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SURVEY PAPER

Multiplier and Gradient Methods!

Macenus R. HesTenes?

Abstract. The main purpose of this paper is to suggest a method for
finding the minimum of a function f(x) subject to the constraint g(x) = 0.
The method consists of replacing f by F = f+ Ag + $¢g? where ¢ is a
suitably large constant, and computing the appropriate value of the Lagrange
multiplier. Only the simplest algorithm is presented. The remaining part
of the paper is devoted to a survey of known methods for finding uncon-
strained minima, with special emphasis on the various gradient techniques
that are available. This includes Newton’s method and the method of
conjugate gradients,

1. Introduction

About twenty years ago, the author became interested in computational
methods for optimal control problems (Ref. 1). This interest was stimulated
by an attempt to compute the time-optimal path of an airplane from take-off
to level flight at a prescribed position and velocity. At that time, large-scale
digital-computing machines were not available. Computing had to be carried
out by analog computers or by mechanical desk computers. In Ref. 2, an
attempt was made to compute the time-optimal path for an airplane by
integrating the corresponding FEuler-Lagrange equations on an analog
computer (REAC). However, the differential equations were unstable and
the results were unsatisfactory. However, a good estimate could be found by
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hand computation using special properties of the problem. This experience
convinced the author that general procedures should be devised for obtaining
solutions or for improving estimates of solutions. Accordingly, the author
experimented with three methods, namely, Newton’s method, the gradient
method, and the method of penalty functions. Since he was restricted to the
use of hand computation, the author considered only simple variational
problems which possessed nonminimizing as well as minimizing extremals.
It was found that Newton’s method and the gradient method were very
effective (Refs. 3-5).

The author, however, had difficulties with the method of penalty functions
because of round-off errors. To obtain any accuracy to the solution of the
problem considered required carrying more significant figures than were
convenient in hand computation. Although the method of penalty functions
has been used with reasonable success in recent years, the author has always
felt that an improvement of the method could be made. The purpose of this
paper is to suggest a modification of the method of penalty functions which
we shall call the method of multipliers. In addition, we shall make some
remarks concerning Newton’s method, the method of gradients, and conjugate
gradients that may be useful.

2. Constrained and Unconstrained Minima

Before describing the method of multipliers, it is instructive to recall
a connection between constrained and unconstrained minima upon which the
method is based. We shall consider only the simplest case, in which a point x,
affords a minimum to a real-valued function f(x) = f(«%,..., ™) subject to

a single constraint
gx) =0 )

The extension to the case in which g is vector-valued is immediate. We
assume that f and g are of class C” and that the gradient

g'(%) = (%g(x)/ox")
of g is not zero at x,. Then, there exists a multiplier A such that, if we set
G = f 4 Ag, we have
G'(wo) =0,  glw) =0 @)

G'(xy, h) = Y (82GJow &xi) hiki =0 3)

.§=1
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for all & # 0 such that
gy, 1) =} (Oglag)ox’) I = g'(xq) b =0 “)
i=1
Here, g'(x,, #) is the first differential of g at x, and is the Cartesian inner
product of g'(x,) and /. Similarly, G"(x, , %) is the second differential of G at %, .
The point x, is said to be nonsingular in case
0*G|ox® ox? Og|Ox
oglox 0 70
at ¥ = x, . If x, is a nonsingular minimum point for f subject to g = 0, the
equality in (3) holds only if # = 0. This implies the existence of a positive
number ¢ such that
G'(%g , 1) 4 clg'(xo , W] > 0
for all 2 = 0. Setting
F=f+4+icg =G+ dcg®
it is seen that, at x = x,, we have
Fi(sy) = G'(x) = 0
Flay, B) = G'(xg, ) + [0, HE >0, %0

Here, we have used the fact that g(x,) = 0. In view of these relations, we see
that x, affords an unconstrained local minimum to F. This yields the following
theorem:

Theorem 2.1. If x, is a nonsingular minimum point of f subject to
g = 0, there exists a multiplier A and a constant ¢ such that x, affords an
unconstrained local minimum to the function

F—f+ X + beg?

