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Design Formulas for Biquad Active Filters Using 
Three  Operational Amplifiers 
P. E .  FLEISCHER AND J. TOW 

Abstract-A circuit  configuration  and its design  formulas  are 
presented for the  realization of all the  useful forms of a biquadratic 
voltage  transfer  function. The circuit  employs  three  single-ended 
operational amplifiers, two  capacitors,  and  at  most  eight  resistors. 
With  an  additional  resistor,  it  can  realize  any  biquadratic  voltage 
transfer  function. 

INTRODUCTION 
I t  has been known that some biquadratic voltage transfer func- 

tions can be realized with three single-ended operational amplifiers, 
two  capacitors, and a t  most eight resistors [l] ,  [2]. However, the 
design formulas for computing the element  values from the coeffi- 
cients of the transfer  function  have not been fully published before. 
The purpose of this letter is to show a general circuit configuration 
and present the corresponding design formulas. 

CIRCUIT CONFIGURATION AND DESIGN FORMULAS 
Let  the general biquadratic voltage  transfer  function be given by 

vmlt - (.s) = 
msz + cs + d 

V h  sf + as + b 

where it is tacitly assumed that  the poles are complex and  the circuit 
is stable, i.e., a>O and b>af/4.  The circuit' in Fig. 1 can be used to 
realize (with a possible change of sign) all of the following useful 
forms of (1) : 

low-pass m=c=O 
bandpass m=d=O 
high- pass c=d=O 
band-elimination m >0, c = 0, d > O  
all-pass c =  -m, d=mb. 
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Fig. 1. Multipleinput biguad drcuit diagram. 

complex zero section where the zeros 
are located to  the right of the poles  in 
the complex frequency  plane: 

m > 0, c # 0, d > 0, and (mu - c) 2 0. 
The  transfer function of the circuit in Fig. 1 can easily be shown to be 

By  matching the coefficients of (1) and (21, a  set of (positive) ele- 
ment  values is obtained  as follows: 

1 
RI =- 

aC1 
Rn = - kl 

4 cz 

1 
m 

Rs=-R8 

R7 = kzRs (3) 

where C,, CS. RE,  k t ,  and kz are  the free parameters. Note  that depend- 
ing on the numerator coefficients, some of the "feed-in" resistors 
R,, R5, or R6 may become infinite. 

The values of C,, CZ., and R8 control impedance levels and  are 
chosen to yield convenient  element values. 

The choice of element  values according to (3) may be shown to 
result in the following transfer  functions: 

Vout msz + cs + d 
- (s) = - 
Vin .sf + as + b 

V I  - (s) - ks 
(me - c)s + (mh - d)  

Vin s2 + us + b- 
d - m b  ad - bc 

- Va (s) = - -. 1 TS+T 
Vin kt s2 + as + b 

Thus  the parameters kI and kz may be chosen to establish the max- 
imum voltage levels a t  the  other two amplifiers. Alternatively, for 
minimum sensitivity design (R& =RIG) i t  may be desirable to  set 
kl'ks = 1. 
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OTHER CASES 
I The circuit in Fig. is identical to the  circuit in Fig. of I l l ;  however, design The circuit in Fig. 1, together with its design formulas (31, can 

formulas were given only for the  bandslimination case in [l]. be used to realize, in addition to  the foregoing useful forms, any 
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biquadratic  voltage  transfer  function with the exception of the fol- 
lowing three cases. 

Case 1: Complex zeros or two real left-half plane zeros where the 
“center of gravity” of the zeros lies to the left of the poles in the 
complex frequency plane, i.e., ( m e - c )  < O  and d 1 0 .  

Case 2: The  numerator  contains only one real zero which is  in the 
left-half plane, Le., m=O, c and d are of the same sign. 

Case 3: One real left-half plane and one real right-half plane 
zeros, Le., m and d are of opposite signs. 

To realize these cases, the following circuit modifications may be 
made. 

Case I: Add a positive feedback resistor between the  output of As 
and  the  input of A, .  

Case 2: Use circuit of Fig. 1 but  take  the  output from amplifier At .  
Case 3:  Interchange Rg and C,, add a positive feedback resistor 

from A3 to - 4 2 ,  and  take  the  output from Aa. Because these cases 
rarely  arise in practical filter design, the corresponding design for- 
mulas are not given here. 

CONCLUSION 
Complete design formulas are given for a  three-operational  ampli- 

fier biquad realization for all of the useful biquadratic voltage t rans  
fer functions. This circuit realizes the transmission zeros by  an  input 
feed-forward technique instead of the  summation  technique described 
in [2 ]  and [3] where a fourth amplifier is also needed. It also requires 
one less capacitor than  the circuit described in [4]. The low  sensi- 
tivity  and noninteractive tuning properties of [1]-[4] are also pre- 
served. 

REFERENCES 
[I) A. J. L. Muir  and A. E.  Robinson, ‘Design of active RC filters using operational 

amplifiers.” Syst. Tcchno2.. pp. 18-30, Apr. 1968. 
121 J. Tow, “Design formulas  for  active RC filters using operational amplifier 

biquad.” Ekcfron. Lek.  vol. 5 .  pp. 339-341. July 24, 1969. 
[3] W. J. Kerwin. L. P. Huelsman,  and  R. W. Newcomh. ‘State-variable syntheeis 

for insensitive integrated  circuit  transfer  functions.” IEEE J .  Sdid-Srare Cir- 

[41 D. Akerberg and K. Mossberg. ’Low-sensitivity easily trimmed standard build- 
cuits. vol. SC-2, pp. 87-92. Sept. 1967. 

ing block fol active RC filters.” Elccfron. Left.. vol. 5 .  pp. 528-529, Oct. 16.  1969. 

