸
Iphoto−n

which is the same result for the photocurrent as Eq. (12.7).
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The corresponding equations for the minority holes are

pn(x) = (pne + gpτp)
[
1 − e(x+wp)/L p

]
(x ≤ −wn)

Ip = −q AJ Dp
pne + gpτp

L p
= q AJ

Dp pne

L p︸ ︷︷ ︸
IS−p

+ q AJ gp L p︸ ︷︷ ︸
Iphoto−p

12.3 LASERS

The word laser is an acronym for “light amplification by stimulated emission of radia-
tion.” The distinguishing characteristic of lasers is emission of strong narrow beams of
monochromatic light.1 Lasers are widely used, with many applications being familiar to
almost everybody. An important application of semiconductor lasers is the generation
of the monochromatic light that carries information through optical-fiber communication
systems.

12.3.1 Stimulated Emission, Inversion Population,
and Other Fundamental Concepts

The following text introduces the semiconductor lasers in a way that does not require
a preliminary study of gas lasers. The semiconductor lasers are most similar to the
LEDs introduced in Section 2.2. Similar to LEDs, the current of a forward-biased P–N
junction causes recombination of the excess minority carriers, leading to light emission.
The difference is that laser light is monochromatic, having resulted from the process of
stimulated emission, as distinct from the spontaneous emission in the case of LEDs.

To better understand the process of stimulated emission, it is helpful to know some
of the fundamental properties of photons, which distinguish them as particles from the
electrons. It was mentioned in Section 2.2 that no more than one electron can occupy
a single electron state (Pauli exclusion principle). Therefore, if there is an electron in a
particular state, the probability that another electron will get into that state is 0: electrons
“shy away” from each other. As opposed to this behavior, photons “flock” into a single
state. When there are n identical photons, the probability that one more photon will enter
the same state is enhanced by the factor (n + 1). The probability that an atom will
emit a photon with particular energy hν is increased by the factor (n + 1) if there are

1Monochromatic light is single-wavelength light, or, practically, a very narrow band of wavelengths.
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already n photons with this energy.2 According to this property, electrons are classified as
Fermi particles (being described by the Fermi–Dirac distribution), whereas the photons are
classified as Bose particles and obey a different, Bose–Einstein, distribution.

Let us put mirrors at the two ends of a P–N junction that emits light due to a forward-
bias current. The emitted light will reflect from the mirrors, so that the intensity of the light
in the direction normal to the mirrors becomes dominant. More importantly, the presence
of this light with frequency ν will increase the probability of minority excess electrons
falling from the conduction band down to the valence band emitting light with the same
frequency ν. As the presence of more hν photons causes further increase in the emission of
light with frequency ν, a chain reaction is triggered, leading to what is known as stimulated
emission. Clearly, the stimulated emission can amplify a small-intensity incoming light
beam to produce a large-intensity light beam, as illustrated in Fig. 12.8. This is called
optical amplification.

To make use of the generated light, one of the mirrors is made slightly transparent
so that a highly directional, monochromatic beam of light can exit the device. One more
problem needs to be solved, and the laser is operational. The concentration of excess
electrons in the conduction band needs to be maintained at a high level; otherwise, as
the photons get out, the excess electrons will be spent and the light that was generated will
die away. This is achieved by maintaining the forward-bias current above the needed level
(threshold current), so that the concentration of the minority electrons injected into the
P-type region is sufficiently higher than the equilibrium level. This condition is referred to
as population inversion.

In nonequilibrium case, the concentrations of electrons and holes are expressed by two
separate quasi-Fermi levels (EFN and EFP). The example of Fig. 12.8 illustrates the case of
very high concentrations of both electrons and holes, so high that both EFN and EFP appear
inside the energy bands. It can be shown that this is necessary for the stimulated emission to
exceed the absorption. There are three necessary factors for a stimulated recombination of
an electron–hole pair: (1) existence of photons with energy hν, (2) existence of an electron

2R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics—Quantum Mechanics,
Addison-Wesley, Reading, MA, 1965, pp. 4-7.
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at energy level E2 in the conduction band, and (3) existence of a hole at level E1 in the
valence band, where E2 − E1 = hν. Therefore, the rate of stimulated recombination can
be expressed as

R(st) ∝ f (E2, EFN ) fh(E1, EFP)I (hν) = f2(1 − f1)I (hν) (12.9)

where I (hν) is the density of hν photons, and f (E2, EFN ) = f2 and fh(E1, EFP) = 1− f1
are the probabilities of having an electron and a hole at E2 and E1, respectively. The
presence of photons, however, can cause electron–hole generation due to absorption by
electrons at E1, which subsequently move to E2. The generation rate Gext is proportional
to the probability of having an electron at E1, f1 = 1 − fh(E1, EFP), and a hole at E2,
1 − f2 = 1 − f (E2, EFN ):

g ∝ f1(1 − f2)I (hν) (12.10)

The condition for stimulated emission to exceed absorption is

R(st) > Gext (12.11)

which according to Eqs. (12.9) and (12.10), and assuming equal proportionality coeffi-
cients, can be expressed as

f2(1 − f1) > f1(1 − f2) (12.12)

This condition can be transformed as follows:

f2 − f2 f1 > f1 − f1 f2 → f2 > f1 (12.13)

1

1 + exp

(
E2 − EFN

kT

) >
1

1 + exp

(
E1 − EFP

kT

) (12.14)

E1 − EFP

kT
>

E2 − EFN

kT
(12.15)

and finally,

EFN − EFP > hν = E2 − E1 (12.16)

Therefore, the stimulated emission can exceed the absorption only if strong nonequilibrium
concentrations of electrons and holes are maintained, such that the difference between the
respective quasi-Fermi levels is larger than the energy of the emitted photons.

12.3.2 A Typical Heterojunction Laser
Similar to LEDs, semiconductor lasers are made of direct semiconductors, typically III–V
and II–VI compound semiconductors. In addition, it is practically impossible to reach the
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condition given by Eq. (12.16) by an ordinary P–N junction. Also, there is a need to confine
the emitted light beam inside the active laser region. All these requirements can be met by
using a structure with layers of different III–V and/or II–VI semiconductors—a structure
with heterojunctions.

Different materials have different energy gaps, creating energy-band discontinuities
(offsets) at the heterojunction, such as the band offsets at the AlGaAs–GaAs N–P junction
discussed in Section 9.4. These offsets can help to achieve the condition given by
Eq. (12.16). Also, different materials have different refractive indices, which can help
achieve total beam reflection at the parallel interfaces, so that the light is confined inside
the active region. Molecular-beam epitaxy is used to deposit one semiconductor layer
over another, creating heterojunctions. To achieve the necessary high-quality interfaces,
the wafers remain inside a high-vacuum chamber, while the reacting gases are changed as
a transition from one layer to another is to be made.

The choice of the semiconductor that will emit the light (the active layer) depends on
what light frequency (color) is needed. Figure 12.9 shows a laser with GaAs as the active
layer,3 as an illustration of a typical semiconductor laser. To create appropriate energy-band
discontinuities, layers with wider energy gaps are needed at each side of the active layer.
In this example, N-type and P-type AlGaAs are used for this purpose.4 Let us concentrate
on the N-AlGaAs–P-GaAs heterojunction. If the doping of N-AlGaAs is high enough, the
electron quasi-Fermi level (EFN ) is close enough to the bottom of the conduction band that
the conduction-band offset brings the bottom of the conduction band in the GaAs region
below EFN . Analogously, the valence-band offset at the P-AlGaAs–P-GaAs heterojunction
places EFP below the top of the valence band. This provides the condition for population
inversion when appropriate forward bias (VF ) is applied. The emitted light is reflected
backward and forward by the mirror surfaces capturing enough photons to trigger the
stimulated emission. The photons that get through the partially transparent mirror (the
useful laser beam) have to be replaced by new electrons and holes provided by the laser
forward current (IF ).

The conduction-band offsets at both heterojunctions (N-AlGaAs–P-GaAs and P-
GaAs–P-AlGaAs) are important. They create a potential well that traps the minority
carriers (electrons) so that they cannot diffuse away from the active region, as would
happen in the case of an ordinary P–N junction. This carrier confinement is important
for maintaining the population inversion and maximizing the stimulated recombination
and light emission. On the other hand, light confinement is achieved by the fact that the
refractive index of AlGaAs is smaller than the refractive index of GaAs.

The outside GaAs layers, the P-type capping layer and the N-type substrate layer, also
create heterojunctions with the adjacent P-type and N-type AlGaAs layers. These also lead
to energy-band offsets; since, however, the associated depletion layers are narrow because
of the high doping, they do not present a practical problem for the current flow.

3The energy gap of the GaAs (1.42 eV) corresponds to 900-nm light, which is in the infrared region.
4The energy gap of Alx Ga1−x As varies between 1.42 eV for pure GaAs (x = 0) and 2.9 eV for
pure AlAs (x = 1).
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Figure 12.9 A typical hetero-
junction laser. (a) Cross section.
(b) Energy-band diagram.

SUMMARY

1. In direct semiconductors, the energy released due to recombination of an electron–hole
pair may be in the form of a photon. The opposite process, a photon absorption by an
electron, results in generation of an electron–hole pair. During these processes the total
energy is conserved: the electron must lose energy hν when a photon is emitted and the
electron’s energy is increased by hν when a photon is absorbed.

2. Electron–hole recombination is utilized in light-emitting diodes (LED). LEDs are
operated in the forward-bias mode, so that the forward-bias current injects minority
carriers into the neutral regions, which are then recombined by the majority carriers to
emit light.

3. Electron–hole generation due to absorbed light is utilized in photodetectors and solar
cells. The reverse-bias current of a photodetector diode or a solar cell is increased from
the normal saturation current IS to IS + Iphoto, where for the case of uniform generation
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rate Gext we have

Iphoto = q AJ Gextwd︸ ︷︷ ︸
drift

+ q AJ Gext Ln + q AJ Gext L p︸ ︷︷ ︸
diffusion

4. Photodetector diodes are operated in the reverse-bias mode, as light-controlled current
sources. A solar cell is directly connected to a load resistance, which results in a positive
voltage across the cell while the current remains negative—the negative power means
that the solar cell is delivering power to the load.

5. As opposed to electrons, which obey the Pauli exclusion principle, the probability that
a photon with energy hν will be emitted is increased by the factor (n + 1) if there are
already n photons with this energy. This “behavior” leads to stimulated light emission.
If population inversion is reached, that is, so many electrons and holes are injected
into a semiconductor material that both electron and hole quasi-Fermi levels enter the
conduction and valence bands, respectively:

EFN − EFP > hν = E2 − E1

the stimulated emission exceeds the recombination rate. The emitted light is reflected
by parallel mirrors at the ends of the semiconductor so that the intensity of photons,
and therefore the probability of stimulated emission, is enhanced. These principles are
utilized by lasers to generate highly directional beams of monochromatic light. The
light that exits the laser is compensated by maintaining the forward-bias current of the
laser above the needed threshold current.

6. To practically achieve the inversion-population condition, a narrower-energy-gap semi-
conductor is sandwiched by N+ and P+ semiconductors with wider energy gaps.
The energy-band discontinuities at the heterojunctions, “force” the quasi-Fermi levels
inside the conduction/valence band of the active semiconductor. The energy-band
discontinuities also help confine the carriers inside the active region so that they will
recombine rather than diffuse away. Also, the active layer in the middle has a higher
refraction index, which helps confine the generated light inside the active region.

PROBLEMS

12.1 Three semiconductor samples have distinct appear-
ances: sample A is like a colorless glass, sample B
is like a yellow glass, and sample C is like a metallic
mirror. Knowing that one of these samples is Si
(Eg = 1.12 eV), the other is 4H SiC (Eg = 3.2 eV),
and the third is 3C SiC (Eg = 2.4 eV), determine

(a) the minimum wavelengths of light that can be
transmitted through each of these semiconduc-
tors without absorption

(b) the sample labels that correspond to each of
these semiconductors

12.2 The input bias voltage in the circuit of Fig. 12.3 is
vIN = 5 V and the current flowing through the LED
is ID0 = 10 mA.

(a) If half of the recombined carriers emit light,
how many photons are emitted per unit time?

(b) If the energy of each photon is hν = 2.0 eV,
what is the optical power of the emitted light?

(c) What is the efficiency of the conversion of
electrical power to light power?

12.3 The top P-type layer of a P–N+ GaAs LED can be
considered much wider than the diffusion length of
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the minority carriers, which is Ln = 5 μm. The
other technological parameters and constants are as
follows: NA = 5 × 1016 cm−3, Dn = 30 cm2/V · s,
ni = 2.1 × 106 cm−3, the diode area AJ = 4 mm2,
and the radiative recombination efficiency ηQ =
0.7. If the forward bias of the diode is VD = 1 V,
calculate

(a) the number of photons emitted per unit time,
Popt AJ /hν

(b) the optical power of the emitted light, assuming
that the photon energy is equal to the energy gap
(Eg = 1.42 eV) A

12.4 Exposure to light increases the reverse-bias current
of a photodiode 106 times. What would be the
reading of a voltmeter if the reverse bias is removed
and the voltmeter is attached to the terminals of the
diode as it remains exposed to light?

12.5 A PIN photodiode has junction area AJ = 1 mm2

and fully depleted “intrinsic” region WI = 100 μm.
Calculate the photocurrent, assuming that light
of a certain intensity generates on average 1019

electron–hole pairs per second in 1 cm3 of the
photodiode material.

12.6 Assuming that the 100-μm intrinsic layer of a
PIN diode is fully depleted, and neglecting any
light absorption in the very thin P-type region
at the top, calculate the photocurrent for surface
generation rate of Gext(0) = 5.1 × 1019 cm−3 s−1

and absorption coefficient α = 0.05 μm−1. The
junction area of the diode is AJ = 1 mm2.

12.7 The power density of a 0.5-μm light is Popt =
900 W/m2.

(a) Calculate the number of photons per unit area
and unit time that would hit the surface of a
semiconductor exposed to this light. A

(b) Due to absorption by the semiconductor, the
photon density decays exponentially down to
zero, as does the generation rate: Gext(x) =
Gext(0) exp(−αx). Neglecting reflection losses
and assuming that every absorbed photon of this
light generates an electron–hole pair, calculate
the surface generation rate. The absorption
coefficient is α = 1 μm−1.

(c) What would be the photocurrent if the PIN
diode described in Problem 12.6 were exposed
to this light? A

12.8 Design the area of a PIN photodiode so that
its photocurrent is 10 mA when illuminated by
0.1 W/cm2 of a 0.5-μm light. The technological
parameters are as follows: the thickness of the top
P-type layer is negligible, the thickness of the fully
depleted I region is 10 μm, and the absorption
coefficient is α = 0.06 μm−1.

12.9 The short-circuit current of a silicon P+–N solar cell
at room temperature is Isc ≈ Iphoto = 100 mA.
The technological parameters of the cell are AJ =
4 cm2, ND = 5×1016 cm−3, μp = 380 cm2/V · s,
L p = 10 μm, and n ≈ 1.

(a) Derive the equation for the open-circuit voltage,
Voc, and calculate Voc. A

(b) Calculate the maximum power that can be
obtained from this cell. What load resistance
RL is needed to extract this power?

(c) How many cells, operating at the maximum
power, have to be connected in series to obtain
a voltage of 12 V? How many 12-V cells have
to be connected in parallel so that the maximum
power is 5.7 W? A

12.10 The technological parameters of a solar cell are
as follows: NA = 3 × 1016 cm−3, ND = 8 ×
1015 cm−3, Dn = 20 cm2/s, Dp = 10 cm2/s, τn =
0.3 μs, τp = 0.1 μs, and AJ = 1 cm2. The gener-
ation rate of electron–hole pairs due to the absorbed
light can be considered constant around the P–N
junction: Gext = 5 × 1019 cm−3.

(a) Calculate the short-circuit current.
(b) Is the drift or diffusion photocurrent dominant,

and what fraction of the total current is due to
the dominant mechanism?

(c) What are the maximum concentrations of the
minority electrons and holes?

12.11 Due to manufacturing problems and increased
defect levels, the actual lifetimes of the solar-cell
considered in Problem 12.10 are τn = 3 ns and τp =
1 ns. Repeat the calculations of Problem 12.10. A

12.12 The short-circuit current of a solar cell is IS =
10−11 A and Iphoto = 100 mA in dark and when
exposed to light, respectively. The load resistance
that extracts the maximum power is RL = 5.2 �.
If the actual load resistance is 20% higher, what is
the relative reduction in extracted power?
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REVIEW QUESTIONS

R-12.1 How can the light intensity in LEDs be varied?
R-12.2 How are different colors achieved with LEDs?
R-12.3 Does the photocurrent in P–N junctions depend on the reverse-bias voltage? Why?
R-12.4 How is the P–N junction biased (forward or reverse) in photodetector circuits, and how is it

biased in solar-cell circuits? Why?
R-12.5 Both LEDs and semiconductor lasers are basically P–N junctions that emit light. What is

the difference?
R-12.6 Why do photons stimulate electron–hole recombination? Do they stimulate emission of

photons with the same or with different energy hν?
R-12.7 What is optical amplification? In principle, can it be used to amplify a weakened optical

signal carrying a communication signal through an optical fiber?
R-12.8 If the P–N junction is in equilibrium or close to equilibrium (EFN ≈ EFP), will stimulated

emission or absorption dominate? Would the stimulated emission and absorption rates be
the same, given that both are proportional to the light intensity (photon density)? Do they
depend on anything else?

R-12.9 What is needed to achieve a higher rate of stimulated emission compared to the rate of
absorption? What is this condition called?

R-12.10 What is achieved by the heterojunctions in a typical semiconductor laser? Are they related
to population inversion? Minority-carrier confinement? Light confinement?



13 JFET and MESFET

Two transistor structures that are very similar to the depletion (normally on) MOSFET
are the junction field-effect transistor (JFET) and the metal–semiconductor-field-effect
transistor (MESFET). The difference in the case of JFET is that reverse-biased P–N
junction is used for DC isolation of the JFET gate, as distinct from the isolation by gate
oxide in the case of the depletion MOSFET. JFETs are usually made as discrete devices in
Si and recently in SiC, mostly for power applications. Regarding the MESFET, the gate is
created as a Schottky diode (contact) rather than as a P–N junction diode. The MESFET is
the most frequent FET implementation in GaAs.

This chapter provides descriptions and the energy-band diagrams of the JFET and the
MESFET. This complements the detailed description of the enhancement (normally off )
MOSFET, given in Chapter 8. SPICE does include JFET and MESFET models, and this
chapter also provides a systematized reference to the SPICE models and parameters.

13.1 JFET

13.1.1 JFET Structure
The JFET is usually used as a discrete device, although it can be implemented in integrated-
circuit technology as well. Figure 13.1 shows the principal JFET structure. This is the case
of N-channel JFET, where the device current is due to flow of electrons from the source N+
region, through the N-type layer called the channel, into the N+ drain. The N-channel is
sandwiched between top and bottom P+ layers, whose separation determines the channel
thickness. The top and bottom P+ layers create P–N junctions with the N-type channel.
The depletion layers associated with these junctions predominantly expand into the N-layer
because its doping level is much lower than the doping of the P+ regions. The dotted lines
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in Fig. 13.1 show the edges of the depletion layers associated with the upper and lower P–
N junctions. It is the distance between the two depletion layers, not the separation between
the P–N junctions themselves, that is equal to the electrically effective channel thickness.

The upper and the lower P–N junctions can be reverse-biased, which increases the
depletion-layer widths, thereby reducing the channel thickness and thus reducing the
current that can flow through the channel. In the extreme case, the depletion layers extend
over the whole thickness of the N-type layer, thereby reducing the electrically effective
channel thickness to zero and thus reducing the JFET current to zero. This shows that the
current can be controlled by the value of negative voltage applied to the upper and/or lower
P+ layer. Either of the two P+ layers can be used as a gate. To distinguish between them,
they are labeled gate and back gate in Fig. 13.1.

The JFET structure is similar to the depletion-type MOSFET. N+ source and drain
are the same, the built-in N-type channel that connects the drain and the source is the
same, and the bottom P-type substrate that creates the isolation junction is the same.
The only difference is the top P–N junction, which appears in place of the metal–oxide–
semiconductor (MOS) structure. These different gate structures, however, control the
current in a similar way: in both cases, the current flows through built-in channels at zero
gate voltage (normally on FETs), and negative voltage is needed to reduce the current to
zero by removing the electrons from the channel.

Differences between the JFET and the depletion-type MOSFET are important in some
applications. In the case of the MOSFET, positive voltage can be applied to the gate without
adverse effects; in fact it will only increase the channel current by attracting new electrons
into the channel. In the case of the JFET, positive voltage at the gate is not desirable because
it sets the gate–channel P–N junction in forward mode, effectively short-circuiting the gate
and the channel. This appears as a disadvantage of the JFET structure. However, the lack
of gate oxide in the JFET has a positive side as well: because no part of the gate-to-source
voltage is wasted across the gate oxide, the current is more efficiently controlled; that is,
the transconductance gm = dI D/dVGS is higher. Also, the gate can be shorter than the
channel, and the depletion layer larger than the oxide thickness, leading to a smaller input
capacitance.

This comparison relates only to the relationship between the device structures and the
electrical performance. In both cases, development cost and device availability are strongly
influenced by a complex set of manufacturing issues.
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13.1.2 JFET Characteristics
Figure 13.2a and 13.2b shows the cross section and the energy-band diagram along the
channel, respectively, for the case of zero gate-to-source voltage and a small drain-to-
source voltage. The small discontinuities in the energy bands at the N+-source–N-channel
and N-channel–N+-drain transitions are due to changes of the doping level, which is lower
in the channel than in the source and drain regions. There are quite enough electrons in
the channel to make a significant current when the energy bands are tilted by the applied
VDS voltage. This current depends linearly on VDS, because it is basically limited by the
slope of the energy bands (or the electric field in the channel in other words). The point Q in
Fig. 13.2c is in the linear region of the ID–VDS characteristic (the solid line) corresponding
to VGS = 0.

The dotted lines in Fig. 13.2a show the edges of the depletion layers. The widths of the
depletion layers at every point along the channel depend on the actual reverse bias at that
point. Although the heavy doping of P+ layers maintains approximately the same potential
inside those regions (zero in the example of Fig. 13.2a), the voltage applied between the
drain and the source distributes along the lower-doped N-type channel. Taking the potential
of the source as reference, the energy-band diagram of Fig. 13.2b shows that the potential
energy difference increases along the channel and reaches the value of qVDS at the drain.
The depletion-layer widths follow this trend: the narrowest depletion layers correspond to
the zero reverse bias and appear at the source end of the channel; the depletion-layer widths
increase along the channel and reach the maximum at the drain end of the channel. The

S G

B

DN channel

Channel

VGS

VGS

VDS

VGS � 0 V

VGS � 0 � VT, 0 
 VDS 
 VDSsat

(triode region)

VDS (V)

I D
 (

m
A

) �0.5 V

�1.0 V

�1.5 V

�2.0 V

qVDS

ID

EC

EF

EV

N�N�

P� substrate

0

6

4

2

108642

Q

(a)

(b)

(c)
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electrically effective channel thickness follows the opposite trend: it is the thickest at the
source end, and the thinnest at the drain end of the channel.

The channel-thickness variation is not pronounced at small VDS voltages. However, at
higher VDS voltages, the thickness reduction is reflected in a smaller current, which is seen
as a departure of the actual ID–VDS characteristic from the linear trend followed at smaller
VDS voltages.

At sufficiently high VDS voltage it can happen that the electrically effective channel
thickness becomes zero (the channel is pinched off). The channel pinch-off first occurs at
the drain end of the channel, expanding toward the source as VDS is increased. The VDS

voltage that causes channel pinch-off at the drain end is called saturation voltage and is
labeled VDSsat.

Figure 13.3 illustrates the situation of channel pinch-off caused by a high VDS voltage.
Analogously to the MOSFET case, the voltage across the channel (between the source
and the pinch-off point) remains constant and equal to VDSsat, because any additional VDS

increase drops across the laterally expanding depletion layer. Because the current is limited
by the conditions in the channel, and not in the depletion layer (the waterfall analogy with
the energy-band diagram of Fig. 13.3b), this leads to saturation in the current increase with
VDS voltage.

It is now interesting to consider the case of the application to the gate of sufficient
negative voltage (VGS) to turn the JFET off. The negative voltage applied to the P+ region
adds up to the positively biased channel, increasing the total reverse-bias voltage. This
can lead to expansion of the depletion layers over the entire N-layer thickness, even at the
source end of the channel. Although Fig. 13.4a clearly illustrates this situation, it is not
obvious from this cross-sectional diagram that the current through the channel is reduced
to zero. The cross-sectional diagrams do not show any principal difference between the
depletion layer in Fig. 13.4a and the depletion layer in Fig. 13.3a, but there is a significant
difference. The depletion layer at the source end of the channel in Fig. 13.4a is controlled
by the gate(s), and the electric-field lines terminate at the gates. Electrons taken from the
source or any remaining part of the channel would follow the field lines only to hit the
potential barriers of the reverse-biased P–N junctions. Consequently, no electron current
can flow through this depletion layer. As opposed to this, the depletion layer in Fig. 13.3a
is controlled by the drain, and the electric-field lines terminate at the drain. Electrons taken
by the field from the end of the N-channel (the pinch-off point) are quickly transported to
the drain.

Energy-band diagrams can clearly show this difference. The negative voltage at the
gates increases the potential energy in the N-type layer (remember, negative electric
potential corresponds to positive potential energy). Therefore, to modify the energy-band
diagram of Fig. 13.3b (the case of VGS = 0) so to represent the case of VGS < 0, the energy
bands between the source and the drain should be lifted by the value that corresponds to
the reduced electric potential by the negative gate voltage. Figure 13.4b shows the energy-
band diagram in this case. It can clearly be seen that the electrons from the source cannot
flow into the drain because of the high potential barrier created by the gate voltage.

It is useful to compare the energy-band diagrams presented in this section for the JFET
with the corresponding MOSFET energy-band diagrams. Figure 13.2 (a JFET in the triode
region) shows an energy-band diagram similar to the energy-band diagram of a MOSFET
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in the channel region (the cross section of the two-dimensional energy-band diagram in
Fig. 8.5b along the channel). The energy-band diagrams for the saturation and the cutoff
modes of a JFET (Figs. 13.3 and 13.4) are also similar to the energy-band diagrams along
the channel of a MOSFET in the saturation and the cutoff modes (Figs. 8.9 and 8.5a).

13.1.3 SPICE Model and Parameters
SPICE parameters and mathematical equations modeling the dependence of the output
JFET current ID on the terminal voltages VGS and VDS are given in Table 13.1. The
equations modeling the JFET are very similar to the SPICE LEVEL 1 model of the
MOSFET. In fact, the triode-region equations become equivalent if the gain factor β of
the JFET is taken to be half of the MOSFET value. It should be noted that the threshold
voltage (also called pinch-off voltage in the case of JFET) is negative for N-channel devices
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because the JFET and the depletion-type MOSFET are normally on FETs. Therefore,
VGS − VT is positive for any VGS > VT . The case of the P-channel devices is opposite,
the threshold voltage is positive, VGS − VT is negative when the FETs are on (VGS < VT ),
and VDS voltage is negative as well. This gives a positive number for the current ID in both
cases; however, the current is assumed in the opposite direction, as shown in Table 13.1. As
for measurement of the two key parameters, the threshold voltage VT and the gain factor
β, a procedure analogous to the one described in Section 11.2.2 (Fig. 11.4) can be used.