Conversely, if g(x)) = 0 and %, affords a minimum to a function F of this
type, then x, affords a minimum to f subject to g = 0.
3. Method of Penalty Functions and Method of Multipliers

One of the popular methods of finding a constrained minimum point
is the method of penalty functions. For the problem considered in the last
section, this method seeks a minimum point x,, of the function

Jal®) = [ (%) + dng?(x)
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A limit point of the sequence {x,}, if it exists, is then the solution x, to our
problem. Moreover, inasmuch as

0= fn’(xfn) = fg(‘x’a} + ng(xn) &'(%y)

it is seen that, if g'(x,) # 0, then A, = ng(x,) converges to the corresponding
multiplier A for x, . It is a simple matter to formulate conditions which ensure
the existence of a minimum point x, for f,(x) on an open set S and the
convergence of the sequence {x,} to a point %, in .S which minimizes f on S
subject to g = 0. Observe that

f'n(x'n) =f(xn) + %ngz(xn) <fn(x0) = f(x()) (5)

If x, is a nonsingular solution, there are, by Theorem 2.1, a constant c,
a multiplier A, and a neighborhood NN of x, such that

S lowg) < () + Aglxa) + eg(xn) (6)

whenever x,, 1s in N. Combining (5) and (6), we see that

(n — ) £%(xa) < 2A8(xy)

whenever x, is in N. In the event that f'(x;) = 0, we have A = 0, since
2'(x,) # 0, by virtue of the nonsingularity of x,. In this event, x, = x, if
n > c¢ and x, is in N. Thus, the method of penalty functions is very effective
whenever f'(x;) = 0 and should be reasonably effective when f'(x,) is near
zero. However, in general, this is not the case, and the method becomes
sensitive to round-off errors in the term ng®(x). For large values of #, it is
difficult to obtain an appropriate numerical approximation of x, and, hence,
of x; .

In order to circumvent the numerical difficulty that may arise in the
method of penalty functions, the author suggests a simple modification. This
modified method is based on the theorem stated in the last section and will be
called the method of multipliers. In this method, we select a positive constant
¢ and consider the function

F(oe, ) = f (%) + Ag(x) + 2eg™()

The constant ¢, if chosen suitably large, is held fast. Let A, be an initial estimate
of A, and select a minimum point x; of F(x, A;). In general, having obtained an
estimate A, of A, we select x,, to minimize F(x, A,). Observe that

F'(%, ,An) = f'(%,) + (An -+ cg(xn))g’(xn) =0
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This suggests that we select

At = Ay A €,8(%0)

where 0 < ¢,, < ¢. Various rules can be given for selecting ¢, . For example,
we can choose ¢, = yc¢, where y is a positive constant, normally <1. Or we
can choose ¢, such that g(x,) g(x,,;) > 0. It is not difficult to give criteria
which ensure the convergence of the method for problems of this type.

In order to illustrate this method, consider the special case in which

f(®) = fw*dx — ab*x, g(x) = b*x

where A is a nonsingular symmetric matrix, & and x are column vectors
with & # 0, b* is the transpose of b, and « is a positive number. We assume
that x*A4x > 0 for all ¥ 5 0 such that g(x) = b*x = 0. The point x =0
minimizes f subject to g = 0, and A = « is the corresponding Lagrange
multiplier. Select ¢ such that

®*Ax - o(b*xP >0
for all x = 0 and set
Flx, 2) = f + X + g
The minimum point & of F(#, A) solves the equation
A — ob -+ (A + cb*x) b =0
The solution takes the form
Fmydlh,  y=(a— N +B), B=bA"

If one uses the method of multipliers with A, = 0 and A, ; = A, + ¢g(x,,),
it is found that

o = [of(1 + BT A7, Apyy = o — [af(1 + B)"]

Convergence is obtained if | 1 + ¢8| > 1. If the method of penalty functions
is used, we have

Xy = [of(1 + nf)] A7, nglx,) = anBj(1 + nB)

Of course, one would not use the method of multipliers or penalty functions
for this problem, since the solution is easily obtained by the Lagrange mul-
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tiplier rule. However, this example gives some indication of the nature of the
two methods in the general case, provided that we are close to a solution.

