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Guaranteed-Stable Sliding DFT Algorithm With
Minimal Computational Requirements

Chun-Su Park

Abstract—The discrete Fourier transform (DFT) is the most
widely used technique for determining the frequency spectra of
digital signals. However, in the sliding transform scenario where
the transform window is shifted one sample at a time and the trans-
form process is repeated, the use of DFT becomes difficult due to
its heavy computational burden. This paper proposes an optimal
sliding DFT (oSDFT) algorithm that achieves both the lowest com-
putational requirement and the highest computational accuracy
among existing sliding DFT algorithms. The proposed oSDFT al-
gorithm directly computes the DFT bins of the shifted window by
simply adding (or subtracting) the bins of a previous window and
an updating vector. We show that the updating vector can be ef-
ficiently computed with a low complexity in the sliding transform
scenario. Our simulations demonstrate that the proposed algo-
rithm outperforms the existing sliding DFT algorithms in terms of
computational accuracy and processing time.

Index Terms—Discrete Fourier transform, sliding window, up-
dating vector, updating vector transform.

I. INTRODUCTION

THE Discrete Fourier Transform (DFT) is an orthogonal
transform which is practically very valuable for represent-

ing signals and images. The DFT has been widely used in many
real applications due to its good performance. For example,
the DFT has been applied in spectral analysis [1], audio pro-
cessing [2], big data analysis [3], image registration [4], super
resolution [5], texture synthesis [6], image denoising [7], and
object tracking [8], [9]. It is worthwhile to note that the DFT is
also used to efficiently solve partial differential equations and
perform other operations such as convolutions or multiplying
large integers [10], [11].

However, in some cases, the computation of the DFT is unac-
ceptably slow with respect to the application requirements [12]–
[16]. Further, the use of the DFT becomes even more difficult
in the sliding transform scenario where the transform window
is shifted one sample at a time and the transform process is
repeated. In the past years, numerous algorithms have been de-
veloped for the fast computation of the sliding DFT.

In [17], the sliding fast Fourier transform (SFFT) algorithm
was introduced, which calculates the bins of the shifted window
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by exploiting the delayed intermediate calculations of the previ-
ous window. In [18], the generalized SFFT (GSFFT) algorithm
was proposed for an efficient implementation of the hopping
FFT. The concept of the sliding DFT (SDFT) was introduced
in [19], which computes the DFT bins of the shifted window
based on the circular shift property of the DFT. Thereafter, in
2003, Jacobsen and Lyons gave a detailed account of the SDFT
in [20]. The SDFT reduces the computational load of the DFT
drastically; it requires, for a complex input signal, one com-
plex multiplication and two complex additions to compute each
bin of the shifted window. However, in practice, the complex
twiddle factor used in sliding transform operation is often repre-
sented by a floating-point format with finite precision. The errors
generated by the numerical rounding accumulate in the sliding
transform process, which can result in an unstable system.

Several algorithms were proposed to guarantee the stability
of the DFT in the sliding transform scenario [21]–[24], [24].
A stable SDFT algorithm that uses a simple recursive updating
scheme was proposed in [22]. This algorithm is realized us-
ing a periodically-time-varying system designed such that the
numerical errors introduced by finite precision arithmetic expo-
nentially decay to zero over time. Another stable SDFT, called
rSDFT, was proposed in [23]. This algorithm forces the pole to
be at a radius of r inside the unit circle by utilizing the damp-
ing factor r, thereby guaranteeing stability. However, the output
bin values of the rSDFT are different from those of the DFT
and the errors accumulate in the resulting outputs. The mod-
ulated SDFT (mSDFT) was introduced in [24]. The mSDFT
first generates a modulated sequence by multiplying the input
signal by the modulation sequence. Then, using the modulated
sequence, the mSDFT formulates the recurrence of the DFT
bins. By excluding the complex twiddle factor from the feed-
back of the resonator, the mSDFT has the pole located exactly
on the unit circle and is unconditionally stable. However, the
computational requirement of the mSDFT is more than double
that of the SDFT in [20]. Note that all of the above-mentioned
algorithms guarantee the stability at the cost of computational
complexity or computational accuracy.

