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Introduction

0.1. The Semiconductor Industry
Semiconductor devices such as diodes, transistors and integrated circuits can be found everywhere in our daily 
lives, in Walkman, televisions, automobiles, washing machines and computers. We have come to rely on them 
and increasingly have come to expect higher performance at lower cost.

Personal computers clearly illustrate this trend. Anyone who wants to replace a three to five year old computer 
finds that the trade-in value of his or her computer is surprising low. On the bright side, one finds that the 
complexity and performance of the today’s personal computers vastly exceeds that of their old computer and 
that for about the same purchase price, adjusted for inflation.

While this economic reality reflects the massive growth of the industry, it is hard to even imagine a similar 
growth in any other industry. For instance, in the automobile industry, no one would even expect a five times 
faster car with a five times larger capacity at the same price when comparing to what was offered five years 
ago. Nevertheless, when it comes to personal computers, such expectations are very realistic.

The essential fact which has driven the successful growth of the computer industry is that through industrial 
skill and technological advances one manages to make smaller and smaller transistors. These devices deliver 
year after year better performance while consuming less power and because of their smaller size they can also 
be manufactured at a lower cost per device.
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Introduction

0.2. Purpose and Goal of the Text
The purpose of this text is to explore the internal behavior of semiconductor devices, so that we can 
understand the relation between the device geometry and material parameters on one hand and the resulting 
electrical characteristics on the other hand.

This text provides the link between the physics of semiconductors and the design of electronic circuits. The 
material covered in this text is therefore required to successfully design CMOS-based integrated circuits.
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Introduction

0.3. The Primary Focus: The MOSFET and CMOS Integrated 
Circuits
The Metal-Oxide-Silicon Field-Effect-Transistor (MOSFET) is the main subject of this text, since it is already the 
prevailing device in microprocessors and memory circuits. In addition, the MOSFET is increasingly used in 
areas as diverse as mainframe computers and power electronics. The MOSFET’s advantages over other types 
of devices are its mature fabrication technology, its successful scaling characteristics and the combination of 
complementary MOSFETs yielding CMOS circuits.

The fabrication process of silicon devices has evolved over the last 25 years into a mature, reproducible and 
reliable integrated circuit manufacturing technology. While the focus in this text is on individual devices, one 
must realize that the manufacturability of millions of such devices on a single substrate is a minimum 
requirement in today’s industry. Silicon has evolved as the material of choice for such devices, for a large part 
because of its stable oxide, silicon dioxide (SiO2), which is used as an insulator, as a surface passivation layer 
and as a superior gate dielectric.

The scaling of MOSFETs started in the seventies. Since then, the initial 10 micron gatelength of the devices 
was gradually reduced by about a factor two every five years, while in 2000 MOSFETs with a 0.18 micron 
gatelength were manufactured on a large scale. This scaling is expected to continue well into the 21st century, 
as devices with a gatelength smaller than 30 nm have already been demonstrated. While the size reduction is a 
minimum condition when scaling MOSFETs, successful scaling also requires the reduction of all the other 
dimensions of the device so that the device indeed delivers superior performance. Devices with record gate 
lengths are typically not fully scaled, so that several years go by until the large-scale production of such device 
takes place.

The combination of complementary MOSFETs in logic circuits also called CMOS circuits has the unique 
advantage that carriers only flow through the devices when the logic circuit changes its logic state. Therefore, 
there is no associated power dissipation if the logic state must not be changed. The use of CMOS circuits 
immediately reduces the overall power dissipation by a factor ten, since less that one out of ten gates of a large 
logic circuit switch at any given time.
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0.4 Applications illustrated with Computer-generated Animations

Select from the choices on the right 

Use the links on top of the page
to go back to the book 

Visit dominion.colorado.edu for more info 

 

Short Description (row-by-row)

MOSFET The Metal-Oxide-Silicon Field-Effect-
Transistor can be found in all electronic devices and 
systems. It is the primary active element that acts as a 
switch, logic element or amplifier. 

Laser diode Laser diodes can be found in CDROM 
drives, DVD players and barcode scanners. They 
provide a compact and efficient source of coherent 
light. 

Photodiode Photodiodes convert light to an electrical 
signal. They act as detectors in CDROM drives, DVD 
players and barcode scanners and represent the key 
functional element in solar panels, scanners and digital 
cameras. 

Wireless Communication Wireless communication is 
obtained by sending radio frequency (RF) signals 
between the base station and the mobile unit (cell 
phones). A small yet powerful RF amplifier in the cell 
phone generates a signal that can be received at the 
base station. 

Digital Light Projector Digital light projectors contain 
millions of tiny mirrors that enable to project a digital 
image on a screen. 

Optoelectronic Transmitter/Receiver Optoelectronic 
transmitters and receivers provide the infra-red signals 
that can propagate over large distances along optical 
fibers. These enable rapid transmission of large 
amount of digital information across the world through 
the internet. 
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Chapter 1: Review of Modern Physics

1.1 Introduction

The fundamentals of semiconductors are typically found in textbooks discussing quantum mechanics, electro-
magnetics, solid-state physics and statistical thermodynamics. The purpose of this chapter is to review the 
physical concepts, which are needed to understand the semiconductor fundamentals of semiconductor 
devices. While an attempt was made to make this section comprehensible even to readers with a minimal 
background in the different areas of physics, readers are still referred to the bibliography for a more thorough 
treatment of this material. Readers with sufficient background in modern physics can skip this chapter without 
loss of continuity.
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Chapter 1: Review of Modern Physics

1.2 Quantum Mechanics
1.2.1. Particle-wave duality
1.2.2. The photo-electric effect
1.2.3. Blackbody radiation
1.2.4. The Bohr model
1.2.5. Schrödinger's equation
1.2.6. Pauli exclusion principle
1.2.7. Electronic configuration of the elements

Quantum mechanics emerged in the beginning of the twentieth century as a new discipline because of the 
need to describe phenomena, which could not be explained using Newtonian mechanics or classical 
electromagnetic theory. These phenomena include the photoelectric effect, blackbody radiation and the rather 
complex radiation from an excited hydrogen gas. It is these and other experimental observations which lead to 
the concepts of quantization of light into photons, the particle-wave duality, the de Broglie wavelength and the 
fundamental equation describing quantum mechanics, namely the Schrödinger equation. This section provides 
an introductory description of these concepts and a discussion of the energy levels of an infinite one-
dimensional quantum well and those of the hydrogen atom. 

1.2.1 Particle-wave duality

Quantum mechanics acknowledges the fact that particles exhibit wave properties. For instance, particles can 
produce interference patterns and can penetrate or "tunnel" through potential barriers. Neither of these effects 
can be explained using Newtonian mechanics. Photons on the other hand can behave as particles with well-
defined energy. These observations blur the classical distinction between waves and particles. Two specific 
experiments demonstrate the particle-like behavior of light, namely the photoelectric effect and blackbody 
radiation. Both can only be explained by treating photons as discrete particles whose energy is proportional to 
the frequency of the light. The emission spectrum of an excited hydrogen gas demonstrates that electrons 
confined to an atom can only have discrete energies. Niels Bohr explained the emission spectrum by assuming 
that the wavelength of an electron wave is inversely proportional to the electron momentum. 
The particle and the wave picture are both simplified forms of the wave packet description, a localized wave 
consisting of a combination of plane waves with different wavelength. As the range of wavelength is 
compressed to a single value, the wave becomes a plane wave at a single frequency and yields the wave 
picture. As the range of wavelength is increased, the size of the wave packet is reduced, yielding a localized 
particle.

1.2.2 The photo-electric effect
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The photoelectric effect is by now the "classic" experiment, which demonstrates the quantized nature of light: 
when applying monochromatic light to a metal in vacuum one finds that electrons are released from the metal. 
This experiment confirms the notion that electrons are confined to the metal, but can escape when provided 
sufficient energy, for instance in the form of light. However, the surprising fact is that when illuminating with 
long wavelengths (typically larger than 400 nm) no electrons are emitted from the metal even if the light 
intensity is increased. On the other hand, one easily observes electron emission at ultra-violet wavelengths for 
which the number of electrons emitted does vary with the light intensity. A more detailed analysis reveals that 
the maximum kinetic energy of the emitted electrons varies linearly with the inverse of the wavelength, for 
wavelengths shorter than the maximum wavelength.
The experiment is illustrated with Figure 1.2.1: 

Figure 1.2.1.: Experimental set-up to measure the photoelectric effect.
The experimental apparatus consists of two metal electrodes within a vacuum chamber. Light is incident on 
one of two electrodes to which an external voltage is applied. The external voltage is adjusted so that the 
current due to the photo-emitted electrons becomes zero. This voltage corresponds to the maximum kinetic 
energy, K.E., of the electrons in units of electron volt. That voltage is measured for different wavelengths and is 
plotted as a function of the inverse of the wavelength as shown in Figure 1.2.2. The resulting graph is a straight 
line.
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Figure 1.2.2 : Maximum kinetic energy, K.E., of electrons emitted from a metal upon illumination with photon 
energy, Eph. The energy is plotted versus the inverse of the wavelength of the light.

Albert Einstein explained this experiment by postulating that the energy of light is quantized. He assumed that 
light consists of individual particles called photons, so that the kinetic energy of the electrons, K.E., equals the 
energy of the photons, Eph, minus the energy, qΦM, required to extract the electrons from the metal. The 
workfunction, ΦM, therefore quantifies the potential, which the electrons have to overcome to leave the metal. 
The slope of the curve was measured to be 1.24 eV/micron, which yielded the following relation for the photon 
energy, Eph: 

(1.2.1)

where h is Planck's constant, ν is the frequency of the light, c is the speed of light in vacuum and λ is the 
wavelength of the light. 
While other light-related phenomena such as the interference of two coherent light beams demonstrate the 
wave characteristics of light, it is the photoelectric effect, which demonstrates the particle-like behavior of light. 
These experiments lead to the particle-wave duality concept, namely that particles observed in an appropriate 
environment behave as waves, while waves can also behave as particles. This concept applies to all waves 
and particles. For instance, coherent electron beams also yield interference patterns similar to those of light 
beams. 
It is the wave-like behavior of particles, which led to the de Broglie wavelength: since particles have wave-like 
properties, there is an associated wavelength, which is called the de Broglie wavelength and is given by: 

(1.2.2)
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where λ is the wavelength, h is Planck's constant and p is the particle momentum. This expression enables a 
correct calculation of the ground energy of an electron in a hydrogen atom using the Bohr model described in 
Section 1.2.4. One can also show that the same expression applies to photons by combining equation (1.2.1) 
with Eph = p c.

Example 1.1
 

A metal has a workfunction of 4.3 V. What is the minimum photon energy in Joule to emit an 
electron from this metal through the photo-electric effect? What are the photon frequency in 
Terahertz and the photon wavelength in micrometer? What is the corresponding photon 
momentum? What is the velocity of a free electron with the same momentum?

Solution The minumum photon energy, Eph, equals the workfunction, ΦM, in units of electron volt or 4.3 
eV. This also equals:

The corresponding photon frequency is: 

The corresponding wavelength equals:

The photon momentum, p, is: 

And the velocity, v, of a free electron with the same momentum equals:

Where m0 is the free electron mass.

1.2.3 Blackbody radiation
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Another experiment which could not be explained without quantum mechanics is the blackbody radiation 
experiment: By heating an object to high temperatures one finds that it radiates energy in the form of infra-red, 
visible and ultra-violet light. The appearance is that of a red glow at temperatures around 800° C which 
becomes brighter at higher temperatures and eventually looks like white light. The spectrum of the radiation is 
continuous, which led scientists to initially believe that classical electro-magnetic theory should apply. However, 
all attempts to describe this phenomenon failed until Max Planck developed the blackbody radiation theory 
based on the assumption that the energy associated with light is quantized and the energy quantum or photon 
energy equals: 

(1.2.3)

Where  is the reduced Planck's constant (= h/2π), and ω is the radial frequency (= 2π ν). 
The spectral density, uω, or the energy density per unit volume and per unit frequency is given by:

(1.2.4)

Where k is Boltzmann's constant and T is the temperature. The spectral density is shown versus energy in 
Figure 1.2.3. 

Figure 1.2.3: Spectral density of a blackbody at 2000, 3000, 4000 and 5000 K versus energy. 

The peak value of the blackbody radiation occurs at 2.82 kT and increases with the third power of the 
temperature. Radiation from the sun closely fits that of a black body at 5800 K.
Example 1.2

 
The spectral density of the sun peaks at a wavelength of 900 nm. If the sun behaves as a 
black body, what is the temperature of the sun?
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Solution A wavelength of 900 nm corresponds to a photon energy of: 

Since the peak of the spectral density occurs at 2.82 kT, the corresponding temperature 
equals: 

1.2.4 The Bohr model

The spectrum of electromagnetic radiation from an excited hydrogen gas was yet another experiment, which 
was difficult to explain since it is discreet rather than continuous. The emitted wavelengths were early on 
associated with a set of discreet energy levels En described by: 

(1.2.5)

and the emitted photon energies equal the energy difference released when an electron makes a transition 
from a higher energy Ei to a lower energy Ej.

(1.2.6)

The maximum photon energy emitted from a hydrogen atom equals 13.6 eV. This energy is also called one 
Rydberg or one atomic unit. The electron transitions and the resulting photon energies are further illustrated by 
Figure 1.2.4.
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Figure 1.2.4 : Energy levels and possible electronic transitions in a hydrogen atom. Shown are the first six 
energy levels, as well as six possible transitions involving the lowest energy level (n = 1) 

However, there was no explanation why the possible energy values were not continuous. No classical theory 
based on Newtonian mechanics could provide such spectrum. Further more, there was no theory, which could 
explain these specific values.
Niels Bohr provided a part of the puzzle. He assumed that electrons move along a circular trajectory around the 
proton like the earth around the sun, as shown in Figure 1.2.5.

Figure 1.2.5: Trajectory of an electron in a hydrogen atom as used in the Bohr model.
He also assumed that electrons behave within the hydrogen atom as a wave rather than a particle. Therefore, 
the orbit-like electron trajectories around the proton are limited to those with a length, which equals an integer 
number of wavelengths so that

(1.2.7)
where r is the radius of the circular electron trajectory and n is a positive integer. The Bohr model also assumes 
that the momentum of the particle is linked to the de Broglie wavelength (equation (1.2.2)) 

The model further assumes a circular trajectory and that the centrifugal force equals the electrostatic force, or: 

(1.2.8)

Solving for the radius of the trajectory one finds the Bohr radius, a0: 

(1.2.9)

and the corresponding energy is obtained by adding the kinetic energy and the potential energy of the particle, 
yielding: 

(1.2.10)

Where the potential energy is the electrostatic potential of the proton:

(1.2.11)

Note that all the possible energy values are negative. Electrons with positive energy are not bound to the 
proton and behave as free electrons. 
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The Bohr model does provide the correct electron energies. However, it leaves many unanswered questions 
and, more importantly, it does not provide a general method to solve other problems of this type. The wave 
equation of electrons presented in the next section does provide a way to solve any quantum mechanical 
problem.

1.2.5 Schrödinger's equation

1.2.5.1. Physical interpretation of the wavefunction
1.2.5.2. The infinite quantum well
1.2.5.3. The hydrogen atom

A general procedure to solve quantum mechanical problems was proposed by Erwin Schrödinger. Starting from 
a classical description of the total energy, E, which equals the sum of the kinetic energy, K.E., and potential 
energy, V, or:

(1.2.12)

He converted this expression into a wave equation by defining a wavefunction, Ψ, and multiplied each term in 
the equation with that wavefunction:

(1.2.13)

To incorporate the de Broglie wavelength of the particle we now introduce the operator, , which 
provides the square of the momentum, p, when applied to a plane wave:

(1.2.14)

Where k is the wavenumber, which equals 2π /λ. Without claiming that this is an actual proof we now simply 
replace the momentum squared, p2, in equation (1.2.13) by this operator yielding the time-independent 
Schrödinger equation.

(1.2.15)

To illustrate the use of Schrödinger's equation, we present two solutions of Schrödinger's equation, that for an 
infinite quantum well and that for the hydrogen atom. Prior to that, we discuss the physical interpretation of the 
wavefunction.

1.2.5.1. Physical interpretation of the wavefunction

The use of a wavefunction to describe a particle, as in the Schrödinger equation, is consistent with the particle-
wave duality concept. However, the physical meaning of the wavefunction does not naturally follow. Quantum 
theory postulates that the wavefunction, Ψ(x), multiplied with its complex conjugate, Ψ*(x), is proportional to the 
probability density function, P(x), associated with that particle
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(1.2.16)

This probability density function integrated over a specific volume provides the probability that the particle 
described by the wavefunction is within that volume. The probability function is frequently normalized to 
indicate that the probability of finding the particle somewhere equals 100%. This normalization enables to 
calculate the magnitude of the wavefunction using:

(1.2.17)

This probability density function can then be used to find all properties of the particle by using the quantum 
operators. To find the expected value of a function f(x,p) for the particle described by the wavefunction, one 
calculates:

(1.2.18)

Where F(x) is the quantum operator associated with the function of interest. A list of quantum operators 
corresponding to a selection of common classical variables is provided in Table 1.2.1.

Table 1.2.1: Selected classical variables and the corresponding quantum operator.

1.2.5.2. The infinite quantum well

The one-dimensional infinite quantum well represents one of the simplest quantum mechanical structures. We 
use it here to illustrate some specific properties of quantum mechanical systems. The potential in an infinite 
well is zero between x = 0 and x = Lx and is infinite on either side of the well. The potential and the first five 
possible energy levels an electron can occupy are shown in Figure 1.2.6: 
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Figure 1.2.6 : Potential energy of an infinite well, with width Lx. Also indicated are the lowest five energy 
levels in the well.

The energy levels in an infinite quantum well are calculated by solving Schrödinger’s equation 1.2.15 with the 
potential, V(x), as shown in Figure 1.2.6. As a result one solves the following equation within the well. 

(1.2.19)

The general solution to this differential equation is:

(1.2.20)

Where the coefficients A and B must be determined by applying the boundary conditions. Since the potential is 
infinite on both sides of the well, the probability of finding an electron outside the well and at the well boundary 
equals zero. Therefore the wave function must be zero on both sides of the infinite quantum well or:

(1.2.21)

These boundary conditions imply that the coefficient B must be zero and the argument of the sine function must 
equal a multiple of pi at the edge of the quantum well or:

(1.2.22)

Where the subscript n was added to the energy, E, to indicate the energy corresponding to a specific value of, 
n. The resulting values of the energy, En, are then equal to:

(1.2.23)

The corresponding normalized wave functions, Ψn(x), then equal:

(1.2.24)

where the coefficient A was determined by requiring that the probability of finding the electron in the well equals 
unity or:

(1.2.25)

The asterisk denotes the complex conjugate.
Note that the lowest possible energy is not zero although the potential is zero within the well. Only discreet 
energy values are obtained as eigenvalues of the Schrödinger equation. The energy difference between 
adjacent energy levels increases as the energy increases. An electron occupying one of the energy levels can 
have a positive or negative spin (s = 1/2 or s = -1/2). Both quantum numbers, n and s, are the only two 
quantum numbers needed to describe this system.
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The wavefunctions corresponding to each energy level are shown in Figure 1.2.7 (a). Each wavefunction has 
been shifted by the corresponding energy. The probability density function, calculated as |Ψ|2, provides the 
probability of finding an electron in a certain location in the well. These probability density functions are shown 
in Figure 1.2.7 (b) for the first five energy levels. For instance, for n = 2 the electron is least likely to be in the 
middle of the well and at the edges of the well. The electron is most likely to be one quarter of the well width 
away from either edge.