The multiplier λ(VDS) = 1 ± λVDS is to include the effect of a small current increase
with VDS in the saturation region, or the finite dynamic output resistance in other words.
The SPICE model for this effect is analogous to the Early model used in BJTs. Noting that



524 CHAPTER 13 JFET AND MESFET

TABLE 13.1 Summary of SPICE JFET Model: The Principal Equivalent-Circuit
Elements

Static Parameters

SPICE
Typical Value

Symbol Keyword Parameter Name N Channel P Channel Unit

VT Vto Threshold voltage −3 3 V
(pinch-off voltage)

β Beta Gain factor 5 × 10−3 A/V2

(transconductance coefficient)
λ Lambda Reciprocal Early voltage 0.002 V −1

(channel-length modulation)

Voltage-Controlled Current-Source Model

D

G

S

V
D

SID

V
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�

D
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V
D

SID

V
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S
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S

N-channel JFET P-channel JFET

Off: VGS ≤ Vto

Triode: VGS > Vto, and 0 < VDS < VDSsat

Satur.: VGS > Vto, and VDS ≥ VDSsat > 0

Off: VGS ≥ Vto

Triode: VGS < Vto, and 0 > VDS > VDSsat

Satur.: VGS < Vto, and VDS ≤ VDSsat < 0

VDSsat = VGS − Vto

ID =

⎧⎪⎨
⎪⎩

0, off region

Beta
[
2(VGS − Vto)VDS − V 2

DS

]
, triode region

Beta (VGS − Vto)2 λ(VDS), satur. region

λ(VDS) = 1 + Lambda VDS λ(VDS) = 1 − Lambda VDS

the output-voltage-independent current is multiplied by (1 + |λVDS|) and (1 + | 1
VA

VC E |)
in the cases of JFET and BJT, respectively, we can say that λ has the meaning of the
reciprocal Early voltage 1/VA. Therefore, the parameter measurement procedure described
in Section 11.3.2 can be applied to obtain the parameter λ. Physically, the slight current
increase in the saturation region is due to channel-length shortening as the pinch-off point
moves toward the source. Consequently, the parameter λ is frequently called channel-
length modulation coefficient.

Although the JFET can have two separate gates, the SPICE model assumes a single
VGS voltage. This is sufficient to cover the two most frequent application arrangements:
(1) the two gates are connected together, electrically forming a single gate, and (2) one of
the gates is connected to a constant voltage or grounded. These configurations are included
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TABLE 13.2 Summary of SPICE JFET Model: Parasitic Elements

Parasitic-Element Related Parameters

SPICE Related Parasitic
Symbol Keyword Element Parameter Name Typical Value Unit

RD Rd RD Drain resistance 10 �

RS Rs RS Source resistance 10 �

IS IS DS , DD Saturation current 1 × 10−14 A
n N DS , DD Emission coefficient 1 —

CGD(0) Cgd DD Gate–drain zero-bias 4 × 10−12 F
capacitance

CGS(0) Cgs DS Gate–source zero-bias 4 × 10−12 F
capacitance

Vbi PB DS , DD Built-in potential 0.8 V
m M DS , DD Grading coefficient 1

3 – 1
2 —

Large-Signal Equivalent Circuit

S G D

RSRS RDRD
DsDS DDDD

ID(VGS, VDS)

Note: Diodes and the current direction shown for
N-channel JFET. Reverse for P-channel JFET.

ID(VGS, VDS) is given in Table 13.1

DS

DD

}
according to diode model of Table 11.2

through the JFET parameters: (1) when the gates are connected together, the gain factor is
increased (doubled in the case of symmetrical gates) and the absolute value of the threshold
voltage (or pinch-off voltage) is reduced, and (2) when a constant reverse-bias voltage is
applied to one of the gates, the absolute value of the threshold voltage is also reduced, as it
helps the other gate to pinch the channel off.

Table 13.2 summarizes the parameters that are available to include some of the
parasitic elements associated with the JFET structure, and gives the complete large-signal
equivalent circuit used in SPICE. As always, the parasitic capacitances are of special
importance because they determine the high-frequency behavior of the device. In the
equivalent circuit of Table 13.2, the capacitances are included through the diode model
given in Table 11.2. Therefore, the parameter measurement techniques are the same as
described in Sections 11.1.2 and 11.1.3. It should be mentioned, however, that the stored-
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charge capacitance is neglected (no τT parameter appears in the list), which is justified by
the fact that the gate-to-channel diodes DS and DD are normally reverse-biased.

The equivalent circuit of Table 13.2 can properly include all the parasitic capacitances
for the case of mutually connected gates. In the case of one of the gates being grounded or
being biased with a constant voltage, the top and bottom P–N junctions are not connected in
parallel and cannot precisely be modeled by a single set of DS and DD diodes. Nonetheless,
the parameters CGS(0) and CGD(0) can be adjusted to provide close fitting in that case.
If more precise fitting of the capacitance–voltage dependencies is required, it will be
necessary to add a set of diodes to the JFET, to include the effects of the second gate-
to-channel junction.

13.2 MESFET

13.2.1 MESFET Structure
Figure 13.5 illustrates the MESFET structure. Although it is very similar to the JFET
structure of Fig. 13.1, the main difference is that neither the upper nor the lower P–N
junction appears in the MESFET structure. Semiinsulating GaAs substrate defines the
thickness of N-type electron channel. The electrically effective thickness of the channel can
be altered by the reverse bias of a Schottky diode, created by deposition of an appropriate
metal onto the N-type GaAs layer. The role of the Schottky diode is equivalent to the role
of the upper P–N junction in the case of the JFET.

It should also be noted that the MESFET is surrounded by semiinsulating GaAs.
Although this does not affect the principal characteristics of the device, it is an important
factor in terms of circuit speed.

Semiinsulating substrate

N� N�

Source
Drai

n

N-type channelSchottky contact

S G D

Gate

Figure 13.5 MESFET structure.

13.2.2 MESFET Characteristics
Device operation, energy-band diagrams, and consequently current–voltage characteristics
are similar to those previously introduced with the MOSFET and JFET. Section 8.1.4
describes two mechanisms of current saturation: channel pinch-off and drift velocity
saturation. The mechanism responsible for the current saturation in JFETs is typically the
channel pinch-off. As opposed to this, the current in a typical GaAs MESFET saturates
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Figure 13.6 Transfer and output
characteristics of a MESFET.

due to the velocity saturation. This difference influences the device modeling; however,
this problem will be considered in the next section.

In this section, we show the transfer (Fig. 13.6a) and the output (Fig. 13.6b) char-
acteristics, with the purpose of more carefully discussing the previously mentioned limi-
tation to VGS voltage.

The characteristics shown in Fig. 13.6 are for a normally on (depletion-type)
MESFET. A significant current flows at VGS = 0, and a negative VGS = VT is needed to
turn the device off. It was stated in Section 13.1.1 that positive VGS is undesirable because
it may turn the input diode on. Strictly speaking, some positive VGS voltage can be applied
before the input diode is turned on. In the example of Fig. 13.6a, the diode turn-on limit is
shown to be about VGS = 0.4 V.

The fact that some positive VGS voltage can be applied makes it possible to design
a normally off (enhancement-type) MESFET. To achieve this, the N-type GaAs layer is
made thinner than the depletion-layer width of the Schottky diode at VGS = 0 V. Therefore,
the N channel is pinched off by the depletion layer, and no current flows at VGS = 0 V. The
current can start flowing if positive VGS voltage is applied to narrow down the depletion-
layer width. The VGS voltage at which the current starts flowing, which is the threshold
voltage VT , is positive in this case. A practical problem with this type of normally off FET
is that the threshold voltage, no matter how close to zero, is too close to the diode turn-on
limit for VGS . This not only makes the manufacturing requirements very strict, it also limits
the input voltage range and consequently input noise margin that circuits made of these
devices can handle. Nonetheless, so many circuits perform much better with normally off
FETs that the enhancement-type MESFETs are used, especially in high-frequency digital
circuits.

13.2.3 SPICE Model and Parameters
The current saturation in a typical MESFET is due to the drift-velocity saturation, which
occurs before the channel can be pinched off by the drain voltage. The drift-velocity–
electric-field curve of GaAs, is very complex. This leads to a complicated distribution
of the lateral electric field in the channel, which is not possible to model by simple and
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TABLE 13.3 Summary of SPICE MESFET Model

Static Parameters

SPICE Typical
Symbol Keyword Parameter Name Value Unit

LEVEL Model type (1 = Curtice, 2 = Raytheon)
VT Vto Threshold voltage −2 V

(pinch-off voltage)
β Beta Gain factor 0.1 A/V2

(transconductance coefficient)
λ Lambda Reciprocal Early voltage 0.005 V−1

(channel-length modulation)
αsat Alpha Saturation coefficient 1 V−1

b B β reduction coefficient (LEVEL 2 only) 1 V−1

Voltage-Controlled Current-Source Modela

D

G

V
D

SID

V
G

S

�

�

S

LEVEL= 1 (Curtice Model)

ID =
{

0 for VGS ≤ Vto

Beta (VGS − Vto)2(1 + Lambda VDS)tanh(Alpha VDS) for VGS > Vto

LEVEL= 2 (Raytheon Model)

ID =
{

0 for VGS ≤ Vto
Beta

1 + B (VGS − Vto)
(VGS − Vto)2(1 + Lambda VDS)t (αsatVDS) for VGS > Vto

t (αsatVDS) =
{

1 − (
1 − Alpha VDS

3

)3 for Alpha VDS ≤ 3

1 for Alpha VDS > 3

aThe parasitic elements are as in Table 13.2.

yet physically based equations. Consequently, SPICE uses empirical equations, which are
presented in Table 13.3.

Two levels of MESFET model are available in SPICE: LEVEL 1 is an earlier devel-
oped Curtice model, and LEVEL 2 is a newer Raytheon model. The levels are sel-
ected by specifying the LEVEL as an input parameter.

Three essential parameters of the Curtice model are the threshold voltage VT , the gain
factor β, and the saturation coefficient αsat . Although the meaning of VT and β is the same
as for a MOSFET, the saturation effect is modeled differently [the tanh(αsat VDS) term],
which makes it easier to measure VT and β in the saturation rather than linear region. As
tanh(αsatVDS) ≈ 1 in the saturation region, and assuming 1 + λVDS ≈ 1, the drain current
becomes

ID ≈ β(VGS − VT )2 (13.1)
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Plotting the square root of ID versus VGS produces a line that intersects the VGS-axis at VT

and whose slope is equal to
√

β: √
ID =

√
β(VGS − VT ) (13.2)

The measurement of the αsat parameter is not as easy. The best way is to assume
an initial value that is close to 3/VDSsat (VDSsat being the saturation voltage), and then
use nonlinear curve fitting to more precisely determine the values of all the parameters,
including αsat .

The term (1 + λVDS) accounts for the finite output dynamic resistance, in the same
way as for a JFET. This parameter has analogous meaning to the Early voltage in BJTs and
is therefore measured in analogous way.

The Curtice model predicts parabolic increase of the drain current with gate-to-source
voltage [Eq. (13.1)], which frequently fails to properly fit the experimental data. The
newer Raytheon model (LEVEL 2 in SPICE) introduces an additional parameter to correct
this problem. The new parameter b, called here β reduction coefficient, is analogous to
the mobility-modulation constant θ of MOSFETs. The measurement of this parameter is
analogous to the measurement of θ described in Section 11.2.2, with a difference that
the measurements are taken in the saturation region. Noting that t (αsatVDS) = 1 in the
saturation region and assuming 1 + λVDS ≈ 1, the Raytheon equation of Table 13.3 can be
written as

ID

(VGS − VT )2︸ ︷︷ ︸
S

= β

1 + b(VGS − VT )
(13.3)

This equation can further be modified to the form analogous to Eq. (11.21):

β

S
− 1 = b(VGS − VT ) (13.4)

Obviously, the parameter b is the slope of (
β
S − 1)-versus-(VGS − VT ) plot.

Another difference introduced in the Raytheon model is the replacement of tanh(αsat

VDS) by the computationally more effective terms 1 − (1 − αsat VDS
3 )3 in the triode and 1 in

the saturation region.
The large-signal equivalent circuit of the JFET, shown in Table 13.2, can be applied

to the MESFET case. Although Schottky diodes rather than P–N junction diodes should
appear in the case of MESFET, there is no difference from the modeling point of view.
The difference is taken into account by specifying appropriate parameter values. The same
list of parameters applies, with a difference that the usual SPICE keyword for the built-
in voltage is VBI rather than PB. For the sake of completeness, it should be mentioned
that the SPICE equivalent circuit of the MESFET includes a resistor in series with the
gate (RG ) and a capacitor in parallel with the current source (CDS). The usual SPICE
keywords for these parameters are RG and CDS, respectively. Because MESFETs are
frequently used in high-frequency applications, these parameters are helpful for more
precise simulation.
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SUMMARY

1. The input capacitance of Si JFETs is smaller than that of a comparative MOSFET,
making the JFET a superior device for high-frequency analog applications.

2. GaAs MESFET can be used at higher frequencies than Si MOSFETs, JFETs, and BJTs
due to

(a) higher low-field mobility of GaAs electrons, which relates to a higher transconduc-
tance

(b) wider energy gap, which enables semiinsulating substrates, eliminating the capacitor-
based isolation structures used in Si

PROBLEMS

13.1 Design the doping level in the channel region of
the JFET shown in Fig. 13.1, so that the threshold
(pinch-off) voltage is VT = −5 V when the
thickness of the channel region is 2 μm. The back
gate is grounded and the JFET is to be implemented
in GaAs (εs = 13.2 × 8.85 × 10−12 F/m). Assume
Vbi = 1.35 V.

13.2 The technological parameters of a GaAs JFET are
as follows: the thickness of the channel region
between the two junctions is TN = 2 μm, the
channel length is L = 5 μm, the channel width is
W = 50 μm, the doping of the channel region is
ND = 1016 cm−3, the doping of the P+ regions is
NA = 1020 cm−3, εs = 13.2 × 8.85 × 10−12 F/m,
and the electron mobility in the channel is
μn = 7000 cm2/V·s.

(a) Determine the resistance of the channel when
both the front and the back gates are grounded.

(b) Based on the channel resistance calculated in
part (a), determine the parameter β in the
SPICE equation for the triode region,

ID = β
[
2(VGS − VT )VDS − V 2

DS
]

if the front and the back gates are short-
circuited.

13.3 For the JFET from Problem 13.2, calculate the
saturation voltage VDSsat and the saturation current
IDsat at VDS = VDSsat for VGS = 0. A

13.4 The threshold (pinch-off) voltage and the gain
factor of a JFET are VT = −5 V and β =
10 mA/V2, respectively. The measured dynamic

output resistance in saturation and for VGS = 0 is
ro = �VDS/�ID = 500 �. Determine the value
of SPICE parameter Lambda to match the dynamic
output resistance.

13.5 The channel region of a JFET can be considered
as a resistor for small VDS voltages. The following
are the technological parameters of an N-channel
JFET that has symmetrical front and back P+–N
junctions and connected front and back gates: the
thickness of the N-type channel TN = 1.6 μm,
the channel width W = 1 mm, the channel length
L = 10 μm, the N-type doping in the channel
ND = 1016 cm−3, the P+-type doping in the gate
regions NA = 1020 cm−3, and the electron mobility
in the channel μn = 1250 cm2/V·s.

(a) Determine the channel resistance at VGS =
0 V.

(b) Determine the value of SPICE parameter Beta
to match this resistance.

13.6 The wide energy gap of 4H SiC can be utilized to
design normally off N-channel JFETs (VT > 0).

(a) Determine the thickness of the N-channel
region between two symmetrical P+ gate
regions that will result in a threshold voltage
of the JFET of VT = +1.0 V (the front and the
back gates are connected together).

(b) Determine the resistance of the channel for
the maximum gate voltage VGS = 2.5 V and
VDS ≈ 0.

(c) Determine Beta in the SPICE model to match
this resistance at VGS = 2.5 V for the same
VT .
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(d) Determine the maximum saturation current.

The following parameters are known: the channel
width W = 1 mm, the channel length L =
10 μm, the doping levels of the N-channel and
the P+ gate regions are ND = 1016 cm−3 and
NA = 1010 cm−3, respectively, the intrinsic carrier
concentration ni = 2 × 10−8 cm−3, the electron
mobility μn = 500 cm2/V·s, and the semiconductor
permittivity εs = 10ε0.

13.7 The dimensions of the front gate of an N-channel
silicon JFET are W = 1 mm and L = 5 μm; the
back gate is grounded. The doping levels in the gate
and in the channel are NA = 1020 cm−3 and ND =
1015 cm−3, respectively. Determine the input/gate
capacitance at VGS = 0 V and VDS = 0 V. Deter-
mine the values of SPICE Cgs and Cgd parameters.

13.8 A GaAs MESFET has a nickel gate electrode
with the work function qφm = 5.15 eV and
TN = 200 nm thick N-type channel with the
doping level ND = 1017 cm−3, deposited on a
semiinsulating substrate. Calculate (a) the thickness
of the active N channel at zero bias and (b) the
threshold (pinch-off) voltage of this MESFET. The
semiconductor affinity of GaAs is qχs = 4.07 eV
and the permittivity is εs = 13.2ε0.

13.9 Table 13.4 gives data for the transfer characteristic
of a GaAs MESFET in saturation. Determine the
value of the β reduction coefficient b (SPICE

keyword B) in the Raytheon model (SPICE
LEVEL=2 MESFET model). The data correspond
to VDS values small enough to allow us to neglect
any ID increase due to VDS.

TABLE 13.4 Current–Voltage Data for a
MESFET

VGS (V) ≤ −2.0 −1.5 −1.0 −0.5 0.0
ID (mA) 0.0 2.3 8.3 17.3 28.6

13.10 (a) Design the doping level in the channel of the
GaAs MESFET shown in Fig. 13.5 so that the
on resistance is minimized and the MESFET
is the normally off type with VT = 0.2 V.
The minimum channel thickness is limited
to 100 nm by technological issues. Assume
that Vbi = 0.80 V. The permittivity of GaAs is
εs = 13.2 × 8.85 × 10−12 F/m.

(b) Calculate the channel resistance for the
maximum gate voltage VGS = 0.4 V, channel-
width-to-channel-length ratio W/L = 100, and
the electron mobility of μn = 5000 cm2/V·s.

13.11 Repeat the design from Problem 13.10 without the
assumption for Vbi , but knowing that nickel is to
be used for the gate metal (qφm = 5.15 eV) and
that the electron affinity of GaAs is qχs = 4.07 eV.
What is the built-in voltage in this case, and what is
the channel resistance at VGS = 0.4 V? A

REVIEW QUESTIONS

R-13.1 Is the input capacitance of a depletion-type FET larger or smaller than the input capacitance
of a comparable MOSFET? Is this advantageous for high-frequency analog applications?

R-13.2 Which material provides better high-frequency performance of depletion-type FETs, Si or
GaAs? Why?

R-13.3 What is the main difference between the MOSFET and the JFET?
R-13.4 Is the JFET a normally on or normally off device?
R-13.5 What happens if positive gate voltage is applied to the gate of an N-channel JFET? What if

this voltage is smaller than 0.7 V?
R-13.6 What is the mechanism of current saturation in silicon JFETs?
R-13.7 The threshold voltage, also called pinch-off voltage, is the most important SPICE parameter

of the JFET. Is the threshold voltage of an N-channel JFET positive or negative?
R-13.8 What are the most important parasitic elements inherently present in the JFET structure,

and what are the related SPICE parameters?
R-13.9 Can the MESFET structure be implemented in silicon? If so, what would be the difference

from the JFET structure?
R-13.10 Can a GaAs MESFET be designed as a normally off (enhancement-type) device? If not,

why not; if so, are there any application constraints?
R-13.11 What is the mechanism of current saturation in GaAs MESFETs?



14 Power Devices

Power-electronic circuits are used to convert electrical energy from the form supplied
by a source to the form required by the load. A typical example of power conversion
is the rectification and filtering of AC line voltage to provide a constant DC voltage.
Other types of conversion include DC–AC, DC–DC, AC–AC, and combinations of the
previous types. Diodes can be used to rectify an AC voltage (AC–DC conversion). Plain
rectification produces “wavy” voltage, even after filtering with large-value capacitors.
Voltage regulation is needed to obtain the needed “smooth” voltage. Such regulation is
almost invariably based on switching techniques.1 The other types of power conversion also
involve switching techniques. Devices such as BJT, MOSFET, JFET, IGBT (insulated-gate
bipolar transistor), and thyristor are used as controlled switches in these circuits.

Two fundamental characteristics of a semiconductor switch (either a diode or a
controlled switch) are (1) the voltage that can be sustained by a switch in off mode (blocking
voltage), which is determined by the breakdown voltage of the device, and (2) the parasitic
resistance of the switch in on mode (on resistance), which relates to the current capability
of the device.

In addition to switches and capacitors, the power circuits typically involve inductors
and transformers. Large inductance values are necessary at lower switching frequencies,
making the inductors and transformers inconveniently large and heavy. High switching fre-
quencies are the only solution to this problem. Consequently, the switching characteristics
of power devices are almost as important as the on resistance and the blocking voltage.

Sections 14.1 and 14.2 describe power-related specifics of devices that have already
been introduced, the diode and the MOSFET, respectively. Sections 14.3 and 14.4

1It is possible to regulate the voltage by allowing the excess voltage to drop across the controlled-
variable resistance of a BJT or MOSFET. This, so-called linear regulation, is not efficient, as it
inevitably involves power dissipation by the regulating resistance.

532
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introduce the IGBT and the thyristor, respectively, as alternative controlled switches to
the MOSFET and BJT.

14.1 POWER DIODES

Both P–N junctions and Schottky contacts are used for power diodes. The principles of P–N
junctions and Schottky contacts are introduced in Chapter 6 and Section 7.1, respectively.

14.1.1 Drift Region in Power Devices
Power diodes are used in circuits where relatively high voltages have to be rectified. The
breakdown voltage of a silicon-based P–N junction can be higher than 1000 V, provided
that at least one side (P or N) is very lightly doped. Equations (6.31) and (6.44)–(6.45) and
Fig. 6.17c show that the maximum electric field, which appears right at the P–N junction,
is proportional to

√
NA,D , where NA,D is the concentration of the lower-doped region. For

the case of ND � NA , the following equation can be obtained by eliminating wn from
Eqs. (6.31) and (6.45):

Ecr =
√

2q NDVB/εs (14.1)

In Eq. (14.1), the maximum field Emax is set at the critical breakdown field of the
semiconductor, Ecr , and the reverse bias VR is set at the blocking voltage VB ≈ VR + Vbi .
The critical (breakdown) electric field in silicon is in the order of several tens of V/μm. It
can be seen from Eq. (14.1) that lower doping levels (ND) correspond to higher blocking
voltages (VB).

The forward voltage for the nominal on current is also very important in power-
electronic circuits. As an example, assume that a diode-based rectifier is to provide
VOUT = 5 V and that the forward voltage across the diode is VF = 1 V. VF is comparable
to VOUT , and it will cause a significant power loss.

The low-doped region needed for the high blocking voltage inevitably increases the
series resistance and therefore increases the forward voltage. This would be especially
dramatic if the power diode were created by diffusion of P-type layer into a very-low-
doped N-type substrate. However, there is no need to limit the doping level of the whole
substrate, since its significant thickness would introduce a large series resistance. In power
diodes as discrete devices, the relatively thick substrate (needed for mechanical strength
only) can be heavily doped. The high breakdown voltage is achieved by depositing a very-
low-doped epitaxial layer. A heavily doped layer at the top completes the structure, as
shown in Fig. 14.1. The low-doped region, sandwiched between the N+ and P+ layers, is
commonly referred to as drift layer. It is sometimes labeled “I” (“insulator”); accordingly,
this type of diode is referred to as a PIN diode. In reality, the “I” layer is either P-type or N-
type with a very low doping concentration. Another difference from the diode in integrated
circuits (Fig. 16.1) is that the curved sections of the P–N junction are avoided. This is
because the field is stronger at the sharpest sections of the curve, reducing the breakdown
voltage that could be achieved by a planar P–N junction. A variety of etching and surface
passivation techniques are used to avoid this problem (not illustrated in Fig. 14.1).
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(a) (b)

N�N�

N� drift
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P� P�

N�
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(c)
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wd Ecr

Figure 14.1 (a) The drift region in
power devices is needed to support
(b) the electric field at the blocking
voltage; but it introduces (c) a series
resistance in on mode.

The parameters of the drift region (its length and doping level) are determined so to
achieve a desired blocking voltage and to minimize the on resistance. The blocking voltage
and the on resistance, however, are related to one another: in general, a higher blocking
voltage means a higher on resistance. For a set blocking voltage, the length of the drift
region can be set to be approximately equal to the depletion-layer width2 at VR = VB

(Fig. 14.1b and 14.1c):

L N ≥ wd =
√

2εs VB

q ND
(14.2)

The resistance of the drift region is then

R = ρL N︸︷︷︸
RSP

1

A
(14.3)

where A is the cross-sectional area and ρ is the resistivity. The area A is a geometric-
design parameter, with the technological parameter being the resistance per unit area. This
resistance is called specific resistance: RSP = ρL N . The specific resistance depends on the
doping level, given that ρ = qμnn ≈ qμn ND :

RSP = L N

qμn ND
(14.4)

2The depletion-layer width is given by Eq. (6.45).
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With Eq. (14.2) for L N , and eliminating ND from Eq. (14.1) for the critical field, the
specific resistance becomes

RSP = 4V 2
B

εsμn E3
cr

(14.5)

This relationship between the specific resistance and the blocking voltage involves only
material parameters. Accordingly, the ratio V 2

B/RSP is a figure of merit of a semiconductor
material, known as the Baliga figure of merit:

FOM = V 2
B

RSP
= εsμn E3

cr/4 (14.6)

Clearly, the figure of merit depends very strongly on the critical (breakdown) field. It is this
figure of merit that has motivated the development of SiC as a material for power devices.
The critical field is about five times higher in SiC than in Si, which for approximately the
same μn and εs means a figure of merit more than a hundred times higher. This means a
hundred times smaller on resistance for the same blocking voltage, or it also means that
higher blocking voltages with reduced on resistances can be achieved.

14.1.2 Switching Characteristics
The switching characteristics of the diode become very important in switching power
circuits. The diode can neither be turned on nor off instantly. The times needed for both
forward recovery (tfr) and reverse recovery (trr) are very important, especially because
higher switching frequencies are needed to reduce the size of power-electronic circuits.
Figure 14.2 shows the voltage and current waveforms for a power PIN diode.