Recently, the generalized SDFT (gSDFT) algorithm which is
the generalized version of the hopping DFT (HDFT) [25] was
introduced in our previous work [26]. The gSDFT investigates
the special relationship between the DFT bins, which can be ex-
pressed without using the imprecise twiddle factors. Based on
the relationship, the gSDFT derives a recurrence formula which
can be implemented with low computational complexity. In a re-
cent study [27], it was reported that the gSDFT algorithm offers
the lowest numerical error among the existing sliding transform
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algorithms including the rSDFT and mSDFT algorithms. This
means that the omission of the complex exponential in the feed-
back enhances the computational accuracy significantly. How-
ever, it was shown in [26] that the complexity of the gSDFT
increases sharply as the size of window increases.

In this paper, we propose an optimal SDFT (oSDFT) algo-
rithm with the lowest computational requirement among the
existing stable sliding DFT algorithms. Motivated by our previ-
ous work [26], the oSDFT obtains the bins of the shifted window
by updating those of a previous window instead of directly com-
puting them. Specifically, the oSDFT calculates the DFT bins of
the shifted window by simply adding (or subtracting) the bins
of a previous window and an updating vector. We demonstrate
that the updating vector can be obtained with low computation
complexity in the sliding transform scenario. The theoretical
analysis shows that the output of the proposed algorithm is
mathematically equivalent to that of the original DFT at all time
indexes. Further, the numerical errors of the oSDFT are exactly
the same as those of the state-of-the-art gSDFT algorithm.

The rest of this paper is organized as follows. In Section II,
we briefly review the conventional SDFT algorithm. Section III
derives the recursive relationship between adjacent DFT out-
puts and introduces the proposed oSDFT algorithm. Section IV
presents the fast implementation scheme of the updating vector
calculation. In Section V, we illustrate the overall process and
analyze the computational requirement of the proposed algo-
rithm. Comparative experimental results of the proposed and
conventional algorithms are presented in Section VI. Finally,
our conclusions are drawn in Section VII.

II. EXITING SDFT ALGORITHM

In the sliding transform, the transform is repeatedly per-
formed on a fixed-size window of the signal, which is con-
tinuously updated with new samples as the oldest ones are dis-
carded. Let us denote by x(n), n = 0, 1, 2, . . . , a complex input
signal which will be divided into overlapping windows of size
M . Further, let Xn (k), k = 0, 1, . . . ,M − 1, be the k-th bin of
the M -point DFT at time index n, which is represented by

Xn (k) =
M −1∑

m=0

x(n̂ + m)W−km
M (1)

where n̂ = n − M + 1 and WM = ej2π/M . Then, by the cir-
cular shift property, we can derive the following relationship
between successive DFT outputs:

Xn (k) =
M −1∑

m=0

x(n̂ + m)W−km
M

=
M −1∑

m=0

x(n̂ + m − 1)W−k(m−1)
M

+ x(n̂ + M − 1)W−k(M −1)
M − x(n̂ − 1)Wk

M

= Wk
M

M −1∑

m=0

x(n̂ + m − 1)W−km
M

+ x(n̂ + M − 1)Wk
M − x(n̂ − 1)Wk

M

= Wk
M (Xn−1(k) + x(n) − x(n − M)) (2)

where the periodicity property of the complex twiddle factor is
exploited (Wk+M

M = Wk
M ). Equation (2) represents the SDFT

algorithm introduced in [20]. The SDFT needs to multiply the
complex twiddle factor Wk

M to the DFT bin of the previous
window to obtain that of the shifted window. As mentioned, the
SDFT requires one complex multiplication and two complex
additions for computing each bin of the shifted window.

The SDFT has a marginally stable transfer function because
its pole lies on the unit circle in the z-domain [20]. In practice, a
complex twiddle factor in (2) is often represented by a floating-
point format with finite precision. This numerical rounding of
the complex twiddle factor might move the pole outside the
unit circle and result in an unstable system. Further, the com-
plex twiddle factor included in the recursive formula increases
the computational load of the sliding transform process. To ad-
dress these issues, we design a guaranteed-stable sliding DFT
filter with reduced computational complexity by excluding the
imprecise twiddle factor from the feedback loop.