Hilbert Transform Relations for Products 
GERALD D. CAIN 

Abstract-A general  formula for  the  Hilbert transform of a 
product of complex-valued functions is developed. Certain simpU6ca- 
tions are  then exhibited for products often encountered  in the con- 
text of modulation and signal processing. The approach chosen is 
one of frequency  partitioning; this permits  signal definition on com- 
plementary  sections of the frequency axis and  leads to compact and 
easily manipulated expressions. 

INTRODUCTION 
The Hilbert  transform is a useful analytical tool that has been 

applied extensively in signal and system  theory. U’hile this  transform 
provides a tidy means of relating  certain  orthogonal time or fre- 
quency  functions, the  actual computation of transform  pairs and  the 
reduction of transform expressions is usually a difficult task. 

One important problem is that of finding Hilbert  transforms of 
products since most useful applications are replete with instances 
requiring multiplication of functions. Product relationships came 
under scrutiny in connection with narrow-band signal representa- 
tion. Some controversy [ 1 ] - [ 7 ]  surrounded this  matter before 
Bedrosian’s product theorem was introduced [4], [7].  Bedrosian’s 
theorem, however, is applicable  only in circumstances that  are often 
overly  restrictive. The purpose of this  letter is to present  a more gen- 
eral  result and  to show the relevance of work by Tricomi [8] and 
Titchmarsh [9]; also, some special simplifications for expressions 
common in modulation and signal processing analyses are demon- 
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strated. These results can be  used to  advantage in a variety of spe- 
cific situations (for example, [IO]). 

The  Hilbert  transform of g ( t )  is a linear operator defined as 

where the integration_is  taken in the Cauchy principal value sense 
and  where%[. ] and . are equivalent symbology. If t is identified as 
a  time  variable, the Hilbert  transform  may be  viewed as a -90” 
phase-shift operator; such a viewpoint is often beneficial in under- 
standing  the usefulness of this transform. Since constants  are lost in 
Hilbert  transformation, we stipulate, in order to provide for unique 
inverse transformation, that no functions with dc  components be 
allowed. It will  be assumed that all indicated  Hilbert  transforms are 
being taken in a  distributional sense so that we can cater for “power”- 
type signals (such as sinusoids) which so frequently  arise in com- 
munication studies, as well as the finite energy signals originally 
specified in [4]. 

Bedrosian’s theorem for (generally) complex-valued time func- 
tions may, for convenience of application, be paraphrased as follows: 

X[Nr(t)I = 4 t ) W  (1) 
if : 

a) denotingf,  as the smallest frequency value along the positive 
f axis a t  which the Fourier  transform Y ( f )  is nonzero, it is 
found that X c f )  vanishes below -f,; 

and furthermore if: 
b) labeling as -fn the largest frequency value along the negative 

f axis a t  which Ycf) is nonzero, we  find that X c f )  vanishes 
above fn. 

If Y ( j )  happens to be nonzero throughout an interval  adjoining 
the origin, we are confronted with the special problem of accommo- 
dating  the point f = O  in any declaration of f, or -fn. This problem 
can be overcome (and Bedrosian’s theorem successfully applied) by 
the conceptual artifice of sidestepping the frequency origin; that is, 
for  a  continuous  spectrum Ycf) which  is contiguous to  the frequency 
origin from the positive frequency side, it is necessary to assignf, an 
arbitrarily small positive value, say e,. Similarly, if on the negative 
frequency axis Ycf) is nonzero on an interval adjacent  to  the origin, 
then -f,, is chosen to be the small negative offset -en. This means, 
for  instance, that if Ycf) has nonzero continuous  spectral content 
straddling the origin, a delta function at the origin (that is, a con- 
stant x( t ) ,  which is not allowable due  to  our initial  stipulation) is the 
only spectrum  for X c f )  that would, according to this  theorem, 
satisfy (1). 

Clearly, Bedrosian’s theorem is not generally applicable  for spec- 
trally overlapping double-sided baseband signals. 

In  the case of a single-sided Ycf) that vanishes along the positive 
(or negative) frequency axis, no f, (or -fn) is encountered;  there- 
fore, there is no constraint on the  extent of X ( f )  for negative (posi- 
tive) frequency. It is important  to note that  a)  and b)  are sufficiency 
conditions only  and that (1) might, in some examples, hold true even 
if these conditions fail. 

One of the simplest cases meeting the qualifications of the theorem 
is that of a low-pass signal x ( t )  strictly band-limited inside ( -fc, fc) 

combined with a high-pass signal y( t )  with no spectral content inside 
that interval.  Another obvious case is that in  which both signals are 
analytic; this case will enable us to extend Bedrosian’s theorem. iVe 
can form analytic signals from real-valued 7 and s: 

d t )  = 7 ( t )  + j ?  ( t )  

j d t )  = s(t)  + j j ( t ) .  

Employing (1) and  equating real parts, we are led to  an expression 
that is independent of spectral considerations: 

~ [ r ( t ) s ( t ) ]  = r(t)S(t) + ?( t )s ( t )  + X.[i(t)j(t)]. (2) 

Equation (2) seems to have been derived first (and more rigorously 
than was done here) by Tricomi [ 8 ] ,  although  it appears  to have 
seen little use in engineering literature. 

R e  will  now obtain a new equation with the form of (2) which is 
true for complex-valued functions. iVe first introduce two new arbi- 
trary real-valued functions u ( t )  and w(t ) .  Then  three  additional  equa- 
tions like (2) are written out, where rs is replaced first by -m, then 