(1 � D)T DT

vD

iD

tfr trr

VF

IF

IRP

VR

t

t

Figure 14.2 Switching response of
a power diode: tfr, forward-recovery
time; trr, reverse-recovery time.
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The reverse-recovery time was discussed in Section 6.4.3; the same reverse-recovery
mechanisms influence the switching response of both the signal and power diodes. There
is, however, a difference between the switching responses of signal diodes (Fig. 6.20) and
power diodes (Fig. 14.2), which is due to the forward recovery time. This is especially
the case when the power diode is connected to an inductor in a switching circuit so that
the constant inductor current is forced through the diode (IF = iL ). In a steady state,
the forward current of minority carriers is due to diffusion. Earlier, Fig. 6.10 showed that
an appropriate gradient of minority-carrier concentration is needed so that the diffusion
current can transport the minority carriers injected over the barrier. The concentration
gradient of minority carriers is not established instantly. As a consequence, diffusion is
not the dominant mechanism of minority-carrier transport at the beginning. A significant
electric field is established in the lightly doped neutral region to sustain the forced current
by drifting the minority carriers, as well as injecting more majority carriers over the
P–N junction barrier. This electric field adds to the electric field in the depletion layer
to result in the voltage overshoot observed during the turn-on period of the diode. The time
needed to establish the steady-state profile of the minority carriers (the stored charge),
and therefore to reach the steady-state forward condition, is the forward recovery time (tfr
in Fig. 14.2a). The voltage overshoot is undesirable because it results in increased power
dissipation (>VF IF ) during the forward recovery period. The SPICE model of the diode
does not include this effect. A parallel L–R circuit, added in series to the diode, can be
used as the simplest equivalent circuit of this effect.

EXAMPLE 14.1 Stored-Charge Removal—trs Time

In the buck DC–DC converter of Fig. 14.3, VIN = 6 V, ī L = 3.5 A, and the transit time of
the diode (SPICE parameter) is τT = 5 μs. Calculate the peak reverse current of the diode IRP

and determine the time it takes for the removal of the stored charge trs, for two values of the on
resistance of the switch:

(a) Ron = 0.5 �

(b) Ron = 1.0 �

SOLUTION

(a) When the switch is off, forward-bias current IF = iL flows through the diode. The
stored charge caused by this current [Eq. (6.58)] is

Qs = τT IF = 5 × 10−6 × 3.5 = 1.75 × 10−5 C

When the switch is on, the minority holes stored at the cathode side of the junction move
toward the positive VIN terminal and the electrons stored at the anode side move toward
the negative VIN terminal. This is the reverse peak current IRP that removes the stored
charge. The value of this current is set by the value of the input voltage (neglecting the
small voltage across the diode itself) and the switch resistance:

IRP = VIN/Ron = 6/0.5 = 12 A
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Figure 14.3 (a) Step-down (buck) DC–DC converter. (b) Current waveform.

The diode is not turned off as long as there is stored charge and the discharge current
flows through the circuit. The time that is needed for stored-charge removal by this
current is

trs = Qs/IRP = 1.75 × 10−5/12 = 1.46 μs

(b) Answer: IRP = 6 A, trs = 2.92 μs.

14.1.3 Schottky Diode
Schottky diodes, introduced in Section 7.1, are single-carrier devices. Although there are
minority carriers in the semiconductor, they play an insignificant role as far as the current
flow through the metal–semiconductor contact is concerned. Consequently, the effects
associated with the stored charge of minority carriers do not exist in Schottky diodes.
This means that there is no forward voltage overshoot and trs = 0 (no reverse-recovery
time is spent on a stored-charge removal). Clearly, these devices have superior switching
characteristics, and consequently they are very useful in modern high-frequency power
circuits.

The avalanche breakdown of a Schottky diode depends on the parameters of the semi-
conductor layer that creates the metal–semiconductor contact. Therefore, it is essentially
the same as in the case of PIN diode. Similar to the PIN diode, the very lightly doped
drift region is needed to take the high reverse-bias voltage. Also, the heavy doping of the
substrate is used in discrete Schottky diodes to reduce the series resistance.

Typically, Pt, W, Cr, or Mo is used as the metal electrode (the anode), whereas the N−–
N+ Si, GaAs, or SiC structure is used on the cathode side. The metal selection influences
the forward voltage of the diode. Equation (7.1) shows that the barrier height at the junction
is equal to the difference between the work functions of the metal and the semiconductor,
and this barrier determines the forward current [Eqs. (7.4) and (7.6)]. In general, much
higher currents at lower forward voltages are possible with Schottky diodes. Equation (7.6)
shows that this is achieved at the expense of increased IS , which is the reverse-bias current.
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Nonetheless, it is frequently far more important to reduce the forward power dissipation
(VF IF ), and the increased leakage of the reverse-biased is acceptable. Accordingly, the
reduced forward voltage of Schottky diodes is another significant advantage over the PIN
diodes.

14.2 POWER MOSFET

There are a number of different power MOSFET structures, but perhaps the most accepted
one is the vertical double-diffused MOSFET structure (VDMOSFET or DMOS), shown
in Fig. 14.4. There is only one way of achieving a significant current by a field-effect
transistor, and this is to significantly increase the effective channel width of the MOSFET
while minimizing or at least maintaining the channel length to a small value. Tens of
centimeters of effective channel width and micrometers of channel length are needed to
achieve amperes of current. To facilitate a MOSFET with a channel tens of centimeters
wide and only several micrometers long, a multiple cell structure is used. The top view of
the VDMOSFET (Fig. 14.4a) shows the packing of hexagonal MOSFET cells to minimize
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Figure 14.4 VDMOSFET: (a) top
view and (b) cross section.
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the occupied area. As Fig. 14.4 indicates, all the MOSFET cells are effectively connected
in parallel: (1) the silicon substrate is used as the common drain of the MOSFET cells,
(2) all the N+-source and P-well regions are connected by the top metalization, and (3)
although windows are etched in the polysilicon layer to enable the creation of the P-type
and N+-type regions, the polysilicon gates remain electrically connected to each other.
This means that the effective channel width of the MOSFET is equal to the perimeter of a
single cell multiplied by the number of cells used in the structure.

The P-type region is created by using the polysilicon layer as the mask, and the same
edge of the polysilicon layer is used to define one side of the N+ region. The difference
between the edges of the P-type and N+-type regions at the surface is due to different P-
type and N+-type lateral diffusions. This difference determines the channel length L, as
illustrated in Fig. 14.4. On one side of the P-type channel region is the N+ source, and on
the other is the N− drain. The surface region of the drain is very-low-doped (N−); this is
the drift region. Analogously to the drift region in the case of diodes, this region becomes
depleted at high VDS voltages to take the voltage across itself, enabling the needed forward
blocking capability. It is created by epitaxial deposition of low-doped silicon onto a heavily
doped N+ substrate. The heavy doping of the substrate is needed to reduce the parasitic
resistance inside the drain-neutral region.

Clearly, a sufficiently wide and low-doped drift region is needed to achieve the
minimum acceptable breakdown voltage. Any increase in the width or reduction in the
doping concentration, however, results in an increase in the on resistance. It may not be
possible to find an acceptable trade-off between the needed blocking capability and on
resistance by adjusting the doping level and width of the drift region. The on resistance
can be reduced, while maintaining the desired breakdown voltage, by an increase in the
channel width. This is a quite simple and quite efficient approach, which can even be
applied after the device manufacture, because discrete MOSFETs can be paralleled to
achieve the needed on resistance. A related effect is positive temperature coefficient: if
a cell (or a discrete MOSFET operating in parallel combination with others) conducts
more current, its on resistance increases because of the mobility reduction, which drops
the current down to the stable shared value. The importance of this effect is seen when
MOSFETs are compared to BJTs. BJTs have a negative temperature coefficient, which
means that a current density increase leads to on resistance reduction, this causing further
current density increase, and so on. This effect, known as thermal runaway, can destroy
the device.

Is there a practically important limit to the reduction of on resistance by paralleling
MOSFETs or MOSFET cells? In the case of BJTs, even if thermal runaway is ignored, the
high input current needed to maintain the on-switch state would be a significant problem.
The input of a MOSFET is a capacitor—no DC current is needed to maintain either on or
off-switch states. But what about the current that is needed to charge or discharge the input
capacitance to open or close the switch? Because of the large number of cells used, the
input capacitance of a power MOSFET is significant. Take as an example Cin = 10 nF,
to perform an estimation of the order of magnitude of the charging/discharging current. If
this capacitance is to be charged from 0 to Q = CV = 10 nF × 10 V in �t = 0.1 μs
by a constant current, the charging current has to be I = �Q/�t = 1 A. This is not a
small current, and it increases proportionally with the switching frequency and the input
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capacitance.3 Clearly, the performance of the circuits driving the power MOSFET used as
a switch becomes extremely important. However, no driving circuit will be able to provide
unlimited charging/discharging current at unlimited frequency. The input capacitance of
the MOSFET poses an ultimate limit to the increase of switching frequency.

As in Fig. 14.4, the source and the body of a power MOSFET are internally connected.
Consequently, the capacitance of the drain–body N–P junction appears as a fairly large
output capacitance. This can also be a limiting factor, although it can conveniently be
utilized as a part of resonant circuits. The same junction acts as an integral power diode,
connected across the output. This limits the voltage across the switch to positive values,
which can also be a convenient feature. However, if a switch with reverse blocking
capability is required, it would appear as a limitation.

The power capability of a power MOSFET is, clearly, another essential characteristic.
To have the maximum rated current of a power MOSFET at 5 A while the blocking voltage
is rated at 200 V does not mean that this MOSFET can dissipate 200×5 = 1 kW of power.
The maximum current is stated for a fully switched-on MOSFET. If the on resistance is
Ron = 0.1 �, the voltage across the MOSFET is vDS = Ron ID = 0.1 × 5 = 0.5 V,
and the dissipated power is 0.5 × 5 = 0.25 W. When the MOSFET is in the off mode, no
power is dissipated because ID = 0. Ideally, the MOSFET would be in one of these two
states, and the dissipated power would never exceed Ron I 2

D . However, during transitions
between those two states, a significantly larger power is dissipated because neither vDS

nor iD is small. To avoid overheating and failure of the MOSFET, iD and vDS should
stay inside the so-called safe operating area (SOA), which is defined by Imax, VDS−max,
and iD–vDS points corresponding to the maximum power Pmax.4 The maximum power
depends on how efficiently the heat is removed. MOSFETs can withstand short pulses of
higher power compared to the steady-state level. Because the power MOSFETs are mainly
used in switching circuits, the maximum power is typically expressed for a given pulse
duration.

14.3 IGBT

The comparison of MOSFETs and BJTs, given in Section 9.1.6, shows that the main
advantage of BJTs is the fact that the whole cross section is utilized for current flow.
This makes the BJT structure superior in terms of achievable output currents. However,
to maintain a power BJT switch in the on state, an input base current as high as one-
fifth of the output current may be needed. This is a serious drawback because a 100-A
device may need 20 A of base current, which significantly complicates the input-drive
circuits and reduces the power efficiency. MOSFETs as field-effect devices do not need
any current to maintain the on state. Still, the input currents needed to charge/discharge the

3“Proportional to input capacitance” effectively means “inversely proportional to the on resistance.”
4The iD–vDS points corresponding to the maximum power Pmax define a hyperbola on the iD–vDS
graph.
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Figure 14.5 IGBT. (a) Cross section of a cell with MOSFET and BJT symbols to illustrate the IGBT
components. (b) Current–voltage characteristics.

input capacitance may become quite significant if too many MOSFET cells are paralleled
to achieve a high drain current (this is described in the previous section).

It can be said that the input characteristics of MOSFETs and output characteristics
of BJTs are needed to create a device capable of switching high currents. It is possible
to combine a MOSFET and a BJT to create such a device. When the drain of an N-
channel MOSFET is connected to the collector while the source is connected to the base
of an NPN BJT, the power MOSFET is utilized as a driver device supplying the base
current to the BJT. Developing this principle further, an integrated device with field-effect
input control and bipolar output action was created. Reflecting its principal features, this
device is called an insulated-gate bipolar transistor (IGBT). A shorter name, insulated-
gate transistor (IGT), is used as well, and it has also been called conductivity-modulated
field-effect transistor (COMFET). Commercial IGBTs with blocking voltage exceeding
500 V and able to switch hundreds of amperes of currents have been developed. IGBTs are
replacing power BJTs in many applications.

The cross sections of IGBT and VDMOSFET, given in Fig. 14.5a and 14.4b,
respectively, show that these devices are structurally very similar. The only difference is
that the N+ substrate is replaced by a P+ layer in the case of IGBT. This creates the PN−P+
structure of the BJT. It is very easy to explain the operation of the device in the off state
(zero gate voltage). In this case, the N− layer is floating, and the IGBT appears as a BJT
with unconnected base; therefore it behaves as two P–N junction diodes connected back to
back. The applied voltage drops across the reverse-biased P–N junction, and no significant
current flows through the device. In the case of positive vCE , the breakdown voltage of
the upper P–N− junction (VFB) determines the forward blocking capability. In the case of
negative vCE , the breakdown voltage of the lower N−–P+ junction (VRB) determines the
reverse blocking capability. The existence of the reverse blocking capability is a significant
difference from the power MOSFET. In applications that use the integrated diode of the
MOSFET, the reverse blocking of the IGBT is a disadvantage. However, in the applications
that require reverse blocking (in addition to forward blocking), this feature of the IGBT
appears as a very significant advantage.
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When sufficient gate voltage is applied, a strong-inversion layer connects the N− layer
to the N+ regions, and then it connects the N− layer to the electrode labeled emitter. A
significant part of the applied collector-to-emitter voltage drops across the lower N−–P+
junction, setting it in forward-bias mode. As a result, holes are injected into the N− base
region, most of them finishing at the emitter terminal through the P-type region (collector
of the PNP BJT).5 These holes make most of the on-state current. For as long as the
inversion layer is strong enough to neglect any voltage drop across it, the device appears
as a diode with a significant current capability, because almost the whole cross section
is utilized. Figure 14.5a illustrates that the MOSFET supplies electrons to maintain the
forward bias of the lower N−–P+ junction.

When the vCE voltage is increased, its electric field opposes the gate field, reducing
the concentration of electrons in the inversion layer. This can result in channel pinch-off,
enabling a significant voltage drop across the depleted channel area. The forward bias of
the junction injecting the holes, and therefore the device current, does not increase with
any further increase of vCE . The device is in its saturation region, which is illustrated in
Fig. 14.5b for the sake of completeness, although this operation region is not useful for a
device used as a switch.

In conclusion, it can be reiterated that the IGBT integrates the superior input and
output current performances of MOSFET and BJT, respectively. However, the “selection”
of superior characteristics is limited to the current capability. Being a BJT-like device
from the output, it inevitably suffers from the effects associated with storage of minority
carriers. As discussed in the sections on the power diode and the power MOSFET, this
results in inferior switching performance comparing to the one-carrier devices such as the
MOSFET. As far as SPICE simulation is concerned, there is no IGBT device model with
specific model parameters. The device is modeled by its equivalent MOSFET–BJT circuit,
as shown in Fig. 14.5a. Consequently, the MOSFET and BJT model parameters introduced
in Chapters 8 and 9 are used.

14.4 THYRISTOR

Thyristors are four-layer PNPN devices that are capable of blocking thousands of volts in
the off state and conducting thousands of amperes of current in the on state. They work
on the principle of internal regenerative mechanism that leads to so-called latch-up effect.
Clearly, basic understanding of the latch-up effect is necessary to understand the specifics
of thyristors used as power switches.

Although thyristors utilize the latch-up effect, this effect is a potential problem in any
other device that involves four layers (PNPN). An example of such a device is the IGBT
described in the previous section. Also, PNPN structures are inherently present in the very

5The adopted labeling of the terminals as emitter and collector comes from the previously described
connection of a MOSFET and NPN BJT. It can be confusing in the case of the IGBT because the
collector terminal is connected to the emitter of the inside PNP BJT, while the emitter terminal is
connected to the collector of the PNP BJT.
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common CMOS structures. Unwanted latch-up of the parasitic thyristor structure may lead
to permanent damage of these devices.

The most common thyristor type is the silicon-controlled rectifier (SCR). Its cross
section is shown in Fig. 14.6, which also shows the two-transistor model that is used to
explain the regenerative mechanism involved in the thyristor operation. It can be seen that
the PNP BJT collector is the same region as the NPN BJT base, whereas the NPN collector
is the same as the PNP base. A small gate current can trigger closed-loop amplification (the
BJTs amplify each others collector current) until both transistors enter saturation, providing
a low-resistance path between the anode and the cathode.

The following mathematical analysis provides the basis for a more detailed discussion.
The anode current i A, being in fact the emitter current of the PNP BJT, is given by

i A = (1 + βpnp)IB–pnp (14.7)

IB–pnp is the same current as the collector current of the NPN BJT, and it can therefore be
expressed as

IC–npn ≡ IB–pnp = βnpn(

IB–npn︷ ︸︸ ︷
iG + βpnp IB–pnp + IC B0–pnp︸ ︷︷ ︸

IC– pnp

) + IC B0–npn (14.8)

In Eq. (14.8), IC B0–pnp and IC B0–npn are the reverse-bias collector–base leakage currents
of the PNP and NPN BJTs, respectively. Because of the closed loop, IB–pnp appears on
both the left-hand and right-hand sides of Eq. (14.8). Extracting IB–pnp ,

IB–pnp = βnpn(iG + IC B0–pnp) + IC B0–npn

1 − βpnpβnpn
(14.9)
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and putting it into Eq. (14.7), the following equation for the anode current is obtained:

i A = 1 + βpnp

1 − βpnpβnpn

[
βnpn(iG + IC B0–pnp) + IC B0–npn

]
(14.10)

Assuming iG = 0 and negligible leakage currents (IC B0–pnp ≈ 0 and IC B0–npn ≈ 0),
the anode current is negligible, and the thyristor behaves as a switch in off mode even for
vAK > 0. This is because the base–collector N−–P junction is reverse-biased and the base
currents are ≈ 0, so both BJTs are in the cutoff mode. However, if vAK is increased, both
IC B0–npn and IC B0–pnp are increased, leading to the appearance of some i A current. At
very small transistor currents, the current gains (βs) are small as well, but their values
increase as the transistor current is increased.6 At some voltage vAK = VB0, the transistor
currents increase the current gains to the point where βpnpβnpn → 1. According to
Eq. (14.10), i A → ∞ at this condition. The regenerative mechanism has occurred, the
BJTs enter the saturation mode, and Eq. (14.10) no longer applies. All the P–N junctions
are forward-biased, which means that the voltage between the anode and the cathode is
very small, and the current flowing between the anode and the cathode is limited by the
external circuit. The thyristor is latched up, and it behaves as a switch in on mode with
small parasitic resistance. The latch-up happens quickly, and no trace connecting VB0 to
the resistor-like characteristic of the on thyristor is shown in Fig. 14.6b.

The latching just described occurred at voltage VB0 due to the internal leakage
currents, in the absence of any gate current. The voltage VB0 is the forward blocking
voltage of the thyristor. If some gate current is provided, the critical condition βpnpβnpn is
reached at a smaller vAK voltage, enabling latch-up with smaller anode voltages, as shown
in Fig. 14.6b.

Once latched up, the SCR cannot be switched off by setting the gate current to zero,
as the regenerative process is self-sustainable. The thyristor can be turned off by reducing
the current to a level where the current–gain product is βpnpβnpn < 1. The minimum
current at which the thyristor is still on is called the holding current (IH in Fig. 14.6b).
Another type of thyristor, called a MOS-controlled thyristor, integrates a MOSFET whose
gate can be used to control the switching of the thyristor. When latched up, the thyristor
current creates stored charge at the forward-biased P–N junctions, which means that the
switching characteristics exhibit the P–N junction-type delay, due to the need for stored-
charge removal.

For negative vAK , both base–emitter junctions (P+N− and PN+) are reverse-biased,
which means that no current flows because both BJTs are in cutoff. Therefore, this type
of thyristor exhibits reverse blocking capability. The depletion layer is the widest in the
lowest-concentration N− layer, which therefore supports most of the reverse vAK voltage.
The breakdown voltage of this junction determines the reverse blocking voltage VRB.

This type of reverse blocking capability is unwanted in some applications: more
precisely, it is desirable that the thyristor conduct current in both directions once latched up.
In this case, one must use TRIAC: a thyristor that, in a sense, is a pair of SCRs connected
in antiparallel.

6This effect is shown in Fig. 9.16 and described in Section 9.3.
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SUMMARY

1. Power-electronic circuits use switches to convert electrical energy from one form to
another. P–N junction (including PIN) and Schottky diodes are used as two-terminal
switches (rectifiers). BJTs, MOSFETs, IGBTs, and thyristors are most frequently used
as controlled switches.

2. PIN diodes are, in principle, P–N junction diodes with an inserted low-doped (“insula-
ting”—I) region, called a drift region, which takes the reverse-bias voltage across its
depletion layer. PIN diodes exhibit good reverse blocking (off state) and current (on
state) capabilities. Relatively high barrier height and the voltage across the drift region
contribute to relatively high forward voltage (>1 V). In a 5-V power supply, this alone
can lead up to 25% power-efficiency loss.

3. Minority carriers, involved in the current conduction of a P–N junction diode, cause
two undesirable switching effects: (1) forward voltage overshoot due to limited rate of
minority-carrier accumulation to the forward-bias level of stored charge and (2) delay
and current flow needed to remove the stored charge so that the diode is switched off
again.

4. Schottky diodes exhibit superior switching characteristics because the current conduc-
tion involves majority carriers only, and no stored-charge effects appear. The choice
of metal work function can adjust the barrier height so that the forward voltage is
reduced, compared to PIN diodes. This inevitably leads to increase in reverse-bias
current, which is a limiting factor for the forward-voltage reduction. Analogously to
PIN diodes, power Schottky diodes involve a drift (low-doped) region to achieve the
desired reverse blocking capability.

5. Power BJTs, as controlled switches, share the positive (reverse blocking and good cur-
rent capabilities) and negative (stored-charge-related switching delays) characteristics
of PIN diodes. In addition, a large input base current is needed to maintain the BJT in
on state.

6. Tens of thousands of MOSFET cells can be paralleled to compensate for the inherently
inferior current capability and to enable small on resistance. Being a majority-carrier
field-effect device, the power MOSFET exhibits superior switching performance, and
no steady-state input current is needed to maintain either on or off states. Still, high
transient currents are needed to charge/discharge the input capacitance to switch the
device on/off, imposing a practical limit to input capacitance increase due to paralleling
MOSFET cells. Analogously to diodes and BJTs, a drift region is used to provide good
forward-blocking capability (“forward” refers to positive drain-to-source voltage). In
the on state, the drift region contributes to, and even dominates, the on resistance. The
body and the source are short-circuited in a power MOSFET, which short-circuits the
internal body-to-source power diode—no reverse blocking capability.

7. IGBTs combine input MOSFET and output BJT to create a device with superior input
control and output current capabilities. Its BJT-like output renders it inferior to the
MOSFET in terms of high-frequency switching performance.

8. Thyristors are four-layer PNPN structures that can be latched into the conduction (on)
state by a regenerative mechanism: the PNPN layers form PNP and NPN BJTs, with
collectors connected to each other’s base, amplifying and pushing the current in a
closed loop until both BJTs enter the saturation mode. This mechanism works when
βpnpβnpn → 1, which does not happen if the collector currents are below a certain level.
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In this state, the thyristor is in the blocking (off) mode, either reverse or forward. A gate
electrode is used to provide the triggering level of current—the gate is used to turn the
thyristor on, but it cannot be used to turn the basic thyristor (SCR) off. The SCR turns
off when the current is dropped below the holding current so that βpnpβnpn < 1. There
is an accumulation of minority carriers, and consequently the switching performance is
limited by stored-charge effects. However, thyristors have superior blocking and current
capabilities: they can conduct thousands of amperes of current in the on state and block
thousands of volts in the off state.

PROBLEMS

14.1 In the boost DC–DC converter of Fig. 14.7, ī L =
5 A, VOUT = 5 V, the transit time of the diode
is τT = 5 μs, and the on resistance of the switch
is Ron = 0.5 �. Calculate the reverse diode
current IRP that discharges the stored charge, and
find the time trs needed for the stored charge to be
removed.
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Figure 14.7 Step-up (boost) DC–DC converter.

14.2 Design the N-type drift region in a silicon diode
so that the avalanche breakdown voltage is VBR =
12 V. The breakdown electric field of silicon is
Ecr = 60 V/μm. Assume that Vbi = 0.9 V. The
design should specify the doping level (ND ) and
the minimum length of the N region (L N ), which
ensures that the depletion layer does not become
wider than the drift region.

14.3 The same doping level of the N-type drift region, as
obtained for the Si diode designed in Problem 14.2,
is used for a diode implemented in SiC (εs =
9.8 × 8.85 × 10−12 F/m, Ecr = 320 V/μm, Vbi =
2.8 V).

(a) Determine the breakdown voltage if the length
of the drift region L N is made larger than the
maximum depletion-layer width. A

(b) Determine the breakdown voltage if the min-
imum L N , as calculated in Problem 14.2, is
used (in this case, define the breakdown voltage
as the reverse-bias voltage that fully depletes
the drift region—punch-through breakdown).

(c) What L N is needed to achieve the breakdown
voltage calculated in part (a) of this prob-
lem? A

14.4 Design the N-type drift region of a power diode
so that the avalanche breakdown voltage is VBR =
1000 V, if the diode is to be implemented in

(a) Si (Ecr = 60 V/μm and Vbi = 0.9 V)
(b) 4H SiC (Ecr = 320 V/μm, Vbi = 2.8 V, and

εs = 9.8 × 8.85 × 10−12 F/m)

The design should minimize the resistance of the
drift region. Determine the specific resistance of
the drift region in each case if electron mobilities
are 1400 cm2/V · s and 800 cm2/V · s for Si and 4H
SiC, respectively.

14.5 The doping concentrations of a silicon PIN diode
are NA = 1020 cm−3, ND−l = 1015 cm−3, and
ND−h = 1020 cm−3, respectively, and the length
of the drift region is L N = 5 μm. At what voltage
does the depletion layer width become equal to L N
(punch-through breakdown)? Is this voltage larger
or smaller than the avalanche breakdown voltage
(Ecr = 60 V/μm)?

14.6 The following are the dimensions of a hexagonal
VDMOSFET (such as the one in Fig. 14.4): the
length of the polysilicon gate Lg = 20 μm,
the distance between two P-layers (under the gate)
L P−P = 10 μm, the distance between two N+
layers (under the gate) L N+−N+ = 18 μm, the
gate-oxide thickness tox = 80 nm, and the thickness
of the insulating oxide between the polysilicon
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gate and the source metalization tI = 1 μm. If
the MOSFET consists of 15,000 hexagonal cells,
calculate

(a) the gate-to-drain (CG D) capacitance
(b) the gate-to-source (CGS) capacitance A

14.7 A power MOSFET is switched on and off by a 1-
MHz pulse signal, with 0 V and 10 V as the low-
and high-voltage levels, respectively. Assuming a
constant input capacitance of 7 nF and a total series
resistance in the charging/discharging circuit of 5 �,
calculate the average dissipated power by the input-
control circuit.