III. PROPOSED OSDFT ALGORITHM

We derive the general formula between the DFT bins with
L-hop distance by extending the relationship between the bins
of successive windows. Let d(n) = x(n) − x(n − M), and
then the resultant formula is obtained by substituting Xn (k)
into Xn−1(k) L times in (2):

Xn (k) = Wk
M (Xn−1(k) + d(n))

= W 2k
M (Xn−2(k) + d(n − 1) + W−k

M d(n))

...

= WLk
M (Xn−L (k) + d(n − L + 1)

+ W−k
M d(n − L + 2) + · · · + W

−(L−1)k
M d(n)).

(3)

Let us define Dn (k) as the kth bin of the L-point updating
vector transform (UVT), which is represented by

Dn (k) =
L−1∑

m=0

d(ñ + m)W−mk
M (4)

where ñ = n − L + 1 and 0 ≤ k < M . Then, using this
notation, (3) is simplified as

Xn (k) = WLk
M (Xn−L (k) + Dn (k)). (5)

This leads to the result that the DFT outputs at time index n
can be directly computed from those at time index (n − L)
by exploiting Dn (k). In the next section, we describe how to
efficiently implement the UVT in (4).

Let us focus on the twiddle factor WLk
M which is multiplied

to the delayed output in the recurrence computation (5). We can
observe that the value of the twiddle factor is varied depending
on the time hop L. Here, we consider the case where the window
size M is a power of two and L is equal to M/4 (L = M/4). In
this case, from Euler’s formula, we have

W
M k/4
M = (cos(π/2) + j sin(π/2))k = jk . (6)
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TABLE I
RECURSIVE RELATIONSHIP BETWEEN REAL AND ODD PARTS OF Xn (k) AND Xn−M /4 (k)

Accordingly, (5) can be further simplified as

Xn (k) = jk (Xn−M/4(k) + Dn (k)). (7)

Then, from the property of j (j2 = −1), we obtain the following:
⎡

⎢⎢⎣

Xn (4i)
Xn (4i + 1)
Xn (4i + 2)
Xn (4i + 3)

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

Xn−M/4(4i) + Dn (4i)
j(Xn−M/4(4i + 1) + Dn (4i + 1))
−(Xn−M/4(4i + 2) + Dn (4i + 2))
−j(Xn−M/4(4i + 3) + Dn (4i + 3))

⎤

⎥⎥⎦ (8)

where i = 0, 1, . . . ,M/4 − 1. This forms the basis of an effi-
cient scheme for computing the DFT bins of the shifted win-
dow. Given the DFT bins of the previous window at time index
(n − M/4), the bins at time index n can be directly computed
without performing the multiplication by the twiddle factor. For
example, when k = 4i, the following relationship holds between
Xn (4i) and Xn−M/4(4i):

Re(Xn (4i)) + jIm(Xn (4i))

= Re(Xn−M/4(4i)) + Re(Dn (4i))

+ j[Im(Xn−M/4(4i)) + Im(Dn (4i))] (9)

where Re(·) and Im(·) denote the real and imaginary parts of
a complex number, respectively. Then, each part of Xn (4i) is
obtained as

{
Re(Xn (4i)) = Re(Xn−M/4(4i)) + Re(Dn (4i))
Im(Xn (4i)) = Im(Xn−M/4(4i)) + Im(Dn (4i)). (10)

Similarly, the efficient computation for the other cases, k =
4i + 1, 4i + 2, 4i + 3, can be derived. Table I summarizes the
recursive relationship between real and imaginary parts of
Xn (k) and Xn−M/4(k). These results demonstrate that only
two real additions are required for computing Xn (k) using
Xn−M/4(k) and Dn (k). Further, since the multiplication by
the imprecise twiddle factor is excluded from the recurrence
calculation, the numerical errors do not accumulate. Therefore,
the proposed oSDFT algorithm is stable.