Figure 1.2.7 : Energy levels, wavefunctions (left) and probability density functions (right) in an infinite 
quantum well. The figure is calculated for a 10 nm wide well containing an electron with mass 
m0. The wavefunctions and the probability density functions are not normalized and shifted by 
the corresponding electron energy. 

Example 1.3
 

An electron is confined to a 1 micron thin layer of silicon. Assuming that the semiconductor 
can be adequately described by a one-dimensional quantum well with infinite walls, calculate 
the lowest possible energy within the material in units of electron volt. If the energy is 
interpreted as the kinetic energy of the electron, what is the corresponding electron velocity? 
(The effective mass of electrons in silicon is 0.26 m0, where m0 = 9.11 x 10-31 kg is the free 
electron rest mass).

Solution The lowest energy in the quantum well equals: 

= 2.32 x 10-25 Joules = 1.45 meV

The velocity of an electron with this energy equals: 

=1.399 km/s
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1.2.5.3. The hydrogen atom

The hydrogen atom represents the simplest possible atom since it consists of only one proton and one 
electron. Nevertheless, the solution to Schrödinger's equation as applied to the potential of the hydrogen atom 
is rather complex due to the three-dimensional nature of the problem. The potential, V(r) (equation (1.2.11)), is 
due to the electrostatic force between the positively charged proton and the negatively charged electron. 

(1.2.26)

The energy levels in a hydrogen atom can be obtained by solving Schrödinger’s equation in three dimensions. 

(1.2.27)

The potential V(x,y,z) is the electrostatic potential, which describes the attractive force between the positively 
charged proton and the negatively charged electron. Since this potential depends on the distance between the 
two charged particles one typically assumes that the proton is placed at the origin of the coordinate system and 
the position of the electron is indicated in polar coordinates by its distance r from the origin, the polar angle θ 
and the azimuthal angle φ. 

Schrödinger’s equation becomes:

(1.2.28)

A more refined analysis includes the fact that the proton moves as the electron circles around it, despite its 
much larger mass. The stationary point in the hydrogen atom is the center of mass of the two particles. This 
refinement can be included by replacing the electron mass, m, with the reduced mass, mr, which includes both 
the electron and proton mass:

(1.2.29)

Schrödinger’s equation is then solved by using spherical coordinates, resulting in:

(1.2.30)

In addition, one assumes that the wavefunction, Ψ(r,θ,φ), can be written as a product of a radial, angular and 
azimuthal angular wavefunction, R(r), Θ(θ) and Φ(φ). This assumption allows the separation of variables, i.e. 
the reformulation of the problem into three different differential equations, each containing only a single 
variable, r, θ or φ:

(1.2.31)

(1.2.32)
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(1.2.33)

Where the constants A and B are to be determined. The solution to these differential equations is beyond the 
scope of this text. Readers are referred to the bibliography for an in depth treatment. We will now examine and 
discuss the solution.

The electron energies in the hydrogen atom as obtained from equation (1.2.31) are:

(1.2.34)

Where n is the principal quantum number.

This potential as well as the first three probability density functions (r2|Ψ|2) of the radially symmetric 
wavefunctions (l = 0) is shown in Figure 1.2.8.

Figure 1.2.8 : Potential energy, V(x), in a hydrogen atom and first three probability densities with l = 0. The 
probability densities are shifted by the corresponding electron energy.

Since the hydrogen atom is a three-dimensional problem, three quantum numbers, labeled n, l, and m, are 
needed to describe all possible solutions to Schrödinger's equation. The spin of the electron is described by the 
quantum number s. The energy levels only depend on n, the principal quantum number and are given by 
equation (1.2.10). The electron wavefunctions however are different for every different set of quantum 
numbers. While a derivation of the actual wavefunctions is beyond the scope of this text, a list of the possible 
quantum numbers is needed for further discussion and is therefore provided in Table 1.2.1. For each principal 
quantum number n, all smaller positive integers are possible values for the angular momentum quantum 
number l. The quantum number m can take on all integers between l and -l, while s can be ½ or -½. This leads 
to a maximum of 2 unique sets of quantum numbers for all s orbitals (l = 0), 6 for all p orbitals (l = 1), 10 for all d 
orbitals (l = 2) and 14 for all f orbitals (l = 3).
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Table 1.2.2: First ten orbitals and corresponding quantum numbers of a hydrogen atom

1.2.6 Pauli exclusion principle

Once the energy levels of an atom are known, one can find the electron configurations of the atom, provided 
the number of electrons occupying each energy level is known. Electrons are Fermions since they have a half 
integer spin. They must therefore obey the Pauli exclusion principle. This exclusion principle states that no two 
Fermions can occupy the same energy level corresponding to a unique set of quantum numbers n, l, m or s. 
The ground state of an atom is therefore obtained by filling each energy level, starting with the lowest energy, 
up to the maximum number as allowed by the Pauli exclusion principle.

1.2.7 Electronic configuration of the elements

The electronic configuration of the elements of the periodic table can be constructed using the quantum 
numbers of the hydrogen atom and the Pauli exclusion principle, starting with the lightest element hydrogen. 
Hydrogen contains only one proton and one electron. The electron therefore occupies the lowest energy level 
of the hydrogen atom, characterized by the principal quantum number n = 1. The orbital quantum number l 
equals zero and is referred to as an s orbital (not to be confused with the quantum number for spin, s). The s 
orbital can accommodate two electrons with opposite spin, but only one is occupied. This leads to the short-
hand notation of 1s1 for the electronic configuration of hydrogen as listed in Table 1.2.2.

Helium is the second element of the periodic table. For this and all other atoms one still uses the same 
quantum numbers as for the hydrogen atom. This approach is justified since all atom cores can be treated as a 
single charged particle, which yields a potential very similar to that of a proton. While the electron energies are 
no longer the same as for the hydrogen atom, the electron wavefunctions are very similar and can be classified 
in the same way. Since helium contains two electrons it can accommodate two electrons in the 1s orbital, 
hence the notation 1s2. Since the s orbitals can only accommodate two electrons, this orbital is now completely 
filled, so that all other atoms will have more than one filled or partially-filled orbital. The two electrons in the 
helium atom also fill all available orbitals associated with the first principal quantum number, yielding a filled 
outer shell. Atoms with a filled outer shell are called noble gases as they are known to be chemically inert.
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Lithium contains three electrons and therefore has a completely filled 1s orbital and one more electron in the 
next higher 2s orbital. The electronic configuration is therefore 1s22s1 or [He]2s1, where [He] refers to the 
electronic configuration of helium. Beryllium has four electrons, two in the 1s orbital and two in the 2s orbital. 
The next six atoms also have a completely filled 1s and 2s orbital as well as the remaining number of electrons 
in the 2p orbitals. Neon has six electrons in the 2p orbitals, thereby completely filling the outer shell of this 
noble gas.
The next eight elements follow the same pattern leading to argon, the third noble gas. After that the pattern 
changes as the underlying 3d orbitals of the transition metals (scandium through zinc) are filled before the 4p 
orbitals, leading eventually to the fourth noble gas, krypton. Exceptions are chromium and zinc, which have one 
more electron in the 3d orbital and only one electron in the 4s orbital. A similar pattern change occurs for the 
remaining transition metals, where for the lanthanides and actinides the underlying f orbitals are filled first. 
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Table 1.2.3: Electronic configuration of the first thirty-six elements of the periodic table.
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1.3 Electromagnetic Theory
1.3.1. Gauss's law
1.3.2. Poisson's equation

The analysis of most semiconductor devices includes the calculation of the electrostatic potential within the 
device as a function of the existing charge distribution. Electromagnetic theory and more specifically 
electrostatic theory are used to obtain the potential. A short description of the necessary tools, namely Gauss's 
law and Poisson's equation, is provided below.

1.3.1 Gauss's law

Gauss's law is one of Maxwell's equations (Appendix 10) and provides the relation between the charge density, 
ρ, and the electric field, . In the absence of time dependent magnetic fields the one-dimensional equation is 
given by:

(1.3.1)

This equation can be integrated to yield the electric field for a given one-dimensional charge distribution:

(1.3.2)

Gauss's law as applied to a three-dimensional charge distribution relates the divergence of the electric field to 
the charge density:

(1.3.3)

This equation can be simplified if the field is constant on a closed surface, A, enclosing a charge Q, yielding:

(1.3.4)

Example 1.4
 

Consider an infinitely long cylinder with charge density r, dielectric constant ε0 and radius r0. 
What is the electric field in and around the cylinder?
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Solution Because of the cylinder symmetry one expects the electric field to be only dependent on the 
radius, r. Applying Gauss's law one finds:

and

where a cylinder with length L was chosen to define the surface A, and edge effects were 
ignored. The electric field then equals:

The electric field increases within the cylinder with increasing radius. The electric field 
decreases outside the cylinder with increasing radius.

1.3.2 Poisson's equation

Gauss's law is one of Maxwell's equations and provides the relation between the charge density, ρ, and the 
electric field, . In the absence of time dependent magnetic fields the one-dimensional equation is given by:

(1.3.5)

The electric field vector therefore originates at a point of higher potential and points towards a point of lower 
potential.
The potential can be obtained by integrating the electric field as described by:

(1.3.6)

At times, it is convenient to link the charge density to the potential by combining equation (1.3.5) with Gauss's 
law in the form of equation (1.3.1), yielding:

(1.3.7)

which is referred to as Poisson's equation.
For a three-dimensional field distribution, the gradient of the potential as described by:

(1.3.8)
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can be combined with Gauss's law as formulated with equation (1.3.3), yielding a more general form of 
Poisson's equation:

(1.3.9)
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1.4. Statistical Thermodynamics
1.4.1. Thermal equilibrium
1.4.2. Laws of thermodynamics
1.4.3. The thermodynamic identity
1.4.4. The Fermi energy
1.4.5. Some useful thermodynamics results

Thermodynamics describes the behavior of systems containing a large number of particles. These systems are 
characterized by their temperature, volume, number and the type of particles. The state of the system is then 
further described by its total energy and a variety of other parameters including the entropy. Such a 
characterization of a system is much simpler than trying to keep track of each particle individually, hence its 
usefulness. In addition, such a characterization is general in nature so that it can be applied to mechanical, 
electrical and chemical systems.
The term thermodynamics is somewhat misleading as one deals primarily with systems in thermal equilibrium. 
These systems have constant temperature, volume and number of particles and their macroscopic parameters 
do not change over time, so that the dynamics are limited to the microscopic dynamics of the particles within 
the system. 
Statistical thermodynamics is based on the fundamental assumption that all possible configurations of a given 
system, which satisfy the given boundary conditions such as temperature, volume and number of particles, are 
equally likely to occur. The overall system will therefore be in the statistically most probable configuration. The 
entropy of a system is defined as the logarithm of the number of possible configurations. While such definition 
does not immediately provide insight into the meaning of entropy, it does provide a straightforward analysis 
since the number of configurations can be calculated for any given system. 
Classical thermodynamics provides the same concepts. However, they are obtained through experimental 
observation. The classical analysis is therefore more tangible compared to the abstract mathematical treatment 
of the statistical approach. 
The study of semiconductor devices requires some specific results, which naturally emerge from statistical 
thermodynamics. In this section, we review basic thermodynamic principles as well as some specific results. 
These include the thermal equilibrium concept, the thermodynamic identity, the basic laws of thermodynamics, 
the thermal energy per particle and the Fermi function.

1.4.1. Thermal equilibrium

A system is in thermal equilibrium if detailed balance is obtained: i.e. every process in the system is exactly 
balanced by its inverse process so that there is no net effect on the system. 
This definition implies that in thermal equilibrium no energy (heat, work or particle energy) is exchanged 
between the parts within the system or between the system and the environment. Thermal equilibrium is 
obtained by isolating a system from its environment, removing any internal sources of energy, and waiting for a 
long enough time until the system does not change any more. 
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The concept of thermal equilibrium is of interest since various thermodynamic results assume that the system 
under consideration is in thermal equilibrium. Few systems of interest rigorously satisfy this condition so that 
we often apply the thermodynamical results to systems that are "close" to thermal equilibrium. Agreement 
between theories based on this assumption and experiments justify this approach. 

1.4.2. Laws of thermodynamics

If two systems are in thermal equilibrium with a third system, they must be in thermal equilibrium with each 
other.

1.  Heat is a form of energy.
2.  The second law can be stated either (a) in its classical form or (b) in its statistical form

a.  Heat can only flow from a higher temperature to a lower temperature.
b.  The entropy of a closed system tends to remain constant or increases monotonically over time.

Both forms of the second law could not seem more different. A more rigorous treatment proves the equivalence of 
both. 

3.  The entropy of a system approaches a constant as the temperature approaches zero Kelvin.

1.4.3. The thermodynamic identity

The thermodynamic identity states that a change in energy can be caused by adding heat, work or particles. 
Mathematically this is expressed by: 

(1.4.1)

where U is the total energy, Q is the heat and W is the work. µ is the energy added to a system when adding 
one particle without adding either heat or work. This energy is also called the electro-chemical potential. N is 
the number of particles.

1.4.4. The Fermi energy

The Fermi energy, EF, is the energy associated with a particle, which is in thermal equilibrium with the system 
of interest. The energy is strictly associated with the particle and does not consist even in part of heat or work. 
This same quantity is called the electro-chemical potential, µ, in most thermodynamics texts. 

1.4.5. Some useful thermodynamics results

Listed below are two results, which will be used while analyzing semiconductor devices. The actual derivation 
is beyond the scope of this text.

1.  The thermal energy of a particle, whose energy depends quadratically on its velocity, equals kT/2 per 
degree of freedom, where k is Boltzmann's constant. This thermal energy is a kinetic energy, which must 
be added to the potential energy of the particle, and any other kinetic energy. The thermal energy of a 
non-relativistic electron, which is allowed to move in three dimensions, equals 3/2 kT.

2.  Consider an energy level at energy, E, which is in thermal equilibrium with a large system characterized 
by a temperature T and Fermi energy EF. The probability that an electron occupies such energy level is 
given by: 
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(1.4.2)

The function f(E) is called the Fermi function and applies to all particles with half-integer spin. These particles, 
also called Fermions, obey the Pauli exclusion principle, which states that no two Fermions in a given system 
can have the exact same set of quantum numbers. Since electrons are Fermions, their probability distribution 
also equals the Fermi function.
Example 1.5

 
Calculate the energy relative to the Fermi energy for which the Fermi function equals 5%. 
Write the answer in units of kT. 

Solution The problems states that:

which can be solved yielding: 
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Examples  

Example 1.1  A metal has a workfunction of 4.3 V. What is the minimum photon energy in Joule to emit 
an electron from this metal through the photo-electric effect? What are the photon 
frequency in Terahertz and the photon wavelength in micrometer? What is the 
corresponding photon momentum? What is the velocity of a free electron with the same 
momentum?

Example 1.2  The spectral density of the sun peaks at a wavelength of 900 nm. If the sun behaves as a 
black body, what is the temperature of the sun?

Example 1.3  An electron is confined to a 1 micron thin layer of silicon. Assuming that the semiconductor 
can be adequately described by a one-dimensional quantum well with infinite walls, 
calculate the lowest possible energy within the material in units of electron volt. If the 
energy is interpreted as the kinetic energy of the electron, what is the corresponding 
electron velocity? (The effective mass of electrons in silicon is 0.26 m0, where m0 = 9.11 x 
10-31 kg is the free electron rest mass).

Example 1.4  Consider an infinitely long cylinder with charge density r, dielectric constant ε0 and radius 
r0. What is the electric field in and around the cylinder?

Example 1.5  Calculate the energy relative to the Fermi energy for which the Fermi function equals 5%. 
Write the answer in units of kT. 
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Example 1.1 A metal has a workfunction of 4.3 V. What is the minimum 
photon energy in Joule to emit an electron from this metal through 
the photo-electric effect? What are the photon frequency in 
Terahertz and the photon wavelength in micrometer? What is the 
corresponding photon momentum? What is the velocity of a free 
electron with the same momentum? 

Solution The minumum photon energy, Eph, equals the workfunction, ΦM, 
in units of electron volt or 4.3 eV. This also equals 

Joule 1089.63.4106.1 1919 −− ×=××=Φ= Mph qE  

The corresponding photon frequency is: 
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E ph
ν  

The corresponding wavelength equals: 
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The photon momentum, p, is: 

s
m kg

 10297.2
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×
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And the velocity, v, of a free electron with the same momentum 
equals 

m/s 2522
1011.9

10297.2
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27

0
=

×

×
==

−

−

m
p

v  

Where m0 is the free electron mass. 

 



Example 1.2 The spectral density of the sun peaks at a wavelength of 900 nm. If 
the sun behaves as a black body, what is the temperature of the 
sun? 

Solution A wavelength of 900 nm corresponds to a photon energy of: 

Joule 1021.2
10900

10310626.6 19
9
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−
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E ph  

Since the peak of the spectral density occurs at 2.82 kT, the 
corresponding temperature equals: 

Kelvin 5672
1038.182.2
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82.2 23
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Example 1.3 An electron is confined to a 1 micron thin layer of silicon. 
Assuming that the semiconductor can be adequately described 
by a one-dimensional quantum well with infinite walls, 
calculate the lowest possible energy within the material in units 
of electron volt. If the energy is interpreted as the kinetic energy 
of the electron, what is the corresponding electron velocity? 
(The effective mass of electrons in silicon is 0.26 m0, where m0 
= 9.11 x 10-31 kg is the free electron rest mass). 

Solution The lowest energy in the quantum well equals: 

2
631

234
2

*

2

1 )
102
1

(
1011.926.02
)10626.6(

)
2
1

(
2 −−

−

××××
×

==
xLm

h
E  

= 2.32 x 10-25 Joules = 1.45 µeV 

The velocity of an electron with this energy equals: 

31

25

*
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v =1.399 km/s 
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Example 1.4 Consider an infinitely long cylinder with charge density ρ, 
dielectric constant ε0 and radius r0. What is the electric field in 
and around the cylinder? 

 

Solution Because of the cylinder symmetry one expects the electric field 
to be only dependent on the radius, r. Applying Gauss's law one 
finds: 

0

2

0

2
ε

ρπ
ε

π
LrQ

rLA ===⋅ EE  for r < r0 

and  

0

2
0

0

2
ε

ρπ
ε

π
LrQ

rLA ===⋅ EE  for r > r0 

where a cylinder with length L was chosen to define the surface 
A, and edge effects were ignored. The electric field then equals: 

02
)(

ε
ρ r

r =E for r < r0 and 
r

r
r

0

2
0

2
)(

ε
ρ

=E for r > r0 

The electric field therefore increases within the cylinder with 
increasing radius as shown in the figure below. The electric 
field decreases outside the cylinder with increasing radius.  
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Example 1.5 Calculate the energy relative to the Fermi energy for which the 
Fermi function equals 5%. Write the answer in units of kT.  

Solution The problems states that:  

05.0
)exp(1

1
)( =
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+

=

kT
EE

Ef
F

 

which can be solved yielding: 

kTkTEE F 3)19ln( ==−  
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Chapter 1: Review of Modern Physics

Problems  

1.  Calculate the wavelength of a photon with a photon energy of 2 eV. Also, calculate the wavelength of an 
electron with a kinetic energy of 2 eV. 