The reader will find it instructive to consider the two-dimensional cases
in which

fEy) =22~ —y, gxy)y=y o gxy)=y+)

The method of multipliers has the advantage that the coefficient of g*
need not be very large. It has the disadvantage that one needs to have an
initial estimate of the multiplier A. Perhaps, a combination of the method of
multipliers and the penalty-function method would be most effective. Begin
with the method of penalty functions so as to obtain an initial estimate of x,
and, from this, deduce an estimate of A. Then, switch to the method of
multipliers. The author has not had time to experiment with the method of
multipliers for general functions, but plans to do so in the near future.

4. Extensions to Variational and Optimal Control Problems

The method of penalty functions has been applied to a large class of
variational problems. It has been used, for example, to eliminate terminal
constraints or isoperimetric constraints. More recently, it has been used by
Balakrishnan (Ref. 6) to eliminate dynamic constraints. In each case, one can
modify the method of penalty functions to obtain a corresponding method
of multipliers. We shall give a heuristic description of how to formulate the
method of multipliers for the simple nonlinear optimal control problem with
fixed terminal and initial states.

We consider the following problem: Let £ denote a pair

£ (), w), 0<t<T

of state functions x%(¢) and control functions #*(¢) on a fixed interval 0 <t < 7.
We consider ¢ to be an arc in fxu-space. We make the usual continuity and
differentiability assumptions on «(f) and u(f). The class of arcs ¢ whose
elements (2, x(t), 2(2)) lie in a prescribed region in txu-space is denoted by %.
We denote by & the subclass of % having prescribed initial and terminal states
%(0) and %(T). Finally, we denote by ¥ the class of all arcs £ in & satisfying
the differential constraint

2 = fit, %, u)
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We suppose that there is a unique arc
& ml wl), 0<i<T

in % that minimizes a given integral

1) = j OT L(t, %(2), u(t)) dt

This problem becomes a classical problem of Lagrange with one variable
endpoint if we introduce the auxiliary state variable

¢
HE) = f@ u(s) ds, 0T

so that ¥(t) = u(t).

It has been shown by the author (Ref. 7) that, if the arc ¢, satisfies certain
standard sufficiency conditions for a strong relative minimum on €, there
exist multipliers p,(¢) and a function (¢, x, %, ) such that &, affords a local
minimum to the function

J=[ @ tals =)+l s -1 a

where 7 is summed over its range. The functions p,(¢) are the usual costate
functions associated with &, . In many cases, ¢ can be chosen to be a constant.
In particular, this is the case when one is concerned only with weak relative
minima.

This result suggests the following method of multipliers. Having chosen ¢
sufficiently large, hold ¢ fast and proceed as follows: Let p () be an estimate
of p(t) and let J(¢) be the integral obtained from [ by setting p(f) = p,(¢).
We then seek a minimum £, of ] (£) on #. This problem is a classical minimum
problem of the type considered by Tonelli and his school. Having obtained £,

determine a new set of multipliers p,,; by some reasonable rule. For example,
one can select

Dasi = pg + c(& —f)
evaluated along ¢, . Or one could let P, be a solution along £, of
ﬁz’ :Lmi _ij;:'

with suitable initial or terminal conditions.
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The author has not determined conditions under which this method
would be effective. It is to be expected that & exists and, if suitably strong
hypotheses are made, then §, exists and converges to ;. In the general case,
it is expected that one would have to enlarge the problem so as to include
generalized curves and relaxed controls.