IV. SLIDING UPDATING VECTOR TRANSFORM

In this section, we describe how to efficiently implement
Dn (k) in (4). As shown in (4), since the UVT is similar to the
existing DFT, traditional FFT algorithms can be used for its
fast implementation [28], [29]. We use the radix-2 decimation-
in-time (DIT) algorithm that divides a UVT of size L into two

interleaved UVTs of size L/2 at each decimation stage. Based on
the DIT approach, we express Dn (k) using decimated sequences
as follows:

Dn (k) =
L−1∑

m=0

d(ñ + m)W−mk
M

=
L/2−1∑

p=0

d(ñ + 2p)W−(2p)k
M

+
L/2−1∑

p=0

d(ñ + (2p + 1))W−(2p+1)k
M

= De
n (k) + W−k

M Do
n (k) (11)

where De
n (k) and Do

n (k), respectively, denote the even and odd
parts of Dn (k):

De
n (k) =

L/2−1∑

p=0

d(ñ + 2p)W−2pk
M (12)

and

Do
n (k) =

L/2−1∑

p=0

d(ñ + (2p + 1))W−2pk
M . (13)

Equation (11) implies that a length-L UVT bin can be obtained
by using two length-(L/2) UVT bins of the decimated se-
quences, {d(ñ), d(ñ + 2), . . . , d(ñ + L − 2)} and {d(ñ + 1),
d(ñ + 3), . . . , d(ñ + L − 1)}. The decimation process is re-
peated until the resulting sequences are reduced to one-point
sequences.

Let l, l = 0, . . . , log2 L − 1, be the decimation stage of the
UVT. Further, denote by Ψl a set of sequential decimation op-
erations which are recursively performed l times from an initial
seed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ0 = ∅
Ψ1 = {e, o}
Ψ2 = {ee, eo, oe, oo}

...
Ψl = {[sl−1 , e], [sl−1 , o] : ∀sl−1 ∈ Ψl−1}

(14)

where sl specifies a length-l sequential decimation operation and
[·, ·] denotes concatenation. Using these notations, the recursive
relationship in (11) can be generally rewritten as

Dsl
n (k) = D[sl ,e]

n (k) + W−2 l k
M D[sl ,o]

n (k) (15)
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Fig. 1. Decimation process of the single-bin SUVT, where only the solid lines need to be calculated.

where D
[sl ,e]
n (k) and D

[sl ,o]
n (k) are the even and odd parts of

Dsl
n (k), respectively. For example, De

n (k) is decimated as

De
n (k) = Dee

n (k) + W−2k
M Deo

n (k). (16)

During the sliding transform process, the UVT needs to be re-
peatedly computed at each time index. Thus, the computational
requirement of the UVT can be reduced further if the UVT bins
of the current window can be obtained by exploiting the inter-
mediate calculations of previous windows. Let ñsl

, sl ∈ Ψl , be
the time index of the first element of the decimated sequence
used for computing Dsl

n (k). From its definition, we derive that
the UVTs between adjacent time indexes have the following
relationship:

D[sl ,e]
n (k) =

L/2 l −1∑

p=0

d(ñsl
+ 2l · 2p)W−2( l + 1 ) pk

M

=
L/2 l −1∑

p=0

d(ñsl
− 2l + 2l(2p + 1))W−2( l + 1 ) pk

M

= D
[sl ,o]
n−2 l (k). (17)

The above result presents that D
[sl ,e]
n (k) is completely identical

to D
[sl ,o]
n−2 l (k). Then, from (15) and (17), the decimation process

can be represented by

Dsl
n (k) = D

[sl ,o]
n−2 l (k) + W−2 l k

M D[sl ,o]
n . (18)

This is an important fact to be considered because the inter-
mediate calculations of previous windows can be reused for the
current window without losing computational accuracy. At each
decimation stage, we need to compute only the odd part in a re-
cursive manner and the even part can be simply copied from
the precalculated intermediate result of a previous window. On
the basis of these findings, we propose a sliding UVT (SUVT)
algorithm.

Equation (18) directly leads to the recursive filter structure
for computing a single-bin SUVT shown in Fig. 1. At deci-
mation stage l, the proposed SUVT algorithm first computes
D

[sl ,o]
n using the DIT approach. Then, according to (18), the

UVT output Dsl
n (k) is obtained using D

[sl ,o]
n and D

[sl ,o]
n−2 l (k),

where D
[sl ,o]
n−2 l (k) has already been obtained at window position

(n − 2l). The price to be paid for this strategy is the additional
memory to maintain the necessary intermediate calculations of
the previous windows.