REVIEW QUESTIONS

R-14.1 Is it better to use higher or lower switching frequency in terms of minimizing the size of
inductors (and transformers if present) in a switching power circuit?

R-14.2 Can the PIN diode impose a limit to the switching frequency in a power circuit?
R-14.3 Do power Schottky diodes exhibit the stored-charge-related effects (forward voltage

overshoot and constant-current reverse recovery)?
R-14.4 Are the switching characteristics of a PIN diode (e.g., forward voltage overshoot and reverse

recovery) related to the power efficiency?
R-14.5 Is the reverse blocking voltage related to the power efficiency? Indirectly?
R-14.6 Low doping concentration and sufficient width of the drift region are needed to achieve the

desired blocking capability. Does the drift region affect the forward voltage?
R-14.7 If a PIN and a Schottky diode have identical drift regions, will the forward voltages be the

same?
R-14.8 Is the forward voltage of a diode (either PIN or Schottky) related to the power efficiency?
R-14.9 Given better switching characteristics and smaller forward voltage, is the superiority of

Schottky diodes over PIN diodes total? In other words, is there any important disadvantage
of power Schottky diodes? If so, what is it?

R-14.10 Is the IS parameter in the ID–VD equation related to the forward voltage? If so, how?
R-14.11 If two controlled switches are connected in parallel and one of them takes a larger share of

the current, it will heat more, reaching higher operating temperatures. In the case of BJTs
the temperature increases the current, whereas in the case of MOSFETs it decreases the
current. How does this difference affect the stability of the parallel connection?

R-14.12 The channel thickness of MOSFETs is inherently limited to several nanometers (the
penetration of the electric field creating the channel). A channel that is tens of centimeters in
width is necessary to compensate for this limitation, and therefore necessary to achieve an
acceptable channel resistance. How is it possible to place a tens-of-centimeters-wide power
MOSFET in a package not larger than 1 cm in diameter?

R-14.13 Paralleling MOSFETs or MOSFET cells increases the input capacitance. Can this represent
a practical problem, given that no DC current flows through the input capacitance?

R-14.14 Charging and discharging of the input capacitance has obvious implications for the
maximum switching frequency. If there is no leakage through the capacitor, do charging
and discharging affect the power efficiency?

R-14.15 Is the forward blocking voltage of a MOSFET related to the on resistance? If yes, what is
the relationship?

R-14.16 The drain current of a power MOSFET increases as the gate voltage is increased above the
threshold voltage, but then quickly “saturates.” Does that mean that the resistance of the
drift region dominates the on resistance? If not, why does this happen?

R-14.17 IGBT integrates a MOSFET and a BJT to achieve the advantages of MOSFET input
controllability and BJT output current capability. However, MOSFETs can easily be paral-
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leled, which increases the current capability. Do IGBTs exhibit a real advantage in terms
of current capability? If so, there must be a limit/problem with paralleling the MOSFETs.
What would it be?

R-14.18 For an IGBT in the on state, minority carriers are injected into the drift region. Does that
mean that the on resistance is smaller than it would be if an equivalent drift region were
used in a power MOSFET?

R-14.19 IGBT retains all the stored-charge-related effects found in BJTs. Does this make them
inferior to MOSFETs in terms of high-frequency switching performance?

R-14.20 Thyristors are controlled switches that consist of four layers (PNPN). With either voltage
polarity across the switch, there is always a reverse-biased P–N junction. How can a
conductive path ever be established through the PNPN structure to set the switch in on
state?

R-14.21 What happens if the collector current of transistor “A” is amplified by transistor “B” and the
amplified current is fed back into the base of transistor A? Is there a limit to this closed-loop
amplification? Can a finite “loop gain” be reached if the maximum βpnpβnpn product is <1?
What if βpnpβnpn > 1?

R-14.22 Consider the PNPN structure of an IGBT. If βpnp−maxβnpn−max<1, does this mean that
this structure can never be latched up?

R-14.23 Assume that a thyristor conducts 1000 A at 1 V of forward voltage, which means that the on
resistance is 1 m�. Can this thyristor be used as a small-resistance switch for low-current
applications (say <1 A) to achieve negligible forward voltage drop (<1 mV)? A negative
answer implies a minimum-current limit. Why should there be a “minimum-current limit”?



15 Negative-Resistance Diodes

Negative-resistance diodes are active microwave devices that can be used as amplifiers and
oscillators at frequencies up to 100 GHz (despite the continuous improvement of FETs,
their performance is still inferior or even inadequate at these frequencies). As the name
suggests, a common characteristic of negative-resistance diodes is the negative-resistance
(or negative-conductance) phenomenon. More precisely, we are dealing here with negative
dynamic (or differential) resistance (NDR) or, alternatively, negative dynamic (differential)
conductance. This means that a voltage increase causes a current decrease (r = dv/di <

0), which is different from the fact that the ratio between the instantaneous voltage and
current is still positive (R = v/ i > 0). The negative dynamic resistance causes current
and voltage to be 180◦ out of phase with each other. As a consequence, the signal power
is negative, which means that a negative-resistance diode does not dissipate but, rather,
generates signal power. Again, this should not be confused with the total power, which is
positive, expressing the fact that the device efficiency is <100%.

Signal amplification by two-terminal negative-resistance diodes is conceptually dif-
ferent from the amplification by the voltage-controlled current sources (three-terminal
BJTs and FETs). Section 15.1 describes the principles of amplification and oscillation by
negative-resistance devices, followed by Sections 15.2 and 15.3, which introduce Gunn and
IMPATT diodes as representatives of transferred-electron devices (TED) and avalanche
transit time diodes, respectively. Finally, Section 15.4 briefly describes the tunnel diode.

15.1 AMPLIFICATION AND OSCILLATION BY NEGATIVE DYNAMIC RESISTANCE

A part of the current–voltage characteristic of a negative-resistance diode exhibits a
negative slope. This region of the current–voltage characteristic can be used to produce
signal voltage and current 180◦ out of phase with each other, thus to generate signal
power. To achieve this, the loading element (GL ) is connected in parallel with the negative-
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Figure 15.1 Signal amplification
by a negative-conductance
diode. (a) Fundamental
small-signal equivalent circuit.
(b) Graphic load-line analysis.

conductance diode (g), as illustrated in Fig. 15.1a. This does not mean that the diode can
deliver signal power to the load out of nothing—it still needs a DC power source; but
because of the parallel connection, the power source is effectively in the form of a current
source IBB that is connected in parallel to the signal source is .1

Figure 15.1b shows a typical iD–vD characteristic of a negative conductance diode,
with the negative-conductance part of the curve highlighted. To use this characteristic for
a graphic analysis of the circuit, the load line representing the load (GL) and the DC bias
(IBB, not shown in Fig. 15.1a) is needed. When the source current is equals zero (the DC

1The actual implementation of the DC current source (IBB) is a separate issue; but typically, an
ordinary voltage source separated by a lossy low-pass filter is used.
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bias point), we have

iD = IBB − GLvD (15.1)

to satisfy the Kirchhoff current law at the parallel connection of g and GL . Equation (15.1)
is the needed load line, which can be drawn by observing the following two facts: (1)
iD = IBB for vD = 0, which means that the line intersects the iD axis at IBB, and (2) the
slope of the line is −GL . The solution is found at the intersection between the load line and
the diode characteristic. The absolute values of iD and vD are both positive, which means
that the diode dissipates (uses) instantaneous power supplied by the DC source.

When a signal current is is added to the DC bias current IBB, the load line is shifted up
or down (depending on the sign of the signal current), but the slope is not changed. This is
illustrated by the dashed lines in Fig. 15.1b. It can be seen that a small decrease/increase
in the incoming current, caused by the superimposed signal current (is) on the bias current
(IBB), causes a rather large increase/decrease in the diode current. Therefore, a current
gain is achieved. More importantly, the increase in iD is accompanied by a decrease in vD ,
which means that the signal voltage is 180◦ out of phase with the signal current flowing
through the diode. This means negative signal power pd = vd id , or signal power generation
in other words. On the other hand, the signal current flowing through the load (io) is in
phase with the voltage, which means that the load is using power po = voio.

The current gain (A = io/ is ) and the power gain (A = po/ps) are identical to each
other, because vo = vs . Figure 15.1b shows that the magnitude of id current depends on
the slopes of both the negative-conductance part of the diode curve (g) and the load line
(GL ). This further means that the magnitude of the output current (io = is − id ) and hence
the current/power gain depends on both g and GL . To find this dependence, let us start
from Kirchhoff’s current law,

io

A
= id + io (15.2)

where the source current is is expressed in terms of the output current, using the gain
definition A = io/ is . Furthermore, express the currents in terms of the conductances and
the unique voltage vo = vd = vs by applying Ohm’s law:

GL

A
vo = −|g|vo + GLvo (15.3)

When one is applying Ohm’s law to the negative-conductance element, care is taken to
express that the current id is 180◦ out of phase with the voltage vd = vo. This leads to the
following equation for the gain:

A = GL

GL − |g| (15.4)

We can conclude from this equation that

G L > |g| (15.5)
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is a condition for stable amplification. With this condition, ps = −vois = −v2
o GL/A <

0 (power generated), pd = void = −|g|v2
o < 0 (power generated), and po = voio =

GLv2
o > 0 (power used). If GL < |g|, the gain A would be negative, and vd and id

inverted. With this, the input signal source consumes power ( ps > 0) while the negative-
conductance diode still generates power ( pd < 0). Here the signal power generated by the
negative-conductance diode is unrelated to the signal source. Is this situation possible?

To clarify the question of power generation unrelated to any excitation, let us remove
the signal source (is = 0), but not the supply current IBB. In addition to that, let GL be
adjusted so that

GL = |g| (15.6)

In this case, A → ∞, which does mean that no input signal is needed to have a finite
output signal current (io = Ais = ∞ × 0 = finite value). An electronic system that
produces an output signal without any input excitation, thereby generating the signal, is
called oscillator. Referring to Fig. 15.1b, the condition GL = |g| means that the load line
overlaps the diode curve in the negative-conductance section. There is not a unique iD–vD

solution (intersection between the load line and the diode curve) in this case, meaning that
the circuit is unstable. The operating point will oscillate, as governed either by internal
physical processes in the diode (unresonant mode) or by a resonant circuit if such a circuit
is connected (resonant mode).

EXAMPLE 15.1 Negative-Resistance Oscillator

The current–voltage characteristic of a negative-resistance diode is shown in Fig. 15.2, where
i A = 200 μA, iB = 60,200 μA, vA = 16 V, and vB = 10 V.

(a) Find the value of the load conductance GL so that this diode is used as an oscillator.
(b) Assuming maximum signal amplitude, calculate the power conversion efficiency of this

oscillator (η = p̄o/ p̄S , where p̄o is the average output signal power, and p̄S is the average
instantaneous power supplied by the DC source).

iD

iB

iA

vB vA vD

Figure 15.2 Current–voltage characteristic of a negative-resistance
diode.
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SOLUTION

(a) The oscillation condition is given by Eq. (15.6) as GL = |g|. Assuming linear iD–vD

dependence between i A and iB , |g| can be estimated as

|g| ≈ (iB − i A)/(vA − vB) = 60,200 − 200

16 − 10
= 10 mA/V = 10 mS

Therefore, the load conductance should be

GL = 10 mS

(b) To achieve maximum signal amplitude, the signal current and voltage should oscillate
around the central (ID, VD) point, where ID and VD are (60.2 + 0.2)/2 = 30.2 mA
and (16 + 10)/2 = 13 V, respectively. The peak amplitudes of the signal are then
Im = iB − ID = (IB − IA)/2 = 30 mA and Vm = (VA − VB)/2 = 3 V. Therefore,
the voltage and current signals can be expressed as vo = vd = Vm sin(ωt) and io =
is − id = −id = Im sin(ωt). With this, the average output signal power is found as

p̄o = 1

T

∫ T

0
voio dt = Vm Im

π

∫ π

0
sin2(ωt) d(ωt) = Vm Im/2

The instantaneous power delivered by the DC source is pS = IBBvD , where IBB is the
current of the DC current source supplying the power and vD is the voltage across the
current source, which is equal to the voltage across the diode, as well as the output.
Because vD = VD − Vm sin(ωt), the average power delivered by the source can be
expressed as

p̄S = IBB

2π

∫ 2π

0
vD d(ωt) = IBBVD − IBBVm

2π

∫ 2π

0
sin(ωt) d(ωt)︸ ︷︷ ︸

=0

= IBBVD

where IBB is the current at which the load line intersects the iD-axis. Because the load
line passes through the central (ID, VD) point and has a slope of −GL , the following
relationship can be established:

IBB − ID

VD
= GL

which further means that
IBB = GL VD + ID = 160.2 mA

The power conversion efficiency is, therefore,

η = p̄o

p̄S
= Vm Im

2VD IBB
= 3 × 30

2 × 13 × 160.2
= 0.0216 = 2.16%
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15.2 GUNN DIODE

“Gunn diode” represents a group of devices called transferred-electron devices (TED).
TEDs are used as oscillators and amplifiers, covering the frequency range from 1 to
100 GHz, with output power capabilities greater than 1 W. Principally, these devices are
made of plain n-type semiconductor pieces (no P–N junctions), with ohmic contacts at two
opposite sides. The name Gunn diode is typically used for GaAs-based diode, while the
other options are InP and CdTe.

The appearance of negative dynamic resistance in such a simple structure is due to
the specific E–k dependence, which has two close minima, as shown in Fig. 2.13a for
GaAs. As illustrated in Fig. 15.3, the electrons in the lower E–k valley have much smaller
effective mass, and consequently they possess much higher mobility μl (note that the
subscript l refers to either light effective mass or lower E–k valley but not to low mobility).
Because the higher E–k valley is much wider, electrons appear to be much heavier there,
and consequently their mobility μh is much lower. At small voltages, thus small electric
fields inside the semiconductor, all the electrons are in the lower E–k valley. The mobility
of all the electrons is high (μl ), and the conductance G = q Anμl/L is large. This is
illustrated by the large-slope dashed line in Fig. 15.3. At very large voltages, thus very
large electric fields, most of the electrons gain sufficient energy to appear in the higher E–k
valley. The mobility of the electrons is now low (μh), and the conductance G = q Anμh/L
is small, as shown by the small-slope dashed line in Fig. 15.3. In the medium-voltage
range, a voltage increase causes a transfer of a number of electrons from the lower to the
higher E–k valley, which reduces the average drift velocity of the electrons (Fig. 15.4) and
therefore reduces the current. This current reduction due to a voltage increase is the effect
of negative dynamic conductance g = dI/dV < 0.

The semiconductor is not stable in the negative-conductance region because it cannot
establish a unique electric field when biased so that V/L exceeds the critical electric
field (the critical electric field corresponds to maximum drift velocity in Fig. 15.4). To
explain this, let us consider a packet of electrons injected by a negative cathode into GaAs
biased beyond the critical V/L. As the electrons move toward the anode, the electric field
back toward the cathode is reduced, while the electric field toward the anode is slightly
increased. This is illustrated in Fig. 15.5a. In normal circumstances, the packet of electrons

g � dI/dV 
 0 (negative
dynamic conductance)

mh 
 ml

m*
he
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le

I �
 qAnm h
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I 
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V L
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I Figure 15.3 Illustration of the negative-
dynamic conductance/resistance due to the
Gunn effect.
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Figure 15.4 Drift velocity versus electric
field in GaAs.

will disperse itself, as the electrons leaving the packet toward the anode move faster in the
region of the stronger field. These electrons are not adequately replaced by electrons that
come from the cathode at a slower rate. As a result, the semiconductor will stabilize itself.
In the case of negative vd –E slope (negative mobility), the situation is exactly opposite:
the number of electrons that leave the packet moving toward the anode is lower than the
number of electrons coming from the cathode. As a result, the packet of electrons grows.

To facilitate visualization of this effect by the energy bands, the region of strong
electric field, such that the vd –E slope is negative (negative mobility), is shaded in the
conduction bands shown in Fig. 15.5. Normally, we think of the electrons as rolling down
faster when the slope of the conduction band is larger. The shaded area is not like this,
and the simple model breaks down here. Still, we can gain some graphic insight if we
think of the shaded area as a very “dense” medium, so that the particles move faster in the
clear than in the shaded area.2 With this, we can visualize the effect of continuous electron
accumulation as the accumulation layer moves down toward the anode. The increasing
electron concentration in the accumulation layer increases the electric field toward the
anode, which reduces the drift velocity of the electrons in this region, reducing the anode
current. Therefore, a voltage increase results with a current decrease, as illustrated in
Fig. 15.5b.

As the accumulation process continues and the accumulation layer moves toward
the anode, further increasing the electric field, the drift-velocity reduction approaches
saturation. At some point the increased electron concentration starts dominating the anode
current, which leads to a current increase (Fig. 15.5c). The increased current causes a
voltage reduction on the negative-slope load line, which only helps the current increase by
causing a smaller field in the negative-mobility region than would be present at a higher
voltage.

As the electron concentration in the accumulation layer drops down due to the
electrons terminating at the anode, the electric field back toward the cathode is being
increased, eventually above the critical level (Fig. 15.5d). By the time all the electrons
from the accumulation layer have been collected by the anode, a new electron “packet”

2To be quite precise, we need to assume that this imaginary medium gets “denser” as the slope of
the bands increases; this is to include the fact that vd reduces with E .
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Figure 15.5 Illustration of a Gunn-effect
oscillator.

is being formed at the cathode end of the semiconductor,3 and the cycle is back to the
situation represented by Fig. 15.5a.

3The creation of this electron “packet,” or the initiation of the accumulation layer, is explained by
the fact that the rate of electrons injected into the semiconductor is higher than their drift velocity in
the high-field region.
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This explanation shows that the oscillation period is approximately equal to the time
needed for the accumulation layer to drift from the cathode to the anode. Assuming average
drift velocity v̄d , the oscillation frequency is given by

f = v̄d

L
(15.7)

where L is the length of the sample.
This oscillation mechanism is referred to as either an accumulation-layer mode, a

transit-time mode, or a Gunn-oscillation mode. It is a nonresonant mode because the
oscillation frequency is set by the physical parameters of the diode itself (length and
electron velocity). A number of more complex modes of operation are possible. For
example, at higher doping concentration, or with longer samples, dipoles of accumulation
and depletion layers are formed: that is, the diode is operated at a so-called transit-time
dipole-layer mode. Additional oscillation modes include quenched dipole-layer mode and
limited-space-charge accumulation (LSA) mode. At very low doping levels, or with very
short samples, the device can operate in stable amplification mode, also called uniform-
field mode. In this case, there are not enough electrons to create an accumulation layer.
Consequently, the electric field is uniform so that I–V characteristic with a negative-
resistance part (Fig. 15.3) results from a simple scaling of the velocity-field characteristic
(Fig. 15.4). Because the spontaneous oscillation is avoided in this mode, the device can be
used as a stable amplifier of signals with frequencies near the transit-time frequency. The
other types of transferred-electron devices, namely, InP and CdTe diodes, are similar, but
with different physical parameters.

15.3 IMPATT DIODE

The IMPATT diode represents avalanche transit-time devices, which can operate at
frequencies higher than 100 GHz, providing the highest continuous power of all semicon-
ductor microwave devices. IMPATT stands for impact ionization avalanche transit time.
These devices can be implemented in Si as well as GaAs.

The IMPATT diode is a resonant device because it requires a resonant circuit for its
operation. The parallel connection of an inductor and a capacitor is the resonant circuit
in Fig. 15.6a. Structurally, the IMPATT diode is typically a PIN diode. In Fig. 15.6, the
“intrinsic” region is fully depleted and is sandwiched by heavily doped N+ and moderately
doped P-type regions that serve as contacts. Practically, the “intrinsic” region would be a
very lightly doped P-type region. The DC reverse-bias voltage VBB sets the diode very close
to avalanche breakdown. The resonant circuit is designed so that the positive oscillating
voltage v, superimposed on the bias voltage VB , takes the diode into avalanche mode. The
electric field in the structure is strongest at the N+–I junction, and only in a narrow region
around the N+–I junction does the field exceed the critical breakdown value. This leads to
generation of electron and hole avalanches, as illustrated in Fig. 15.6b. The electrons are
quickly neutralized by the positive charge from the nearby anode, whereas the holes start
drifting through the depletion layer toward the cathode. Assuming drift velocity vd and
sample length L, it will take time of τ = L/vd for the holes to reach the cathode, causing
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Figure 15.6 The principle of
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maximum cathode current. If the resonant circuit is designed so that its frequency is

T

2
= τ ⇒ f = vd

2L
(15.8)

the voltage is at its minimum when the current reaches its maximum. The voltage and
current are 180◦ out of phase with each other, which means that negative dynamic
resistance has been established.

The I–V characteristic of the avalanche diodes is S-shaped, as in Fig. 15.2, which is
different from the N shaped I–V characteristic of the Gunn diode, shown in Fig. 15.3. This
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is because very small levels of current relate to any voltage between 0 and the breakdown.4

In a situation such as the one illustrated in Fig. 15.5, the negative dynamic resistance causes
a voltage decrease as the current is increased. However, if the diode is set in a continuous-
breakdown mode, the structure behaves as an ordinary small-value resistor because of the
abundance of current carriers.

15.4 TUNNEL DIODE

Tunnel diodes are small-power small-voltage devices that can be used as microwave
amplifiers and oscillators, although they are being displaced by other semiconductor
devices. The tunnel diodes, also known as Esaki diodes, have a historic importance related
to the Nobel–prize winning discovery of the tunnel effect by L. Esaki in 1958. The tunnel
diode is a P–N junction diode with heavy doping (on the order of 1020 cm−3) in both P-type
and N-type regions. The heavy doping is related to two important facts for the operation of
the tunnel diode: (1) The Fermi level is inside the conduction band in the N-type material,
reflecting the extreme concentration of electrons, and inside the valence band in the P-type
region, to reflect the extreme concentration of holes. (2) The depletion layer separating the
N-type and P-type regions is very narrow (<10 nm). As a result, (1) the electrons at the
bottom of the conduction band in the N-type region are energetically aligned with the holes
in the valence band of the P-type region (Fig. 15.7) and (2) the space separation between
them is comparable to the characteristic length of the electron wave function. This enables
the electrons to tunnel through the depletion-layer barrier.

Referring to Fig. 15.7, we see that an increasing tunneling current flows as an
increasing forward-bias voltage is applied. However, the forward bias splits the quasi-
Fermi levels reducing the energy overlap between the N-type conduction and P-type
valence bands. This leads to a tunneling current decrease as the voltage is increased. This is
the negative-resistance region that is utilized by microwave oscillators and amplifiers. As
the energy overlap disappears, the tunneling current drops to zero. At this point, however,
the normal diode current already dominates the total current. This current is due to the
electrons (and holes) being able to go over the depletion-layer barrier, and it increases as
the increasing voltage reduces the barrier height. This explains the N-shaped I–V curve
of the tunneling diode, shown in Fig. 15.7.

SUMMARY

1. The maximum operating frequency of any transistor is not limited by the time it takes
for the electrons to travel through the transistor (transit time), but by the input parasitic
capacitance. Negative-resistance diodes operate at or near the transit-time frequencies.
Negative dynamic resistance can be employed to convert DC supply power into signal

4This is opposite to the Gunn diode, where a small voltage is related to a very small resistance, due
to the high mobility of the conducting electrons.
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power (pd = gv2
d < 0 as g < 0). This enables amplifiers and oscillators to operate at

higher frequencies than any other solid-state system.
2. Negative dynamic resistance in a Gunn diode appears when an increasing voltage

(electric field) converts an increasing number of high-mobility electrons into low-
mobility electrons. This happens due to a transfer of electrons from an energetically
lower E–k valley into a higher E–k valley, associated with a heavier effective mass of
the electrons.

3. Negative dynamic resistance of an IMPATT diode is achieved by synchronizing the
transit time of carriers created by avalanche breakdown to the half-period of a resonant
voltage. The positive peak of the resonant voltage adds to a DC bias voltage to set the
diode in avalanche mode. The created carriers take time τ (transit time) to come to the
opposite electrode (maximum signal current); the half-period of the voltage is set to τ ,
which means that it is most negative when the current is at the positive peak.

4. The negative resistance of a tunnel diode is due to diminishing overlap (in energy terms)
of N-type conduction and the nearby P-type valence bands, caused by Fermi-level
splitting by an increasing forward-bias voltage. The diminishing “energy alignment”
of N-type electrons to the P-type holes means fewer electrons can tunnel through the
very narrow depletion layer at the P–N junction.
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PROBLEMS

15.1 Power gain that can be achieved by a negative-
conductance diode is given by Eq. (15.4). Derive this
equation using the power balance principle.

15.2 Referring to Example 15.1:

(a) Sketch vd , id , and is , positioning them
appropriately with respect to ID and VD.

(b) Shade the rectangle defined by the axes and
VD and IBB lines. What does the area VD IBB
represent?

(c) Observe the triangle defined by iB and VD
lines and the diode characteristic. Compare it
to the triangle defined by i A, VD , and the diode
characteristic. How does the area of each of
these triangles relate to the signal power?

15.3 The negative-resistance region of a Gunn diode is
defined by the following two voltage–current points:
(I1, V1) = (8 V, 12 mA) and (I2, V2) = (12 V,
2 mA). Calculate G L to maximize the power gain
of a sinusoidal signal with peak current Imi =
0.5 mA.

15.4 The voltage across a Gunn diode oscillates between
Vmin = 5.5 V and Vmax = 10 V. Knowing that the
effective length of the diode is L = 3.5 μm, and
the drift velocity is v̄d = 0.10 μm/ps, estimate the
oscillation frequency. A

15.5 Find the resonant frequency for a silicon N+P−P
IMPATT diode with effective length L P− = 10 μm.
The saturation velocity is vsat = 0.07 μm/ps.

REVIEW QUESTIONS

R-15.1 Can an analog signal be amplified by a two-terminal device? If so, how?
R-15.2 Is the signal power pd = gv2

d positive or negative if the dynamic conductance of the device
g is negative? What does “negative signal power” mean, anyway?

R-15.3 What happens if a negative-resistance diode is biased so that the load line overlaps the
negative-resistance region (in other words, there is no unique intersection between the load
line and the diode characteristic)?

R-15.4 Are Gunn diodes based on P–N junctions? Schottky contacts?
R-15.5 Is the Gunn effect possible in Si?
R-15.6 Is it possible to have a Gunn-diode-based oscillator without an external resonator circuit?
R-15.7 Is the electron drift velocity related to oscillation frequency that can be achieved by a Gunn

diode? If so, why and how?
R-15.8 Is the electron drift velocity related to the oscillation frequency in the case of IMPATT

diode? Is there any difference from the case of Gunn diode?
R-15.9 Does the IMPATT diode need an external resonator?
R-15.10 Do the N-shaped I–V characteristics of Gunn and tunnel diodes mean that their physical

principles are similar, while quite different from those of avalanche diodes, which exhibit
S-shaped I–V characteristics?