2.  Consider a beam of light with a power of 1 Watt and a wavelength of 800 nm. Calculate a) the photon 
energy of the photons in the beam, b) the frequency of the light wave and c) the number of photons 
provided by the beam in one second. 

3.  Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 2.82 kT. Note that a numeric iteration 

is required. 

4.  Calculate the peak wavelength of blackbody radiation emitted from a human body at a temperature of 37°
C. 

5.  Derive equations (1.2.9) and (1.2.10). 

6.  What is the width of an infinite quantum well if the second lowest energy of a free electron confined to 
the well equals 100 meV.

7.  Calculate the lowest three possible energies of an electron in a hydrogen atom in units of electron volt. 

8.  Derive the electric field of a proton with charge q as a function of the distance from the proton using 
Gauss's law. Integrated the electric field to find the potential φ(r):

Treat the proton as a point charge and assume the potential to be zero far away from the proton.

9.  Prove that the probability of occupying an energy level below the Fermi energy equals the probability that 
an energy level above the Fermi energy and equally far away from the Fermi energy is not occupied. 

10.  The ratio of the wavelengths emitted by two electrons in an infinite quantum well while making the 
transition from a higher energy level to the lowest possible energy equals two.

a.  a) What are the lowest possible quantum numbers (n) of the two higher energy levels, which are 
consistent with the statement above? 
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b.  What are the energies in electron volt of all three energy levels involved in the transitions? (Lx = 10 
nm, m*/m0 = 0.067 and εs/ε0 = 13, m0 = 9.11 x 10-31 kg, ε0 = 8.854 x 10-12 F/m)

11.  Consider a hollow thin conducting sphere of radius R = 10 cm, uniformly distributed with a surface 
charge density of σ = 10-9 coulombs/cm2. a) Find the field at a radius r > 10 cm. Explain the vector 
orientation of the field and the magnitude. b) Find the field at a radius r < 10 cm inside the sphere. 
Explain the vector orientation of the field and the magnitude. c) Now consider two concentric conducting 
spherical shells, each coated with a uniformly distributed surface charge density of σ with R1 = R and R2 

= R/2. Find the field at all r.

12.  Find the lowest possible energy in a 2 nm quantum well with infinitely high barriers on each side of the 
well and with a delta function potential positioned in the middle of the quantum well. The integral of the 
delta function potential equals 10-10 eV-m. Assume that the electron mass equals the free electron mass 
(m0 = 9.1 x 10-31 kg).

13.  Consider the potential energy, V(x), as shown in the figure below, where E is the particle energy: 

a.  Find a general solution to the wave equation in region I (0 < x < L) and II (L < x < 2L). Assume that 
the particle energy is always larger than the potential V0. 

b.  Require that the wavefunction is zero at x = 0 and x = 2L. 
c.  Require that the wavefunction and it's derivative is continuous at x = L. 
d.  Derive a transcendental equation from which the possible energies can be obtained. 
e.  Calculate the lowest possible energy for V0 = 0.1 eV, L = 1 nm and m = m0.
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1. Calculate the wavelength of a photon with a photon energy of 2 eV. Also, calculate the 

wavelength of an electron with a kinetic energy of 2 eV. 

2. Consider a beam of light with a power of 1 Watt and a wavelength of 800 nm. Calculate a) 
the photon energy of the photons in the beam, b) the frequency of the light wave and c) the 
number of photons provided by the beam in one second. 

3. Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 2.82 kT. Note that a 
numeric iteration is required. 

4. Calculate the peak wavelength of blackbody radiation emitted from a human body at a 
temperature of 37°C. 
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6. What is the width of an infinite quantum well if the second lowest energy of a free electron 
confined to the well equals 100 meV? 
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electron volt. Identify all possible electron energies between the lowest energy and  -2 eV. 

8. Derive the electric field of a proton with charge q as a function of the distance from the 
proton using Gauss's law. Integrated the electric field to find the potential φ(r): 
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Treat the proton as a point charge and assume the potential to be zero far away from the 
proton. 

9. Prove that the probability of occupying an energy level below the Fermi energy equals the 
probability that an energy level above the Fermi energy and equally far away from the Fermi 
energy is not occupied. 

10. The ratio of the wavelengths emitted by two electrons in an infinite quantum well while 
making the transition from a higher energy level to the lowest possible energy equals two. 

a) What are the lowest possible quantum numbers (n) of the two higher energy levels, which 
are consistent with the statement above?  

b) What are the energies in electron volt of all three energy levels involved in the 
transitions? (Lx = 10 nm, m*/m0 = 0.067 and εs/ε0 = 13, m0 = 9.11 x 10-31 kg, ε0 = 8.854 x 
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magnitude. 



2 Chapter 1 

     

b) Find the field at a radius r < 10 cm inside the sphere. Explain the vector orientation of the 
field and the magnitude. 

c) Now consider two concentric conducting spherical shells, each coated with a uniformly 
distributed surface charge density of σ with R1 = R and R2 = R/2. Find the field at all r. 

12. Find the lowest possible energy in a 2 nm quantum well with infinitely high barriers on each 
side of the well and with a delta function potential positioned in the middle of the quantum 
well. The integral of the delta function potential equals 10-10 eV-m. Assume that the electron 
mass equals the free electron mass (m0 = 9.1 x 10-31 kg). 

13. Consider the potential energy, V(x), as shown in the figure below, where E is the particle 
energy: 
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a) Find a general solution to the wave equation in region I (0 < x < L) and II (L < x < 2L). 
Assume that the particle energy is always larger than the potential V0. 

b) Require that the wavefunction is zero at x = 0 and x = 2L. 

c) Require that the wavefunction and it's derivative is continuous at x = L. 

d) Derive a transcendental equation from which the possible energies can be obtained. 

e) Calculate the lowest possible energy for V0 = 0.1 eV, L = 1 nm and m = m0. 

 



 
 
Problem 1.1 Calculate the wavelength of a photon with a photon energy of 2 

eV. Also, calculate the wavelength of an electron with a kinetic 
energy of 2 eV. 

Solution The wavelength of a 2 eV photon equals: 

eV2C10602.1

m/s103Js10626.6
19

834

××

×××
== −

−

phE
hc

λ = 0.62 µm 

where the photon energy (2 eV) was first converted to Joules by 
multiplying with the electronic charge. 
The wavelength of an electron with a kinetic energy of 2 eV is 
obtained by calculating the deBroglie wavelength: 

m/s kg1062.7

Js10626.6
25

34

−

−

×

×
==

p
h

λ = 0.87 nm 

Where the momentum of the particle was calculated from the 
kinetic energy: 

== mEp 2  

m/s kg1064.7eV 2C106.1kg1011.92 251931 −−− ×=×××××  
 



 
Problem 1.2 Consider a beam of light with a power of 1 Watt and a wavelength 

of 800 nm. Calculate a) the photon energy of the photons in the 
beam, b) the frequency of the light wave and c) the number of 
photons provided by the beam in one second. 

Solution The photon energy is calculated from the wavelength as: 

m 10800

m/s 103Js10626.6
9

834

−

−

×

×××
==

λ
hc

E ph  = 2.48 x 10-19 J 

or in electron Volt: 

C 10602.1

J 1048.2
19

19

−

−

×

×
=phE = 1.55 eV 

The frequency then equals: 

Js 10626.6

J1048.2
34

19

−

−

×

×
==

h

E ph
ν = 375 THz 

And the number of photons equals the ratio of the optical power 
and the energy per photon: 

J 1048.2

 Watt1 Watt1
 photons #

19−×
==

phE
= 4 x 1018 

 



 
Problem 1.3 Show that the spectral density, uω (equation 1.2.4) peaks at Eph = 

2.82 kT. Note that a numeric iteration is required. 
Solution 

The spectral density, uω, can be rewritten as a function of 
kT

x
ωh

=  

 
1)exp(
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−
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x
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Tk
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The maximum of this function is obtained if its derivative is zero 
or: 

 0
)1)(exp(

)exp(
-

1)exp(
3

2

32
=

−−
=

x

xx
x
x

dx
duω  

Therefore x must satisfy: 
xx =−− )exp(33  

This transcendental equation can be solved starting with an 
arbitrary positive value of x. A repeated calculation of the left 
hand side using this value and the resulting new value for x 
quickly converges to xmax = 2.82144. The maximum spectral 
density therefore occurs at: 

kT 82144.2maxmax, == kTxE ph  

 



 
Problem 1.4 Calculate the peak wavelength of blackbody radiation emitted 

from a human body at a temperature of 37°C. 
Solution The peak wavelength is obtained through the peak energy: 

kT
hc

E
hc

ph 82.2max,
max ==λ  

=
×××

×××
=

−

−

15.3101038.182.2

10310626.6
23

834

maxλ 1.65 x 10-5 m = 16.5 µm 

Where the temperature was first converted to units Kelvin. 
 



 
Problem 1.5 Derive equations (1.2.9) and (1.2.10). Calculate the total energy as 

the sum of the kinetic and potential energy. 
Solution The derivation starts by setting the centrifugal force equal to the 

electrostatic force: 
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where the velocity, v, is expressed as a function of the momentum, 
p. 
The momentum in turn is calculated as a function of the deBroglie 
wavelength and the wavelength must be an integer fraction of the 
length of the circular orbit 
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The corresponding radius equals the Bohr radius, a0: 
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The corresponding energies are obtained by adding the kinetic and 
potential energy: 
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Note that the potential energy equals the potential of a proton 
multiplied with the electron charge, -q. 

 



 
Problem 1.6 What is the width of an infinite quantum well if the second lowest 

energy of a free electron confined to the well equals 100 meV? 
Solution The second lowest energy is calculated from 

 )
2

2
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2
2
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2
xLm

h
E =  = 1.6 x 10-20 J 

One can therefore solve for the width, Lx, of the well, yielding: 
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Problem 1.7 Calculate the lowest three possible energies of an electron in a 

hydrogen atom in units of electron volt. Identify all possible 
electron energies between the lowest energy and  -2 eV. 

Solution The three lowest electron energies in a hydrogen atom can be 
calculated from: 

2
eV 6.13

n
En −= , with n = 1, 2,  and 3 

resulting in: 
E1 = –13.6 eV, E2 = -3.4 eV and E3 = -1.51 eV 

The second lowest energy, E2, is the only one between the lowest 
energy, E1, and –2 eV. 

 



 
Problem 1.8 Derive the electric field of a proton with charge q as a function of 

the distance from the proton using Gauss's law. Integrate the 
electric field to find the potential φ(r): 

r
q

r
04

)(
επ

φ =  

Treat the proton as a point charge and assume the potential to be 
zero far away from the proton. 

Solution Using a sphere with radius, r, around the charged proton as a 
surface where the electric field, E, is constant, one can apply 
Gauss’s law: 

0
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π
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so that 
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q
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The potential is obtained by integrating this electric field from to 
Resulting in: 
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where the potential at infinity was set to zero. 
 



 
Problem 1.9 Prove that the probability of occupying an energy level below the 

Fermi energy equals the probability that an energy level above the 
Fermi energy and equally far away from the Fermi energy is not 
occupied. 

Solution The probability that an energy level with energy ∆E below the 
Fermi energy EF is occupied can be rewritten as: 
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so that it also equals the probability that an energy level with 
energy ∆E above the Fermi energy, EF, is not occupied. 

 



 
 
 
Problem 1.10 The ratio of the wavelengths emitted by two electrons in an 

infinite quantum well while making the transition from a higher 
energy level to the lowest possible energy equals two. 
a) What are the lowest possible quantum numbers (n) of the 

two higher energy levels, which are consistent with the 
statement above?  

b) What are the energies in electron volt of all three energy 
levels involved in the transitions? (Lx = 10 nm, m*/m0 = 
0.067 and εs/ε0 = 13, m0 = 9.11 x 10-31 kg, ε0 = 8.854 x 10-12 
F/m) 

Solution a) If the ratio of the wavelengths equals two, the ratio of the 
energy different between each energy level and the lowest 
energy level (E1) must equal two as well, so that: 

)(2 11 EEEE yx −=−  
so that 

)1(21 22 −=− yx  from which )1(21 2 −+= yx  
and x as well as y must be positive integers larger than 1. 
for x = 2, 3, 4, 5, 6 and 7 one finds y = 2.65, 4.12, 5.57, 7.00, 
8.43 and 9.85.  
The lowest integers that satisfy the requirement are 5 and 7. 
The next higher set of integers is 29 and 41. 

b) The corresponding energies are: 

2
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2

)
2

(
2 x

n L
n

m
h

E =  for n = 1, 5 and 7 

resulting in E1 = 0.11 eV, E5 = 0.56 and E7 = 0.79 eV 
The dielectric constant is not used for this problem 

 



 
Problem 1.11 Consider a hollow thin conducting sphere of radius R = 10 cm, 

uniformly distributed with a surface charge density of σ = 10-9 
coulombs/cm2. 
a) Find the field at a radius r > 10 cm. Explain the vector 

orientation of the field and the magnitude. 
b) Find the field at a radius r < 10 cm inside the sphere. 

Explain the vector orientation of the field and the 
magnitude. 

c) Now consider two concentric conducting spherical shells, 
each coated with a uniformly distributed surface charge 
density of σ with R1 = R and R2 = R/2. Find the field at all r. 

Solution a) The field outside the sphere is obtained from Gauss’s law: 

0

2
2 4

4
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π
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rA == EE  

resulting in 
2

2

0 r
R

ε
ρ

=E  

The field is perpendicular to the sphere. 
b) Inside the sphere there is no charge so that E = 0. 
c) Again applying Gauss’s law one finds that there is no field 

inside the smallest sphere. The field between the two 
spheres is due to the charge on the inner sphere and the field 
outside both spheres is due to the charge on both so that: 

0=E  , for 0 < r < R/2 
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Problem 1.12 Find the lowest possible energy in a 2 nm quantum well with 

infinitely high barriers on each side of the well and with a delta 
function potential positioned in the middle of the quantum well. 
The integral of the delta function potential equals 10-10 eV-m. 
Assume that the electron mass equals the free electron mass (m0 
= 9.1 x 10-31 kg). 

Solution The general solutions to the wave equation in the quantum well 
on each side of the delta function are: 

)cos()sin()( kxCkxAxI +=Ψ   

with 
h
mE

k
2

=  and 

))(cos())(sin()( xLkDxLkBxII −+−=Ψ   
To satisfy the boundary conditions at x = 0 and x = L C and D 
need to be zero. 
At x = L/2 the wave function must be continuous: 

)2/sin()2/sin( kLBkLA =  
so that A = B. Integration of Schrodinger’s equation provides the 
relation between the derivative of the wavefunction on either 
side of the delta function: 
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where Aδ is the area of the delta function. Since the 
wavefunction is continuous at x = L/2 one can use the 
wavefunction on either side. 
The resulting equation is then: 

)2/sin(
2

)2/cos(2
2

kLAA
m

kLkA δh
−=  

or )2/tan(
2

kLA
m

k δh
−=  

The solution is k = 2.13 x 10-9 m-1. The corresponding energy is 
E = 0.172 eV 
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Problem 1.13 Consider the potential energy, V(x), as shown in the figure 

below, where E is the particle energy: 
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a) Find a general solution to the wave equation in region I (0 < 
x < L) and II (L < x < 2L). Assume that the particle energy, 
E, is always larger than the potential V0. 

b) Require that the wavefunction is zero at x = 0 and x = 2L. 
c) Require that the wavefunction and it's derivative is 

continuous at x = L. 
d) Derive a transcendental equation from which the possible 

energies can be obtained. 
e) Calculate the lowest possible energy for V0 = 0.1 eV, L = 1 

nm and m = m0. 
Solution a) The general solutions to the wave equation are: 
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))2(cos())2(sin()( 22 xLkDxLkBxII −+−=Ψ  with 

h

)(2 0
2

VEm
k

−
=  

b) To satisfy the boundary conditions C and D need to be zero. 
c) At x = L the wave function and its derivative need to be 

continuous, or: 
)sin()sin( 21 LkBLkA =  

)cos()cos( 2211 LkBkLkAk −=  
d) Taking the ratio one can eliminate A and B: 
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e) Energy equals 138 meV 
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Chapter 1: Review of Modern Physics

Review Questions  

1.  List three experiments, which can only be explained using quantum mechanics. 

2.  What is a Rydberg? 

3.  Name the two primary assumptions of the Bohr model. 

4.  How do we know that the energy levels in a hydrogen atom are quantized? 

5.  What two parameters are linked by Gauss's law? 

6.  What two parameters are linked by Poisson's equation? 

7.  What is the definition of thermal equilibrium? 

8.  List the three laws of thermodynamics. 

9.  Explain in words the meaning of the thermodynamic identity. 

10.  What is the Fermi function?
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Chapter 1: Glossary

Name

Blackbody radiation Radiation from an object due to thermal energy
Bohr model Model for the hydrogen atom as proposed by Niels Bohr

Bohr radius Radius of the electron orbit in a hydrogen atom corresponding to the lowest energy 
energy solution of the Bohr model

de Broglie wavelength Wavelength of a particle λ = h/p
Energy level The energy which an electron can have 
Entropy Heat divided by absolute temperature

Fermi energy
The average energy per particle when adding particles to a distribution but without 
changing the entropy or the volume. Chemists refer to this quantity as being the 
electro-chemical potential 

Fermions Particles with half-integer spin 

Gauss' law One of Maxwell's equations, stating that the gradient of the electric field equals the 
charge density, divided by the dielectric constant. 

Heat Thermal energy
Hydrogen atom An atom consisting of a proton and an electron

Particle-wave duality Quantum mechanical concept, which states that particles can behave as waves and 
waves can behave as particles

Photoelectric effect Emission of electrons from a metal when applying light with photon energy larger 
than the workfunction of the metal

Photon Quantum of electromagnetic radiation

Poisson's equation Second order differential equation which relates the potential, φ, to the charge 
density, ρ.

Quantum mechanics Theory which describes particles by a wavefunction
Rydberg Unit of atomic energy = 13.6 eV
Shell Atomic states which are associated with one principle quantum number 

State A single solution to Schrödinger's equation defined by a unique set of quantum 
numbers 

Thermal energy Energy associated with the temperature of an object

Thermal equilibrium A system is in thermal equilibrium if every ongoing process is exactly balanced by its 
inverse.