The SUVT for computing all bins of the shifted window can
be best explained by referring to the butterfly structure shown
in Fig. 2. For simplicity of explanation, the size of the sliding
window is assumed to be M = 32. Assume that all calcula-
tions in this structure have been already performed at previous
window positions and the results are available at all points of
the structure. We see from Fig. 2 that, when the new sample,
d(ñ + L − 1), enters and the oldest sample, d(ñ − 1), leaves
to update the structure, only the butterflies highlighted by filled
circles need to be calculated. The calculations related to the rest
of the butterflies are available because they are delayed results
of the highlighted butterflies. It is worthwhile to note that the
proposed oSDFT algorithm has the same precision as the tra-
ditional FFT because the twiddle factors used in the SUVT are
identical to those used in the traditional butterfly-based FFT
algorithm [29].

We now focus our attention on the fast implementation of the
last decimation stage (l = log2 L − 1). As shown in Fig. 2, four
intermediate calculations, I0 , I1 , I2 , and I3 , need to be computed
at the last stage regardless of window size. The intermediate
calculations are obtained by multiplying the new sample d(ñ +
L − 1) by different twiddle factors as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I0 = W 0
M d(ñ + L − 1) = d(ñ + L − 1)

I1 = W
−M/8
M d(ñ + L − 1)

I2 = W
−M/4
M d(ñ + L − 1) = −jI0

I3 = W
−3M/8
M d(ñ + L − 1) = −jI1

(19)

where W 0
M = 1, W

−M/4
M = −j, and W

−3M/8
M = −jW

−M/8
M .

Here, we see that I0 is equal to the input sample d(ñ + L − 1).
Further, each part of I2 can be obtained using I0 as follows:

{
Re(I2) = Im(I0) = Im(d(ñ + L − 1))
Im(I2) = −Re(I0) = −Re(d(ñ + L − 1)) (20)

where I2 = −jI0 . Similarly, I3 can be obtained using I1 . There-
fore, we need to compute only I1 at the last decimation stage.
We introduce a fast implementation scheme for the computa-
tion of I1 . Since the real and imaginary parts of W

−M/8
M are
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Fig. 2. Graphical explanation of SUVT for M = 32 and L = 8, where solid
and dotted lines indicate plus and minus signs, respectively. Only the butterflies
highlighted by filled circles need to be calculated. At the last decimation stage
(l = 2), four intermediate calculations, I0 , I1 , I2 , and I3 , are computed using
the fast implementation scheme.

identical, I1 can be simply computed as
{

Re(I1) = α[Re(d(n̂ + L − 1)) − Im(d(n̂ + L − 1))]
Im(I1) = α[Re(d(n̂ + L − 1)) + Im(d(n̂ + L − 1))] (21)

where α = Re(W−M/8
M ) = Im(W−M/8

M ). This means that we
can compute I1 by only two real multiplications and two real
additions at the last stage of the decimation.

V. OVERALL PROCESS AND COMPLEXITY ANALYSIS

The proposed oSDFT algorithm repeatedly produces the DFT
outputs by moving the fixed-size window one sample at a time.
For simplicity of explanation, we consider the case where all
DFT bins of the shifted window are computed. At the current
time index n, the overall algorithm for window size M proceeds
as follows:

a) Compute d(n) = x(n) − x(n − M) using the input sam-
ples. Only one complex addition is required in this step.

b) Compute the intermediate calculations, I0 , I1 , I2 , and
I3 , using the fast implementation schemes in (19), (20),

TABLE II
COMPUTATIONAL REQUIREMENT FOR COMPUTING ALL BINS OF THE

WINDOW OF SIZE M

and (21). Using the results, the last decimation stage
(l = log2 L − 1) is performed. Two real multiplications,
two real additions, and eight complex additions are re-
quired in this step.

c) According to (18), compute Dn (k) using the re-
cursive relationship. At the decimation stage l, l =
0, 1, . . . , log2 L − 2, M/2(l+1) complex multiplications
and M/2l complex additions are required. In total,
this step requires (M − 8) complex multiplications and
(2M − 16) complex additions.

d) Calculate the DFT Xn (k) using Xn−M/4(k) and Dn (k),
where Xn−M/4(k) is precalculated at the previous win-
dow position (n − M/4). This step requires M complex
additions. Note that additional memory is required to store
the DFT bins of the previous windows.