5. Newton’s Method and Gradient Methods

In the preceding pages, it was shown that problems with constraints often
can be solved with the help of solutions of problems without constraints.
This section is devoted to methods for obtaining unconstrained minima. To
this end, let F(x) be a real-valued function on a normed linear space &. We
normally consider & to be Euclidian. We assume that F' possesses first and
second Frechet differentials F'(x, ) and F"(x, 2). We then have the Taylor
formula

F(x -+ ) = P(x, k) + R(x, h) %)
where
P(x, h) = F(x) -+ F'(x, h) + LF"(, ) (8)

Newton’s method for obtaining the minimum of F on an open set S of & can
be described as follows: Having obtained an estimate x, of the minimum
point ¥ of F on S, select #,, so as to minimize the function P(x, , #) and use
the formula

X1 = %p + By

to obtain a new estimate of X. This method converges quadratically to %
under the usual hypotheses on F”(x, k) if a suitable initial point x; is chosen.
The point £, satisfies the relation

F'(xp , h) 4 F"(x, , h,, h) =0, h arbitrary ©)

where F"(x, k, k) is the bilinear form associated with F”(x, k), namely, the
differential of F'(x, k) for fixed k. In the Euclidean case,

By = —K,F'(%,) (10)

where K, is the inverse of the matrix F"(x,) of second derivatives of F at x,, .
We have, accordingly, the iteration

Xy = Xy — KnF;(xn) (11)
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Quadratic convergence is assured if the matrix F"(x,), and, hence, also K, ,
is positive definite and the initial point x, is suitably chosen.

Newton’s method has the following geometric interpretation: Given
the point x, , approximate the level surface

Fx) = F(x,)

by the ellipsoid
P(xn s X xn) = F(xﬂ)

This ellipsoid is tangent to the level surface of F at x,, . Take the center x,,_;
of this ellipsoid as the new estimate of the minimum point &.

The difficulty encountered in Newton’s method lies in the determination
of the minimum point %, of P(x,,#). In the finite-dimensional case, the
matrix F"(x,) must be inverted. In infinite-dimensional cases, it involves the
solution of a linear boundary-value problem. For this reason, it is often
desirable to replace P(x,, , /) by a simpler function

Poh) = F(xy) + F' (%, B) + 30u(1)

where (k) is a positive-definite quadratic form. We then choose %, to
minimize Q, (). The ellipsoid

P(x — x,) = F(x,) (12)

is tangent to the level surface of F at x,, and its center yields the desired new
estimate x,,; = ¥, + £, of ¥ Again, in the finite-dimensional case, the
iteration takes the form (11), where K, is the inverse of the matrix associated
with Q,, .

If one selects O, to be of the form

On(x) = ¢yl x|

the surface (12) is a sphere. In this event, K, = ¢;'I and the iteration (11)
is the usual gradient method. If O, (k) = F'(x, , /), we have Newton’s method.
If K is an arbitrary positive-definite matrix, the iteration

Hpiq = Xy — anKF/(xn): a, > 0 (13)

can be considered to be a gradient method. This iteration is obtained if we
select

¥ = (K, y)
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as our inner product in place of the Cartesian inner product (x, y). In this
event, Q,(¥) = a;"'(x, x). The gradient g of F relative to the new inner
product {x, ¥> is given by the identity

F'(x, b) = {g, b) (14)

Hence, g = KF'(x). The iteration (13) is equivalent to the usual gradient
method in a suitably chosen coordinate system.

In the infinite-dimensional case, one should choose the inner product
(g, > such that (k, k) has the essential properties of F"(x, h). For example,
for the variational integral

A6 ~ [ 10,501 50)
one should select

Gy = sy o) + [ g0 iy

or its equivalent as the inner product instead of the more familiar

h
(g hy = [ g0y hit)

The reason for this choice becomes self evident when one attempts to construct
a gradient method for minimizing F(x).

6. Rayleigh-Ritz and Conjugate-Gradient Methods

The conjugate-gradient method can be introduced in many ways. In
this section, we show that conjugate-gradient and conjugate-direction methods
are variants of the Rayleigh—Ritz method. To this end, let & be a finite- or
infinite-dimensional, real Hilbert space with (x, y) as its inner product and
hall = 4/(x, x) as its norm. Let 4 be a positive-definite, self-adjoint, bounded
operator on &. Then,

(Ax,3) = (%, 4y), mx|? < (A%, x) < M| =[P

where m, M are suitably chosen positive constants. We seek a solution of the
linear system

Ax = b (15)
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where b is 2 given element in &. The solution & == 4~ of this equation
affords a minimum on & to the function

F(x) = HAx, x) — (b, x)
Observe that
F'(x, h) = (Ax — b, k) (16)

The gradient of F at x is therefore
Fla) = Ax — b (17)

The quantity r = —F’'(x) == b — Ax is called the residual at x and is also
called the negative gradient of F at x.