Wave packet Wave description of a localized particle
Work Mechanical energy
Work function Potential an electron at the Fermi energy needs to gain to escape from a solid
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Chapter 2: Semiconductor Fundamentals

2.1 Introduction

To understand the fundamental concepts of semiconductors, one must apply modern physics to solid materials. 
More specifically, we are interested in semiconductor crystals. Crystals are solid materials consisting of atoms, 
which are placed in a highly ordered structure called a lattice. Such a structure yields a periodic potential 
throughout the material. 
Two properties of crystals are of particular interest, since they are needed to calculate the current in a 
semiconductor. First, we need to know how many fixed and mobile charges are present in the material. 
Second, we need to understand the transport of the mobile carriers through the semiconductor.
In this chapter we start from the atomic structure of semiconductors and explain the concepts of energy band 
gaps, energy bands and the density of states in an energy band. We also show how the current in an almost 
filled band can more easily be analyzed using the concept of holes. Next, we discuss the probability that energy 
levels within an energy band are occupied. We will use this probability density to find the density of electrons 
and holes in a band. 
Two transport mechanisms will be considered. The drift of carriers in an electric field and the diffusion of 
carriers due to a carrier density gradient will be discussed. Recombination mechanisms and the continuity 
equations are then combined into the diffusion equation. Finally, we present the drift-diffusion model, which 
combines all the essential elements discussed in this chapter.
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2.2. Crystals and crystal structures
2.2.1. Bravais lattices
2.2.2. Common semiconductor crystal structures
2.2.3. Growth of semiconductor crystals

Solid materials are classified by the way the atoms are arranged within the solid. Materials in which atoms are 
placed randomly are called amorphous. Materials in which atoms are placed in a high ordered structure are 
called crystalline. Poly-crystalline materials are materials with a high degree of short-range order and no long-
range order. These materials consist of small crystalline regions with random orientation called grains, 
separated by grain boundaries.
Of primary interest in this text are crystalline semiconductors in which atoms are placed in a highly ordered 
structure. Crystals are categorized by their crystal structure and the underlying lattice. While some crystals 
have a single atom placed at each lattice point, most crystals have a combination of atoms associated with 
each lattice point. This combination of atoms is also called the basis.
The classification of lattices, the common semiconductor crystal structures and the growth of single-crystal 
semiconductors are discussed in the following sections.

2.2.1 Bravais lattices
 

The Bravais lattices are the distinct lattice types, which when repeated can fill the whole space. The lattice can 

therefore be generated by three unit vectors,  and a set of integers k, l and m so that each lattice 
point, identified by a vector , can be obtained from: 

(2.2.1)

The construction of the lattice points based on a set of unit vectors is illustrated by Figure 2.2.1.
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Figure 2.2.1: The construction of lattice points using unit vectors 
In two dimensions, there are five distinct Bravais lattices, while in three dimensions there are fourteen. The 
lattices in two dimensions are the square lattice, the rectangular lattice, the centered rectangular lattice, the 
hexagonal lattice and the oblique lattice as shown in Figure 2.2.2. It is customary to organize these lattices in 
groups which have the same symmetry. An example is the rectangular and the centered rectangular lattice. As 
can be seen on the figure, all the lattice points of the rectangular lattice can be obtained by a combination of 
the lattice vectors . The centered rectangular lattice can be constructed in two ways. It can be obtained by 
starting with the same lattice vectors as those of the rectangular lattice and then adding an additional atom at 
the center of each rectangle in the lattice. This approach is illustrated by Figure 2.2.2 c). The lattice vectors 
generate the traditional unit cell and the center atom is obtained by attaching two lattice points to every lattice 
point of the traditional unit cell. The alternate approach is to define a new set of lattice vectors, one identical to 
and another starting from the same origin and ending on the center atom. These lattice vectors generate the so-
called primitive cell and directly define the centered rectangular lattice. 

Figure 2.2.2.: The five Bravais lattices of two-dimensional crystals: (a) cubic, (b) rectangular, (c) centered 
rectangular, (d) hexagonal and (e) oblique 
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These lattices are listed in Table 2.2.1. a1 and a2 are the magnitudes of the unit vectors and α is the angle 
between them.

Table 2.2.1.: Bravais lattices of two-dimensional crystals
The same approach is used for lattices in three dimensions. The fourteen lattices of three-dimensional crystals 
are classified as shown in Table 2.2.2, where a1, a2 and a3 are the magnitudes of the unit vectors defining the 
traditional unit cell and α, β and γ are the angles between these unit vectors. 

Table 2.2.2.: Bravais lattices of three-dimensional crystals
The cubic lattices are an important subset of these fourteen Bravais lattices since a large number of 
semiconductors are cubic. The three cubic Bravais lattices are the simple cubic lattice, the body-centered cubic 
lattice and the face-centered cubic lattice as shown in Figure 2.2.3. Since all unit vectors identifying the 
traditional unit cell have the same size, the crystal structure is completely defined by a single number. This 
number is the lattice constant, a.

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_2.htm (3 of 7)11/10/2004 16:22:21



Semiconductor Fundamentals

Figure 2.2.3.: The simple cubic (a), the body-centered cubic (b) and the face centered cubic (c) lattice.

2.2.2 Common semiconductor crystal structures
 

The most common crystal structure among frequently used semiconductors is the diamond lattice, shown in 
Figure 2.2.4. Each atom in the diamond lattice has a covalent bond with four adjacent atoms, which together 
form a tetrahedron. This lattice can also be formed from two face-centered-cubic lattices, which are displaced 
along the body diagonal of the larger cube in Figure 2.2.4 by one quarter of that body diagonal. The diamond 
lattice therefore is a face-centered-cubic lattice with a basis containing two identical atoms.

Figure 2.2.4.: The diamond lattice of silicon and germanium 
Compound semiconductors such as GaAs and InP have a crystal structure that is similar to that of diamond. 
However, the lattice contains two different types of atoms. Each atom still has four covalent bonds, but they are 
bonds with atoms of the other type. This structure is referred to as the zinc-blende lattice, named after zinc-
blende (ZnS) as shown in Figure 2.2.5. Both the diamond lattice and the zinc-blende lattice are cubic lattices. A 
third common crystal structure is the hexagonal structure also referred to as the wurzite crystal structure, which 
is the hexagonal form of zinc sulfide (ZnS). 
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Many semiconductor materials can have more than one crystal structure. A large number of compound 
semiconductors including GaAs, GaN and ZnS can be either cubic or hexagonal. SiC can be cubic or one of 
several different hexagonal crystal structures.
The cubic crystals are characterized by a single parameter, the lattice constant a, while the hexagonal 
structures are characterized in the hexagonal plane by a lattice constant a and by the distance between the 
hexagonal planes, c.

Figure 2.2.5 : The zinc-blende crystal structure of GaAs and InP 
Example 2.1

 
Calculate the maximum fraction of the volume in a simple cubic crystal occupied by the atoms. 
Assume that the atoms are closely packed and that they can be treated as hard spheres. This 
fraction is also called the packing density. 

Solution The atoms in a simple cubic crystal are located at the corners of the units cell, a cube with side 
a. Adjacent atoms touch each other so that the radius of each atom equals a/2. There are 
eight atoms occupying the corners of the cube, but only one eighth of each is within the unit 
cell so that the number of atoms equals one per unit cell. The packing density is then obtained 
from:

or about half the volume of the unit cell is occupied by the atoms.

The packing density of four cubic crystals is listed in the table below.
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2.2.3 Growth of semiconductor crystals
 

Like all crystals, semiconductor crystals can be obtained by cooling the molten semiconductor material. 
However, this procedure yields poly-crystalline material since crystals start growing in different locations with a 
different orientation. Instead when growing single-crystalline silicon one starts with a seed crystal and dips one 
end into the melt. By controlling the temperature difference between the seed crystal and the molten silicon, the 
seed crystal slowly grows. The result is a large single-crystal silicon boule. Such boules have a cylindrical 
shape, in part because the seed crystal is rotated during growth and in part because of the cylindrical shape of 
the crucible containing the melt. The boule is then cut into wafers with a diamond saw and further polished to 
yield the starting material for silicon device fabrication.
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2.3 Energy bands
2.3.1. Free electron model
2.3.2. Periodic potentials
2.3.3. Energy bands of semiconductors
2.3.4. Metals, insulators and semiconductors
2.3.5. Electrons and holes in semiconductors
2.3.6. The effective mass concept
2.3.7. Detailed description of the effective mass concept   

Energy bands consisting of a large number of closely spaced energy levels exist in crystalline materials. The 
bands can be thought of as the collection of the individual energy levels of electrons surrounding each atom. 
The wavefunctions of the individual electrons, however, overlap with those of electrons confined to neighboring 
atoms. The Pauli exclusion principle does not allow the electron energy levels to be the same so that one 
obtains a set of closely spaced energy levels, forming an energy band. The energy band model is crucial to any 
detailed treatment of semiconductor devices. It provides the framework needed to understand the concept of 
an energy bandgap and that of conduction in an almost filled band as described by the empty states.

2.3.1 Free electron model
 

The free electron model of metals has been used to explain the photo-electric effect (see section 1.2.2). This 
model assumes that electrons are free to move within the metal but are confined to the metal by potential 
barriers as illustrated by Figure 2.3.1. The minimum energy needed to extract an electron from the metal 
equals qΦM, where ΦM is the workfunction. This model is frequently used when analyzing metals. However, 
this model does not work well for semiconductors since the effect of the periodic potential due to the atoms in 
the crystal has been ignored.
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Figure 2.3.1.: The free electron model of a metal.

2.3.2 Periodic potentials
 

The analysis of periodic potentials is required to find the energy levels in a semiconductor. This requires the 
use of periodic wave functions, called Bloch functions which are beyond the scope of this text. The result of this 
analysis is that the energy levels are grouped in bands, separated by energy band gaps. The behavior of 
electrons at the top and bottom of such a band is similar to that of a free electron. However, the electrons are 
affected by the presence of the periodic potential. The combined effect of the periodic potential is included by 
adjusting the mass of the electron to a different value. This mass will be referred to as the effective mass.
The effect of a periodic arrangement on the electron energy levels is illustrated by Figure 2.3.2. Shown are the 
energy levels of electrons in a carbon crystal with the atoms arranged in a diamond lattice. These energy levels 
are plotted as a function of the lattice constant, a.
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Figure 2.3.2. : Energy bands for diamond versus lattice constant . One atomic unit equals 1 Rydberg = 13.6 
eV.

Isolated carbon atoms contain six electrons, which occupy the 1s, 2s and 2p orbital in pairs. The energy of an 
electron occupying the 2s and 2p orbital is indicated on the figure. The energy of the 1s orbital is not shown. As 
the lattice constant is reduced, there is an overlap of the electron wavefunctions occupying adjacent atoms. 
This leads to a splitting of the energy levels consistent with the Pauli exclusion principle. The splitting results in 
an energy band containing 2N states in the 2s band and 6N states in the 2p band, where N is the number of 
atoms in the crystal. A further reduction of the lattice constant causes the 2s and 2p energy bands to merge 
and split again into two bands containing 4N states each. At zero Kelvin, the lower band is completely filled with 
electrons and labeled as the valence band. The upper band is empty and labeled as the conduction band.

2.3.3 Energy bands of semiconductors
 

2.3.3.1. Energy band diagrams of common semiconductors
2.3.3.2. Simple energy band diagram of a semiconductor
2.3.3.3. Temperature dependence of the energy bandgap

Complete energy band diagrams of semiconductors are very complex. However, most have features similar to 
that of the diamond crystal discussed in section 2.3.2. In this section, we first take a closer look at the energy 
band diagrams of common semiconductors. We then present a simple diagram containing some of the most 
important feature and discuss the temperature dependence of the energy bandgap.

2.3.3.1. Energy band diagrams of common semiconductors

The energy band diagrams of semiconductors are rather complex. The detailed energy band diagrams of 
germanium, silicon and gallium arsenide are shown in Figure 2.3.3. The energy is plotted as a function of the 
wavenumber, k, along the main crystallographic directions in the crystal, since the band diagram depends on 
the direction in the crystal. The energy band diagrams contain multiple completely-filled and completely-empty 
bands. In addition, there are multiple partially-filled band. 
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Figure 2.3.3.: Energy band diagram of (a) germanium, (b) silicon and (c) gallium arsenide
Fortunately, we can simplify the energy band diagram since only the electrons in the highest almost-filled band 
and the lowest almost-empty band dominate the behavior of the semiconductor. These bands are indicated on 
the figure by the + and - signs corresponding to the charge of the carriers in those bands.

2.3.3.2. Simple energy band diagram of a semiconductor

The energy band diagrams shown in the previous section are frequently simplified when analyzing 
semiconductor devices. Since the electronic properties of a semiconductor are dominated by the highest 
partially empty band and the lowest partially filled band, it is often sufficient to only consider those bands. This 
leads to a simplified energy band diagram for semiconductors as shown in Figure 2.3.4: 
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Figure 2.3.4.: A simplified energy band diagram used to describe semiconductors. Shown are the valence 
and conduction band as indicated by the valence band edge, Ev, and the conduction band 
edge, Ec. The vacuum level, Evacuum, and the electron affinity, χ, are also indicated on the 
figure.

The diagram identifies the almost-empty conduction band by a horizontal line. This line indicates the bottom 
edge of the conduction band and is labeled Ec. Similarly, the top of the valence band is indicated by a 
horizontal line labeled Ev. The energy band gap is located between the two lines, which are separated by the 
bandgap energy Eg. The distance between the conduction band edge, Ec, and the energy of a free electron 
outside the crystal (called the vacuum level labeled Evacuum) is quantified by the electron affinity, χ multiplied 
with the electronic charge q.
An important feature of an energy band diagram, which is not included on the simplified diagram, is whether the 
conduction band minimum and the valence band maximum occur at the same value for the wavenumber. If so, 
the energy bandgap is called direct. If not, the energy bandgap is called indirect. This distinction is of interest 
for optoelectronic devices as direct bandgap materials provide more efficient absorption and emission of light. 
For instance, the smallest bandgap of germanium and silicon is indirect, while gallium arsenide has a direct 
bandgap as can be seen on Figure 2.3.3.

2.3.3.3. Temperature dependence of the energy bandgap

The energy bandgap of semiconductors tends to decrease as the temperature is increased. This behavior can 
be better understood if one considers that the interatomic spacing increases when the amplitude of the atomic 
vibrations increases due to the increased thermal energy. This effect is quantified by the linear expansion 
coefficient of a material. An increased interatomic spacing decreases the average potential seen by the 
electrons in the material, which in turn reduces the size of the energy bandgap. A direct modulation of the 
interatomic distance - such as by applying compressive (tensile) stress - also causes an increase (decrease) of 
the bandgap.
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The temperature dependence of the energy bandgap, Eg, has been experimentally determined yielding the 
following expression for Eg as a function of the temperature, T: 

(2.3.1)

where Eg(0), α and β are the fitting parameters. These fitting parameters are listed for germanium, silicon and 
gallium arsenide in Table 2.3.1: 

Table 2.3.1.: Parameters used to calculate the energy bandgap of germanium, silicon and gallium arsenide 
(GaAs) as a function of temperature

A plot of the resulting bandgap versus temperature is shown in Figure 2.3.5 for germanium, silicon and gallium 
arsenide. 

Figure 2.3.5.: Temperature dependence of the energy bandgap of germanium (Ge), silicon (Si) and gallium 
arsenide (GaAs). 

Example 2.2. Calculate the energy bandgap of germanium, silicon and gallium arsenide at 300, 400, 500 
and 600 K.
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Solution The bandgap of silicon at 300 K equals:

Similarly one finds the energy bandgap for germanium and gallium arsenide, as well as at 
different temperatures, yielding:

2.3.4 Metals, insulators and semiconductors
 

Once we know the bandstructure of a given material we still need to find out which energy levels are occupied 
and whether specific bands are empty, partially filled or completely filled. 
Empty bands do not contain electrons. Therefore, they are not expected to contribute to the electrical 
conductivity of the material. Partially filled bands do contain electrons as well as available energy levels at 
slightly higher energies. These unoccupied energy levels enable carriers to gain energy when moving in an 
applied electric field. Electrons in a partially filled band therefore do contribute to the electrical conductivity of 
the material. 
Completely filled bands do contain plenty of electrons but do not contribute to the conductivity of the material. 
This is because the electrons cannot gain energy since all energy levels are already filled. 
In order to find the filled and empty bands we must find out how many electrons can be placed in each band 
and how many electrons are available. Each band is formed due to the splitting of one or more atomic energy 
levels. Therefore, the minimum number of states in a band equals twice the number of atoms in the material. 
The reason for the factor of two is that every energy level can contain two electrons with opposite spin. 
To further simplify the analysis, we assume that only the valence electrons (the electrons in the outer shell) are 
of interest. The core electrons are tightly bound to the atom and are not allowed to freely move in the material. 
Four different possible scenarios are shown in Figure 2.3.6: 
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Figure 2.3.6.: Possible energy band diagrams of a crystal. Shown are a) a half filled band, b) two 
overlapping bands, c) an almost full band separated by a small bandgap from an almost empty 
band and d) a full band and an empty band separated by a large bandgap.

A half-filled band is shown in Figure 2.3.6 a). This situation occurs in materials consisting of atoms, which 
contain only one valence electron per atom. Most highly conducting metals including copper, gold and silver 
satisfy this condition. Materials consisting of atoms that contain two valence electrons can still be highly 
conducting if the resulting filled band overlaps with an empty band. This scenario is shown in b). No conduction 
is expected for scenario d) where a completely filled band is separated from the next higher empty band by a 
larger energy gap. Such materials behave as insulators. Finally, scenario c) depicts the situation in a 
semiconductor. The completely filled band is now close enough to the next higher empty band that electrons 
can make it into the next higher band. This yields an almost full band below an almost empty band. We will call 
the almost full band the valence band since it is occupied by valence electrons. The almost empty band will be 
called the conduction band, as electrons are free to move in this band and contribute to the conduction of the 
material. 

2.3.5 Electrons and holes in semiconductors
 

As pointed out in section 2.3.4, semiconductors differ from metals and insulators by the fact that they contain 
an "almost-empty" conduction band and an "almost-full" valence band. This also means that we will have to 
deal with the transport of carriers in both bands. 
To facilitate the discussion of the transport in the "almost-full" valence band of a semiconductor, we will 
introduce the concept of holes. It is important for the reader to understand that one could deal with only 
electrons if one is willing to keep track of all the electrons in the "almost-full" valence band. After all, electrons 
are the only real particles available in a semiconductor.
The concepts of holes is introduced in semiconductors since it is easier to keep track of the missing electrons 
in an "almost-full" band, rather than keeping track of the actual electrons in that band. We will now first explain 
the concept of a hole and then point out how the hole concept simplifies the analysis. 
Holes are missing electrons. They behave as particles with the same properties as the electrons would have 
when occupying the same states except that they carry a positive charge. This definition is illustrated further 
with Figure 2.3.7, which presents the energy band diagram in the presence of an electric field. 
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Figure 2.3.7.: Energy band diagram in the presence of a uniform electric field. Shown are the upper almost-
empty band and the lower almost-filled band. The tilt of the bands is caused by an externally 
applied electric field.

A uniform electric field is assumed which causes a constant gradient of the bands.
The electrons in the almost-empty band are negatively charged particles, which therefore move in a direction, 
which opposes the direction of the field. Electrons therefore move down hill in the upper band. Electrons in the 
lower band also move in the same direction. The total current density due to the electrons in the valence band 
can therefore be written as: 

(2.3.2)

where V is the volume of the semiconductor, q is the electronic charge and v is the electron velocity. The sum 
is taken over all occupied or filled states in the lower band. This equation can be reformulated by first taking the 
sum over all the states in the lower band and subtracting the current due to the electrons, which are missing in 
the almost-filled band. This last term therefore represents the sum taken over all the empty states in the lower 
band, or: 

(2.3.3)

The sum over all the states in the lower band has to equal zero since electrons in a completely filled band do 
not contribute to current, while the remaining term can be written as: 

(2.3.4)
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which states that the current is due to positively charged particles associated with the empty states in the 
almost-filled band. We call these particles holes. Keep in mind that there is no real particle associated with a 
hole. Instead, the combined behavior of all the electrons, which occupy states in the almost-filled band, is the 
same as that of positively charge particles associated with the unoccupied states. 
The reason the concept of holes simplifies the analysis is that the density of states function of a whole band 
can be rather complex. However, it can be dramatically simplified if only states close to the band edge need to 
be considered. 