The total computational requirement of the proposed oSDFT
is summarized as

RM = 4M − 30 (22)

and

RA = 8M − 28 (23)

where RM and RA , respectively, denote the numbers of real
multiplications and real additions. Here, one complex addition
is counted as two real additions and one complex multiplica-
tion is counted as four real multiplications and two real addi-
tions [30], [31].

A computation requirements of the FFT [29], rSDFT [23],
mSDFT [24], gSDFT [26], and oSDFT algorithms are presented
in Table II. Further, in order to show the results more clearly, we
present RM and RA of each algorithms with varying window
sizes in Fig. 3. In particular, when the window size is equal to 16,
the oSDFT algorithm reduces the number of multiplications by
73.44%, 64.58%, 82.30%, and 29.17% as compared to the FFT,
rSDFT, mSDFT, and gSDFT, respectively. As shown in Fig. 3,
also the gSDFT shows a relatively good performance in terms
of the computation requirement. However, the computational
complexity of the gSDFT increases sharply as the size of win-
dow increases. Specifically, when the window size is larger than
or equal to 256, the number of multiplications of the gSDFT
is larger than that of the rSDFT. On the contrary, the oSDFT
consistently outperforms the existing algorithms in terms of the
computational complexity, i.e., the number of multiplications of
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Fig. 3. Computational comparison with varying window sizes. (a) RM . (b) RA .

TABLE III
ADDITIONAL MEMORY REQUIREMENT FOR PERFORMING

LENGTH-M TRANSFORM

the oSDFTis the lowest among the existing algorithms regard-
less of window sizes. Therefore, for applications that need to
perform the sliding DFT, we strongly recommend the use of the
oSDFT algorithm.

Further, we present the memory requirements of all the algo-
rithms in Table III. For each algorithm, we examine the amount
of memory required for performing the length-M transform re-
peatedly. For the sake of the clarity, the memory to store the
input and output signals is not considered. Table III shows that
the FFT, gSDFT, and oSDFT algorithms need a relatively large
amount of memory as compared to the rSDFT and mSDFT al-
gorithms. Note that, in the sliding transform scenario, the size
of the transform window is usually much smaller than those of
the input and output signals. Therefore, in general, the memory
overhead of the sliding transform algorithms may not be a big
burden for real-world applications.

It is natural that sliding transform algorithms including oS-
DFT can be adopted only when the output bins of previous
windows can be used in the computation process of the current
window. For the applications where the precalculated output
bins cannot be accessed, traditional fast FFT algorithms [32]–
[35] should be used instead of the sliding transform algorithms.

Note that, even when only a single output bin needs to be
computed, the gSDFT and oSDFT algorithms should compute
all the butterflies related to the particular output bin. On the
contrary, the rSDFT and mSDFT that do not exploit the butterfly
structure obtain each output independently. Therefore, in this
case, the rSDFT and mSDFT are preferred.

VI. EXPERIMENTAL RESULTS

We evaluated the efficiency of the proposed oSDFT by com-
paring it with existing sliding DFT algorithms including the
FFT [29], rSDFT [23], mSDFT [24], and gSDFT [26]. We first
investigated the numerical errors generated by the sliding DFT
algorithms. Next, we measured the processing times of the al-
gorithms to demonstrate the practical usage of the algorithms.
In our simulations, we used a complex test signal which was
zero-mean Gaussian noise with a standard deviation equal to
one. The simulation was performed in 64-bit double-precision
floating-point arithmetic and the window size was set to 16 and
32 [36]–[38]. All algorithms were implemented using a highly
efficient ANSI-C code and the performance was evaluated on
an Intel i7 3.4GHz CPU with 16 GB RAM.