R-15.11 Is the tunnel diode based on a P–N junction? If so, is the P–N junction forward- or reverse-
biased in the negative-resistance mode?

R-15.12 Is the operating voltage of a tunnel diode higher or lower than IMPATT diode? Is this related
to the output power capabilities?



16 Integrated-Circuit Technologies

In comparison with circuits implemented with discrete devices, integrated-circuit (IC) tech-
nology offers unmatched advantages, including sophisticated functions that are enabled
by mere circuit complexity, increased speed due to reduced parasitic capacitances and
resistances, reduced cost, reduced size, and improved reliability. In terms of the per-
formance of individual semiconductor devices, however, the various IC technologies
impose severe limitations. A device structure may appear superior in isolation, but its
practical significance will be diminished if integration is difficult. The fundamental device
structures, presented in Part II, satisfy the integration criterion. Even so, integration may
become impossible, or at the very least its advantages will be lost, if the technological
parameters are optimized for discrete semiconductor devices.

This chapter introduces the principles of IC technology. The emphasis is on presenting
new concepts that are associated with integration: (1) the need to make all the devices with
a single optimized sequence of technology steps, (2) the need to provide electrical isolation
between individual semiconductor devices, and (3) the possibility of physically merging
regions of individual devices (layer-merging principle).

16.1 A DIODE IN IC TECHNOLOGY

This section provides an introduction and a brief review of essential processing steps, using
the example of the P–N junction diode.

16.1.1 Basic Structure
The basic structure of a diode in integrated circuits is shown in Fig. 16.1. The diode
terminals, the anode and the cathode, are labeled by A and C, respectively. A P–N junction
used as a diode in integrated circuits has to be isolated from the other components built in

562



16.1 A Diode in IC Technology 563

C A

N�

N�

Metal

P type

P

N substrate

Depletion
layer

SiO2
N�

V�
Figure 16.1 Structure of a P–N
junction diode in integrated
circuits.

the same substrate. Figure 16.1 illustrates that an additional reverse-biased P–N junction
can be used to electrically isolate the diode from the other components of the integrated
circuit. The principle of utilizing a reverse-biased P–N junction for electrical isolation
relies on the fact that the reverse-bias current is negligible. The N-type substrate in Fig. 16.1
is contacted to the highest potential in the circuit (V+) to ensure that the isolating P–N
junction, formed at the junction between the N-type substrate and the P-type region (the
anode of the diode), is reverse-biased for any anode voltage. In the worst-case scenario,
the anode voltage is also equal to the highest potential in the circuit, V+. In this case the
voltage across the isolating P–N junction is equal to zero. For any anode potential lower
than V+, the isolating P–N junction is reverse-biased.

16.1.2 Lithography
The diode structure shown in Fig. 16.1 illustrates that semiconductor devices utilize N-type
and P-type doped regions with certain depths and widths. If the doping is performed by
diffusion, the depth of the doped regions is controlled by the time and the temperature
during the diffusion. As far as the width is concerned, it is specified by the width of the
window in the protective “wall,” as illustrated in Fig. 1.20. Typically, the “wall” is a layer
of SiO2 (a thin glass layer), although Si3N4 as well as some other materials are sometimes
used. If the semiconductor in question is silicon, the SiO2 layer at the surface can be created
by thermal oxidation of the silicon. Alternatively, it can be deposited on the surface. Either
way, the window has to be created by selective etching of the protective layer (“wall”).

The set of processing steps used to prepare the substrate for selective etching is
referred to as lithography. Lithography plays a crucial role in semiconductor fabrication
because it is utilized to create the device and IC patterns at almost any level. Etching of
the window in the SiO2 layer, to enable selective diffusion, is an example of the need for
selective etching of layers. Another example is etching of a metal layer to define metal
lines that interconnect the devices created in the semiconductor.
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Figure 16.2 Lithography—a set of fabrication steps used for layer patterning.

Figure 16.2 illustrates the set of processes referred to as lithography. The starting
material in this example is an N-type silicon wafer with a thin film of silicon dioxide
grown at the surface. To etch a window in the silicon dioxide film, the areas of the oxide
that are not to be etched need to be protected. To this end, a special film, referred to as a
photoresist, is deposited onto the oxide surface.

The photoresist has to fulfill a double role: (1) it should be light-sensitive to enable
the transfer of the desired pattern by way of exposure/nonexposure to the light, and (2) it
should be resistant to chemicals used to etch the underlying layer. Generally, there are two
types of photoresist: negative and positive. The exposed areas of the positive photoresist
are washed away by a developing chemical, whereas the unexposed areas remain at the
surface as shown in Fig. 16.2d. In the case of the negative photoresist, the unexposed areas
are removed during the developing. The photoresist is originally in liquid form, which is
spun onto the substrate surface to create a thin film. The deposited photoresist is soft-baked
(80–100◦C) before the exposure, to evaporate the solvents, and hard-baked (120–150◦C)
after the developing, to improve the adhesion to the underlying layer.
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The photoresist is exposed through a glass mask by ultraviolet (UV) light (Fig. 16.2c).
The pattern that is to be transferred onto the substrate is provided on the glass mask
in the form of clear and opaque fields. The mask itself is made by computer-controlled
exposure of a thin film deposited on the glass mask and sensitive to either UV light
or an electron beam; the clear and opaque fields are obtained after film development.
Figure 16.2c illustrates so-called contact lithography, which requires a 1× image on the
mask. In projection lithography, which is now typically used, the mask is positioned above
the substrate. When light passes through the mask, it is focused onto the substrate, which
results in image reduction. This has several advantages: (1) the image on the mask can be
much larger than the image on the substrate, (2) the substrate can be exposed part by part
(chip by chip), which enables better focusing, and (3) the mask is not contaminated due to
contact with the photoresist.

In principle, it is possible to expose an electron-beam resist deposited directly on the
substrate by a computer-controlled electron beam, in which case there would be no need for
the glass mask. Although this may seem advantageous, there is a practical problem. There
can be more than 1010 picture elements in today’s ICs, which are exposed simultaneously
using the glass mask. It would be absurdly slow to use an electron beam to directly write
these 1010 picture elements, and of course repeat the process for every IC. Because there is
a limit in terms of the finest pattern that can be obtained by the UV light (the limit imposed
by the wavelength of the UV light), the research of nanometer structures is carried out
using direct electron-beam writing.

Once the photoresist has been developed and hard-baked, the underlying layer can be
etched (Fig. 16.2e). This etching can be wet (etching by an appropriate chemical solution)
or dry (plasma etching). After the etching is completed, the photoresist is removed to obtain
the desired structure as shown in Fig. 16.2f.

16.1.3 Process Sequence
The IC diode shown in Fig. 16.1 can be made by combining lithography and diffusion. The
process sequence is illustrated in Fig. 16.3. In this example, the initial material is the N-type
silicon with a window in the overlying oxide layer, prepared as illustrated previously in
Fig. 16.2. The P–N junction shown in Fig. 16.3a is the isolating junction: it will have to be
reverse-biased to electrically isolate the diode from the common N-type substrate. This can
be achieved if the N-type substrate is connected to the most positive voltage in the circuit
(V+). A good contact to N-type silicon can be achieved only with high concentrations of
donor atoms (ND > 1019 cm−3). Because of this, it is necessary to provide a highly doped
N-type region (labeled as N+) for the contact with the metal terminal where the positive
voltage is to be connected. To this end, the oxide mask (the oxide layer with the window
that enabled the P-type layer to be formed by boron diffusion) has to be stripped, and
a new oxide layer grown to create a diffusion mask with a window over the area where
the N+ region is to be formed. This obviously involves an oxide deposition/growth and a
lithography to open the window. After this, diffusion of phosphorus is performed to create
the N+ region needed for the contact, as shown in Fig. 16.3b.

Analogously to the creation of the P-type layer by diffusing a higher acceptor
concentration into the N-type substrate, the cathode of the diode can be created by diffusing
donors with concentration N+ that is even higher than the acceptor concentration in the
P-type region. The doping concentration achieved by the N+ diffusion for the contact to
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N-type substrate is higher than the maximum acceptor concentration in the P-type region.
Therefore, the same diffusion process can be used to create both the N+ contact and the
N+ cathode of the diode. Figure 16.3b shows that this is achieved by opening windows in
the oxide layer over the N-type substrate (for the contact) and over the P-type region (for
the cathode). The resulting diffusion profiles along the N+PN structure (cathode–anode–
substrate) are illustrated in Fig. 16.4.
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Figure 16.3 Process steps used in fabrication of an IC diode.
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Finally, the diode terminals and the metal track for the positive voltage (V+) have to be
made. The areas where the metal should contact the silicon are defined as contact windows
(another lithography process) in a freshly grown/deposited oxide layer. The oxide is a good
insulator, so it will electrically isolate the metal layer from the silicon in all other areas.
After the metal is deposited, it appears all over the chip and has to be removed from the
areas where it is not wanted to create the desired metal tracks. Again, a lithography process
is needed to enable selective etching of the metal layer, as shown in Fig. 16.3c. At this stage,
the diode is electrically functional.

16.1.4 Diffusion Profiles
Each of the diffusion profiles shown in Fig. 16.4 is achieved by controlling the time and
temperature of a two-step diffusion process. The principal equations that can be used
as models for these diffusion profiles are obtained as solutions of the so-called Fick
equation. This second-order partial differential equation is obtained by eliminating the
diffusion current from the diffusion-current equation [Eq. (4.3)] and the continuity equation
[Eq. (4.24)]:

∂ N(x, t)

∂ t
= D

∂2 N(x, t)

∂x2 (16.1)

If we solve Fick’s equation with appropriate boundary and initial conditions, the function
N(x, t) modeling the time-dependent distribution (profile) of the doping atoms in the
semiconductor can be obtained. The temperature dependence is through the diffusion
coefficient D—the Arrhenius equation [Eq. (4.21)] shows that D increases exponentially
with temperature.

Integrated-circuit diffusions are typically performed in two steps, the predeposition
diffusion and the drive-in diffusion. The first is a constant-source diffusion, which means
that a constant doping concentration N0 is maintained at the surface of the semiconductor
substrate. The second is a redistribution of the doping atoms in the semiconductor by
heating the substrate while not providing any additional doping atoms to the surface of
the substrate.

If the predeposition is carried out in an atmosphere sufficiently rich in doping atoms,
then the surface doping concentration N0 is at the solid-solubility limit (the maximum
concentration of doping atoms that the host semiconductor crystal can accommodate). The
solid-solubility limit depends on the temperature; however, in silicon it is approximately
equal to 4 × 1020 cm−3 for boron, 8 × 1020 cm−3 for phosphorus, 1.5 × 1021 cm−3 for
arsenic, and 4 × 1019 cm−3 for antimony. When one is solving Fick’s diffusion equation
for constant-source diffusion, the following initial and boundary conditions apply:

N(x, 0) = 0, N(0, t) = N0, N(∞, t) = 0 (16.2)

The solution of Eq. (16.1) that satisfies the boundary and initial conditions [Eq. (16.2)] is

N(x, t) = N0 erfc
x

2
√

Dt
(16.3)
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where erfc is the complementary error function defined by

erfc(z) = 2√
π

∫ ∞

z
e−α2

dα (16.4)

This function is plotted in Fig. 16.5, whereas the normalized doping profiles for three
different predeposition times/temperatures (more precisely Dt products) are plotted in
Fig. 16.6a. Note that the doping profiles depend on the time–diffusion coefficient product
Dt , where the diffusion coefficient depends exponentially on the temperature, as given by
Eq. (4.21). A typical predeposition temperature is 950◦C and a typical time is 30 min. The
relatively low temperatures and times result in shallow doping profiles, which serve as the
initial condition for the following drive-in diffusion.
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The drive-in is done in an atmosphere containing oxygen or nitrogen, but not dopants.
Because of that, the following so-called limited-source boundary conditions will apply:

∫ ∞

0
N(x, t) dx = Φ, N(∞, t) = 0 (16.5)

where Φ is called the dose of doping atoms that are incorporated into the semiconductor
during the predeposition. The dose expresses how many doping atoms per unit area are
in the semiconductor, regardless of their depth in the semiconductor, so its unit is 1/m2.
The concentration of the doping atoms, N(x, t), expressing their in-depth distribution in
the semiconductor is integrated along the x-axis to express the overall number of doping
atoms per unit area—that is, the dose Φ [Eq. (16.5)]. The dose does not change during the
drive-in diffusion [Φ �= Φ(t)], as there are no new doping atoms that are incorporated into
the semiconductor, but the already existing ones are being redistributed diffusing deeper
into the semiconductor. The solution of Eq. (16.1) that satisfies boundary conditions (16.5)
is given by

N(x, t) = Φ√
π Dt

e−x2/4Dt (16.6)

The doping profiles obtained after drive-in diffusion are illustrated in Fig. 16.6b for three
different time–diffusion-coefficient products.

If the predeposition profile given by Eq. (16.3) is integrated to obtain Φ,

Φ = N0

∫ ∞

0
erfc

x

2
√

Dt
dx (16.7)

and the obtained result is used in Eq. (16.6), the following equation is obtained as a model
for the two-step (predeposition and drive-in) diffusion process:

N(x) = 2N0

π

√
D1t1
D2t2︸ ︷︷ ︸

Ns

e−x2/4D2t2 = Nse−x2/4D2t2 (16.8)

In Eq. (16.8), D1 and t1 refer to the predeposition, D2 and t2 refer to the drive-in diffusion,
and Ns = N(0) obviously expresses the doping concentration at the surface after the
drive-in.

EXAMPLE 16.1 Constant-Source Diffusion

Constant-source boron diffusion is carried out at 1050◦C onto an N-type silicon wafer with
uniform background doping NB , where NB = 1016 cm−3. The surface concentration is
maintained at 4 × 1020 cm−3, which is the solid-solubility limit. A junction depth of 1 μm
is required. What should be the diffusion time?
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SOLUTION

Calculate first the diffusion coefficient at T = 1050◦C. Repeating the procedure described in
Example 4.2, we find that D = 5.1 × 10−14 cm2/s.

At the P–N junction, the boron concentration N(x) is equal to the substrate concentration
NB . Referring to Eq. (16.3) we obtain:

NB = N(x j ) = N0erfc(z), z = x j/
(
2
√

Dt
)

It is easy to find that erfc(z) = NB/N0 = 1016/4 × 1020 = 2.5 × 10−5. From Fig. 16.5, we can
find that erfc(z) = 2.5 × 10−5 for z = 3.0. Using z = x j/(2

√
Dt), the time required is obtained

as

t = x2
j /(4z2 D) = 5447 s = 1.51 h

EXAMPLE 16.2 Drive-in Diffusion

How will the junction depth from Example 16.1 change if a drive-in diffusion is performed after
the constant-source diffusion? Assume that the time and temperature of the drive-in diffusion are
the same as the time and the temperature of the constant-source diffusion. What is the surface
doping concentration after the drive-in diffusion?

SOLUTION

The doping profile after a drive-in, which follows a constant-source diffusion, is given by
Eq. (16.8). At the P–N junction, (x = x j ), the boron concentration N(x) is equal to the substrate
concentration NB (refer to Fig. 1.21):

NB = N(x j ) = Nse
−x2

j /(4D2t2)

From this equation we calculate x j as

x j =
√

4Dt ln2N0/(π NB ) = 1.1 × 10−4 cm = 1.1 μm

The surface concentration after the constant-source diffusion and the drive-in is also given
by Eq. (16.8):

Ns = 2N0/π = 2.55 × 1020 cm−3

During the drive-in, the junction depth is increased while the surface concentration is
reduced.
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EXAMPLE 16.3 Designing Two-Step Diffusion Process

The doping concentration of an N-type substrate is NB = 1016 cm−3. Determine the times and
temperatures of the predeposition and drive-in diffusions of boron that will achieve the following
parameters in the resulting P-type region: the surface concentration Ns = 2 ×1018 cm−3 and the
P–N junction depth x j = 2 μm. Assume that the surface concentration during the predeposition
is equal to the solid-solubility limit, N0 = 4 × 1020 cm−3. The activation energy and the
frequency factor for the boron diffusion are EA = 3.46 eV and D0 = 0.76 cm2/s, respectively.

SOLUTION

The doping profile after a two-step boron diffusion is given by Eq. (16.8). At the P–N junction,

NB = N(x j ) = Nse−x2
j /(4D2t2)

The product of a drive-in time t2 and diffusion coefficient D2 that is necessary to achieve the
desired x j and Ns can be calculated using the stated conditions:

D2t2 =
x2

j

4

1

ln(Ns/NB )
= 0.189 μm2 = 1.89 × 10−9 cm2

Theoretically, any combination of t2 and D2 that gives this calculated product is a correct
solution. However, the time t2 and the diffusion temperature T2, which determines the value
of D2 through Eq. (4.21), should have practically meaningful values. The times should be
neither too long nor too short, and the temperature should not be higher than 1200◦C. If we
assume the drive-in time of 1 hour—that is, t2 = 3600 s—the diffusion coefficient should be
D2 = 1.89 × 10−9/3600 = 5.25 × 10−13 cm2/s. Using Eq. (4.21), the drive-in temperature is
calculated as

T2 = EA

k

1

ln(D0/D2)
= 1433.5 K = 1160◦C

This is an acceptable temperature; therefore, t2 = 3600 s and T2 = 1160◦C can be used as a
practically acceptable set of values.

The predeposition time t1 and temperature T1 (i.e., diffusion coefficient D1) are determined
from Eq. (16.8):

D1t1 =
(

π Ns

2N0

)2

D2t2 = 1.17 × 10−13 cm2

If the predeposition temperature is set to T1 = 900◦C, then D1 = 1.05 × 10−15 cm2/s, and
t1 = 1.17 × 10−13/1.05 × 10−15 = 111 s. Therefore, T1 = 900◦C and t1 = 111 s is a possible
set of values for the predeposition temperature and time.
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16.2 MOSFET TECHNOLOGIES

There are essentially two categories of MOSFET-based IC technology: (1) NMOS
technology is based on the two types of N-channel MOSFET (the enhancement type and
the depletion type), and (2) CMOS technology is based on the complementary N-channel
and P-channel enhancement-type MOSFETs. Both NMOS and CMOS technologies utilize
electronic isolation by field oxide created by local oxidation of silicon (LOCOS), in
addition to the already introduced isolation by a reverse-biased P–N junction that is also
used in CMOS technology. Following an introduction to LOCOS, this section presents the
basic NMOS, the basic CMOS, and the silicon-on-insulator (SOI) CMOS technologies.

16.2.1 Local Oxidation of Silicon (LOCOS)
Silicon nitride (Si3N4) can be used to protect parts of the silicon surface against oxidation
because silicon nitride represents a very efficient barrier against the diffusion of oxygen
and water molecules. Figure 16.7 illustrates the sequence of process steps used to locally
oxidize a silicon surface—that is, to create thick oxide surrounding the active gate-
oxide area. The metal/polysilicon creating the gates of the MOS capacitors are usually
formed as tracks, so it is the windows in the thick oxide that define the area of the
MOS capacitors. The thick oxide surrounding the gate-oxide areas is called field oxide.
A metal/polysilicon track running over the field oxide would in principle create a parasitic
MOS capacitor; however, the thickness of the field oxide makes this capacitance much
smaller in comparison with the gate-oxide capacitance.

The process sequence known as LOCOS begins with deposition or growth of very thin
buffer oxide. Then, a silicon nitride layer is deposited and patterned to open windows in
the areas that are to be oxidized (Fig. 16.7a). After that, thermal oxidation is performed to
create the field oxide of desired thickness, as illustrated in Fig. 16.7b, which also shows
that approximately half the created oxide grows at the expense of the silicon, whereas the
other half builds up at the top of the original surface. This is because silicon atoms are
used to create the oxide (silicon is consumed), and oxygen atoms are incorporated into
the oxide film (oxide rises above the original silicon surface). The precise ratio between
the depth of the consumed silicon and the total oxide thickness is 0.46. This is a useful
property because a thick isolation field oxide can be created without the need to have large
oxide-to-silicon steps that are hard to reliably cover by thin metal films. In addition, some
lateral oxidation occurs, which smooths the step, making it easier to cover by the metal
film used for contacts and interconnections.

Once the field oxide has grown, the silicon nitride and the buffer oxide are removed.
In preparation for the thermal oxidation that will create the thin gate oxide, the surface
is thoroughly cleaned; Fig. 16.7c illustrates the structure just before the gate oxidation.
Immediately after the gate oxidation, polysilicon is deposited, and then it is patterned
to define the gate. To provide a contact to the semiconductor terminal of the MOS
capacitor, boron is implanted through the thin oxide to create the P+ region illustrated
in Fig. 16.7d. The final steps are contact window opening, metal deposition, and patterning
by appropriate photolithography processing to obtain the structure shown in Fig. 16.7e.



16.2 MOSFET Technologies 573

P-type substrate

P-type substrate

P-type substrate

P-type substrate

(a)

(b)

(c)

(d)

(e)

- Buffer-oxide deposition
- Si3N4 deposition
- Photolithography

- Thermal oxidation
 (field oxide growth)

- Si3N4 removal
- Surface cleaning

- Gate oxidation
- Polysilicon deposition
- Photolithography:
 polysilicon patterning
- P� ion implant

Si3N4

Si3N4
SiO2

SiO2

SiO2

Heavily doped
polysilicon

Metal

P-type substrate

Gate
Substrate contact

- Photolithography:
 contact-hole etching
- Metal deposition
- Photolithography:
 metal patterning

P�

P�

Figure 16.7 LOCOS process used to
create the field oxide (the thick oxide
surrounding the thin gate oxide) that
defines the active area of the MOS
capacitor.

The structure shown in Fig. 16.7e is just a MOS capacitor. To obtain a MOSFET,
the source and drain regions are added as illustrated in Fig. 16.8 for a typical N-channel
MOSFET in IC technology. A cross section along the channel width was shown previously
in Fig. 8.19. It can be seen that the thick field oxide terminates the channel, providing the
necessary electronic isolation on the common IC substrate.

16.2.2 NMOS Technology
Enhancement and depletion N-channel MOSFETs alone are sufficient to create both digital
and analog circuits. The technology that provides integration of the two types of N-channel
MOSFET is called NMOS technology. Figure 16.9 shows the circuit of an NMOS inverter,
which is the elementary and the representative circuit.

The input signal is applied to the gate of the enhancement MOSFET because it is this
MOSFET that acts as the voltage-controlled switch. A high voltage level (VH ) applied to
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the input sets the enhancement MOSFET in on mode, connecting the output to ground; VH

at the input corresponds to VL at the output. The drain of the enhancement-type MOSFET
has to be biased by a positive voltage. The simplest way of achieving this is through a
resistor. Of course, the resistance of the loading resistor has to be much larger than the
resistance of the MOSFET in on mode, so that the output voltage is close to zero. In
integrated-circuit technology, however, it is far more efficient to replace the loading resistor
by the channel resistance of a MOSFET (active load). The depletion MOSFET, connected
as in Fig. 16.9, quite efficiently plays the role of the loading element. The short-circuited
gate and source set its VGS voltage to zero; but because this is a depletion-type MOSFET
and the channel is formed at VGS = 0, it is the resistance of this channel that is utilized as
the loading element.

For the case of a low voltage level (VL ) at the input, the enhancement MOSFET acts
as a switch in off mode, disconnecting the output from the ground. The output is now
connected through the channel resistance of the depletion MOSFET to V+; VL at the input
corresponds to VH = V+ at the output. Therefore, the circuit inverts the input voltage level.



16.2 MOSFET Technologies 575

Neglecting leakage currents through the enhancement MOSFET in off mode, the
NMOS inverter does not conduct any current in the state of low input and high output
levels. This is because the output of the inverter is connected to a capacitive load (for
example, the input gates of subsequent NMOS circuits) that does not conduct any DC
current. Importantly, the NMOS inverter has to conduct current to maintain the other
possible state, which is the input at VH and the output at VL . In this case, the voltage
across the channel resistance of the depletion MOSFET is V+ − VL . This means that for a
channel resistance of Rch , the current flowing through the inverter is (V+ − VL)/Rch . The
importance of this fact is due to the power dissipation. The power dissipation may not be
of a real concern for integrated circuits with relatively small number of transistors, but it
limits the development of sophisticated digital functions that require integrated circuits of
very high complexity.

The cross section and composite layout of the NMOS inverter are shown in Fig. 16.10.
They show that the active region of the NMOS inverter is surrounded by the thick field
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Figure 16.10 (a) The composite layout and (b) the cross section of an NMOS inverter are shown along with (c) the circuit
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oxide and a P+ diffusion region, which electrically isolate the inverter from the rest of
the circuit. Imagine an N+ region of a neighboring device adjacent to the N+ drain of
the depletion MOSFET, along with a V+ metal line running over the space that separates
them. If the field oxide and the P+ region were not there, the two N+ regions and the
metal over the thin oxide between them would comprise a turned-on parasitic MOSFET,
causing current leakage between the two devices. The thick field oxide and the increased
substrate concentration underneath (P+ region) increase the threshold voltage of this
parasitic MOSFET over the value of the supply voltage V+, ensuring that it remains off.

Figure 16.10 also shows that the N+ drain of the enhancement MOSFET and
the N+ source of the depletion MOSFET are merged into a single N+ region. This
is done to minimize the area of the inverter. The circuit would not operate better if
separate N+ regions were made for the drain of enhancement and the source of depletion
MOSFETs, respectively, and then connected by a metal line from the top. Quite the op-
posite, this approach would introduce additional parasitic resistance and capacitance,
adversely affecting circuit performance. This principle of IC layer merging is employed
whenever possible to minimize the active IC area and maximize its performance.

In the spirit of the layer-merging principle, the gate of the depletion MOSFET is
extended to directly contact the N+ source/drain region. The polysilicon gate area is
further extended to serve as the output line of the inverter. In Fig. 16.10, both the input
and output lines are implemented by polysilicon stripes, whereas the V+ and ground rails
appear as metal lines. This illustrates that the polysilicon layer can be used as the second
interconnection level. When necessary, the N+ diffusion areas can be used as the third
interconnection level. The contact between the metal and the polysilicon levels can be
made in a way similar to the contacts between metal and N+ regions, shown in Fig. 16.10.

The technology sequence used to fabricate the NMOS inverter of Fig. 16.10 is
presented in Figs. 16.11a to 16.11i. At the beginning of the process sequence, the isolation
(field oxide and P+ region) are created to define the active area. The active area is
protected by silicon nitride deposited over a thin, thermally grown buffer oxide. The
silicon nitride layer and the buffer oxide are patterned by a photolithography process,
using a mask as shown in Fig. 16.11a. The opaque and transparent areas of the mask
correspond to photolithography with positive photoresist. Silicon wafers prepared in such
a way are exposed to boron implantation, which creates the P+-type doping outside the
active region. After this, thermal oxidation is applied to grow the thick field oxide. The
silicon nitride blocks the oxidizing species, protecting the active area; this is the LOCOS
process described in Section 16.2.1. Figure 16.11b shows that some lateral oxidation
occurs, leading to the so-called bird beak shape of the field oxide. This has beneficial
effects because it smooths the oxide step, which would otherwise be too sharp and high,
thereby leading to gaps in the metal layer deposited subsequently. After the field oxide
growth, the silicon nitride and the buffer oxide are removed (Fig. 16.11c).