If K is a second positive-definite, bounded, self-adjoint operator on &,
then

Cxy = (K%, y) (18)

is a second inner product topologically equivalent to the first. The negative
gradient g of F at x relative to this new inner product is defined by the relation

F’(x, k) - ‘<g9 }3>
for all 4 in &. Hence,
g(x) = Kr(x) = —KF'(x)

The generalized gradient method for solving (15) accordingly takes the form
Xy = X + a, K1, , a, >0 (19)

where r, = —F'(x,) and a, is a suitably chosen scale factor. The choice
K = A~ would be the ideal choice for K. However, since 4~ is assumed to
be unknown, this choice is impossible. The conjugate-gradient methods yield
iterative methods for computing 4-L

Before considering the Rayleigh—Ritz method, it is convenient to recall
a theorem on the minimization of F on a set ¥ + %, where z is a fixed point
of &, & is a linear subspace of &, and z + Z is the set of all points x = 2z -+ y,
where vy is in 4.

Theorem 6.1. A point¥ = 2 + yin 2 + & minimizes Fon g + 4 if,
and only if, the negative gradient g(x¥) = — KF'(x) is orthogonal to & relative
to (18) or equivalently if, and only if, the residual #(¥) = —F'(X) is orthogonal
to # in the usual sense.
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In the general Rayleigh-Ritz method, we select a basis pg, py, Pssess
for &. The linear subspace generated by pg, py ..., Pr—q 18 denoted by Z, .
If &€ is n-dimensional, then #, = &. Let x, be a point in &. For example,
we may select x, = 0. Denote by x; the minimum point of F on x, + %, .
Then, the sequence {x,} converges to the desired solution ¥ = A~1. Of
course, if & is n-dimensional, then x, == 4~1b. At each step, x;, is an estimate
of ¥ and F(x;) is an estimate of the minimum value F(&). In applications, a wise
choice of basis { p;} often yields good estimates F(x;) of F(%) for small integers k.

The conjugate-direction method is the special case of the Rayleigh-Ritz
method in which the basis {p,} is chosen to be a conjugate basis, in the sense
that

(4p;,pe) =0, jFk

The advantage of this choice is that the point x;_, is related to x,, by the simple
formula

Xy = X + APy (20)

where
a, = ¢ufdy , dy = (Apw , pr)s ¢ = (e, Pr) = {8x» 1> (21)
ry = —F'(x,) = b — Axy, gy = Kry, (22)

Moreover, 7., can be computed by the formula
ey = 1y — apdpy, (23)
These formulas greatly simplify computations. It is easy to see that

(o1 > 05) = Breas 0 =0, <k (24)
Cp = (1/']. 9?1{.‘) = <g9 a?k>9 ] < k (2’5)

In fact, the formula for a;, can be obtained from (22) and the relation
(ria> pi) =0 (26)

The conjugate-direction method yields an explicit formula for the
inverse A—! of A. To see this, we associate with each vector p the operator
pp*|(Ap, p), which maps a vector x into the vector p( p, x)/(A4p, p). We set

B—1
B, = Y (pspi*/dy), d; = (4p; , ;)
i=0
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where {p;} is our conjugate basis. The operator
has the property that

Pupy=p;, j<k
Pkpf“_‘oa j>k

It follows that, if & is n-dimensional, then B, = A~% If & is infinite-dimen-
sional, then {B;} converges to A~ in the sense that {B, v} converges to A~y
for each y in &.

It is interesting to note that, if we set

Axy, = Kpyy — X = Gppe
AF}, = F'(xy) — F'(x) = a,Apy

then B;, can be put in the form

k-1

J=0

This formula is independent of the choice of the positive numbers
ay, @y ,..., @y . It follows that, if one is only concerned with the computation
of A~ the point x; need not minimize F on x, + %, . It must, however, be
on the line » = x;,_; + ap,_; .