A. Numerical Error Analysis

We analyze the numerical errors of the algorithms by measur-
ing their accumulated errors generated in the sliding transform
process. Similar to the simulations in [26], in order to accumu-
late the numerical errors, we repeat the sliding transform 106

times by moving the transform window one sample at a time.
After the error accumulation, we calculate the numerical errors
at each time index. The numerical error En at time index n is
calculated as

En =
M −1∑

k=0

|XF F T
n (k) − XAlgorithm

n (k)| (24)

where XF F T
n (k) represents the k-th bin of the standard FFT [29]

and XAlgorithm
n (k) is the k-th bin of each algorithm. To present

the results clearly, we compute the average numerical error Ēn

over 64 time indexes after the error accumulation process:

Ē =
∑n=106 +63

n=106 En

64
. (25)

Table IV lists the measured results of all algorithms. Table IV
shows that the mSDFT, gSDFT, and oSDFT algorithms signif-
icantly reduce the numerical errors as compared to the rSDFT,
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TABLE IV
NUMERICAL ERRORS (Ē’S) OF THE STABLE SDFT ALGORITHMS

TABLE V
PROCESSING TIMES OF THE EXISTING ALGORITHMS FOR THE COMPLEX TEST

SIGNAL OF LENGTH 106

where the damping factor r of the rSDFT is set to 0.9999999999.
In our simulations, when the window size is equal to 16, Ē’s
of the rSDFT, mSDFT, gSDFT, and oSDFT are 1.05 × 10−7 ,
7.37 × 10−12 , 4.75 × 10−12 , and 4.75 × 10−12 , respectively.
Further, E’s of all algorithms increase as the window size
increases. For M = 32, Ē’s of the rSDFT, mSDFT, gSDFT,
and oSDFT are 6.99 × 10−7 , 2.29 × 10−11 , 8.80 × 10−12 , and
8.80 × 10−12 , respectively. In all simulations, we observe that
the error of the oSDFT is the same as that of the state-of-the-art
gSDFT. This is because the oSDFT and gSDFT adopts the same
recurrence computation structure which efficiently suppresses
the error accumulation. In Table IV, the errors of the oSDFT
and gSDFT are consistently smaller than those of the rSDFT
and mSDFT. This leads to the result that the oSDFT and gS-
DFT outperform the other algorithms in terms of computational
accuracy.

B. Processing Time Comparison

We next measure the processing time of each algorithm when
all DFT bins are computed. The processing times are measured
using the complex test signal of length 106 and the results are
presented in Table V. The proposed algorithm can achieve sig-
nificant time savings as compared to the FFT, rSDFT, mSDFT,
and gSDFT algorithms. We compute the processing time savings
of the proposed oSDFT as compared to the existing algorithms
as

Time saving(%) =
Talgorithm − ToSDF T

Talgorithm
× 100 (26)

where ToSDF T denotes the measured processing time of the
oSDFT and Talgorithm denotes the measured time of each al-
gorithm. For the window size 16, the processing time savings
of the oSDFT are 54.08%, 16.60%, 46.75%, and 10.21% as
compared to the FFT, rSDFT, mSDFT, and gSDFT algorithms,
respectively. In Table V, we can see that the processing time of

the oSDFT is even shorter than that of the gSDFT. This means
that the proposed fast implementation scheme for the last dec-
imation stage efficiently reduces the computation load of the
sliding transform.

In our implementation, when the window size is equal to 32,
the processing time of the gSDFT is slight higher than of the
rSDFT. On contrary, the oSDFT consistently outperforms
the other algorithms in terms of processing time. In this
case (M = 32), the proposed oSDFT accelerates the sliding
transform process by 57.02%, 7.51%, 39.77%, and 9.38% as
compared to the FFT, rSDFT, mSDFT, and gSDFT algorithms,
respectively. Indeed, the proposed method performs better than
the other algorithms consistently. In our simulation, the process-
ing time of the mSDFT is relatively longer than the other algo-
rithms including the rSDFT, gSDFT, and oSDFT. It is observed
in Table V that all the sliding SDFT algorithms consistently per-
form better than the FFT for both the window sizes of 16 and 32.

VII. CONCLUSIONS

A new stable SDFT algorithm with reduced computational
complexity was presented for the fast implementation of the
DFT on sliding windows. We first analyzed the recursive re-
lationship between the DFT bins of adjacent windows. Then,
on the basis of our analysis, we proposed a fast computational
algorithm that recursively calculates the DFT bins of the shifted
window by simply adding (or subtracting) the bins of a previ-
ous window and an updating vector. Through the simulations,
we demonstrated that the proposed method consistently outper-
forms the other algorithms in terms of computational accuracy
and processing time.
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