After the active areas have been defined, the second photolithography process is
applied to provide selective implantation of phosphorus, creating the built-in channel of
the depletion MOSFET (Fig. 16.11d). In this case, the photoresist itself is used to protect
the channel area of the enhancement-type MOSFET. In the following steps, the photoresist
is removed and the surface thoroughly cleaned to prepare the wafers for gate-oxide growth.
Once the gate oxide has been grown, the third photolithography is used to etch a hole in the
gate oxide (Fig. 16.11e), where the subsequently deposited polysilicon layer should contact
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the silicon (this is the contact between the gate of depletion MOSFET, its source, and the
drain of the enhancement MOSFET). The deposited polysilicon is patterned by the fourth
photolithography process and associated polysilicon and gate-oxide etching (Fig. 16.11f).
The photolithography mask used for the polysilicon patterning defines the gate lengths of
the MOSFETs (the width of the polysilicon areas) and the width of N+ diffusion regions
(the separation between the polysilicon areas).

The alignment of the N+ source/drain regions to the MOSFET gate is very important.
Although no gap between the gate and the N+ source/drain regions is desirable, large gate-
to-N+ source/drain overlaps would create large parasitic gate-to-source/drain capacitances,
adversely affecting the high-speed performance of the device. If the N+ source/drain
regions were to be created by a separate mask, the alignment of this mask would create
significant problems and/or limitations. The use of polysilicon as a gate material, in-
stead of the initially used aluminum, enables a self-aligning technique to be employed.
Figure 16.11g shows that the N+ source/drain regions are obtained by diffusion from
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Figure 16.11 NMOS technology process.
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phosphorus-doped oxide, which is deposited onto the wafer. The polysilicon gates protect
the area underneath against phosphorus diffusion because the phosphorus diffuses into
the polysilicon, and the substrate areas not covered by the polysilicon (these are the
drain/source regions). Some lateral diffusion does occur, which means that some gate-to-
source/drain overlap is unavoidable. This self-aligning technique cannot be implemented
with aluminum instead of the polysilicon because aluminum deposited over oxide or silicon
should not be exposed to temperatures higher than 570◦C (this would lead to adverse
chemical reactions between the aluminum and the oxide/silicon) and the diffusion process
requires much higher temperatures. Aluminum has smaller resistivity than polysilicon, and
initially was considered a better choice for the gate material. However, the beneficial effects
of the described self-aliging technique are so important that they led to almost complete
replacement of the originally used aluminum by polysilicon as the gate material.

The phosphorus-doped oxide, deposited to provide the N+ source/drain diffusion, is
also used as the insulating layer between the polysilicon and the subsequently deposited
aluminum layer for device interconnection. However, before the aluminum is deposited,
contact holes are etched in the insulating oxide layer to provide the necessary contacts to
the MOSFET source and drain regions (Fig. 16.11h). After the aluminum deposition, the
sixth photolithography process is employed to pattern the aluminum layer, as shown in
Fig. 16.11i.

EXAMPLE 16.4 Layout Design of MOSFETs in NMOS Inverter

When the input of the active-load NMOS inverter (Fig. 16.9) is biased at VH = 5.0 V, the driving
MOSFET is in the linear region, whereas the loading MOSFET is in the saturation region.

(a) Using the simplest MOSFET equations (FB ≈ 0 in the SPICE LEVEL 3 model), derive
an equation for the ratio r = Wd/Ld

Wl/Ll
. If the threshold voltages of the driving and the

loading MOSFETs are VT d = 1.0 V and VT l = −1.0 V, respectively, determine r so
that the low-output-voltage level is VL = 0.2 V.

(b) If the minimum channel dimension is limited to 0.25 μm, specify the channel lengths
and channel widths of the two MOSFETs so that the input capacitance of the inverter is
minimized.

SOLUTION

(a) The simplest equations for MOSFETs in the linear and the saturation regions are given
by Eqs. (8.3) and (8.26), respectively. Therefore, the currents of the driving and the
loading MOSFETs can be expressed as

ID−d = βd(VGS − VT d)VDS

ID−l = βl

2
(VGS−l︸ ︷︷ ︸

0

−VTl)
2

where

βd = KP
Wd

Ld
and βl = KP

Wl

Ll
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For VGS = VH , the driving MOSFET is on, taking the constant current of the
saturated loading MOSFET to ground. From the condition that the two currents are
equal, ID−d = ID−l , we can find the requested equation for the r ratio:

KP
Wd

Ld
(VH − VT d)VL = KP

2

Wl

Ll
V 2

T l

r = Wd/Ld

Wl/Ll
= V 2

T l

2(VH − VT d)VL

For the numerical values provided in the text of the example, we obtain

r = (−1)2

2 × (5 − 1) × 0.2
= 0.625

(b) To minimize the input capacitance of the inverter, the area of the driving MOSFET
(Wd Ld ) should be as small as possible. Given that Wd/Ld < Wl/Ll , we select Wd =
Ld = Ll = 0.25 μm and obtain Wl = 0.25/r = 0.25/0.625 = 0.4 μm.

16.2.3 Basic CMOS Technology
The issue of high static power dissipation, identified in Section 16.2.2 for the NMOS
technology, can be removed if the loading depletion MOSFET is replaced by a comple-
mentary enhancement-type P-channel MOSFET. This is the complementary MOS (CMOS)
technology. The circuit of a CMOS inverter was shown in Fig. 8.6a and discussed in
Section 8.1.2.

The composite layout and the cross section of the CMOS inverter implemented in
basic N-well technology are shown in Fig. 16.12. The technology is referred to as N-well
technology because the N-type body needed for the PMOS transistor is implemented as
the N-well region diffused into the P-type substrate. The NMOS transistors are created
in the P-type substrate itself. Given that the body of the NMOS transistors (the P-type
substrate) is grounded and the body of the PMOS transistors (the N-well) is connected to
the most-positive potential V+, the N-well–P-substrate junction is reverse-biased. This is
the electrical isolation by a reverse-biased P–N junction, utilized in CMOS technology. In
addition, to ensure that no surface leakage occurs, the devices are separated by thick field
oxide (the LOCOS isolation). The N+-type layer, used to create the source and the drain of
the NMOS, is also used to provide contact to the N-well region, which is directly connected
to the source of the PMOS. Although no direct connection between the P-type substrate
and the source of the NMOS is shown in Fig. 16.12b, the P-type substrate is connected to
ground, typically by a rail enclosing the whole IC area.

There is also P-well CMOS technology, in which PMOS transistors are placed in an
N-type silicon substrate, and P wells are created to place NMOS transistors. The P-well
technology was developed before the N-well technology because it was easier to achieve
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Figure 16.12 (a) The composite layout and (b) the cross section of a basic N-well CMOS inverter are shown along with
(c) the circuit diagram.

the desired threshold voltages of NMOS and PMOS transistors. When the use of ion
implantation made it possible to adjust the threshold voltages, N-well technology became
more popular because the use of the P-type substrate made it compatible with NMOS and
bipolar technology (described in Section 16.3).

The basic technology sequence that can be used to fabricate a CMOS inverter is
presented in Fig. 16.13a to 16.13i. At the beginning of the process, N wells have been
created by ion implantation of phosphorus through an appropriately patterned SiO2
masking layer and subsequent annealing (drive-in). Figure 16.13a shows that the masking
oxide is removed once the N wells have been created. In the next stage, thick field oxide is
created to surround the active areas. As Fig. 16.13b and 16.13c illustrates, this is achieved
by the same LOCOS process used in the NMOS technology.
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Figure 16.13 N-well CMOS technology process.

The surface donor concentration ND in the N well is higher than the acceptor
concentration NA in the P-type substrate. This fact as well as the work-function differences
cause a lower NMOS threshold voltage and a higher absolute value of the PMOS threshold
voltage than the desirable values. The performance of CMOS circuits is maximized
with a slight positive NMOS threshold voltage and a negative PMOS threshold voltage
(enhancement-type MOSFETs) with the absolute value equal to its NMOS counterpart. To
adjust the threshold voltages, boron is implanted into the channel areas of both the NMOS
and PMOS transistors. This, the so-called threshold-voltage-adjustment implantation,
reduces the effective N-type doping level at the surface of the N well, decreasing the
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absolute value of PMOS threshold voltage. Also, it increases the P-type doping level at
the surface of the P-type substrate, increasing the NMOS threshold voltage. In this way,
the NMOS and PMOS threshold voltages can be matched by an appropriately determined
dose of the threshold-voltage-adjustment implantation.

The gate oxide can be grown either before or after threshold-voltage-adjustment
implantation (Fig. 16.13c). Following gate oxidation, doped polysilicon is deposited and
patterned to define the MOSFET gates (Fig. 16.13d).

The CMOS technology also makes use of the self-aligning technique, to minimize
the overlap between the gate and drain/source areas. The difference here, compared to
the NMOS technology, is that the doping is achieved by ion implantation of phosphorus
(Fig. 16.13e) and boron (Fig. 16.13f) to obtain the N+ and P+ regions, respectively. An
appropriately patterned photoresist is used to mask the areas that are not to be implanted.
As Fig. 16.13g shows, the ion implants are followed by oxide deposition (needed to isolate
the polysilicon layer from the subsequent metal layer) and annealing, which is needed to
activate the implanted doping ions.

The process finishes in the same way as the NMOS technology, by contact hole etching
(Fig. 16.13h) and aluminum deposition and patterning (Fig. 16.13i).

EXAMPLE 16.5 Design of Threshold-Voltage-Adjustment Implant

The technological parameters of N-well CMOS technology are given in Table 16.1, together with
the values of the relevant physical parameters.

(a) Determine the threshold voltages of the NMOS and PMOS transistors for Φimplant = 0.
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(a) Provided the threshold-voltage-adjustment implant is shallow, the threshold-voltage
shift |�VT | due to the implant dose qΦimplant can be expressed as

|�VT | = qΦimplant

Cox

TABLE 16.1 Technological Parameters of N-Well CMOS Technology

Parameter Symbol Value

Substrate doping concentration NA 1015 cm−3

N-well surface concentration ND 5 × 1016 cm−3

Gate-oxide thickness tox 15 nm
Dose of threshold-voltage- Φimplant ?

adjustment implantation
Oxide charge density Noc 1010 cm−2

Type of gate N+-polysilicon
Intrinsic-carrier concentration ni 1.02 × 1010 cm−3

Energy gap Eg 1.12 eV
Thermal voltage at room temperature Vt = kT/q 0.026 V
Oxide permittivity εox 3.45 × 10−11 F/m
Silicon permittivity εs 1.04 × 10−10 F/m

Design the dose of threshold-voltage-adjustment implant so that the NMOS and PMOS
threshold voltages are matched (VT−NMOS = |VT −PMOS|).

SOLUTION

(a) The threshold voltage of an NMOS transistor is given by Eq. (8.9), whereas the thresh-
old voltage of a PMOS transistor is given by Eq. (8.11). The threshold voltages are
calculated using the procedure given in Example 8.1:

• NMOS:

φF = Vt ln
NA

ni
= 0.30 V

Cox = εox/tox = 2.3 × 10−3 F/m2

φms = φm −
(

χ + Eg

2q
+ φF

)
= −Eg/2q − φF = −0.86 V

VFB = φms − q Noc

Cox
= −0.87 V

γ =
√

2εsq NA/Cox = 0.079 V1/2

VT −NMOS = VFB + 2φF + γ
√

2φF = −0.21 V
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• PMOS:

φF = −Vt ln
ND

ni
= −0.40 V

Cox = εox/tox = 2.3 × 10−3 F/m2

φms = φm −
(

χ + Eg

2q
+ φF

)
= −Eg/2q − φF = −0.16 V

VFB = φms − q Noc

Cox
= −0.17 V

γ =
√

2εsq ND/Cox = 0.561 V1/2

VT −PMOS = VFB − 2|φF | − γ
√

2|φF | = −1.47 V

(b) Without the ion-implant adjustment, the NMOS threshold voltage is negative, making it
effectively a depletion-type MOSFET. A boron implant will increase this threshold volt-
age (due to an increase in the surface P-type concentration), and it will simultaneously
reduce the absolute value of the PMOS threshold voltage (due to effective reduction
in the surface doping level of the N well). Therefore the threshold voltages after the
threshold-voltage-adjustment implantation can be expressed as

VT−NMOS(Φimplant) = VT −NMOS(0) + qΦimplant/Cox

|VT−PMOS(Φimplant)| = |VT −NMOS(0)| − qΦimplant/Cox

When we choose different values for the implant dose Φimplant, the results in Table
16.2 are obtained. Table 16.2 illustrates the effect of the adjustment-implant dose on
the NMOS and PMOS threshold voltages. The implant dose that matches the threshold
voltage can be found directly by (1) observing that each of the threshold-voltages should
be shifted by �VT = |VT −PMOS(Φimplant)|−VT−NMOS(Φimplant)/2 = (1.47+0.21)/2 =
0.84 V and (2) finding the dose that corresponds to this threshold-voltage shift. As Table
16.2 shows, this dose is Φimplant = 1.21 × 1012 cm−2.

TABLE 16.2 Iterative Solutions for Example 16.5

Φimplant �VT VT−NMOS(Φimplant) |VT−PMOS(Φimplant)|
(cm−2) (V) (V) (V)

0 0.00 −0.21 1.47
1.0 × 1011 0.07 −0.14 1.40
3.0 × 1011 0.21 0.00 1.26
1.00 × 1012 0.70 0.49 0.77
1.21 × 1012 0.84 0.63 0.63
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16.2.4 Silicon-on-Insulator (SOI) Technology
A silicon-on-insulator (SOI) structure is very suitable for many applications. A number of
improvements can be achieved with SOI CMOS technology. The SOI structure, illustrated
in Fig. 16.14a, is typically obtained by one of the following two techniques: (1) separation
of silicon by implanted oxygen (SIMOX) and (2) bonded wafers. In the SIMOX process,
oxygen is implanted as deeply as possible into the silicon wafer and is then annealed at
very high temperature to create the buried oxide (SiO2) layer. The thickness of the buried
oxide obtained by SIMOX is typically around 400 nm, whereas the thickness of the top
monocrystalline silicon is around 200 nm. Much thicker buried oxide and more flexible
thicknesses of the top silicon layer can be achieved by the bonded wafer process. In this
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Figure 16.14 Silicon-on-insulator (SOI) CMOS technology.
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case, two silicon wafers with pregrown oxides at their surfaces are placed face to face and
exposed to further thermal oxidation that bonds them to each other. After this, one of the
wafers is thinned down to the desired top-silicon thickness.

To create a CMOS inverter using an SOI substrate, active areas are defined by
depositing and patterning silicon nitride (Fig. 16.14b), similar to the basic CMOS
technology process. The silicon in the field region (outside the active regions) is etched
to approximately half of the original thickness and then exposed to thermal oxidation
(LOCOS). As the field oxide grows, it consumes the remaining top silicon in the field
region, joining with the buried oxide (Fig. 16.14c). In this way, islands of silicon, isolated
from each other by oxide, are created. The remaining processing is very similar to the basic
CMOS technology process: polysilicon is deposited and patterned (Fig. 16.14c), P+ and
N+ areas implanted to create the sources and the drains of the P-channel and N-channel
MOSFETs, and isolation oxide and top metal are deposited and patterned to create the final
structure (Fig. 16.14d).

The main advantages of SOI CMOS technology are as follows:

1. The top silicon layer can be thinned down to tens of nanometers. This reduces the
punch-through problem, which helps in the design of nanoscale CMOS devices
(refer to Section 8.4.3).

2. The thickness of the oxide in the field region is significantly increased, which
significantly reduces the parasitic capacitances created between the interconnecting
metal lines and the silicon substrate. Reduced parasitic capacitances result in
improved switching speed.

3. N-channel and P-channel MOSFETs are isolated by a dielectric (as distinct from
the isolation by a reverse-biased P–N junction). This reduces the leakage current
between the V+ and the ground rails. It also removes the parasitic PNPN thyristor
structure existing in ordinary CMOS ICs. In an N-well CMOS, for example, the
parasitic thyristor structure is created by the P+-source–N-well–P-substrate–N+-
source layers. This thyristor structure is normally off; however, if turned on under
certain unpredicted conditions, it creates a short circuit between the V+ and ground
rails, permanently damaging the IC. This effect, known as latch-up, is one of the
biggest reliability problems in standard CMOS ICs. The SOI CMOS technology
eliminates the N-well–P-substrate junction altogether, eliminating the parasitic
thyristor structure and therefore the latch-up problem.

16.3 BIPOLAR IC TECHNOLOGIES

16.3.1 IC Structure of NPN BJT
The doping layers (basically, diffusion layers) of bipolar integrated circuits are designed to
optimize the characteristics of the NPN BJT. All other circuit components, including PNP
BJTs and resistors, are made out of the diffusion layers designed for the NPN BJT.

Figure 16.15 illustrates the IC structure of an NPN BJT. It is immediately obvious that
the active part of the device (N+PN layers highlighted by the zoom-in rectangle) occupies
a small portion of the total cross-sectional area. A large part of the cross-sectional area
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Figure 16.15 Integrated-circuit structure of an NPN BJT.

is taken to satisfy the following two requirements: (1) electrical isolation from the other
components of the IC and (2) enabling surface contacts to the three device terminals: base,
emitter, and collector.

Electrical isolation is provided by the reverse-biased P–N junction, indicated by the
dashed line in Fig. 16.15. To create a P–N junction that encloses the device, a P-type
substrate (the fourth layer in addition to the three device layers) is needed. Having the
P-type substrate at the bottom, a P+ ring is diffused around the device to cut the bottom
N-type layer into so-called N-epi islands. The isolation P+ ring takes a large amount of
area, not only because it encircles the device but also due to the lateral diffusion that
is about 80% of the vertical diffusion, and the vertical diffusion has to be sufficient to
penetrate through the whole depth of the N-epi layer. To activate the P–N junction isolation,
the P+ isolation region has to be connected to the lowest potential in the circuit (V−); this
ensures that the isolation P–N junctions are reverse-biased.

To provide surface contacts to the device, the P-type layer is extended beyond the N+
area to contact the base, and the N-epi layer is even wider to provide room for the collector
contact. As the aluminum and low-doped N-type silicon make rectifying Schottky contact
rather than ohmic contact, an N+ region is created at the collector contact. Note that this
N+ region is created by the same diffusion process used for the N+ emitter layer.

The eye-catching N+ buried layer may not extend the lateral dimensions of the device,
but it certainly makes the technology process more complex. However, if the buried layer
had not been introduced, the current collected by the active part of the collector (the N-epi
region under the N+ emitter) would have had to face the resistance of the relatively long
and low-doped N-epi layer before it reached the collector contact. The N+ buried layer
provides a low-resistive section between the active part of the collector and the collector
contact, significantly reducing the collector parasitic resistance. To further reduce this
resistance, some bipolar technology processes introduce an additional diffusion process
that provides a deep N+ region connecting the collector contact and the N+ buried layer.
The following are disadvantages of this so-called deep collector diffusion: (1) increased
complexity of the technology process and (2) increased lateral dimensions, especially due
to the significant lateral diffusion of this deep layer.
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16.3.2 Standard Bipolar Technology Process
In this section, the process sequence used to fabricate the standard NPN structure of
Fig. 16.15 is described. Practically, this is the description of standard bipolar technology
process, given that all other circuit components (resistors, capacitors, diodes, PNP BJTs)
are implemented with the layers existing in the standard NPN structure.

The processing sequence begins with (a) thermal oxidation of P-type silicon substrate
(wafers) and (b) subsequent oxide patterning by the first photolithography process to create
windows for a high-concentration N-type diffusion (N+). The created N+ diffusion layer
will become the N+ buried layer after the epitaxial deposition of a low-doped N-type
silicon layer (Fig. 16.16b).1 The epitaxial growth of the low-doped N-type silicon is
necessary not only to create the buried layer but also to enable the creation of the four-
layer structure: P substrate–N collector–P base–N+ emitter. If these four layers were to be
created by diffusing one layer into another three times (N collector into P substrate, P base
into N collector, and N+ emitter into the P base), a hardly achievable and inconveniently
low concentration of the initial P-type substrate would be necessary. With the epitaxial
process, the concentration of the N-epitaxial (N-epi) layer is independent of the doping
level of the underlying P-type substrate and can be set at an appropriately low level.

After the epitaxial process, P+ diffusion is employed to define the electrically isolated
N-epi islands that carry the individual circuit components. The photolithography mask
used for this process, shown in Fig. 16.16c for the case of positive photoresist, illustrates
the top view of an N-epi island surrounded by the P+ isolation diffusion. Vertically, the
N-epi islands are still not disconnected at this stage, because the P+ diffusion still does
not reach the underlying P-type substrate as in the final structure shown previously in
Fig. 16.15. The reason for doing this diffusion “part way” at this stage is that more high-
temperature (diffusion) processes follow, which will cause simultaneous diffusion of the
doping atoms in the P+ isolation areas. It is important to limit the overall P+ diffusion
to the level needed to reach the underlying P-type substrate because any excessive lateral
diffusion would mean wasting a significant surface area by the wider P+ isolation areas,
which dominate the surface area of the IC even without any waste.

The definition of the N-epi islands by the P+ isolation diffusion is followed by the
P-type and N+-type diffusions needed for the P-type base and N+-type emitter. Of course,
the diffusion areas are defined by the associated photolithography processes, labeled as
photolithography III and photolithography IV in Fig. 16.16d and 16.16e, respectively. Note
that photolithography IV opens two windows for the N diffusion: one for the emitter of the
NPN BJT and the other for the collector contact.

At this stage, the NPN BJT is created in the silicon, and what remains is the pho-
tolithography V to etch the contact holes through the insulating oxide layer (Fig. 16.16f),
then to deposit the aluminum layer, and to pattern the metalization by the sixth photolithog-
raphy process (Fig. 16.16g).

1The deposition of a monocrystalline layer on monocrystalline substrate is called epitaxial growth,
and the deposited layer is called the epitaxial layer, or epi layer for short.
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Figure 16.16 Standard bipolar technology.
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Figure 16.16 (Continued)
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Figure 16.16 (Continued)

16.3.3 Implementation of PNP BJTs, Resistors, Capacitors, and
Diodes

As already mentioned, the semiconductor layers of the bipolar ICs are designed to
maximize the performance of the main component, the NPN BJT. These layers are labeled
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TABLE 16.3 The Semiconductor Layers of Standard Bipolar ICs

Layer Number Layer Name Typical Characteristics

1 P-type substrate/P+
isolation diffusion

2 N-epi 1015 cm−3, 10 μm
3 P-base diffusion 200 �/�, 2–4 μm
4 N+-emitter diffusion 5 �/�, 1–2 μm

according to the function they perform in the NPN BJT (Table 16.3). Theoretically, it is
possible to introduce additional layers to optimize or improve the characteristics of the
other circuit components; however, this would mean an increase in the process complexity
that was practically unjustifiable. Consequently, all other circuit components are designed
from the four existing layers, listed in Table 16.3. This section describes the ways these
components are implemented in the standard bipolar ICs.

Substrate PNP BJT

It is possible to make a PNP BJT using both existing P-type layers listed in Table 16.3
(the P-type substrate/P+ isolation diffusion and the P-type base layers) with the N-epi
layer as the base. This configuration of the PNP BJT, called substrate PNP, is illustrated in
Fig. 16.17.

Electrically, the P-type substrate/P+ isolation is a single region, connected to the
most negative potential in the circuit (V−) to ensure the isolation of the N-epi islands.
Because of that, the collector of a substrate PNP cannot be connected to an arbitrary point
in the circuit—it is automatically connected to V−. This severely limits the application
of the substrate PNP to the particular case where the circuit needs a PNP BJT with the
collector connected to V−. Because the substrate PNP provides better characteristics than
any other PNP in ICs, it should be used as the first option whenever the collector biasing
is appropriate.

Collector/substrate (V�)
Emitter

P-type substrate

N-epi

P

P�

Base Metal

N�

P�

SiO2

Figure 16.17 Substrate PNP BJT: the collector is connected to the most negative potential in the
circuit.
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N�

SiO2

CollectorCollectorSubstrate (V�) Emitter MetalBase

Figure 16.18 Lateral PNP BJT.

Lateral PNP BJT

Obviously, the P-type substrate/P+ isolation diffusion layer cannot be used if the applica-
tion limitation regarding the collector biasing is to be removed. The only remaining P-type
layer is the P-type base diffusion; hence this layer has to be used for both the emitter and
the collector. This is possible by the lateral structure illustrated in Fig. 16.18.

Because the collector of this BJT collects only a small part of laterally emitted holes,
the transport factor and consequently the current gains α and β are very small. To minimize
the waste of emitted holes, the collector P-type region normally surrounds the emitter
P-type region (closed geometry). This is why two P-type collector regions appear in the
cross section of Fig. 16.18.

Resistors

Unlike the CMOS ICs, which use only complementary pairs of MOSFETs (an example is
the inverter of Fig. 8.6), bipolar ICs generally use resistors and capacitors, and frequently
diodes as well. The general structure of an IC resistor is shown in Fig. 3.3. The resistive
body is made of one of the available layers (N-epi, base diffusion, or emitter diffusion), and
it is isolated from the other resistors and the rest of the IC by a reverse-biased P–N junction.
Figure 16.19 illustrates the case of a base-diffusion resistor. The body of the resistor is the
P-type base-diffusion layer, which is surrounded by the N-epi layer connected to the most
positive potential in the circuit (V+) to ensure that the resistor current is confined within

Substrate (V�)

N-epi

P

P-type substrate

P�P�

Isolation V�

N�

A B

Figure 16.19 The cross section of base-diffusion resistor.
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N-epi

P-type substrate

P�P�

Control VSubstrate (V�) Isolation V�A B

P N�

Figure 16.20 Base-diffusion pinch resistor. The emitter region reduces the electrically active
cross-sectional area of the resistor.

the P-type region. Connecting the surrounding N-epi layer to V+ also enables us to place
many base-diffusion resistors into a single N-epi island, which is a much better solution
than using a separate N-epi for every single resistor. This is an example of layer merging.
The resistance of the resistor is determined by the surface dimensions L and W and by the
sheet resistance of the layer RS , as explained in Section 3.2.1.

Resistors can analogously be created using the N+ diffusion layer and the N-epi,
noting that an N-epi island can accommodate only a single N-epi resistor. The N+ layer
offers the smallest sheet resistance and is therefore the most suitable for small-value
resistors.

Large-value resistors are hard to implement in bipolar ICs. The length of a 100-k�

base-diffusion resistor can exceed many times the length of the whole IC chip. A solution
for large-value resistors is to use a “snake” geometry. Nonetheless, a couple of resistors
of this type may occupy a significant part the IC area. This constraint can be relaxed to a
certain extent by using “pinch” resistors.