2.3.6 The effective mass concept
 

Electrons with an energy close to a band minimum behave as free electrons. They accelerate in an applied 
electric field just like a free electron in vacuum. Their wavefunctions are periodic and extend over the size of 
the material. The presence of the periodic potential, due to the atoms in the crystal without the valence 
electrons, changes the properties of the electrons. Therefore, the mass of the electron differs from the free 
electron mass, m0. Because of the anisotropy of the effective mass and the presence of multiple equivalent 
band minima, we define two types of effective mass, the effective mass for density of states calculations and 
the effective mass for conductivity calculations. The effective mass values for electrons and holes are listed 
together with the value of the smallest energy bandgap in Table 2.3.2. Electrons in gallium arsenide have an 
isotropic effective mass so that the conductivity effective mass equals the density of states effective mass.

Table 2.3.2.: Effective mass of carriers in germanium, silicon and gallium arsenide (GaAs)
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2.3.7. The effective mass: detailed description  

2.3.7.1. Introduction 

The effective mass of a semiconductor is obtained by fitting the actual E-k diagram around the 
conduction band minimum or the valence band maximum by a paraboloid. While this concept is 
simple enough, the issue turns out to be substantially more complex due to the multitude and the 
occasional anisotropy of the minima and maxima. In this section we first describe the different 
relevant band minima and maxima, present the numeric values for germanium, silicon and 
gallium arsenide and introduce the effective mass for density of states calculations and the 
effective mass for conductivity calculations.  

Most semiconductors can be described as having one band minimum at k = 0 as well as several 
equivalent anisotropic band minima at k ≠ 0. In addition there are three band maxima of interest 
close to the valence band edge.  

2.3.7.2.Band structure of silicon 

As an example we consider the band structure of silicon as shown in the figure below:  

Figure 2.3.8  Simplified E-k diagram of silicon. 

Shown is the E-k diagram within the first brillouin zone and along the (100) direction. The 
energy is chosen to be to zero at the edge of the valence band. The lowest band minimum at k = 
0 and still above the valence band edge occurs at Ec,direct = 3.2 eV. This is not the lowest 
minimum above the valence band edge since there are also 6 equivalent minima at k = (x,0,0), (-
x,0,0), (0,x,0), (0,-x,0), (0,0,x), and (0,0,-x) with x = 5 nm-1. The minimum energy of all these 
minima equals 1.12 eV = Ec,indirect. The effective mass of these anisotropic minima is 
characterized by a longitudinal mass along the corresponding equivalent (100) direction and two 



transverse masses in the plane perpendicular to the longitudinal direction. In silicon the 
longitudinal electron mass is me,l

* = 0.98 m0 and the transverse electron masses are me,t
* = 0.19 

m0, where m0 = 9.11 x 10-31 kg is the free electron rest mass.  

Two of the three band maxima occur at 0 eV. These bands are referred to as the light and heavy 
hole bands with a light hole mass of ml,h

* = 0.16 m0 and a heavy hole mass of mh,h
* = 0.46 m0. In 

addition there is a split-off hole band with its maximum at Ev,so = -0.044 eV and a split-off hole 
mass of mh,so

* = 0.29 m0.  

2.3.7.3. Effective mass and energy band minima and maxima of Ge, Si and GaAs 

The values of the energy band minima and maxima as well as the effective masses for 
germanium, silicon and gallium arsenide are listed in the table below:  

 

Name Symbol Germanium Silicon Gallium 
Arsenide 

Band minimum at k = 0     

Minimum energy Eg,direct (eV) 0.8 3.2 1.424 

Effective mass me
*/m0 0.041 ?0.2? 0.067 

Band minimum not at k = 0     

Minimum energy Eg,indirect (eV) 0.66 1.12 1.734 

Longitudinal effective mass me,l
*/m0 1.64 0.98 1.98 

Transverse effective mass me,t
*/m0 0.082 0.19 0.37 

Longitudinal direction  (111) (100) (111) 

Heavy hole valence band maximum 
at E = k = 0 

    

Effective mass mhh
*/m0 0.28 0.49 0.45 

Light hole valence band maximum at 
k = 0 

    

Effective mass mlh
*/m0 0.044 0.16 0.082 

Split-off hole valence band maximum 
at k = 0 

    

Split-off band valence band energy Ev,so (eV) -0.028 -0.044 -0.34 

Effective mass mh,so
*/m0 0.084 0.29 0.154 



     

2.3.7.4. Effective mass for density of states calculations  

The effective mass for density of states calculations equals the mass which provides the density 
of states using the expression for one isotropic maximum or minimum or:  
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h
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for the density of states in the conduction band and:  
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for the density of states in the valence band.  

for instance for a single band minimum described by a longitudinal mass and two transverse 
masses the effective mass for density of states calculations is the geometric mean of the three 
masses. Including the fact that there are several equivalent minima at the same energy one 
obtains the effective mass for density of states calculations from:  

 32/3*
, ttlcdose mmmMm =  (2.3.7) 

where Mc is the number of equivalent band minima. For silicon one obtains:  

 
00

32/332/3*
, 08.119.019.089.06 mmmmmMm ttlcdose =××==  (2.3.8) 

2.3.7.5. Effective mass for conductivity calculations  

The effective mass for conductivity calculation is the mass, which is used in conduction related 
problems accounting for the detailed structure of the semiconductor. These calculations include 
mobility and diffusion constants calculations. Another example is the calculation of the shallow 
impurity levels using a hydrogen-like model.  

As the conductivity of a material is inversionally proportional to the effective masses, one finds 
that the conductivity due to multiple band maxima or minima is proportional to the sum of the 
inverse of the individual masses, multiplied by the density of carriers in each band, as each 
maximum or minimum adds to the overall conductivity. For anisotropic minima containing one 
longitudinal and two transverse effective masses one has to sum over the effective masses in the 
different minima along the equivalent directions. The resulting effective mass for bands, which 
have ellipsoidal constant energy surfaces, is given by:  
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provided the material has an isotropic conductivity as is the case for cubic materials. For instance 
electrons in the X minima of silicon have an effective conductivity mass given by:  
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2.3.7.6.Effective mass and energy bandgap of Ge, Si and GaAs 

Name Symbol Germanium Silicon Gallium 
Arsenide 

Smallest energy bandgap at 300 K Eg (eV) 0.66 1.12 1.424 

Effective mass for density of states 
calculations  

    

Electrons me
*

,dos/m0 0.56 1.08 0.067 

Holes mh
*

,dos/m0 0.29 0.57/0.812 0.47 

Effective mass for conductivity 
calculations  

    

Electrons me
*

,cond/m0 0.12 0.26 0.067 

Holes mh
*

,cond/m0 0.21 0.36/0.3862 0.34 

m0 = 9.11 x 10-31 kg is the free electron rest mass. 

 

 

 

                                                 

2 Due to the fact that the heavy hole band does not have a spherical symmetry there is a discrepancy between the 
actual effective mass for density of states and conductivity calculations (number on the right) and the calculated 
value (number on the left) which is based on spherical constant-energy surfaces. The actual constant-energy surfaces 
in the heavy hole band are "warped", resembling a cube with rounded corners and dented-in faces. 
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2.4 Density of states
2.4.1. Calculation of the density of states
2.4.2. Calculation of the density of states in 1, 2 and 3 dimensions   

Before we can calculate the density of carriers in a semiconductor, we have to find the number of available 
states at each energy. The number of electrons at each energy is then obtained by multiplying the number of 
states with the probability that a state is occupied by an electron. Since the number of energy levels is very 
large and dependent on the size of the semiconductor, we will calculate the number of states per unit energy 
and per unit volume.

2.4.1 Calculation of the density of states
 

The density of states in a semiconductor equals the density per unit volume and energy of the number of 
solutions to Schrödinger's equation. We will assume that the semiconductor can be modeled as an infinite 
quantum well in which electrons with effective mass, m*, are free to move. The energy in the well is set to zero. 
The semiconductor is assumed a cube with side L. This assumption does not affect the result since the density 
of states per unit volume should not depend on the actual size or shape of the semiconductor.
The solutions to the wave equation (equation 1.2.14) where V(x) = 0 are sine and cosine functions:

(2.4.1)

Where A and B are to be determined. The wavefunction must be zero at the infinite barriers of the well. At x = 0 
the wavefunction must be zero so that only sine functions can be valid solutions or B must equal zero. At x = L, 
the wavefunction must also be zero yielding the following possible values for the wavenumber, kx.

(2.4.2)

This analysis can now be repeated in the y and z direction. Each possible solution corresponds to a cube in k-
space with size nπ/L as indicated on Figure 2.4.1.
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Figure 2.4.1: Calculation of the number of states with wavenumber less than k.
The total number of solutions with a different value for kx, ky and kz and with a magnitude of the wavevector 
less than k is obtained by calculating the volume of one eighth of a sphere with radius k and dividing it by the 

volume corresponding to a single solution, , yielding:

(2.4.3)

A factor of two is added to account for the two possible spins of each solution. The density per unit energy is 
then obtained using the chain rule:

(2.4.4)

The kinetic energy E of a particle with mass m* is related to the wavenumber, k, by:

(2.4.5)

And the density of states per unit volume and per unit energy, g(E), becomes:

(2.4.6)

The density of states is zero at the bottom of the well as well as for negative energies.
The same analysis also applies to electrons in a semiconductor. The effective mass takes into account the 
effect of the periodic potential on the electron. The minimum energy of the electron is the energy at the bottom 
of the conduction band, Ec, so that the density of states for electrons in the conduction band is given by:

(2.4.7)
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Example 2.3 Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece of silicon (m* = 
1.08 m0) 100 meV above the conduction band edge. Write the result in units of eV-1.

Solution The density of states equals: 

So that the total number of states per unit energy equals: 
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2.4.2. Calculation of the density of states in 1, 2 and 3 dimensions   
We will here postulate that the density of electrons in k–space is constant and equals the physical 
length of the sample divided by 2π  and that for each dimension. The number of states between k 
and k + dk  in 3, 2 and 1 dimension then equals:  
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We now assume that the electrons in a semiconductor are close to a band minimum, Emin and can 
be described as free particles with a constant effective mass, or:  
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Elimination of k using the E(k) relation above then yields the desired density of states functions, 
namely:  
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for a three-dimensional semiconductor,  
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For a two-dimensional semiconductor such as a quantum well in which particles are confined to 
a plane, and  
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For a one-dimensional semiconductor such as a quantum wire in which particles are confined 
along a line.  

An example of the density of states in 3, 2 and 1 dimension is shown in the figure below:  



 Review of Modern Physics 5 

 

 

Figure 2.4.2 Density of states per unit volume and energy for a 3-D semiconductor (blue 
curve), a 10 nm quantum well with infinite barriers (red curve) and a 10 nm by 10 
nm quantum wire with infinite barriers (green curve). m*/m0 = 0.8.  

The above figure illustrates the added complexity of the quantum well and quantum wire: Even 
though the density in two dimensions is constant, the density of states for a quantum well is a 
step function with steps occurring at the energy of each quantized level. The case for the 
quantum wire is further complicated by the degeneracy of the energy levels: for instance a two-
fold degeneracy increases the density of states associated with that energy level by a factor of 
two. A list of the degeneracy (not including spin) for the 10 lowest energies in a quantum well, a 
quantum wire and a quantum box, all with infinite barriers, is provided in the table below:  

Quantum Well Quantum Wire Quantum Box 

nx E/E0 Degeneracy nx ny E/E0 Degeneracy nx ny nz E/E0 Degeneracy 

1 1 1 1 1 2 1 1 1 1 3 1 

2 4 1 1 2 5 2 1 1 2 6 3 

3 9 1 2 2 8 1 1 2 2 9 3 

4 16 1 1 3 10 2 1 1 3 11 3 

5 25 1 2 3 13 2 2 2 2 12 1 

6 36 1 1 4 17 2 1 2 3 14 6 

7 49 1 3 3 18 1 2 2 3 17 3 



8 64 1 2 4 20 2 1 1 4 18 3 

9 81 1 3 4 25 2 1 3 3 19 3 

10 100 1 1 5 26 2 1 2 4 21 6 

11 121 1 2 5 29 2 2 3 3 22 3 

12 144 1 4 4 32 1 2 2 4 24 6 

13 169 1 3 5 34 2 1 3 4 26 3 

14 196 1 1 6 37 6 1 1 5 27 3 

15 225 1 2 6 40 13 3 3 3 27 1 

       3 2 4 29 3 

 

Figure 2.4.3 Degeneracy (not including spin) of the lowest 10 energy levels in a quantum well, 
a quantum wire with square cross-section and a quantum cube with infinite 
barriers. The energy E0 equals the lowest energy in a quantum well, which has the 
same size 

Comparison of the number of discreet states in a 3-dimensional cube with the analytic 
expressions derived above.  

 

Figure 2.4.4 Number of states within a range ∆E = 20 E0 as a function of the normalized 
energy E/E0. (E0  is the lowest energy in a 1-dimensional quantum well).  

The first point corresponds to the number of states. 
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Figure 2.4.5 Number of states with energy less than or equal to E as a function of E0 (E0 is the 
lowest energy in an 1-dimensional quantum well).  
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2.5 Carrier distribution functions
2.5.1. Fermi-Dirac distribution function
2.5.2. Example
2.5.3. Impurity distribution functions
2.5.4. Other distribution functions and comparison
2.5.5. Derivation of the Fermi-Dirac distribution function   

The distribution or probability density functions describe the probability with which one can expect particles to 
occupy the available energy levels in a given system. Of particular interest is the probability density function of 
electrons, called the Fermi function. The derivation of such probability density functions belongs in a statistical 
thermodynamics course. However, given the importance of the Fermi distribution function, we will carefully 
examine an example as well as the characteristics of this function. Other distribution functions such as the 
impurity distribution functions, the Bose-Einstein distribution function and the Maxwell Boltzmann distribution 
are also provided. 

2.5.1 Fermi-Dirac distribution function
 

The Fermi-Dirac distribution function, also called Fermi function, provides the probability of occupancy of 
energy levels by Fermions. Fermions are half-integer spin particles, which obey the Pauli exclusion principle. 
The Pauli exclusion principle postulates that only one Fermion can occupy a single quantum state. Therefore, 
as Fermions are added to an energy band, they will fill the available states in an energy band just like water fills 
a bucket. The states with the lowest energy are filled first, followed by the next higher ones. At absolute zero 
temperature (T = 0 K), the energy levels are all filled up to a maximum energy, which we call the Fermi level. 
No states above the Fermi level are filled. At higher temperature, one finds that the transition between 
completely filled states and completely empty states is gradual rather than abrupt. 
Electrons are Fermions. Therefore, the Fermi function provides the probability that an energy level at energy, 
E, in thermal equilibrium with a large system, is occupied by an electron. The system is characterized by its 
temperature, T, and its Fermi energy, EF. The Fermi function is given by:

(2.5.1)

This function is plotted in Figure 2.5.1 for different temperatures. 
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Figure 2.5.1 : The Fermi function at three different temperatures. 

The Fermi function has a value of one for energies, which are more than a few times kT below the Fermi 
energy. It equals 1/2 if the energy equals the Fermi energy and decreases exponentially for energies which are 
a few times kT larger than the Fermi energy. While at T = 0 K the Fermi function equals a step function, the 
transition is more gradual at finite temperatures and more so at higher temperatures. 

2.5.2 Example
 

To better understand the origin of distribution functions, we now consider a specific system with equidistant 
energy levels at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, .... eV. Each energy level can contain two electrons. Since electrons 
are indistinguishable from each other, no more than two electrons (with opposite spin) can occupy a given 
energy level. This system contains 20 electrons. 
The minimum energy of this system corresponds to the situation where all 20 electrons occupy the ten lowest 
energy levels without placing more than 2 in any given level. This situation occurs at T = 0 K and the total 
energy equals 100 eV.
Since we are interested in a situation where the temperature is not zero, we arbitrarily set the total energy at 
106 eV, which is 6 eV more than the minimum possible energy of this system. This ensures that the thermal 
energy is not zero so that the system must be at a non-zero temperature.
There are 24 possible and different configurations, which satisfy these particular constraints. Eight of those 
configurations are shown in Figure 2.5.2, where the filled circles represent the electrons: 
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Figure 2.5.2 : Eight of the 24 possible configurations in which 20 electrons can be placed having a total 
energy of 106 eV. 

We no apply the basis postulate of statistical thermodynamics, namely that all possible configurations are 
equally likely to occur. The expected configuration therefore equals the average occupancy of all possible 
configurations.
The average occupancy of each energy level taken over all (and equally probable) 24 configurations is 
compared in Figure 2.5.3 to the Fermi-Dirac distribution function. A best fit was obtained using a Fermi energy 
of 9.998 eV and kT = 1.447 eV or T = 16,800 K. The agreement is surprisingly good considering the small size 
of this system. 

Figure 2.5.3 : Probability versus energy averaged over the 24 possible configurations (circles) fitted with a 
Fermi-Dirac function (solid line) using kT = 1.447 eV and EF = 9.998 eV. 
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Based on the construction of the distribution function in this example, one would expect the distribution function 
to be dependent on the density of states. This is the case for small systems. However, for large systems and 
for a single energy level in thermal equilibrium with a larger system, the distribution function no longer depends 
on the density of states. This is very fortunate, since it dramatically simplifies the carrier density calculations. 
One should also keep in mind that the Fermi energy for a particular system as obtained in section 2.6 does 
depend on the density of states.

2.5.3 Impurity distribution functions
 

The distribution function of impurities differs from the Fermi-Dirac distribution function although the particles 
involved are Fermions. The difference is due to the fact that an ionized donor energy level still contains one 
electron, which can have either spin (spin up or spin down). The donor energy level cannot be empty since this 
would leave a doubly positively charged atom, which would have an energy different from the donor energy. 
The distribution function for donors therefore differs from the Fermi function and is given by: 

(2.5.2)

The distribution function for acceptors differs also because of the different possible ways to occupy the 
acceptor level. The neutral acceptor contains no electrons. The ionized acceptor contains one electron, which 
can have either spin, while the doubly negatively charged state is not allowed since this would require a 
different energy. This restriction would yield a factor of 2 in front of the exponential term. In addition, one finds 
that most commonly used semiconductors have a two-fold degenerate valence band, which causes this factor 
to increase to four, yielding: 

(2.5.3)

2.5.4 Other distribution functions and comparison
 

Other distribution functions include the Bose-Einstein distribution and the Maxwell-Boltzmann distribution. 
These are briefly discussed below and compared to the Fermi-Dirac distribution function.
The Bose-Einstein distribution function applies to bosons. Bosons are particles with integer spin and include 
photons, phonons and a large number of atoms. Bosons do not obey the Pauli exclusion principle so that any 
number can occupy one energy level. The Bose-Einstein distribution function is given by:

(2.5.4)

This function is only defined for E > EF.

The Maxwell Boltzmann applies to non-interacting particles, which can be distinguished from each other. This 
distribution function is also called the classical distribution function since it provides the probability of 
occupancy for non-interacting particles at low densities. Atoms in an ideal gas form a typical example of such 
particles. The Maxwell-Boltzmann distribution function is given by:

(2.5.5)
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A plot of the three distribution functions, the Fermi-Dirac distribution, the Maxwell-Boltzmann distribution and 
the Bose-Einstein distribution is shown in Figure 2.5.4. 