By A% we mean the class of all vectors x = Ay, where y is in #. The
orthogonal complement € of 44 is called the A-orthogonal complement of 4.
We have (4y, ) = 0 whenever y is in # and z is in €. Given a point x, by
a (negative) conjugate gradient of F at x on ¥ relative to {y, &> we mean
a vector p in € such that

Fi(x, B) = —(1/B)}p, 1>

holds for all 4 in KA4%, where 8 is a positive number. We have introduced
the constant § for convenience in computations. It emphasizes that we are
interested in the direction of p and not its magnitude. It follows from this
definition that, if » = —F’(x), then

(p —PKr,z) =0, allzin A%
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The vector y = p — BKr is therefore in #. We have, accordingly, the simple
formula

p=BKr+y

for the conjugate gradient of p of F at K.

The Rayleigh-Ritz method becomes a conjugate-gradient method
relative to K if, at each step, p,, is the conjugate gradient of F at x, relative to
the A-orthogonal complement %, of %, . In this event, we have the convenient
formula

Prn = BieKripn -+ bipr s Py = Kr,
Here,

by = —Biu(Apy » Krypn)ldr = Bultraa » Krpa)le

and B, is an arbitrary positive number. In practice, the choices 8, = 1 and
B, = 1 — b, are perhaps the preferred choices for §y .

In the finite-dimensional case, any conjugate-direction method is a
conjugate-gradient method with a suitable choice of K. In fact, K can be
chosen so that 8, = 1. A similar result undoubtedly holds in the infinite-
dimensional case.

7. Conjugate-Gradient Algorithms

In the present section, it is convenient to use the symbol x*y for the
inner product (x, ¥). In a conjugate-gradient algorithm, the conjugate basis
{ps} is completely determined by the initial vector p, , the positive-definite
operator K, and the positive scale factor 8, for p; . Starting with a vector
1o 7 0 and p, = Kr,, B, = 1, we generate a sequence {p,} of conjugate
vectors by the algorithm

se = Aprs &= Knp 27
Prpn =75 — @S, DPra = Pue + bube (28)
where
a, = ¢/dy, dy = Pr*si s e = Pi’Tr = Buai Tk (29)
by = —Bulsi grra/d) = Bulringinler) = Criafen (30)
The numbers ay,, by, ¢ , dy, , By, are positive. If ry = —F’(x,), the iteration

Xpy1 = X + appy
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yields a minimizing sequence for . This sequence terminates in m < % steps
if & is of dimension n. The constant 8, in (27)-(30) is a scale factor for p,, .
For example, we can choose B, such that one has 8, =1, b, =1, or
B; = 1 — b, . This last relation is obtained by setting

e =& e, Be=allee Fye)s b = vea/ler T vraa) (31
We have the relations
o =pp*ry,  J<k (32)
P =0, k<jy {33)
pi¥Ap =0,  jFEk (34)
rKr, =0, £k (35)
r¥Ksy =0, jER k41 (36)
s*¥Ks, =0, j4+1<k (37)
In addition,
Pria = NP — mKApy —wipr 1, vy =0 (38)
where pu;, = B4, is a scale factor and
Ae = (BulBr-a) + by = s *Ksi/dy) (39)
vi = Brbpy/Bry = —pa(s ™ Kspy/dy ) (40)

Equations (38)—(40) can be used in place of (27)—(30) to generate the conjugate
basis {p;}. The equations given here can be obtained from the case K = I
by a transformation of variables.