Figure 16.20 illustrates the cross section of a base-diffusion pinch resistor. The idea is
not to mask the P-type resistor body from the emitter N+-diffusion but to use the emitter-
diffusion layer to reduce the electrically active cross-sectional area of the resistor. If an
appropriate voltage is applied to the N+ emitter layer, which means more positive than
the terminal voltages VA and VB , the N+-emitter–P-base junction is reverse-biased and the
resistor current is forced to flow through the reduced cross-sectional area of the remaining
P-type body. In addition, the resistance can be changed to some extent by the voltage
applied to the N+ layer because a larger reverse-bias voltage will produce a wider depletion
layer, reducing the effective cross section of the resistor.

Pinch resistors can also be created with the N-epi as the resistor body, and the P-type
base diffusion layer can be used to reduce the resistor cross section.

Capacitors and Diodes

P–N junctions are used for the IC capacitors and diodes. There are three P–N junctions in
the four-layer structure of the standard NPN BJT: P-substrate–N-epi, N-epi–P base, and
P base–N+ emitter. The application of the P-substrate–N-epi junction is limited by the
fact that the P substrate is connected to the most negative potential (V−). The P-base–N+-
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emitter junction has low breakdown voltage, about 6–7 V, because of the heavy doping in
the emitter region. This fact makes it useful as a reference diode. Obviously, there is no
choice of reference diodes in the standard bipolar technology, and the reference voltages
have to be obtained from reverse-biased base–emitter junctions (6–7 V) and forward-biased
P–N junctions (≈ 0.7 V). When a diode with a breakdown voltage larger than 6–7 V is
needed, the base–collector P–N junction has to be used.

EXAMPLE 16.6 PNP BJT in Standard IC Technology

Draw the cross section of the class B output stage amplifier of Fig. 16.21, implemented in the
standard bipolar IC technology.

SOLUTION

The TNPN transistor is a standard NPN BJT, the cross section of which is shown in Fig. 16.15. The
transistor TPNP is a PNP BJT, and there are two possible implementations in the standard bipolar
technology: the substrate PNP (Fig. 16.17) and the lateral PNP (Fig. 16.18). The characteristics of
the substrate PNP are superior; however, its collector has to be connected to the lowest potential
in the circuit (V−). This is the case in the circuit of Fig. 16.21, so the choice is the substrate PNP.
The cross section of the whole circuit is given in Fig. 16.22.

vOUTvIN

TNPN

TPNP

V �

V �

Figure 16.21 The electrical diagram of a class B output stage
amplifier.

P� P� P�

N-epi
N-epi

vOUT vOUTvIN

TNPN TPNP

V� V�

Figure 16.22 The cross section of a class B output stage amplifier.
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16.3.4 Layer Merging
Miniaturization of integrated circuits, within the technology limits, generally improves the
IC performance:

• Parasitic components, such as parasitic resistances and capacitances, are reduced
as the length of the conductive lines and the area of the P–N junctions is reduced.
This is helpful in terms of different types of limitations; in particular, it improves
the circuit-response time due to reduced RC time constants.

• Smaller devices mean a smaller active area of the integrated circuit and therefore an
improvement in the manufacturing yield. To understand this effect, think of a defect
appearing randomly in the silicon crystal; the chance of this defect appearing in the
P–N junction region and causing leakage current is higher if the P–N junction area
is larger.

• Smaller devices mean that circuits with a larger number of devices can be integrated
while avoiding the zero-yield situation, if not even maintaining the yield at the same
level.

Miniaturization has proved to be a powerful tool for improving the performance and
applicability of electronic systems. Layer merging is a way of reducing the integrated-
circuit size by eliminating nonfunctional structures from the IC chip.

The circuit of Fig. 16.23 helps to explain the layer-merging principle. Let us
concentrate on the transistors T1 and T3. These are standard NPN BJTs; by replicating
the cross section of Fig. 16.15 twice, we obtain the cross section of these two transistors,
as in Fig. 16.24a. What happens here is that the central P+ diffusion region, which takes

vOUT

vIN

vR

T1

R1

T2

R2 R3

T3

V �

V �

Figure 16.23 A circuit suitable for an illustration of the layer-merging principle (the circuit performs
the function of a level shifter).
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N-epi

T1

V�V� V�

T3

vIN vOUT 

P� P�

(a)

(b)

N-epi

T1 T3

P� P� P�N-epi

Electrical short circuit
(wasted space)

Figure 16.24 Cross section of T1 and T3

from Fig. 16.23. (a) Straightforward repli-
cation of the NPN BJT cross section (no
layer merging) leads to the ineffective region
marked by the shaded rectangle. (b) After
the layer merging, the two transistors are
placed in a single N-epi island.

a lot of space to isolate the two transistors, is electrically short-circuited by the metal line
running over the top of the isolation region. There is no functional reason for isolating
the two N-epi islands if they have to be short-circuited because the collectors of the two
transistors are short-circuited. It may seem that a straightforward layout design of the IC,
an easier design automation, as well as clearer IC layout and cross section presentations
might be valid arguments against layer merging; but they do not stand against the benefits
of IC miniaturization, which is obviously helped by merging the two N-epi islands
into one.

EXAMPLE 16.7 IC Layer Merging

Figure 16.25 shows the electrical diagram of a clocked set–reset flip-flop realized in the standard
bipolar IC technology, with the resistors being implemented as base diffusion resistors.

(a) Draw the cross section of transistor T1.
(b) Draw the cross section of transistors T2 and T3.
(c) Group the devices into N-epi islands.

SOLUTION

(a) We can think of transistor T1 as two transistors with short-circuited collector and base
terminals. Although this is the electrical equivalent of T1, the layer-merging principle
dictates merging the epi layers first (to short-circuit the collectors) and then merging
the P-type base regions (to short-circuit the bases). What is left are two N+ emitter
regions appearing in a single P base and a single N-epi, as illustrated in Fig. 16.26.
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(b) The situation with transistors T2 and T3 is analogous to transistors T1 and T3 in the circuit
of Fig. 16.23. The fact that, in this case, the emitters are short-circuited is irrelevant from
the layer-merging point of view. The bases of T2 and T3 are separate, the P-type base
regions cannot be merged, and therefore the two emitters have to appear in two different
P-type regions, regardless of the fact that they will have to be electrically short-circuited.
Therefore, the cross section is analogous to the one given in Fig. 16.24b.

R1 R2 R3

T4

Q
–

Q

T5

T6 T7 T8

R4 R5 R6

V�

T2T1 T3

S

C

R

Figure 16.25 The electrical diagram of a clocked set–reset flip-flop.

N-epi

Substrate (V�) Emitter 1 Emitter 2 Base Collector

P� P�

Figure 16.26 Cross-section of double-emitter transistor.

(c) All the resistors can share a single N-epi, which is connected to V+ to ensure that
the P-type region of every single resistor creates a reverse-biased P–N junction with
the common N-epi, isolating them electrically from each other. Therefore, the circuit
elements can be grouped as follows: N-epi 1, R1, . . . , R6; N-epi 2, T1; N-epi 3, T2 and
T3; N-epi 4, T4; N-epi 5, T5; N-epi 6, T6 and T7; and N-epi 7, T8.
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EXAMPLE 16.8 Merging of PNP BJTs

Figure 16.27 shows the electrical diagram of a differential amplifier. Assuming that the resistors
are realized as base-diffusion resistors, group the circuit elements into N-epi islands.

vIN-d 

vOUT 

REE

RE

T1

T3

T4

V�

V�

T2

RE

Figure 16.27 The electrical diagram of a differential
amplifier.

SOLUTION

This circuit contains PNP BJTs (T3 and T4) with separate collectors but a common base. As the
N-epi layer plays the role of the base in the case of PNP BJT, the two PNP BJTs (T3 and T4)
can be placed into a single N-epi that will provide the common base. It is a general statement to
say that the merging consideration should start with the N-epi layer but it is not a general rule to
check first if there are BJTs with short-circuited collectors. Furthermore, the bases of T3 and T4
are connected to the collector of T1, which means T1 can be placed into the same N-epi island.

Further consideration may be given to the fact that the N-epi containing T1, T3, and T4 is at
a higher potential than any of the resistor terminals. This would suggest that the resistors can be
placed into the N-epi of T3 and T4. Although this appears as the optimum solution for the circuit
of Fig. 16.27 considered in isolation, this may not be the case when a more complex circuit is
considered in which the differential amplifier of Fig. 16.27 is only a small part.

Finally, T2 needs a separate N-epi island.

16.3.5 BiCMOS Technology
The comparison between the BJT and the MOSFET (Section 9.1.6) shows that no device
offers the ultimate advantage. BJTs are especially good as output buffers, needed to provide
the necessary output power. It is possible to merge the CMOS and standard bipolar IC
technologies to have the advantages of both CMOS and bipolar circuits on the same
chip. Although this inevitably leads to a more complex, and therefore more expensive,
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Figure 16.28 The cross section of a CMOS inverter and a standard NPN BJT illustrating a BiCMOS technology.

technology, the benefits gained sometimes justify the cost. The technology that merges
bipolar and CMOS IC technologies is referred to as BiCMOS technology.

Figure 16.28 shows the cross section of a CMOS inverter and a standard NPN BJT
obtained by a BiCMOS technology process. As can be seen, a P+ silicon substrate is the
starting material and a P-epitaxial layer is deposited after the buried N+ diffusion. Using
the P-epi is an obvious difference from the standard bipolar technology that uses N-epi,
but it is needed to provide the substrate for the N-channel MOSFETs. The equivalent of
the N-epi islands, appearing in the standard bipolar technology, is achieved by deep N-type
diffusion, which creates the N-well regions, needed also for the P-channel MOSFETs. Note
that P+ diffusion, which is necessary for the source and drain of the P-channel MOSFETs,
is also used to improve the base contact of the NPN BJT.

Buried N+ diffusion and the deposition of a P-epi layer are additional process steps
in comparison to the standard N-well CMOS technology. Another addition is P-type
diffusion, needed for the base of the NPN BJT. This is a more complex process than that
required N-well CMOS technology; however, it provides all the devices available in the
standard bipolar technology, in addition to the CMOS devices.

SUMMARY

1. An IC process sequence consists of multiple doping steps (different dopant types,
surface/peak concentrations, and depths) into selected areas, multiple layer-deposition
steps, and selective etching to define the pattern/windows in the deposited layers.
Selective layer etching, which also provides the windows for selective doping, is
achieved by a set of process steps known as photolithography. It is photolithography
that enables the transfer of IC layout design onto semiconductor chips; thus, the
IC-layout designers create the patterns that appear on the photolithography masks.

2. It is possible to create integrated circuits with N-channel MOSFETs only, using
enhancement MOSFETs as voltage-controlled switches and depletion MOSFETs as
load resistances—NMOS technology. A current flows through the enhancement-type
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MOSFETs set in the on mode, resulting in considerable power dissipation and limiting
the circuit complexity that can be achieved with NMOS technology.

3. CMOS technology uses enhancement-type N-channel and P-channel MOSFETs that
operate as complementary switches. Given that one of the two complementary switches
is off for any logic state, the static power dissipation is reduced to leakage-current
levels, enabling very complex ICs that perform sophisticated functions. The older
P-well technology uses N-type substrate for the P-channel MOSFETs, placing the
N-channel MOSFETs in P wells. The newer CMOS technologies use a P substrate for
the N-channel MOSFETs and use N wells for the P-channel MOSFETs, an approach
that requires threshold-voltage adjustment. Threshold-voltage adjustment is typically
achieved by ion implantation of doping atoms, a process that provides excellent control
of the doping dose and profile.

4. Silicon-on-insulator (SOI) technology represents an advance that may prove as an
important “enabling” technology, in particular for high-speed and high-reliability
CMOS ICs.

5. The standard bipolar IC technology is designed to optimize the performance of the NPN
BJT as the main device. A low-doped N-epitaxial layer is deposited onto P substrate
and “cut” into N-epi islands by deep P+ diffusion stripes. The boundary N-epi–P
junction is reverse-biased to provide electrical isolation of the individual components,
placed into the N-epi islands. The N-epi islands become collectors, with P-type base
and N+ emitter regions of increasing doping concentrations sequentially diffused into
one another.

6. PNP BJTs can be implemented as either substrate (P-base–N-epi–P-substrate as
emitter–base–collector regions) or lateral (P-base–N-epi–P-base regions). The neutral
regions of base- and emitter-diffusion regions, as well as the N-epi, are used as resistors.
The base–collector, base–emitter, and collector–substrate P–N junctions can be used as
diodes and capacitors. The breakdown voltage of the E–B junction is low (≈ 7V) due
to the very heavy emitter doping; this junction can be used as a reference diode.

7. The physical merging of layers that belong to different devices but are short-circuited
electrically enables significant area reduction and the associated speed/performance and
yield improvements.

8. Integration of bipolar and CMOS technologies (BiCMOS) is an advanced technology
that makes available the superior characteristics of both MOSFETs and BJTs to the IC
designers.

PROBLEMS

16.1 The dimensions of a diffusion resistor on the
photolithography mask are Wm = 1 μm and Lm =
20 μm. The resistor is to be created by boron
diffusion to the junction depth of x j = 2 μm.
Assuming that the mask dimensions are perfectly
transferred onto the masking oxide and that the

lateral diffusion is equal to 80% of the vertical
diffusion, determine the actual dimensions of the
resistor.

16.2 Calculate the diffusion coefficient of phosphorus at
T = 1100◦C, knowing that D0 = 19.7 cm2/s and
EA = 3.75 eV.
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TABLE 16.4 Ion Implant Parameters

Energy (keV)

20 50 100 200

B Rp (μm) 0.0662 0.1608 0.2994 0.5297
�Rp (μm) 0.0283 0.0504 0.0710 0.0921

P Rp (μm) 0.0253 0.0607 0.1238 0.2539
�Rp (μm) 0.0119 0.0256 0.0456 0.0775

As Rp (μm) 0.0159 0.0322 0.0582 0.1114
�Rp (μm) 0.0059 0.0118 0.0207 0.0374

16.3 The concentration profile of drive-in diffusion is

N(x, t) = Φ√
π Dt

exp(−x2/4Dt)

What deposition dose (Φ) and drive-in time (t) are
needed to obtain a layer with surface concentration
Ns = 5 × 1016 cm−3 and junction depth x j =
2 μm? The doping element is phosphorus, which
is being diffused into a P-type wafer with uniform
concentration NA = 1015 cm−3. The drive-in
temperature is T = 1100◦C.

16.4 Calculate the sheet resistance of the layer designed
in Problem 16.3. Assume constant electron mo-
bility μn = 1250 cm2/V · s. It is known that∫∞

0 exp(−u2/2) du = √
π/2. A

16.5 What would the sheet resistance of the layer
designed in Problem 16.3 be if the actual drive-
in temperature were 1102◦C (2◦C higher than the
nominal 1100◦C)?

16.6 The temperature variation of a drive-in diffusion
furnace is ±0.1%. Determine the junction depth
tolerance if the nominal drive-in temperature is T =
1050◦C. Express the result as a percentage. The
doping element is

(a) phosphorus (EA = 3.75 eV)
(b) arsenic (EA = 3.90 eV) A

16.7 Ion-implantation profiles can be approximated by
the Gaussian distribution function:

N(x) = Φ√
2π�Rp

exp

[
−1

2

(
x − Rp

�Rp

)2
]

where Φ is the dose, Rp is the range, and �Rp is
the straggle of the implanted ions. The range and the
straggle depend on the energy of the implantation, as
shown in Table 16.4. Sketch the implant profiles of
boron for three different energies (20 keV, 50 keV,
and 100 keV) and dose of 5 × 1011 cm−2. Using
the medium energy, change the dose to 1011 cm−2

and 1012 cm−2 and sketch the implant profiles.
Comment on the influence of energy and dose on
the implant profiles.

16.8 The design dose of a threshold-voltage-adjustment
implant is Φimplant = 1012 cm−2. What is the mis-
match between the threshold voltages (VT−NMOS −
|VT −PMOS|) if the actual dose is 1% higher? The
doping element of the adjustment implant is boron,
and the gate-oxide thickness is 4 nm. Assume
that all the implanted atoms are in the depletion
layer. A

16.9 The threshold voltage of a CMOS inverter (VTI ) can
be defined as the input voltage corresponding to the
output voltage that is equal to half of the supply
voltage VDD = VH . VTI can be adjusted by the
layout design of the NMOS and PMOS transistors.
Ideally, the inverter threshold voltage should be
equal to VDD/2 (centered transfer characteristic). In
the case of CMOS inverter (Fig. 8.6), both NMOS
and PMOS are in saturation at VGS = VTI .

(a) Neglecting the channel pinch-off in the SPICE
LEVEL 3 model (L pinch = 0), derive an

equation for r = WPMOS/LPMOS
WNMOS/LNMOS

when both the
NMOS and the PMOS are in saturation.

(b) Determine r so that VTI = VDD/2 for the
case of the following technological parameters:
|2φF−NMOS | = 0.91 V, γNMOS = 0.65 V1/2,
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Figure 16.30 Example circuits.

μeff −NMOS = 380 cm2/Vs. μeff −PMOS =
100 cm2/V · s, |2φF−PMOS| = 0.58 V,
γPMOS = 0.03 V1/2. Assume perfectly
matched NMOS and PMOS threshold voltages,
VT −NMOS = −VT −PMOS > 0. A

(c) Specify the layout-design parameters of the
MOSFETs if the minimum channel dimension
is limited to 0.15 μm. The design should
minimize the input capacitance and maximize
MOSFET currents.

16.10 Figure 16.29 shows the ideal response (no delays
and parasitic capacitances to be charged/discharged)
of an NMOS inverter. The power-supply voltage
is 5 V.

(a) Find the average power dissipated by this
inverter.

(b) Find the average dissipated power if the inverter
was implemented in CMOS technology.

16.11 The dynamic power dissipation of a CMOS inverter
is given by

Pdiss = CV 2 f

where V is the power-supply voltage, f is the
switching frequency, and C is the relevant capac-
itance. The technology progress enables design of
CMOS ICs with reduced input capacitance and
increased switching frequency, although this may
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require a reduction in the power-supply voltage.
Assuming that the average power dissipated by the
inverter is Pdiss = 5 μW, find Pdiss for a new design
that

(a) halves the input MOSFET capacitances and
quadruples the switching frequency, maintain-
ing the power supply voltage. A

(b) reduces the input capacitance five times, in-
creases the switching frequency 25 times, and
reduces the power-supply voltage from 5 V
to 1.5 V.

16.12 The NPN BJT of Fig. 16.15 is to be designed for
a 10-μm-thick N-epitaxial layer. Simplified design
rules can be expressed as follows: the depth of
the P+ isolation diffusion should be x j−P+ =
12 μm, the minimum size of the diffusion and
contact windows is Ww × Ww = 5 μm × 5 μm, the
minimum spacing between two windows is Sw−w =
5 μm, the minimum spacing between a contact edge
and the closest P–N junction is Sc− j = 3 μm, and
the minimum spacing between two P–N junctions is
S j− j = 5 μm. The lateral diffusion is 80% of the
vertical diffusion.

(a) Calculate the minimum size of the NPN BJT,
defined as the distance between the center of
the left and the center of the right P+ isolation
diffusions in Fig. 16.15.

(b) Assume that the BJT has a square shape,
with the side of the square being equal to the

minimum distance determined in (a). What
percent of the total BJT area is occupied by the
isolation P+ diffusion? A

16.13 The average doping levels of a base-diffusion pinch
resistor (Fig. 16.20) are Nepi = 1014 cm−3, Nbase

= 1016 cm−3, and Nemitter = 1020 cm−3. The
emitter–base and base–collector junction depths are
x j E = 3 μm and x j B = 5 μm, respectively.
Assuming abrupt P–N junctions and a hole mobility
of μp = 400 cm2/V · s, calculate the sheet resis-
tance of this resistor for two different control
voltages:

(a) VEB = 0 V
(b) VEB = 5 V A

16.14 The base–collector junction is to be used as a 0.1-nF
capacitor in a bipolar IC. Calculate the needed area
of the capacitor if the doping concentrations for the
abrupt-junction model are Nepi = 1014 cm−3 and
Nbase = 1016 cm−3. The DC bias is VR = 5 V.

16.15 The resistors of the circuit given in Fig. 16.30a are
implemented as base-diffusion resistors.

(a) Draw the cross section of T1 and T2.
(b) Draw the cross section of T4 and T5.
(c) Group the devices into N-epi islands. A

16.16 Assuming that the resistors are implemented as
base-diffusion resistors, and the diode as a base–
collector diode, group the devices of the circuits
given in Fig. 16.30b into N-epi islands.

REVIEW QUESTIONS

R-16.1 What is the difference between dose and concentration of doping atoms, and how are they
related? What are the respective units?

R-16.2 How are the devices/gates isolated from each other in NMOS and CMOS ICs?
R-16.3 What are the advantages of IC layer merging?
R-16.4 Why is polysilicon, and not aluminum, used as the gate material in modern MOSFET

technologies?
R-16.5 Which technology process is more complex, NMOS or CMOS?
R-16.6 What are the advantages of CMOS ICs compared to NMOS ICs?
R-16.7 Why is threshold-voltage-adjustment implant needed?
R-16.8 How do the characteristics of a lateral PNP compare to the characteristics of the standard

NPN BJT?
R-16.9 Why is the PNP BJT in the standard bipolar IC technology not made with different but

complementary layers (mirror image)? In other words, why are the same layers used at the
expense of PNP performance?



ANSWERS TO SELECTED PROBLEMS

CHAPTER 1
1.1 (b) PF = 0.740; 1.2 (a) dGa−As = 0.245 nm; 1.3 (c)
7.10 cm3/mol; 1.6 NSi = 4.826 × 1022 cm−3; 1.9 (c)
N{111} = 2.3 × 1014 cm−2; 1.10 (a) N{110} = 9.6 ×
1014 cm−2; 1.13 [100], [100], [010], [010], [001], [001];
1.18 (a) n = 2.0 × 1023 cm−3; 1.20 (b) (1); 1.21 (b)
p = 4.41 × 10−4 cm−3; 1.26 GaAs: V = 2.27 × 104 cm3;
1.27 (b) n = 5.9 × 1012 cm−3; 1.28 (a) p = 1015 cm−3

CHAPTER 2
2.3 (b) 4.31×1011 m−1, 1.45×10−11 m, 2.16×1019 s−1,
and 2.91 × 10−19 s; 2.5 (b) 1.88 × 107 m/s, 1.62 ×
1011 m−1, 3.88 × 10−11 m, and 2.07 × 10−18 s; 2.7 (b)
P = 0.31; 2.10 (a) 6.1 × 10−5; 2.12 (b) 4.6 × 10−10 m;
2.13 m∗

l = 0.16m0, m∗
h = 0.52m0; 2.16 D =

2(2m∗)1/2

h E−1/2
kin ; 2.17 (b) 2D: m∗ = 0.68m0 1D: m∗ =

1.26m0; 2.24 (b) NV = 8.1 × 1018 cm−3; 2.26 (b)
0.702 eV; 2.30 EC − EF < EF − EV , i.e., EF > Ei �⇒
N type; 2.33 (b) P type, 1.1 × 1015 cm−3; 2.35 (b) 4.20 eV;
2.37 ni = 1.08 × 107 cm−3; 2.40 (a) 0.069 eV; (b)
0.080 eV

CHAPTER 3
3.5 L = 246 μm, R1 = 76.5 �; 3.9 RS = 1.5 k�/�;
3.11 L = 56.4 μm, W = 28.2 μm; 3.12 RS = 180 �/�,
Rc = 5 �; 3.13 2.32 (� · cm)−1; 3.16 NA = 4.7 ×
1015 cm−3, ρ = 3.65 � · cm; 3.20 (b) 27◦C: RS =
0.625 �/�; 700◦C: RS = 0.625 �/�; 3.23 (b) ttr =
0.65 ms; 3.24 (c) R = 53.3 �; 3.27 lsc = 16.4 nm;
3.29 τsc2 = 0.19 ps

CHAPTER 4
4.3 (b) 1.96 × 1015 cm−3; 4.10 E(L p) = 318.7 V/m;
4.12 14.0%; 4.14 (b) D = 7.3 cm2/s; 4.16 (c) −2.74 ×
1013 cm−3; 4.17 (b) 9.2 × 1019 cm−3 s−1

CHAPTER 5
5.3 (c) rh = 2.5 × 1010 cm−3 s−1; 5.8 p(t) = Gextτp(1 −
e−t/τp ) + p0; 5.10 (a) jdiff (0) = 8 A/cm2; 5.12 (b) τp =

0.32 μs; 5.14 (b) U = −1012 cm−3 s−1; 5.16 (c) U =
−8.7 × 1015 cm−3 s−1

CHAPTER 6
6.4 (b) Vbi = 0.30 V; 6.9 (b) n p(|wp |) = 1.26 ×
10−7 cm−3, pn(|wn |) = 1.26 × 10−11 cm−3; 6.10 (b)
jn = 3.20×10−2 A/m2, jp = 3.00×10−7 A/m2; 6.13 (b)
IS = 2.01 × 10−44 A, VD = 2.54 V; 6.16 In,p→n =
1.25 × 10−16 A, Ip,n→p = 1.25 × 10−13 A; 6.20 rS =
4.7 �; 6.22 VD = 0.835 V; 6.23 (b) IS = 8.10 × 10−12 A,
n = 1.575; 6.28 (c) QC = 0.58 mC/m2; 6.29 QC =
2.12 mC/m2; 6.30 (b) �QC ≈ 0.098 mC/m2; 6.33 (c)
Cd (0)/A = 0.108 mF/m2; 6.36 (a) Vbi = 0.588 V;
(d) abrupt junction: Emax = 1.04 V/μm, linear junction:
Emax = 0.53 V/μm; 6.43 (b) Qs–rec = 2.9 × 10−10 C;
6.44 Qs = 2.49 × 10−11 C; 6.49 (b) jgen = 4.7 ×
10−24 A/cm2, jdiff = 7.2 × 10−41 A/cm2

CHAPTER 7
7.4 (b) 5.4 eV and 0.65 eV; 7.6 (a) VF = 0.14 V; 7.9 (a)
Cd (0) = 0.145 mF/m2; 7.16 Eox = 0.2 V/nm, toward the
substrate; Es = 0; 7.19 (a) qφms = 0.203 eV; 7.20 (b)
VFB = 0.87 V; 7.21 electrons: QI = 9.2 mC/m2; 7.23 N-
type; QI = 0 C/m2; 7.26 QI = 3.22 mC/m2; 7.28 NA =
1.77 × 1017 cm−3; 7.29 ϕs = 0.80 V, Vox = 5.16 V;
7.31 (a) Eox = Es = 0; 7.32 (b) VBRinv = −78.20 V

CHAPTER 8
8.4 (b) ϕs = 0.172 V, Qd = 5.36 × 10−4 C/m2 for
VGS = −0.5 V, ϕs = 0.605 V, Qd = 1.01 × 10−3 C/m2

for VGS = 0 V; (d) ϕs = 0.797 V, Qd = 1.15 ×
10−3 C/m2; 8.8 1.05 times; 8.9 (b) QI = 2.17 mC/m2

for VGS = −0.75 V; QI = 0 for VGS = 0, and 0.75 V;
8.15 j = 9.0 × 1010 A/m2, μeff = 320 cm2/V · s; 8.16 (b)
VDSsat = −0.943 V, IDsat = 2.22 mA, ID = 0.80 mA;
8.17 (b) �ID = 1.49 mA; 8.20 (a) 100 k�

CHAPTER 9
9.8 (b) IC = 0.038 μA; 9.9 (b) gm = 10.1 A/V; 9.11 (e)
BJT damaged (impossible); 9.13 |IB–max | = 14.33 μA;

610
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9.14 βR = 0.65; 9.15 (c) IC = −164.88 mA, IE =
82.44 mA, IB = 82.44 mA; 9.19 VBR = 618 V

CHAPTER 10
10.4 99.38% for Nel = 0, 0.62% for Nel = 1, and 0.0019%
for Nel = 2; 10.5 (a) p(1, 1) = 0.0281; 10.10 (b) ID =
367.6 mA; 10.12 (b) N = 364, d = 0.27 nm; 10.13 (a)
1.1k�; (d) N = 4; 10.16 (c) 3.3 × 107 cm/s

CHAPTER 11
11.5 pt = 2.5; 11.6 pt = 2; 11.9 ID = 1.81 mA; 11.11
CGD0 = 345 pF/m;

CHAPTER 12
12.3 (b) P = 2.1 mW; 12.7 (a) Φopt = 2.26 × 1021 s−1

m−2; (c) Iphoto = 361.6 μA; 12.9 (a) Voc = Vt ln(1 +
Iphoto/IS ); Voc = 0.565 V; (c) Nseries = 25, Nparallel = 5;
12.11 (a) Iphoto = 3.08 mA; (b) 89.8% is diffusion photo-

current; (c) n p = 1.5 × 1011 cm−3, pn = 5 × 1010 cm−3

CHAPTER 13
13.3 VDSsat = 4.12 V; IDSsat = 50.8 mA; 13.11 ND =
1.18 × 1017 cm−3, Vbi = 1.0 V, Rch = 75.9 �

CHAPTER 14
14.3 (a) VB R = 304 V, (c) L N ≥ 1.9 μm; 14.6 (b)
CGS = 1.86 nF

CHAPTER 15
15.4 f = 28.6 GHz

CHAPTER 16
16.4 Rs = 1116 �/�; 16.6 (b)

dx j
x j

× 100 = 1.70%

16.8 �VT = 3.7 mV; 16.9 (b) r = 2.89; 16.11 (a)
Pdiss−a = 10 μW; 16.12 (b) 46.7%; 16.13 (b) RS =
13.95 k�/�; 16.15 (c) epi 1: T4, T5, and the resistors; epi
2: T1 and T2; epi 3: T3
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Electron 

 carrier. See Carrier, electrons 

 diffraction 41 

 effective mass 61 

 free/mobile. See Free electron 

 heavy (in GaAs) 554 

 light (in GaAs) 554 

 mass at rest 61 

 scattering. See Carrier scattering 

 spin 51 

 states 68 

Electron affinity 88 

 values in selected materials 254 

Electron gas 

 concept 60 

 two dimensional. See 

  Two-dimensional electron gas 

 one dimensional. See 

  One-dimensional electron gas 

Electron spin 51 

Electroneutral region 197 225 

Electroneutrality 20 21 

Electroneutrality equation. See 

  Equation, electroneutrality 

Electron–hole pair 23 

Emission coefficient 217 445 

Emission rate 168 

Emitter 352 

Emitter efficiency 355 

Energy bands 

 with applied electric field 108 

 definition 58 
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Energy bands (Cont.) 

 discontinuities. See Band offset 

 in metals 53 

 offset. See Band offset 

Energy barrier. See Barrier 

Energy gap 

 AlGaAs 387 

 of common materials 59 

 engineering 418 

 GaN 498 

 origin 55 

 relation to diode turn-on voltage 500 

 relation to light wavelength 498 

Energy-band diagrams 

 biased resistor 108 

 BJT 353 

 definition 57 

 forward-biased P–N junction 202 

 Gunn diode 556 

 HEMT 419 424 

 heterojunction bipolar transistor 388 

 IMPATT diode 558 

 JFET 520 522 523 

 LED 498 

 metal–semiconductor contact 253 256 

 MOS capacitor 276 279 281 282 

 MOSFET 301 303 305 310 

 N-type semiconductor 85 

 oxide–semiconductor interface 264 

 photodetector 503 

 P–N junction, in equilibrium 196 

 P-type semiconductor 85 
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Energy-band diagrams (Cont.) 

 reverse-biased P–N junction 200 

 solar cell 503 

 tunnel diode 560 

Energy-band offset. See Band offset 

Enhancement MOSFETs 299 

Entropy 77 

Epi. See Epitaxial layer 

Epilayer. See Epitaxial layer 

Epitaxial layer 27 

Equation 

 Arrhenius 148 

 body factor 271 273 

 built-in voltage 197 

 conductivity 119 

 continuity 150 162 

 current gain, BJT 362 

 depletion-layer capacitance 229 235 

 depletion-layer charge 270 

 depletion-layer width 229 235 

 diffusion coefficient 144 148 

 diffusion current 142 

 diffusion length 167 

 diode 210 

 diode saturation current 211 

 doping profile, diffusion 569 

 doping profile, ion implant 606 

 drain current, LEVEL 1 316 

 drain current, LEVEL 2 318 

 drain current, LEVEL 3 319 

 drain current in linear region 301 

 drift current 117 
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Equation (Cont.) 

 Early effect 380 

 Ebers-Moll model, BJT 376 

 effective density of states 80 

 effective generation/ 

  recombination rate 173 

 effective surface generation/ 

  recombination rate 184 

 electron concentration 79 

 electroneutrality 21 

 emitter efficiency 360 

 Fermi potential 86 

 Fermi–Dirac distribution 75 

 Fick 567 

 flat-band capacitance 288 

 flat-band voltage 279 

 gain factor 314 

 generation current 201 

 hole concentration 80 

 intrinsic carrier concentration 86 

 inversion-layer charge 272 

 Landauer conductance 436 

 maximum electric field at P–N 

  junction 226 

 Maxwell-Boltzmann distribution 79 

 minority-carrier lifetime 178 

 mobility, MOSFET 323 324 

 mobility, temperature 

  dependence 130 

 Ohm’s law, differential form 117 

 photocurrent 506 

 Poisson 223 
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 Poisson distribution 399 

 resistance 110 

 scattering time 125 

 Schrödinger 44 

 sheet resistance 111 

 subthreshold current 329 

 surface potential in strong 

  inversion 272 

 threshold voltage 272 273 307 328 

 transconductance, BJT 357 

 transit time 238 

 transport factor 362 

 tunneling probability 51 

 work function, semiconductor 277 

Equivalent circuit 

 BJT, large-signal 487 

 BJT, small-signal 488 

 BJT, static 482 

 diode, large-signal 446 

 diode, small-signal 454 

 IGBT 541 

 JFET 524 525 

 large-signal, definition 444 

 MOSFET, large-signal 470 

 MOSFET, simple digital model 472 

 MOSFET, small-signal 478 

 MOSFET, static 458 

 small-signal, definition 444 

 thyristor 543 

erfc. See Complementary error 

  function 
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E-x diagram 57 

Excess carriers 163 

Excess-carrier concentration 163 

Excess-carrier lifetime 164 

External generation 162 

External-generation rate 162 

F 

Face-centered cubic (fcc) 

  lattice 6 

Fermi energy 54 

Fermi level 

 constant value in equilibrium 195 

 definition 75 

 relation to carrier concentration 79 85 

 splitting 199 

Fermi potential 84 

Fermi–Dirac distribution 73 

FET 

 HEMT. See HEMT 

 JFET. See JFET 

 MESFET. See MESFET 

 MOSFET. See MOSFET 

Fick’s diffusion equation. See 

  Equation, Fick 

Field oxide 572 

Field-effect transistor. See FET 

FinFET. See Double-gate MOSFET 

Fixed charge (ion) 21 

Flash memory 341 

Flat-band capacitance 286 

Flat-band condition (in MOS capacitor) 264 269 275 
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Flat-band voltage 269 279 

Forbidden band. See Energy gap 

Forbidden gap. See Energy gap 

Forward blocking 539 541 544 

Forward recovery time 535 

Forward voltage overshoot 536 

Forward-biased P–N junction 201 

Fourier series 41 

Free electron 54 

Free path. See Scattering length 

Free-electron model 55 

G 

GaAs 

 carrier mobility 129 

 E-k diagram 62 

 energy gap 59 

 intrinsic carrier concentration 19 

 unit cell 7 

Gain 

 negative resistance amplifiers 551 

 voltage amplifier 354 

Gain factor 314 

Gate  263 297 

Gate length 457 

Gate oxide 263 

Gate oxide charge. See Oxide charge 

Gaussian function 400 

Generation 22 23 

Generation current 198 200 

Generation rate 23 161 171 

Generation time constant 179 
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Germanium 

 crystal structure 7 

 intrinsic carrier concentration 19 

Grading coefficient 237 447 

Graphene 13 

Graphic method 

 circuit analysis 354 

 parameter measurement 448 

Gummel number 384 

Gummel-Poon model in SPICE 384 480 

Gunn diode 554 

Gunn effect 554 

Gunn-oscillation mode 557 

H 

Hall coefficient 133 

Hall effect 132 

Hall mobility 133 

Haynes-Shockley experiment 147 

Heavily doped semiconductor 83 

Heisenberg uncertainty principle. 

  See Uncertainty principle 

HEMT  423 

Heterojunction 252 263 387 423 

   512 

Heterojunction bipolar transistor 387 

Heterojunction laser 512 

Heterostructure field-effect 

  transistor (HFET). See HEMT 

HF capacitance 268 

High electron mobility transistor 

  (HEMT). See HEMT 
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High-level injection 

 BJT 384 

 diode 216 

High-level knee current 385 485 

Holding current (thyristor) 544 

Hole 

 concept 17 18 

 created by P-type doping 19 20 

 in energy-band model 57 

 heavy (in Si) 63 

 light (in Si) 63 

Hole gas 61 

Homojunction 252 

Hybridization. See Orbital 

  Hybridization 

I 

Ideality factor. See Emission 

  coefficient 

IGBT  540 

IGFET. See MOSFET 

Impact ionization 557 

IMPATT diode 557 

Implant dose 31 

Implant energy 31 

Implantation. See Ion implantation 

Impurity atoms 13 

Indirect generation/recombination 159 

Indirect semiconductors 62 

Ingot  27 
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Insulated Gate Bipolar Transistor 

  (IGBT). See IGBT 

Insulated Gate Transistor (IGT). See 

  IGBT 

Integral quantities 116 

Interface defects 264 

Interface traps 264 

Interstitials 13 29 

Intrinsic carrier concentration 17 

Intrinsic semiconductor 17 

Inverse active mode 364 

Inversion layer 267 

Inversion mode. See 

  Strong-inversion mode 

Inversion-layer charge 272 

Ion implantation 30 31 

Ionic bonds 2 

Ionization, partial doping 91 

Ionizing radiation. See Radiation 

  effects in MOSFETs 

Isolation by P–N junction 563 

I –V characteristics 

 BJT 354 366 

 Gunn diode 554 

 IGBT 541 

 JFET 520 

 MESFET 527 

 MOSFET 300 309 312 329 

 photodiode 501 

 P–N junction diode 195 203 

 Schottky diode 256 

 solar cell 501 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

I –V characteristics (Cont.) 

 thyristor 543 

 tunnel diode 560 

J 

JFET 

 comparison to MOSFET 519 

 I –V characteristics 520 

 SPICE equation and parameters 524 

 structure 519 

Junction capacitance. See 

  Capacitance 

Junction isolation. See Isolation by 

  P–N junction 

K 

Kinetic energy 

 in energy band diagrams 58 

 relationship to velocity 45 

Knee current. See High-level knee 

  Current 

L 

Landauer conductance limit. See 

  Quantum conductance limit 

Large-signal equivalent circuit. See 

  Equivalent circuit 

Laser  510 

Latch-up 544 

Lateral diffusion 580 591 

Lateral PNP BJT 596 
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Lateral-diffusion parameter 459 

Layer merging 576 598 600 

LDD MOSFET 332 

LED  497 

LF capacitance 268 

Lifetime. See Minority carriers, 

  lifetime 

Light absorption 497 

Light confinement 513 

Light emission 

 spontaneous 497 

 stimulated 497 

Light emitting diode (LED). See 

  LED 

Light intensity 499 

Lightly-doped drain. See LDD 

  MOSFET 

Limited-source diffusion. See 

  Diffusion, drive-in 

Linear P–N junction 233 

Linear region (MOSFET) 300 

Linear regression. See Parameter 

  measurement, linear regression 

Lithography 563 

Load line 203 354 366 550 

LOCOS 572 

Low-field mobility. See Mobility 

M 

Majority carriers 21 

Mask, photolithographic 564 

Mathieson’s rule 127 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Maximum drift velocity. See 

  Saturation drift velocity 

Maximum-entropy principle 77 

Maxwell–Boltzmann distribution 78 

Memory devices 

 Dynamic random access memory 

 (DRAM). See DRAM 

 Flash memory. See Flash memory 

MESFET 

 I –V characteristics 527 

 SPICE equations and parameters 528 

 structure 526 

Metal gates 278 

Metallic bond 3 

Metal–oxide–semiconductor 

  structure. See MOS capacitor 

Metal–semiconductor contact 

 ohmic 261 

 rectifying 253 

Microwave diodes 

 Gunn. See Gunn diode 

 IMPATT. See IMPATT diode 

 tunnel. See Tunnel diode 

Miller indices 8 

Minority carriers 

 concentration 24 

 concentration diagrams. See 

  Concentration diagram 

 definition 21 

 diffusion length. See Diffusion 

  length 

 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Minority carriers (Cont.) 

 excess concentration, See 

  Excess-carrier concentration 

 lifetime 163 

 stored charge. See Stored charge 

Mobile charge. See Electron, Hole 

Mobility 

 channel (MOSFET) 300 311 

 definition 124 

 dependence on doping level 128 

 dependence on temperature 128 129 

 effective (MOSFET) 324 

 low field (MOSFET) 323 

 low field values in GaAs 129 

 low field values in Si 128 

 reduction with drain voltage 322 

 reduction with gate voltage 323 

 relation to diffusion constant. See 

  Einstein relationship 

 surface (MOSFET) 323 

Mobility modulation constant 323 460 

MODFET. See HEMT 

Modulation-doped field-effect 

  transistor (MODFET). See 

  HEMT 

Mole  9 

Molecular beam epitaxy 28 

Momentum 41 

Monochromatic light 510 

MOS capacitor 262 

MOS controlled thyristor 544 
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MOSFET 

 advanced structures 335 

 coaxially gated 431 

 comparison to BJT 369 

 deep submicron 332 

 downscaling 331 

 energy-band diagrams 301 303 306 310 

 large-signal equivalent circuit 470 

 modeling 312 

 modes (regions) of operation 297 

 nanoscale. See Nanoscale 

  MOSFETs 

 parasitic capacitances 472 

 power 538 

 principles 296 

 second-order effects 322 

 simple digital model 472 

 small-signal equivalent circuit 478 

 SPICE equations and parameters 457 

 types 298 

N 

Nanoscale MOSFETs 331 

Nanowires 430 

Narrow-channel effect 328 

N-channel MOSFET. See MOSFET, 

  types 

NDR. See Negative dynamic 

  resistance 

Negative dynamic conductance 550 

Negative dynamic resistance 549 

Negative ion 21 
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Negative photoresist. See 

  Photoresist 

Negative resistance diodes 549 

Negative temperature coefficient, 

  BJT 539 

N-epi island 591 

Neutral region. See Electroneutral 

  region 

NMOS inverter 

 circuit 574 

 composite layout 575 

 cross section 575 

NMOS technology 573 

NMOS transistor. See MOSFET, types 

NPN BJT 

 IC structure 591 

 principal structure 353 

Nominal gate length 465 

Nonlinear regression. See Parameter 

  measurement 

Normal active mode (BJT) 364 

Normally off MESFET 527 

Normally off MOSFET. See 

  MOSFET, types 

Normally on MESFET 527 

Normally on MOSFET. See 

  MOSFET, types 

N-type doping. See Doping, N-type 

N-well CMOS technology 581 

O 

Off state/mode 297 541 542 
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Ohm’s law 116 

On resistance 532 534 539 

On state/mode 297 540 542 

One-dimensional electron gas 430 

One-dimensional transport 429 

Optical absorption coefficient 506 

Optical amplification 511 

Optoelectronic devices. See 

  Photonic devices 

Orbital hybridization 

 sp3  3 4 

 sp2  4 5 

Oscillator 552 

Output characteristics 

 JFET 520 

 MESFET 527 

 MOSFET 300 309 

 BJT 366 

Output resistance, finite 

  (small-signal) 324 379 

Overlap capacitance (MOSFET) 472 

Oxidation of Si 265 

Oxide. See Silicon dioxide 

Oxide charge 265 

P 

Packing fraction. See Atom packing 

  fraction. 

Parameter measurement 

 BJT 481 

 curve (nonlinear) fitting 451 
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 diode 448 

 graphic method 448 

 linear regression 450–454 

 MOSFET 463 

 P–N junction capacitance 451 

Parasitic capacitances 

 in BJT 490 

 in diode 451 

 in JFET 525 

 in MOSFET 470 479 

Parasitic elements 444 

Parasitic MOSFET 576 

Parasitic resistance 

 in BJT 489 

 in diode 445 

 in MOSFET 472 

Parasitic thyristor structure. See 

  Thyristor structure, parasitic 

Particle–wave duality 38 

Passivation 263 266 

Pauli exclusion principle 51 

P-channel MOSFET. See MOSFET, 

  types 

Period  39 

Permittivity. See Dielectric 

  permittivity 

Phase  39 

Phonon 108 

Phonon scattering 125 

Phosphorus 19 

Photocurrent 500 
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Photodiodes 500 

Photolithography. See Lithography 

Photon  497 

Photonic devices 497 

Photoresist 564 

PIN microwave diode 557 

PIN photodiode 502 

PIN power diode 533 

Pinch resistor 598 

Pinch-off point 521 

Pinch-off voltage 522 

Planck constant 38 

PMOS transistor. See MOSFET, 

  types 

P–N junction 

 abrupt 225 

 avalanche breakdown 203 

 concentration profile 199 

 definition 29 30 

 depletion-layer capacitance 229 235 

 energy-band diagrams 196 200 202 

 linear 233 

 maximum electric field 226 

 principles 194 

 stored charge 237 

 stored-charge capacitance 237 

 switching response times 239 

 tunneling breakdown 205 

P–N junction diode, IC structure 563 

PNP BJT 369 

PNPN diode. See Thyristor 

Poisson distribution 399 
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Poisson equation 223 

Polycrystalline silicon (Polysilicon, Poly) 13 

Polytypes, crystalline 7 

Population inversion 511 

Positive ion 19 21 

Positive photoresist. See Photoresist 

Positive temperature coefficient, 

  MOSFET 539 

Potential energy 

 of electrons in an atom 54 

 in energy band diagrams 57 

 relationship to electric potential 106 

 in Schrödinger equation 44 

Potential well 46 

Power diodes 533 

Power MOSFET 538 

Predeposition diffusion. See 

  Diffusion, constant-source 

Primitive cell 7 

P-type doping. See Doping, P-type 

Punch-through 331 

P-well CMOS technology 581 

Q 

Q-point. See Quiescent point 

Quantization 48 

Quantum conductance limit 432 

Quantum mechanics 37 

Quantum numbers 52 

Quasi two-dimensional electron gas 420 

Quasi-Fermi levels 93 
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Quasistatic capacitance. See LF 

  capacitance 

Quiescent point 354 

R 

Radiative recombination efficiency 499 

Random access memory (RAM). 

  See DRAM 

Recombination 22 23 

Recombination centers. See R–G 

  centers 

Recombination current 198 216 

Recombination rate 23 161 

Recovery time. See Reverse 

  recovery 

Rectifying circuit 195 

Rectifying contact. See 

  Metal–semiconductor contact, 

  rectifying 

Rectifying diode 194 

Reference diode 194 203 

Reference-voltage circuit 203 

Resistance, relationship to 

  scattering 108 

Resistivity 110 

Resistor (in integrated circuits) 110 

Reverse blocking 540 541 549 

Reverse-bias current 

 P–N junction diode 211 219 

 Schottky diode 257 

Reverse-biased P–N junction 198 

Reverse-recovery time 237 239 535 
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Reverse-voltage rating 231 

R–G center 159 

Richardson constant 257 

S 

Safe operating area 540 

Saturation current 

 of base–collector junction 372 

 of base–emitter junction 372 

 in JFET 521 525 

 in MESFET 527 

 in MOSFET 308 

 in P–N junction diode 211 

 in Schottky diode 257 

Saturation drift velocity 123 324 460 

Saturation region/mode 

 in BJT 365 

 in JFET 521 

 in MESFET 527 

 in MOSFET 308 

Saturation voltage 

 in MOSFET 315 318 320 

 in JFET 521 

Scattering. See Carrier scattering 

Scattering cross section 125 

Scattering length 125 

Scattering time 125 

Schottky diode 

 comparison to PIN diode 259 

 energy-band diagrams 253 256 

 reverse-bias current 257 

 SPICE equations and parameters 258 
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Schottky diode (Cont.) 

 switching characteristics 537 

 turn-on voltage 258 

Schrödinger Equation 44 

SCR  543 

Segregation 27 

Selective etching 563 

Selectively doped heterojunction 

  transistor (SDHT). See HEMT 

Self-aligned technique 577 586 

Semiconductor 

 degenerate. See Degenerate 

  semiconductor 

 direct. See Direct semiconductor 

 indirect. See Indirect semiconductor 

 intrinsic. See Intrinsic semiconductor 

Semiconductor lasers 510 

Semiinsulator 526 

Sheet resistance 111 

Shell (for electrons in atoms) 52 

Shockley equation 218 

Short-channel effects 

 leakage current 328 

 threshold-voltage related 326 

Short-channel MOSFET. See 

  Nanoscale MOSFET 

Shot noise 404 

Silica  263 

Silicide layer 332 

Silicon 

 atom diameter 8 

 atomic mass 9 
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Silicon (Cont.) 

 carrier mobility 128 

 crystal lattice 7 

 E-k diagram 63 

 energy gap 59 

 intrinsic carrier concentration 19 

 unit cell 7 

Silicon dioxide (SiO2) 

 energy gap 264 

 energy-band diagram 264 

 growth kinetics 266 

 interface defects and traps 264 

 interface to Si 264 

 nitridation 266 

 oxide defects and charge 264 

 properties 263 

 thermal growth 265 

Silicon-controlled rectifier. See SCR 

Silicon-on-insulator (SOI) 

  technology, 

Simple digital model. See MOSFET, 

  simple digital model 

SIMOX 589 

Small-signal equivalent circuit. See 

  Equivalent circuit 

SOI MOSFET 337 

Solar cell 500 

Solid-solubility limit 567 

Source (MOSFET) 297 

Space charge region. See Depletion 

  layer 

Spatial uncertainty 408 
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Spectral function 42 

SPICE equations and parameters 

 BJT 480 

 diode 445 

 IGBT 542 

 JFET 525 

 MESFET 528 

 MOSFET 457 

Spin. See Electron spin 

Spontaneous emission. See Light 

  emission, spontaneous 

SRH generation/recombination 167 

Standard bipolar technology 

  process 592 

Standing waves, electrons 47 55 60 

Static power dissipation 303 575 581 

Static RAM (SRAM) 339 

Step junction. See Abrupt junction 

Stimulated emission. See Light 

  emission, stimulated 

Stored charge 237 

Stored-charge capacitance 237 

Strong-inversion mode 267 271 282 

Subband (energy subband) 418 

Substrate PNP BJT 596 

Substrate-bias effect. See Body 

  effect 

Subthreshold current (MOSFET) 328 

Subthreshold swing 330 

Surface generation/recombination 183 

Surface mobility (in MOSFET) 323 

Surface potential 267 
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Surface states. See Interface traps 

Surface-generation constant 187 

Surface-recombination velocity 184 

Switching characteristics 239 535 

T 

Technology process 

 BiCMOS 603 

 bipolar, standard IC 592 

 CMOS 581 

 diffusion 567 

 IC diode 562 

 lithography 563 

 LOCOS 572 

 NMOS 573 

 silicon on insulator (SOI) 589 

TED. See Transferred electron 

  devices 

Temperature coefficient of a resistor 

  (TCR) 120 

Temperature dependence 

 breakdown voltage 205 207 

 diode characteristic 221 

 intrinsic carrier concentration 86 

 mobility 128 129 

Tetrahedral structure (tetrahedron) 4–7 

Thermal emission 159 

Thermal generation 159 

Thermal runaway 539 

Thermal velocity 122 

Thermal voltage 197 209 
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Thermionic emission. See Thermal 

  emission 

Threshold current (lasers) 511 

Threshold voltage 

 adjustment implantation 583 586 

 calculation of 283 

 definition 272 

 dependence on drain voltage 325 

 dependence on substrate bias. See 

  Body effect 

 in MOS capacitor 272 

 in MOSFET 299 

Thyristor 542 

Thyristor structure, parasitic 590 

Transconductance 480 490 

Transconductance parameter 314 459 

Transfer characteristic 

 of BJT 353 

 of MOSFET 298 312 

Transferred electron devices 549 

Transit time 237 

Transit-time mode. See 

  Gunn-oscillation mode 

Transport factor (BJT) 356 361 

TRIAC 544 

Triangular potential well 418 

Triode region 312 

Tunnel diode 559 

Tunneling 49 

Tunneling breakdown 205 

Tunneling coefficient 51 

Tunneling current 206 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Tunneling probability 51 

Two-dimensional crystals 13 

Two-dimensional electron gas 

  (2DEG) 76 418 

Two-dimensional transport 417 

U 

Ultra-thin-body (UTB) MOSFET. 

  See SOI MOSFET 

ULSI  331 

Uncertainty principle 

 for current and time 402 

 for position and momentum 64 

Unit cell 6 

Unit vectors 14 

V 

Vacancies 13 29 

Vacuum level 195 

Valence band 57 

Valence electrons 3 7 16 52–58 

Varactor 230 

 drift. See Drift velocity 

 relation to current 122 

 relation to mobility 124 

 saturation. See Drift-velocity 

  saturation 

 thermal. See Thermal velocity 

VDMOSFET. See Power MOSFET 

VLSI  331 
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Voltage overshoot. See Forward 

  voltage overshoot 

Voltage-controlled current source 308 351 

Voltage-controlled resistor 300 

Voltage-controlled switch 299 

W 

Wafer  27 564 576 589 

Wave function, electron 39 

Wave intensity 43 

Wave number 40 

Wave packet 39 

Wave vector 40 

Wave velocity 41 

Wavelength 40 

Wave–particle duality. See 

  Particle-wave duality 

Weak inversion 280 328 

Wet oxidation 265 

WKB method 99 

Work function 88 

 values in selected materials 254 

Work-function difference 252 277 

Z 

Zener diode 203 

Zero-bias junction capacitance 447 

Zincblade lattice structure 7 

Zone refining 27 
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