Figure 2.5.4 : Probability of occupancy versus energy of the Fermi-Dirac, the Bose-Einstein and the Maxwell-
Boltzmann distribution. The Fermi energy, EF, is assumed to be zero. 

All three functions are almost equal for large energies (more than a few kT beyond the Fermi energy). The 
Fermi-Dirac distribution reaches a maximum of 100% for energies, which are a few kT below the Fermi energy, 
while the Bose-Einstein distribution diverges at the Fermi energy and has no validity for energies below the 
Fermi energy.
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2.5.5. Derivation of the Fermi-Dirac distribution function   

We start from a series of possible energies, labeled Ei. At each energy, we can have gi possible 
states and the number of states that are occupied equals gifi, where fi is the probability of 
occupying a state at energy Ei. 

The number of possible ways - called configurations - to fit gi fi electrons in gi states, given the 
restriction that only one electron can occupy each state, equals: 
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(2.5.6) 

This equation is obtained by numbering the individual states and exchanging the states rather 
than the electrons. This yields a total number of gi! possible configurations. However since the 
empty states are all identical, we need to divide by the number of permutations between the 
empty states, as all permutations cannot be distinguished from each other and can therefore only 
be counted once. In addition, all the filled states are indistinguishable from each other, so we 
need to divide also by all permutations between the filled states, namely gifi!. 

The number of possible ways to fit the electrons in the number of available states is called the 
multiplicity function. 

The multiplicity function for the whole system is the product of the multiplicity functions for 
each energy Ei 
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Using Stirling’s approximation, one can eliminate the factorial signs, yielding: 
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The total number of electrons in the system equals N and the total energy of those N electrons 
equals E. These system parameters are related to the number of states at each energy, gi, and the 
probability of occupancy of each state, fi, by: 
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and 
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According to the basic assumption of statistical thermodynamics, all possible configurations are 
equally probable. The multiplicity function provides the number of configurations for a specific 
set of occupancy probabilities, fi. The multiplicity function sharply peaks at the thermal 
equilibrium distribution. The occupancy probability in thermal equilibrium is therefore obtained 



by finding the maximum of the multiplicity function, W, while keeping the total energy and the 
number of electrons constant. 

For convenience, we maximize the logarithm of the multiplicity function instead of the 
multiplicity function itself. According to the Lagrange method of undetermined multipliers, we 
must maximize the following function: 
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where a and b need to be determined. The maximum multiplicity function is obtained from: 
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which can be solved, yielding: 
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Or 
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which can be written in the following form 
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with β = 1/b and EF = -a/b. The symbol EF was chosen since this constant has units of energy 
and will be the constant associated with this probability distribution.  

Taking the derivative of the total energy, one obtains: 
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Using the Lagrange equation, this can be rewritten as: 
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Any variation of the energies, Ei, can only be caused by a change in volume, so that the middle 
term can be linked to a volume variation dV.  
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(2.5.18) 

Comparing this to the thermodynamic identity: 

 dNpdVTdSdU µ+−=  (2.5.19) 

one finds that β  = kT and S = k lnW . The energy, EF, equals the energy associated with the 
particles, namely the lector-chemical potential, µ. 

The comparison also identifies the entropy, S, as being the logarithm of the multiplicity function, 
W, multiplied with Boltzmann’s constant. 

The Fermi-Dirac distribution function then becomes: 
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2.6. Carrier densities
2.6.1. General discussion
2.6.2. Calculation of the Fermi integral
2.6.3. Intrinsic semiconductors
2.6.4. Doped semiconductors
2.6.5. Non-equilibrium carrier densities

Now that we have discussed the density of states and the distribution functions, we have all the necessary 
tools to calculate the carrier density in a semiconductor.

2.6.1 General discussion
 

The density of electrons in a semiconductor is related to the density of available states and the probability that 
each of these states is occupied. The density of occupied states per unit volume and energy, n(E), is simply the 
product of the density of states in the conduction band, gc(E) and the Fermi-Dirac probability function, f(E), 
(also called the Fermi function): 

(2.6.1)

Since holes correspond to empty states in the valence band, the probability of having a hole equals the 
probability that a particular state is not filled, so that the hole density per unit energy, p(E), equals: 

(2.6.2)

Where gv(E) is the density of states in the valence band. The density of carriers is then obtained by integrating 
the density of carriers per unit energy over all possible energies within a band. A general expression is derived 
as well as an approximate analytic solution, which is valid for non-degenerate semiconductors. In addition, we 
also present the Joyce-Dixon approximation, an approximate solution useful when describing degenerate 
semiconductors. 
The density of states in a semiconductor was obtained by solving the Schrödinger equation for the particles in 
the semiconductor. Rather than using the actual and very complex potential in the semiconductor, we use the 
simple particle-in-a box model, where one assumes that the particle is free to move within the material. 

For an electron which behaves as a free particle with effective mass, m*, the density of states was derived in 
section 2.4, yielding: 

(2.6.3)

where Ec is the bottom of the conduction band below which the density of states is zero. The density of states 
for holes in the valence band is given by: 
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(2.6.4)

2.6.2. Calculation of the Fermi integral
 

2.6.2.1 Carrier density at zero Kelvin
2.6.2.2 Non-degenerate semiconductors
2.6.2.3 Degenerate semiconductors

The carrier density in a semiconductor, is obtained by integrating the product of the density of states and the 
probability density function over all possible states. For electrons in the conduction band the integral is taken 
from the bottom of the conduction band, labeled, Ec, to the top of the conduction band: 

(2.6.5)

Where gc(E) is the density of states in the conduction band and f(E) is the Fermi function.

This general expression is illustrated with Figure 2.6.1 for a parabolic density of states function with Ec = 0. The 
figure shows the density of states function, gc(E), the Fermi function, f(E), as well as the product of both, which 
is the density of electrons per unit volume and per unit energy, n(E). The integral corresponds to the 
crosshatched area. 

Figure 2.6.1 : The carrier density integral. Shown are the density of states, gc(E), the density per unit energy, 
n(E), and the probability of occupancy, f(E). The carrier density, no, equals the crosshatched 
area. 

The actual location of the top of the conduction band does not need to be known as the Fermi function goes to 
zero at higher energies. The upper limit can therefore be replaced by infinity. We also relabeled the carrier 
density as no to indicate that the carrier density is the carrier density in thermal equilibrium.
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(2.6.6)

Using equations (2.6.3) and (2.5.1) this integral becomes: 

(2.6.7)

While this integral can not be solved analytically at non-zero temperatures, we can obtain either a numeric 
solution or an approximate analytical solution. Similarly for holes one obtains: 

(2.6.8)

and 

(2.6.9)

The calculation of the electron and hole density in a semiconductor is further illustrated by Figure 2.6.2. 

Figure 2.6.2 : The density of states and carrier densities in the conduction and valence band. Shown are the 
electron and hole density per unit energy, n(E) and p(E), the density of states in the 
conduction and valence band, gc(E) and gv(E) and the probability of occupancy, f(E). The 
crosshatched area indicates the electron and hole densities. 

Indicated on the figure are the density of states in the conduction and valence band, the Fermi distribution 
function and the electron and hole densities per unit energy. The crosshatched areas indicate the thermal-
equilibrium carrier densities. From the figure, one can easily see that the electron density will increase as the 
Fermi energy is increased. The hole density decreases with increasing Fermi energy. As the Fermi energy is 
decreased, the electron density decreases and the hole density increases.
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2.6.2.1 Carrier density at zero Kelvin

Equation (2.6.7) can be solved analytically at T = 0 K, since the Fermi function at T = 0 K equals one for all 
energies below the Fermi energy and 0 for all energies larger than the Fermi energy. Equation (2.6.7) can 
therefore be simplified to:

(2.6.10)

and integration yields:

(2.6.11)

This expression can be used to approximate the carrier density in heavily degenerate semiconductors provided 
kT << (EF - Ec) > 0

2.6.2.2 Non-degenerate semiconductors

Non-degenerate semiconductors are defined as semiconductors for which the Fermi energy is at least 3kT 
away from either band edge. The reason we restrict ourselves to non-degenerate semiconductors is that this 
definition allows the Fermi function to be replaced by a simple exponential function, i.e. the Maxwell-Boltzmann 
distribution function. The carrier density integral can then be solved analytically yielding: 

(2.6.12)

with 

(2.6.13)

where Nc is the effective density of states in the conduction band. Similarly for holes, one can approximate the 
hole density integral as: 

(2.6.14)

with 

(2.6.15)

where Nv is the effective density of states in the valence band.

Example 2.4 Calculate the effective densities of states in the conduction and valence bands of germanium, 
silicon and gallium arsenide at 300 K.
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Solution The effective density of states in the conduction band of germanium equals: where the 
effective mass for density of states was used (Appendix 3). Similarly one finds the effective 
densities for silicon and gallium arsenide and those of the valence band:

Calculate the effective densities of states in the conduction and valence bands of germanium, 
silicon and gallium arsenide at 300 K.

Note that the effective density of states is temperature dependent and can be obtain from:

where Nc(300 K) is the effective density of states at 300 K.

2.6.2.3 Degenerate semiconductors

A useful approximate expression applicable to degenerate semiconductors was obtained by Joyce and Dixon 
and is given by: 

(2.6.16)

for electrons and by: 

(2.6.17)

for holes. 

2.6.3. Intrinsic semiconductors
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2.6.3.1 Intrinsic carrier density
2.6.3.2 Mass action law
2.6.3.3 Intrinsic Fermi energy
2.6.3.4 Intrinsic material as reference

Intrinsic semiconductors are semiconductors, which do not contain impurities. They do contain electrons as 
well as holes. The electron density equals the hole density since the thermal activation of an electron from the 
valence band to the conduction band yields a free electron in the conduction band as well as a free hole in the 
valence band. We will identify the intrinsic hole and electron density using the symbol ni, and refer to it as the 
intrinsic carrier density. 

2.6.3.1 Intrinsic carrier density

Intrinsic semiconductors are usually non-degenerate, so that the expressions for the electron (2.6.12) and hole 
(2.6.14) densities in non-degenerate semiconductors apply. Labeling the Fermi energy of intrinsic material as 
Ei, we can then write two relations between the intrinsic carrier density and the intrinsic Fermi energy, namely: 

(2.6.18)

It is possible to eliminate the intrinsic Fermi energy from both equations, simply by multiplying both equations 
and taking the square root. This provides an expression for the intrinsic carrier density as a function of the 
effective density of states in the conduction and valence band, and the bandgap energy Eg = Ec - Ev. 

(2.6.19)

The temperature dependence of the intrinsic carrier density is dominated by the exponential dependence on 
the energy bandgap. In addition, one has to consider the temperature dependence of the effective densities of 
states and that of the energy bandgap. A plot of the intrinsic carrier density versus temperature is shown in 
Figure 2.6.3. The temperature dependence of the effective masses was ignored. 

Figure 2.6.3 : Intrinsic carrier density versus temperature in gallium arsenide (GaAs), silicon (Si) and 
germanium (Ge). 
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Example 2.4b Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at 300, 400, 
500 and 600 K.

Solution The intrinsic carrier density in silicon at 300 K equals:

Similarly one finds the intrinsic carrier density for germanium and gallium arsenide at different 
temperatures, yielding:

Note that the values at 300 K as calculated in example 2.4 are not identical to those listed in Appendix 3. This 
is due to an accumulation of assumptions in the derivation. The numbers in Appendix 3 are obtained from 
careful measurements and should therefore be used instead of those calculated in example 2.4.

2.6.3.2 Mass action law

Using the same approach as in section 2.6.3.1, one can prove that the product of the electron and hole density 
equals the square of the intrinsic carrier density for any non-degenerate semiconductor. By multiplying the 
expressions for the electron and hole densities in a non-degenerate semiconductor, as in equations (2.6.12) 
and (2.6.14), one obtains: 

(2.6.20)

This property is referred to as the mass action law. It is a powerful relation, which enables to quickly find the 
hole density if the electron density is known or vice versa. This relation is only valid for non-degenerate 
semiconductors in thermal equilibrium

2.6.3.3 Intrinsic Fermi energy

The above equations for the intrinsic electron and hole density can be solved for the intrinsic Fermi energy, 
yielding: 
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(2.6.21)

The intrinsic Fermi energy is typically close to the midgap energy, half way between the conduction and 
valence band edge. The intrinsic Fermi energy can also be expressed as a function of the effective masses of 
the electrons and holes in the semiconductor. For this we use equations (2.6.13) and (2.6.15) for the effective 
density of states in the conduction and valence band, yielding: 

(2.6.22)

2.6.3.4 Intrinsic material as reference

Dividing the expressions for the carrier densities (2.6.12) and (2.6.14), by the one for the intrinsic density 
(2.6.18) allows to write the carrier densities as a function of the intrinsic density, ni, and the intrinsic Fermi 
energy, Ei, or: 

(2.6.23)

and 

(2.6.24)

We will use primarily these two equations to find the electron and hole density in a semiconductor in thermal 
equilibrium. The same relations can also be rewritten to obtain the Fermi energy from either carrier density, 
namely: 

(2.6.25)

and 

(2.6.26)

2.6.4. Doped semiconductors
 

2.6.4.1 Dopants and impurities
2.6.4.2 Ionization energy model
2.6.4.3 Analysis of non-degenerately doped semiconductors
2.6.4.4 General analysis

Doped semiconductors are semiconductors, which contain impurities, foreign atoms incorporated into the 
crystal structure of the semiconductor. Either these impurities can be unintentional, due to lack of control during 
the growth of the semiconductor, or they can be added on purpose to provide free carriers in the 
semiconductor. 
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The generation of free carriers requires not only that impurities are present, but also that the impurities give off 
electrons to the conduction band in which case they are called donors. If they give off holes to the valence 
band, they are called acceptors (since they effectively accept an electron from the filled valence band). The 
ionization of shallow donors and acceptors are illustrated by Figure 2.6.4. Indicated are the donor and acceptor 
energies, Ed and Ea. The donor energy level is filled prior to ionization. Ionization causes the donor to be 
emptied, yielding an electron in the conduction band and a positively charged donor ion. The acceptor energy 
is empty prior to ionization. Ionization of the acceptor corresponds to the empty acceptor level being filled by an 
electron from the filled valence band. This is equivalent to a hole given off by the acceptor atom to the valence 
band.

Figure 2.6.4 : Ionization of a) a shallow donor and b) a shallow acceptor
A semiconductor doped with impurities, which are ionized (meaning that the impurity atoms either have 
donated or accepted an electron), will therefore contain free carriers. Shallow impurities are impurities, which 
require little energy - typically around the thermal energy, kT, or less - to ionize. Deep impurities require 
energies much larger than the thermal energy to ionize so that only a fraction of the impurities present in the 
semiconductor contribute to free carriers. Deep impurities, which are more than five times the thermal energy 
away from either band edge, are very unlikely to ionize. Such impurities can be effective recombination centers, 
in which electrons and holes fall and annihilate each other. Such deep impurities are also called traps. 
Ionized donors provide free electrons in a semiconductor, which is then called n-type, while ionized acceptors 
provide free holes in a semiconductor, which we refer to as being a p-type semiconductor. 

2.6.4.1 Dopants and impurities

The ionization of the impurities is dependent on the thermal energy and the position of the impurity level within 
the energy band gap as described by the impurity distribution functions discussed in section 2.5.3. 

Shallow impurities readily ionize so that the free carrier density equals the impurity concentration. For shallow 
donors this implies that the electron density equals the donor concentration, or: 

(2.6.27)

While for shallow acceptors the hole density equals the acceptor concentration, or: 

(2.6.28)
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If a semiconductor contains both shallow donors and shallow acceptors it is called compensated since equal 
amounts of donor and acceptor atoms compensate each other, yielding no free carriers. The presence of 
shallow donors and shallow acceptors in a semiconductor cause the electrons given off by the donor atoms to 
fall into the acceptor state, which ionizes the acceptor atoms without yielding a free electron or hole. The 
resulting carrier density in compensated material, which contains both shallow donors and shallow acceptors, is 
approximately equal to the difference between the donor and acceptor concentration if the donor concentration 
is larger, yielding n-type material, or: 

(2.6.29)

If the acceptor concentration is larger than the donor concentration, the hole density of the resulting p-type 
material equals the difference between the acceptor and donor concentration, or: 

(2.6.30)

2.6.4.2 Ionization energy model

The energy required to remove an electron from a donor atom can be approximated using a hydrogen-like 
model. After all, the donor atom consists of a positively charged ion and an electron just like the proton and 
electron of the hydrogen atom. The difference however is that the average distance, r, between the electron 
and the donor ion is much larger since the electron occupies one of the outer orbitals. This is illustrated by 
Figure 2.6.5.

Figure 2.6.5: Trajectory of an electron bound to a donor ion within a semiconductor crystal. 
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For shallow donors, this distance, r, is much larger than the inter-atomic spacing of the semiconductor crystal. 
The ionization energy, Ed, can be estimated by modifying equation (1.2.10), which describes the electron 
energy in a Hydrogen atom, yielding:

(2.6.31)

where m*cond is the effective mass for conductivity calculations and er is the relative dielectric constant of the 
semiconductor. The ionization energy is calculated as the difference between the energy of a free electron and 
that of an electron occupying the lowest energy level, E1.

Example 2.5 Calculate the ionization energy for shallow donors and acceptors in germanium and silicon 
using the hydrogen-like model.

Solution Using the effective mass for conductivity calculations (Appendix 3) one finds the ionization 
energy for shallow donors in germanium to be:

The calculated ionization energies for donors and acceptors in germanium and silicon are 
provided below.

Note that the actual ionization energies differ from these values and depend on th actual donor 
atom.

2.6.4.3 Analysis of non-degenerately doped semiconductors

The calculation of the electron density starts by assuming that the semiconductor is neutral, so that there is a 
zero charge density in the material. This is a reasonable assumption since a net charge density would result in 
an electric field. This electric field would move any mobile charge so that it eliminates any charge imbalance. 
The charge density in a semiconductor depends on the free electron and hole density and on the ionized 
impurity densities. Ionized donors, which have given off an electron, are positively charged. Ionized acceptors, 
which have accepted an electron, are negatively charged. The total charge density is therefore given by:

(2.6.32)

The hole concentration in thermal equilibrium can be written as a function of the electron density by using the 
mass action law (2.6.20). This yields the following relation between the electron density and the ionized 
impurity densities: 
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(2.6.33)

Note that the use of the mass action law restricts the validity of this derivation to non-degenerate 
semiconductors as defined in section 2.6.2.2. Solving this quadratic equation yields a solution for the electron 
density, namely: 

(2.6.34)

The same derivation can be repeated for holes, yielding: 

(2.6.35)

The above expressions provide the free carrier densities for compensated semiconductors assuming that all 
donors and acceptors are ionized.
From the carrier densities, one then obtains the Fermi energies using equations (2.6.25) and (2.6.26) which are 
repeated below:

(2.6.25)

or 

(2.6.26)

The Fermi energies in n-type and p-type silicon as a function of doping density is shown in Figure 2.6.6 for 
different temperatures:
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Figure 2.6.6 : Fermi energy of n-type and p-type silicon, EF,n and EF,p, as a function of doping density at 
100, 200, 300, 400 and 500 K. Shown are the conduction and valence band edges, Ec and Ev. 
The midgap energy is set to zero. 