Given p,, K, and ¢, = Ks,, the conjugate sequence {p,} can also be
generated by the algorithm

5 = Apy, dy = Py, e = g5 (41)
DPrir = Pr — Bidr » Br = dife (42)
Tpe1 = Kopyq -+ 4n o == diog/dy = —(5*Kspafer) (43)

Here, o, and 8, are determined by the relations

* __ * .
Prasr = 0, Grase = 0

If we wish, we can introduce a scale factor p, for ¢, by replacing the last
equation by

Grs1 = PrarKsipr + gy, o = pprifiya/prdy
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or by setting s, = p,Apy , &, = p;*s;/ps, . This does not alter p,, . If p, = Kr,,
the iteration (35)-(37) is equivalent to (27)-(30) with B, + b, = 1. As
described in the last section, the sequence of matrices {B,} generated by the
algorithm

B, =10, By = By + (prpr™[dr) (44)

determines 4% unless the algorithm terminates prematurely.
The iteration (41)-(43) can be put in another form. Starting with p, = 0,
M, = K, B, = 0, we generate p, , q; , M,, , B, as follows:

sy = Apy, qx = My, dy = pr*sy, ey = qi*s (45)
Prs1 = Pr — Badr » Br = difex (46)
My = My — (0™ [ex)s By = By + (pupr™ /) (47)

In this event, we have

MijxKSj, j>k

If the iteration does not terminate prematurely, we have M, = 0 if & is of
dimension # and lim M,x = O for each x otherwise. Setting

Hy, = M, + By

and using the relation Bys; = 0, we see that the algorithm (45)-(47) yields
the following algorithm. Starting with p, % 0 and Hy = K, set

sp = Apy, qr = Hysp» dy, = pp*sy er = gy (48)
D1 = Pr — Pl » Br = difey 49)
Hyi = Hy — (@195 ex) + (Prpr™/di) (50)

In the algorithms (45)-(47) and (48)~(50), one can replace s, and d, by
s, = ppApy, and d, = p.*s/p;, pp > 0, without altering py.y , Myy, By,
or Hy,, .

In general, the sequence {x;} defined by the recursion formula

ay, = x5 — BiF" (%) or xy, = xg — H (%)

is a minimizing sequence for F. This is always true if py = —KF'(x,). If no
round-off errors occur, the iteration terminates in m < % steps if & is of
dimension 7.
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We shall give one final algorithm for generating a conjugate basis. This
algorithm is equivalent to the preceding ones. We shall express the result in
terms of the original function F to be minimized. Having chosen an initial
point x, and the operators M, = K, By = 0, we iterate as follows

pp = —MF'(%), pp>0, p, arbitrary (51)
My == X T Pebrs S =F'(wp40) — F'(2) (52)
@ =M,  e=aq %,  dy=p"sile {53)
My = My — (ge92*[e),  Brya = By - (pupr™/dr) (54)

The relations (52) can be replaced by
Ny = %o FprPrs S =F(wp) — F(%) (35)

if one so desires, but we shall not do so here. The optimal choice for p;, is
the minimum point p = a; of F(x; + ppy). This algorithm with p, = ay, has
been given by Kelley and Myers. If we select p;, = a;, and replace M} by
H, = M, + B,,, we obtain Davidon’s method as given by Fletcher and
Powell. In these two cases, the sequence {x,} is a minimizing sequence for F.
In all cases, the sequences {y,} or {z;} defined by

i = % — BiF"(x), 2 = %y — Hpl' (%)

are minimizing sequences for F. In the n-dimensional case, there is an integer
m < n such that y,, = z,, is the solution to our problem.

In the n-dimensional case, the algorithm (51)-(54) with # steps applied
to an arbitrary function F can be looked upon as one Newton iteration. In
particular, if (55) is used in the iteration, the matrix B, is an estimate B{x,) of
the inverse of F"(x,). A repetition of the algorithm gives the sequence

Fpy = ¥ — B(&) F'(%), Xy == %y

as a gradient method. Of course, at any stage, one can use B(#,) = B(%,_;)
instead of computing B(¥,) by the algorithm (51)—(54).

The possibility of using an arbitrary scale factor p, in (51)-(54) was
suggested by a staternent in the invited address by B. Pschenichniy, USSR,
to the effect that he had devised a similar algorithm having this property.
For a discussion of conjugate-gradient and Davidon’s methods, the readers
should consult Refs, 8-13. Further references can be found in these papers.

8og/4/5~2
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