Figure 2.6.6 illustrates how the Fermi energies vary with doping density. The Fermi energy varies linearly, 
when plotting the density on a logarithmic scale, up to a doping density of 1018 cm-3. This simple dependence 
requires that the semiconductor is neither intrinsic nor degenerate and that all the dopants are ionized. For 
compensated material, containing only shallow dopants, one uses the net doping density, |Nd - Na|. 

Example 2.6a A germanium wafer is doped with a shallow donor density of 3ni/2. Calculate the electron and 
hole density.

Solution The electron density is obtained from equation (2.6.34) and the hole density is obtained using 
the mass action law: 

Example 2.6b A silicon wafer is doped with a shallow acceptor doping of 1016 cm-3. Calculate the electron 
and hole density.

Solution Since the acceptor doping is much larger than the intrinsic density and much smaller than the 
effective density of states, the hole density equals: The electron density is then obtained using 
the mass action law The approach described in example 2.6a yields the same result.

2.6.4.4 General analysis

A more general analysis takes also into account the fact that the ionization of the impurities is not 100%, but 
instead is given by the impurity distribution functions provided in section 2.5.3.

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_6.htm (13 of 17)11/10/2004 16:25:11



Carrier densities

The analysis again assumes that there is no net charge in the semiconductor (charge neutrality). This also 
means that the total density of positively charged particles (holes and ionized donors) must equals the total 
density of negatively charged particles (electrons and ionized acceptors) yielding: 

(2.6.36)

The electron and hole densities are then written as a function of the Fermi energy. For non-degenerate 
semiconductors one uses equations (2.6.12) and (2.6.14), while the ionized impurity densities equal the 
impurity density multiplied with the probability of occupancy for the acceptors and one minus the probability of 
occupancy for the donors. The Joyce-Dixon approximation, described in section 2.6.2.3 is used to calculate the 
degenerate carrier densities.
A graphical solution to equation (2.6.36) above can be obtained by plotting both sides of the equation as a 
function of the Fermi energy as illustrated in Figure 2.6.7. 

Figure 2.6.7 : Graphical solution of the Fermi energy based on the general analysis. The value of the Fermi 
energy and the free carrier density is obtained at the intersection of the two curves, which 
represent the total positive and total negative charge in the semiconductor. Na equals 1016 cm-

3 and Nd equals 1014 cm-3. 

Figure 2.6.7 shows the positive and negative charge densities as well as the electron and hole densities as a 
function of the Fermi energy. The dotted lines indicate the position of the acceptor and donor energies. The 
Fermi energy is obtained at the intersection of both curves as indicated by the arrow.
This graphical solution is a very useful tool to explore the Fermi energy as a function of the doping densities, 
ionization energies and temperature.
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Operation of devices over a wide temperature range requires a detailed knowledge of the carrier density as a 
function of temperature. At intermediate temperatures the carrier density approximately equals the net doping, |
Na - Nd|. Semiconductors, which satisfy this condition, are also called extrinsic semiconductors. The free carrier 
density increases at high temperatures for which the intrinsic density approaches the net doping density and 
decreases at low temperatures due to incomplete ionization of the dopants. The carrier density and Fermi 
energy are shown in Figure 2.6.8 for silicon doped with 1016 cm-3 donors and 1015 cm-3 acceptors: 

Figure 2.6.8 : Electron density and Fermi energy as a function of temperature in silicon with Nd = 1016 cm-3, 
Na = 1014 cm-3 and Ec - Ed = Ea - Ev = 50 meV. The activation energy at 70 K equals 27.4 
meV. 

At high temperatures, the carrier density equals the intrinsic carrier concentration, while at low temperatures 
the carrier density is dominated by the ionization of the donors. 
The temperature dependence is related to an activation energy by fitting the carrier density versus 1/T on a 
semi-logarithmic scale to a straight line of the form no(T) = C exp(-EA/kT), where C is a constant. At high 
temperatures this activation energy equals half the bandgap energy or EA = Eg/2. 

The temperature dependence at low temperatures is somewhat more complex as it depends on whether or not 
the material is compensated. Figure 2.6.8 was calculated for silicon containing both donors and acceptors. At 
70 K the electron density is below the donor density but still larger than the acceptor density. Under such 
conditions the activation energy, EA, equals half of the ionization energy of the donors or (Ec - Ed)/2. At lower 
temperatures where the electron density is lower than the acceptor density, the activation energy equals the 
ionization energy or Ec - Ed. This behavior is explained by the fact that the Fermi energy in compensated 
material is fixed at the donor energy. The donors levels are always partially empty as electrons are removed 
from the donor atoms to fill the acceptor energy levels. If the acceptor density is smaller than the electron 
density - as is true for uncompensated material - the Fermi energy does change with temperature and the 
activation energy approaches half of the ionization energy. 
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Lightly doped semiconductors suffer from freeze-out at relatively high temperature. Higher-doped 
semiconductors freeze-out at lower temperatures. Highly-doped semiconductors do not contain a single donor 
energy, but rather an impurity band which overlaps with the conduction or valence band. The overlap of the two 
bands results in free carriers even at zero Kelvin. Degenerately doping a semiconductor therefore eliminates 
freeze-out effects. 

2.6.5. Non-equilibrium carrier densities
 

Up until now, we have only considered the thermal equilibrium carrier densities, no and po. However most 
devices of interest are not in thermal equilibrium. Keep in mind that a constant ambient constant temperature is 
not a sufficient condition for thermal equilibrium. In fact, applying a non-zero voltage to a device or illuminating 
it with light will cause a non-equilibrium condition, even if the temperature is constant.
To describe a system that is not in thermal equilibrium we assume that each of the carrier distributions is still in 
equilibrium with itself. Such assumption is justified on the basis that electrons readily interact with each other 
and interact with holes only on a much longer time scale. As a result the electron density can still be calculated 
using the Fermi-Dirac distribution function, but with a different value for the Fermi energy. The total carrier 
density for a non-degenerate semiconductor is then described by:

(2.6.37)

Where δn is the excess electron density and Fn is the quasi-Fermi energy for the electrons. Similarly, the hole 
density can be expressed as:

(2.6.38)

Where δp is the excess hole density and Fp is the quasi-Fermi energy for the holes.

Example 2.7 A piece of germanium doped with 1016 cm-3 shallow donors is illuminated with light generating 
1015 cm-3 excess electrons and holes. Calculate the quasi-Fermi energies relative to the 
intrinsic energy and compare it to the Fermi energy in the absence of illumination.

Solution The carrier densities when illuminating the semiconductor are:

and the quasi-Fermi energies are:
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In comparison, the Fermi energy in the absence of light equals

which is very close to the quasi-Fermi energy of the majority carriers.
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Chapter 2: Semiconductor Fundamentals

2.7. Carrier Transport
2.7.1. Carrier drift
2.7.2. Carrier Mobility
2.7.3. Velocity saturation
2.7.4. Carrier diffusion
2.7.5. The Hall effect  

A motion of free carriers in a semiconductor leads to a current. This motion can be caused by an electric field 
due to an externally applied voltage, since the carriers are charged particles. We will refer to this as carrier drift. 
In addition, carriers also move from regions where the carrier density is high to regions where the carrier 
density is low. This carrier transport mechanism is due to the thermal energy and the associated random 
motion of the carriers. We will refer to this transport mechanism as carrier diffusion. The total current in a 
semiconductor equals the sum of the drift and the diffusion current.
As one applies an electric field to a semiconductor, the electrostatic force causes the carriers to first accelerate 
and then reach a constant average velocity, v, due to collisions with impurities and lattice vibrations. The ratio 
of the velocity to the applied field is called the mobility. The velocity saturates at high electric fields reaching the 
saturation velocity. Additional scattering occurs when carriers flow at the surface of a semiconductor, resulting 
in a lower mobility due to surface or interface scattering mechanisms.
Diffusion of carriers is obtained by creating a carrier density gradient. Such gradient can be obtained by varying 
the doping density in a semiconductor or by applying a thermal gradient.
Both carrier transport mechanisms are related since the same particles and scattering mechanisms are 
involved. This leads to a relationship between the mobility and the diffusion constant called the Einstein relation.

2.7.1. Carrier drift
 

2.7.1.1 Impurity scattering
2.7.1.2 Lattice scattering
2.7.1.3 Surface scattering

The motion of a carrier drifting in a semiconductor due to an applied electric field is illustrated in Figure 2.7.1. 
The field causes the carrier to move with a velocity, v. 
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Figure 2.7.1 : Drift of a carrier due to an applied electric field.
Assuming that all the carriers in the semiconductor move with the same velocity, the current can be expressed 
as the total charge in the semiconductor divided by the time needed to travel from one electrode to the other, 
or: 

(2.7.1)

where τr is the transit time of a particle, traveling with velocity, v, over the distance L. The current density can 
then be rewritten as a function of either the charge density, ρ, or the density of carriers, n in the semiconductor: 

(2.7.2)

Carriers however do not follow a straight path along the electric field lines, but instead bounce around in the 
semiconductor and constantly change direction and velocity due to scattering. This behavior occurs even when 
no electric field is applied and is due to the thermal energy of the electrons. Electrons in a non-degenerate and 
non-relativistic electron gas have a thermal energy, which equals kT/2 per particle per degree of freedom. A 
typical thermal velocity at room temperature is around 107 cm/s, which exceeds the typical drift velocity in 
semiconductors. The carrier motion in the semiconductor in the absence and in the presence of an electric field 
can therefore be visualized as in Figure 2.7.2. 

Figure 2.7.2 : Random motion of carriers in a semiconductor with and without an applied electric field.
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In the absence of an applied electric field, the carrier exhibits random motion and the carriers move quickly 
through the semiconductor and frequently change direction. When an electric field is applied, the random 
motion still occurs but in addition, there is on average a net motion along the direction of the field.

We now analyze the carrier motion considering only the average velocity,  of the carriers. Applying 
Newton's law, we state that the acceleration of the carriers is proportional to the applied force: 

(2.7.3)

The force consists of the difference between the electrostatic force and the scattering force due to the loss of 
momentum at the time of scattering. This scattering force equals the momentum divided by the average time 
between scattering events, so that: 

(2.7.4)

Combining both relations yields an expression for the average particle velocity: 

(2.7.5)

We now consider only the steady state situation in which the particle has already accelerated and has reached 
a constant average velocity. Under such conditions, the velocity is proportional to the applied electric field and 
we define the mobility as the velocity to field ratio: 

(2.7.6)

The mobility of a particle in a semiconductor is therefore expected to be large if its mass is small and the time 
between scattering events is large.
The drift current, described by (2.7.2), can then be rewritten as a function of the mobility, yielding: 

(2.7.7)

Throughout this derivation, we simply considered the mass, m, of the particle. However in order to incorporate 
the effect of the periodic potential of the atoms in the semiconductor we must use the effective mass, m*, rather 
than the free particle mass: 

(2.7.8)

Example 2.8 Electrons in undoped gallium arsenide have a mobility of 8,800 cm2/V-s. Calculate the 
average time between collisions. Calculate the distance traveled between two collisions (also 
called the mean free path). Use an average velocity of 107 cm/s.
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Solution The collision time, τc, is obtained from: 

where the mobility was first converted in MKS units.

The mean free path, l, equals:

2.7.1.1 Impurity scattering

By impurities, we mean foreign atoms in the solid, which are efficient scattering centers especially when they 
have a net charge. Ionized donors and acceptors in a semiconductor are a common example of such 
impurities. The amount of scattering due to electrostatic forces between the carrier and the ionized impurity 
depends on the interaction time and the number of impurities. Larger impurity concentrations result in a lower 
mobility. The dependence on the interaction time helps to explain the temperature dependence. The interaction 
time is directly linked to the relative velocity of the carrier and the impurity, which is related to the thermal 
velocity of the carriers. This thermal velocity increases with the ambient temperature so that the interaction time 
increases. Thereby, the amount of scattering decreases, resulting in a mobility increase with temperature. To 
first order, the mobility due to impurity scattering is proportional to T 3/2/NI, where NI is the density of charged 
impurities.

2.7.1.2 Lattice scattering

Scattering by lattice waves includes the absorption or emission of either acoustical or optical phonons. Since 
the density of phonons in a solid increases with temperature, the scattering time due to this mechanism will 
decrease with temperature as will the mobility. Theoretical calculations reveal that the mobility in non-polar 
semiconductors, such as silicon and germanium, is dominated by acoustic phonon interaction. The resulting 
mobility is expected to be proportional to T -3/2, while the mobility due to optical phonon scattering only is 
expected to be proportional to T -1/2. Experimental values of the temperature dependence of the mobility in 
germanium, silicon and gallium arsenide are provided in Table 2.7.1. 

Table 2.7.1 : Temperature dependence of the mobility in germanium, silicon and gallium arsenide due to 
phonon scattering

2.7.1.3 Surface scattering
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The surface and interface mobility of carriers is affected by the nature of the adjacent layer or surface. Even if 
the carrier does not transfer into the adjacent region, its wavefunction does extend over 1 to 10 nanometer, so 
that there is a non-zero probability for the particle to be in the adjacent region. The net mobility is then a 
combination of the mobility in both layers. For carriers in the inversion layer of a MOSFET, one finds that the 
mobility can be up to three times lower than the bulk value. This is due to the distinctly lower mobility of 
electrons in the amorphous silicon. The presence of charged surface states further reduces the mobility just as 
ionized impurities would. 

2.7.2. Carrier Mobility
 

2.7.2.1 Doping dependence
2.7.2.2 Conductivity and Resistivity

2.7.2.1 Doping dependence

The mobility of electrons and holes in silicon at room temperature is shown in Figure2.7.3. 

Figure 2.7.3 : Electron and hole mobility versus doping density for silicon 

The electron mobility and hole mobility have a similar doping dependence: For low doping concentrations, the 
mobility is almost constant and is primarily limited by phonon scattering. At higher doping concentrations, the 
mobility decreases due to ionized impurity scattering with the ionized doping atoms. The actual mobility also 
depends on the type of dopant. Figure 2.7.3 is for phosphorous and boron doped silicon. 

Note that the mobility is linked to the total number of ionized impurities or the sum of the donor and acceptor 
densities. The free carrier density, as described in section 2.6.4.1 is to first order related to the difference 
between the donor and acceptor concentration.
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The minority carrier mobility also depends on the total impurity density. The minority-carrier mobility can be 
approximated by the majority-carrier mobility in a material with the same number of impurities. The mobility at a 
particular doping density is obtained from the following empiric expression: 

(2.7.9)

Table 2.7.2 : Parameters for calculation of the mobility as a function of the doping density

The resulting mobilities in units of cm2/V-s are listed for different doping densities in Table 2.7.3.

Table 2.7.3 : Mobility in silicon for different doping densities

2.7.2.2 Conductivity and Resistivity

The conductivity of a material is defined as the current density divided by the applied electric field. Since the 
current density equals the product of the charge of the mobile carriers, their density and velocity, it can be 
expressed as a function of the electric field using the mobility. To include the contribution of electrons as well 
as holes to the conductivity, we add the current density due to holes to that of the electrons, or: 

(2.7.10)

The conductivity due to electrons and holes is then obtained from: 

(2.7.11)

The resistivity is defined as the inverse of the conductivity, namely: 

(2.7.12)

The resulting resistivity as calculated with equation (2.7.12) is shown in Figure 2.7.4. 
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Figure 2.7.4 : Resistivity of n-type and p-type silicon versus doping density 

The sheet resistance concept is used to characterize both wafers and thin doped layers, since it is typically 
easier to measure the sheet resistance rather than the resistivity of the material. The sheet resistance of a 
uniformly-doped layer with resistivity, r, and thickness, t, is given by their ratio: 

(2.7.13)

While the unit of the sheet resistance is Ohms, one refers to it as Ohms per square. This nomenclature comes 
in handy when the resistance of a rectangular piece of material with length, L, and width W must be obtained. It 
equals the product of the sheet resistance and the number of squares or: 

(2.7.14)

where the number of squares equals the length divided by the width. Figure 2.7.5 provides, as an example, the 
sheet resistance of a 14 mil thick silicon wafer which is n-type or p-type. 
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Figure 2.7.5 : Sheet resistance of a 14 mil thick n-type and p-type silicon wafer versus doping density. 

Example 2.9 A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 µm long, 10 µm wide and 1 µm 
thick. Calculate the resistance of this sample when contacted one each end. 

Solution The resistivity of the silicon equals: 

where the mobility was obtained from Table 2.7.3.

The resistance then equals:

An alternate approach is to first calculate the sheet resistance, Rs:

From which one then obtains the resistance: 
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2.7.3. Velocity saturation
 

The linear relationship between the average carrier velocity and the applied field breaks down when high fields 
are applied. As the electric field is increased, the average carrier velocity and the average carrier energy 
increases as well. When the carrier energy increases beyond the optical phonon energy, the probability of 
emitting an optical phonon increases abruptly. This mechanism causes the carrier velocity to saturate with 
increasing electric field. For carriers in silicon and other materials, which do not contain accessible higher 
bands, the velocity versus field relation can be described by: 

(2.7.15)

The maximum obtainable velocity, vsat, is referred to as the saturation velocity. 

2.7.4. Carrier diffusion
 

2.7.4.1 Diffusion current 
2.7.4.2 Total current

Carrier diffusion is due to the thermal energy, kT, which causes the carriers to move at random even when no 
field is applied. This random motion does not yield a net motion of carriers nor does it yield a net current in 
material with a uniform carrier density as any carrier which leaves a specific location is on average replace by 
another one. However if a carrier gradient is present, the diffusion process will attempt to make the carrier 
density uniform: carriers diffuse from regions where the density is high to regions where the density is low. The 
diffusion process is not unlike the motion of sand on a vibrating table; hills as well as valleys are smoothed out 
over time. 
In this section we will first derive the expression for the current due to diffusion and then combine it with the drift 
current to obtain the total drift-diffusion current. 

2.7.4.1 Diffusion current 

The derivation is based on the basic notion that carriers at non-zero temperature (Kelvin) have an additional 
thermal energy, which equals kT/2 per degree of freedom. It is the thermal energy, which drives the diffusion 
process. At T = 0 K there is no diffusion. 
While one should recognize that the random nature of the thermal energy would normally require a statistical 
treatment of the carriers, we instead will use average values to describe the process. Such approach is justified 
on the basis that a more elaborate statistical approach yields the same results. To further simplify the 
derivation, we will derive the diffusion current for a one-dimensional semiconductor in which carriers can only 
move along one direction.
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We now introduce the average values of the variables of interest, namely the thermal velocity, vth, the collision 
time, τc, and the mean free path, l. The thermal velocity is the average velocity of the carriers going in the 
positive or negative direction. The collision time is the time during which carriers will move with the same 
velocity before a collision occurs with an atom or with another carrier. The mean free path is the average length 
a carrier will travel between collisions. These three averages are related by:

(2.7.16)

Consider now the situation illustrated with Figure 2.7.6. 

Figure 2.7.6 : Carrier density profile used to derive the diffusion current expression
Shown is a variable carrier density, n(x). Of interest are the carrier densities which are one mean free path 
away from x = 0, since the carriers which will arrive at x = 0 originate either at x = -l or x = l. The flux at x = 0 
due to carriers which originate at x = -l and move from left to right equals: 

(2.7.17)

where the factor 1/2 is due to the fact that only half of the carriers move to the left while the other half moves to 
the right. The flux at x = 0 due to carriers, which originate at x = +l and move from right to left, equals: 

(2.7.18)

The total flux of carriers moving from left to right at x = 0 therefore equals: 

(2.7.19)

Where the flux due to carriers moving from right to left is subtracted from the flux due to carriers moving from 
left to right. Given that the mean free path is small we can write the difference in densities divided by the 
distance between x = -l and x = l as the derivative of the carrier density: 

(2.7.20)
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The electron diffusion current equals this flux times the charge of an electron, or: 

(2.7.21)

Typically, we will replace the product of the thermal velocity and the mean free path by a single parameter, 
namely the diffusion constant, Dn. 

(2.7.22)

Repeating the same derivation for holes yields: 

(2.7.23)

We now further explore the relation between the diffusion constant and the mobility. At first, it seems that there 
should be no relation between the two since the driving force is distinctly different: diffusion is caused by 
thermal energy while an externally applied field causes drift. However one essential parameter in the analysis, 
namely the collision time, τc, should be independent of what causes the carrier motion. 

We now combine the relation between the velocity, mean free path and collision time, 

(2.7.24)

with the result from thermodynamics, stating that electrons carry a thermal energy which equals kT/2 for each 
degree of freedom. Applied to a one-dimensional situation, this leads to: 

(2.7.25)

We now use these relations to rewrite the product of the thermal velocity and the mean free path as a function 
of the carrier mobility: 

(2.7.26)

Using the definition of the diffusion constant we then obtain the following expressions which are often referred 
to as the Einstein relations: 

(2.7.27)

(2.7.28)

Example 2.10 The hole density in an n-type silicon wafer (Nd = 1017 cm-3) decreases linearly from 1014 cm-3 
to 1013 cm-3 between x = 0 and x = 1 µm. Calculate the hole diffusion current density.
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Solution The hole diffusion current density equals: 

where the diffusion constant was calculated using the Einstein relation:

and the hole mobility in the n-type wafer was obtained from Table 2.7.3 as the hole mobility in 
a p-type material with the same doping density.

2.7.4.2 Total current

The total electron current is obtained by adding the current due to diffusion to the drift current, yielding: 

(2.7.29)

and similarly for holes: 

(2.7.30)

The total current is the sum of the electron and hole current densities multiplied with the area, A, perpendicular 
to the direction of the carrier flow: 

(2.7.31)
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2.7.5. The Hall Effect 

The Hall effect describes the behavior of the free carriers in a semiconductor when applying an 
electric as well as a magnetic field. The experimental setup shown in Figure 2.7.7, depicts a 
semiconductor bar with a rectangular cross section and length L. A voltage Vx is applied between 
the two contacts, resulting in a field along the x-direction. The magnetic field is applied in the z-
direction.  

 

a) b) 

Figure 2.7.7  Hall setup and carrier motion for a) holes and b) electrons. 

As shown in Figure 2.7.7 a), the holes move in the positive x-direction. The magnetic field 
causes a force to act on the mobile particles in a direction dictated by the right hand rule. As a 
result there is a force, Fy, along the positive y-direction, which moves the holes to the right. In 
steady state this force is balanced by an electric field, Ey, so that there is no net force on the 
holes. As a result there is a voltage across the sample, which can be measured with a high-
impedance voltmeter. This voltage, VH, is called the Hall voltage. Given the sign convention as 
shown in Figure 2.7.7, the hall voltage is positive for holes. 

The behavior of electrons is shown in Figure 2.7.7 b). The electrons travel in the negative x-
direction. Therefore the force, Fy, is in the positive y-direction due to the negative charge and the 
electrons move to the right, just like holes. The balancing electric field, Ey, now has the opposite 
sign, which results in a negative Hall voltage. 

To calculate the Hall field, we first calculate the Lorentz force acting on the free carriers: 
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We now assume that the carriers can only flow along the x-direction and label their velocity vx. 
The Lorentz force then becomes: 
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Since the carriers only flow along the x-direction, the net force must be zero along the y and z 
direction. As a result, the electric field is zero along the z direction and: 
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which provides a relation between the electric field along the y-direction and the applied 
magnetic field, which can also be rewritten as a function of the current density, Jx, using (2.7.8): 
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This electric field is called the Hall field. The Hall coefficient, RH, is defined as the Hall field 
divided by the applied current density and magnetic field: 
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Once the Hall coefficient is obtained one easily finds the hole density: 
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The carrier mobility can also be extracted from the Hall coefficient: 
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Where ρ is the resistivity of the semiconductor.  

The Hall coefficient can be calculated from the measured current, Ix, and measured voltage, VH: 
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A measurement of the Hall voltage is often used to determine the type of semiconductor (n-type 
or p-type) the free carrier density and the carrier mobility. Repeating the measurement at 
different temperatures allows one to measure the free carrier density as well as the mobility as a 
function of temperature. Since the measurement can be done on a small piece of uniformly doped 
material it is by far the easiest measurement to determine the carrier mobility. It should be noted 
that the scattering mechanisms in the presence of a magnetic field are different and that the 
measured Hall mobility can differ somewhat from the drift mobility. A measurement of the 
carrier density versus temperature provides information regarding the ionization energies of the 
donors and acceptor that are present in the semiconductor as described in section 2.6.4.4. While 
the interpretation of the Hall measurement is straightforward in the case of a single dopant, 
multiple types of impurities and the presence of electrons and holes can make the interpretation 
non-trivial. 
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2.8. Carrier recombination and generation
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Recombination of electrons and holes is a process by which both carriers annihilate each other: electrons 
occupy - through one or multiple steps - the empty state associated with a hole. Both carriers eventually 
disappear in the process. The energy difference between the initial and final state of the electron is released in 
the process. This leads to one possible classification of the recombination processes. In the case of radiative 
recombination, this energy is emitted in the form of a photon. In the case of non-radiative recombination, it is 
passed on to one or more phonons and in Auger recombination it is given off in the form of kinetic energy to 
another electron. Another classification scheme considers the individual energy levels and particles involved. 
These different processes are further illustrated with Figure 2.8.1. 

Figure 2.8.1 : Carrier recombination mechanisms in semiconductors
Band-to-band recombination occurs when an electron falls from its conduction band state into the empty 
valence band state associated with the hole. This band-to-band transition is typically also a radiative transition 
in direct bandgap semiconductors. 
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Trap-assisted recombination occurs when an electron falls into a "trap", an energy level within the bandgap 
caused by the presence of a foreign atom or a structural defect. Once the trap is filled it cannot accept another 
electron. The electron occupying the trap, in a second step, falls into an empty valence band state, thereby 
completing the recombination process. One can envision this process as a two-step transition of an electron 
from the conduction band to the valence band or as the annihilation of the electron and hole, which meet each 
other in the trap. We will refer to this process as Shockley-Read-Hall (SRH) recombination. 
Auger recombination is a process in which an electron and a hole recombine in a band-to-band transition, but 
now the resulting energy is given off to another electron or hole. The involvement of a third particle affects the 
recombination rate so that we need to treat Auger recombination differently from band-to-band recombination. 
Each of these recombination mechanisms can be reversed leading to carrier generation rather than 
recombination. A single expression will be used to describe recombination as well as generation for each of the 
above mechanisms. 
In addition, there are generation mechanisms, which do not have an associated recombination mechanism: 
generation of carriers by light absorption or a high-energy electron/particle beam. These processes are referred 
to as ionization processes. Impact ionization, which is the generation mechanism, associated with Auger 
recombination also belongs to this category. The generation mechanisms are illustrated with Figure 2.8.2. 

Figure 2.8.2 : Carrier generation due to light absorption and ionization due to high-energy particle beams
Carrier generation due to light absorption occurs if the photon energy is large enough to lift an electron from the 
valence band into an empty conduction band state, generating one electron-hole pair. The photon energy 
needs to be larger than the bandgap energy to satisfy this condition. The photon is absorbed in this process 
and the excess energy, Eph - Eg, is added to the electron and the hole in the form of kinetic energy. 

Carrier generation or ionization due to a high-energy beam consisting of charged particles is similar except that 
the available energy can be much larger than the bandgap energy so that multiple electron-hole pairs can be 
formed. The high-energy particle gradually loses its energy and eventually stops. This generation mechanism is 
used in semiconductor-based nuclear particle counters. As the number of ionized electron-hole pairs varies 
with the energy of the particle, one can also use such detector to measure the particle energy. 
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Finally, there is a generation process called impact ionization, the generation mechanism that is the counterpart 
of Auger recombination. Impact ionization is caused by an electron/hole with an energy, which is much larger/
smaller than the conduction/valence band edge. The detailed mechanism is illustrated with Figure 2.8.3. 

Figure 2.8.3: Impact ionization and avalanche multiplication of electrons and holes in the presence of a 
large electric field.

The excess energy is given off to generate an electron-hole pair through a band-to-band transition. This 
generation process causes avalanche multiplication in semiconductor diodes under high reverse bias: As one 
carrier accelerates in the electric field it gains energy. The kinetic energy is given off to an electron in the 
valence band, thereby creating an electron-hole pair. The resulting two electrons can create two more electrons 
which generate four more causing an avalanche multiplication effect. Electrons as well as holes contribute to 
avalanche multiplication. 

2.8.1. Simple recombination-generation model
 

A simple model for the recombination-generation mechanisms states that the recombination-generation rate is 
proportional to the excess carrier density. It acknowledges the fact that no recombination takes place if the 
carrier density equals the thermal equilibrium value. The resulting expression for the recombination of electrons 
in a p-type semiconductor is given by: 
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(2.8.1)

and similarly for holes in an n-type semiconductor: 

(2.8.2)

where the parameter τ can be interpreted as the average time after which an excess minority carrier 
recombines. 
We will show for each of the different recombination mechanisms that the recombination rate can be simplified 
to this form when applied to minority carriers in a "quasi-neutral" semiconductor. The above expressions are 
therefore only valid under these conditions. The recombination rates of the majority carriers equals that of the 
minority carriers since in steady state recombination involves an equal number of holes and electrons. 
Therefore, the recombination rate of the majority carriers depends on the excess-minority-carrier-density as the 
minority carriers limit the recombination rate. 
Recombination in a depletion region and in situations where the hole and electron density are close to each 
other cannot be described with the simple model and the more elaborate expressions for the individual 
recombination mechanisms must be used. 

2.8.2. Band-to-band recombination
 

Band-to-band recombination depends on the density of available electrons and holes. Both carrier types need 
to be available in the recombination process. Therefore, the rate is expected to be proportional to the product of 
n and p. Also, in thermal equilibrium, the recombination rate must equal the generation rate since there is no 
net recombination or generation. As the product of n and p equals ni2 in thermal equilibrium, the net 
recombination rate can be expressed as: 

(2.8.3)

where b is the bimolecular recombination constant. 

2.8.3. Trap assisted recombination
 

The net recombination rate for trap-assisted recombination is given by: 

(2.8.4)

This expression can be further simplified for p >> n to: 

(2.8.5)

and for n >> p to: 
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(2.8.6)

were 

(2.8.7)

2.8.4. Surface recombination
 

Recombination at semiconductor surfaces and interfaces can have a significant impact on the behavior of 
devices. This is because surfaces and interfaces typically contain a large number of recombination centers 
because of the abrupt termination of the semiconductor crystal, which leaves a large number of electrically 
active dangling bonds. In addition, the surfaces and interfaces are more likely to contain impurities since they 
are exposed during the device fabrication process. The net recombination rate due to trap-assisted 
recombination and generation is given by: 

(2.8.8)

This expression is almost identical to that of Shockley-Hall-Read recombination. The only difference is that the 
recombination is due to a two-dimensional density of traps, Nts, as the traps only exist at the surface or 
interface.
This equation can be further simplified for minority carriers in a quasi-neutral region. For instance for electrons 
in a quasi-neutral p-type region p >> n and p >> ni so that for Ei = Est, it can be simplified to: 

(2.8.9)

where the recombination velocity, vs, is given by: 

(2.8.10)

2.8.5. Auger recombination
 

Auger recombination involves three particles: an electron and a hole, which recombine in a band-to-band 
transition and give off the resulting energy to another electron or hole. The expression for the net recombination 
rate is therefore similar to that of band-to-band recombination but includes the density of the electrons or holes, 
which receive the released energy from the electron-hole annihilation: 

(2.8.11)

The two terms correspond to the two possible mechanisms. 

2.8.6. Generation due to light 
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Carriers can be generated in semiconductors by illuminating the semiconductor with light. The energy of the 
incoming photons is used to bring an electron from a lower energy level to a higher energy level. In the case 
where an electron is removed from the valence band and added to the conduction band, an electron-hole pair 
is generated. A necessary condition for this to happen is that the energy of the photon, Eph, is larger than the 
bandgap energy, Eg. As the energy of the photon is given off to the electron, the photon no longer exists.

If each absorbed photon creates one electron-hole pair, the electron and hole generation rates are given by: 

(2.8.12)

where α is the absorption coefficient of the material at the energy of the incoming photon. The absorption of 
light in a semiconductor causes the optical power to decrease with distance. This effect is described 
mathematically by:

(2.8.13)

The calculation of the generation rate of carriers therefore requires first a calculation of the optical power within 
the structure from which the generation rate can then be obtained using (2.8.12). 

Example 2.11 Calculate the electron and hole densities in an n-type silicon wafer (Nd = 1017 cm-3) 
illuminated uniformly with 10 mW/cm2 of red light (Eph = 1.8 eV). The absorption coefficient of 
red light in silicon is 10-3 cm-1. The minority carrier lifetime is 10 µs.

Solution The generation rate of electrons and holes equals: 

where the photon energy was converted into Joules. The excess carrier densities are then 
obtained from: 

The excess carrier densities are then obtained from: So that the electron and hole densities 
equal: 
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2.9. Continuity equation
2.9.1. Derivation
2.9.2. The diffusion equation
2.9.3. Steady state solution to the diffusion equation

2.9.1. Derivation
 

The continuity equation describes a basic concept, namely that a change in carrier density over time is due to 
the difference between the incoming and outgoing flux of carriers plus the generation and minus the 
recombination. The flow of carriers and recombination and generation rates are illustrated with Figure 2.9.1.

Figure 2.9.1 : Electron currents and possible recombination and generation processes
The rate of change of the carriers between x and x + dx equals the difference between the incoming flux and 
the outgoing flux plus the generation and minus the recombination:

(2.9.1)

where n(x,t) is the carrier density, A is the area, Gn(x,t) is the generation rate and Rn(x,t) is the recombination 
rate. Using a Taylor series expansion, 

(2.9.2)

http://ece-www.colorado.edu/~bart/book/book/chapter2/ch2_9.htm (1 of 3)11/10/2004 16:26:38



Continuity equation

this equation can be formulated as a function of the derivative of the current:

(2.9.3)

and similarly for holes one finds:

(2.9.4)

A solution to these equations can be obtained by substituting the expression for the electron and hole current, 
(2.7.29) and (2.7.30). This then yields two partial differential equations as a function of the electron density, the 
hole density and the electric field. The electric field itself is obtained from Gauss's law.

(2.9.5)

(2.9.6)

A generalization in three dimensions yields the following continuity equations for electrons and holes:

(2.9.7)

(2.9.8)

2.9.2. The diffusion equation
 

In the quasi-neutral region - a region containing mobile carriers, where the electric field is small - the current is 
due to diffusion only. In addition, we can use the simple recombination model for the net recombination rate. 
This leads to the time-dependent diffusion equations for electrons in p-type material and for holes in n-type 
material: 

(2.9.9)

(2.9.10)
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2.9.3. Steady state solution to the diffusion equation
 

In steady state, the partial derivatives with respect to time are zero, yielding: 

(2.9.11)

(2.9.12)

The general solution to these second order differential equations are: 

(2.9.13)

(2.9.14)

where Ln and Lp are the diffusion lengths given by: 

(2.9.15)

(2.9.16)

The diffusion constants, Dn and Dp, are obtained using the Einstein relations (2.7.27) and (2.7.28). The 
diffusion equations can also be written as a function of the excess carrier densities, δn and δp, which are 
related to the total carrier densities, n and p, and the thermal equilibrium densities, n0 and p0, by: 

(2.9.17)

(2.9.18)

yielding: 

(2.9.19)

(2.9.20)

The diffusion equation will be used to calculate the diffusion current in p-n junctions and bipolar transistors.
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Chapter 2: Semiconductor Fundamentals

2.10. The drift-diffusion model

The drift-diffusion model of a semiconductor is frequently used to describe semiconductor devices. It contains 
all the features described in this chapter. 
Starting with Chapter 3, we will apply the drift-diffusion model to a variety of different devices. To facilitate this 
analysis, we present here a simplified drift-diffusion model, which contains all the essential features. This model 
results in a set of ten variables and ten equations.
The assumptions of the simplified drift-diffusion model are:

Full ionization: all dopants are assumed to be ionized (shallow dopants)
Non-degenerate: the Fermi energy is assumed to be at least 3 kT below/above the conduction/valence 
band edge.
Steady state: All variables are independent of time
Constant temperature: The temperature is constant throughout the device.

The ten variables are the following:

ρ, the charge density
n, the electron density
p, the hole density

, the electric field

φ, the potential
Ei, the intrinsic energy

Fn, the electron quasi-Fermi energy

Fp, the hole quasi-Fermi energy

Jn, the electron current density

Jp, the hole current density

The ten equations are:
Charge density equation

(2.10.1)

Electric field and potential equations
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The drift-diffusion model

(2.10.2)

(2.10.3)

(2.10.4)

Carrier density equations

(2.10.5)

(2.10.6)

Drift and diffusion current equations

(2.10.7)

(2.10.8)

Continuity equation in steady state with SHR recombination

(2.10.9)

(2.10.10)
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2.11. Semiconductor thermodynamics  
Thermodynamics can be used to explain some characteristics of semiconductors and 
semiconductor devices, which at times seem inexplicable. One example is the fact that the Fermi 
energy is located within the energy gap where there are no energy levels and therefore also no 
electrons or holes. This is because the Fermi energy describes the energy of the particles in the 
distribution. Thermodynamics can also be used to gain a completely different perspective. This 
section is therefore a worthwhile one to study as one can gain further insight into the field of 
semiconductors. However, it is not required to understand the following chapters. 

2.11.1. Thermal equilibrium 

A system is in thermal equilibrium if detailed balance is obtained. Detailed balance implies that 
every process in the system is exactly balanced by its inverse process. As a result, there is no net 
effect on the system.  

This definition implies that in thermal equilibrium no energy (heat, work or particle energy) is 
exchanged between the parts within the system and between the system and the environment. 
Thermal equilibrium is obtained by isolating a system from its environment, removing any 
internal sources of energy, and waiting for a long enough time until the system does not change 
any more.  

The concept of thermal equilibrium is of interest since a variety of thermodynamic results 
assume that the system under consideration is in thermal equilibrium. Few systems of interest 
rigorously satisfy this condition so that we often apply the thermodynamical results to systems, 
which are "close" to thermal equilibrium. Agreement between theories based on this assumption 
and experiments justify this approach.  

2.11.2. Thermodynamic identity 

The thermodynamic identity simply states that adding heat, work or particles can cause a change 
in energy. Mathematically this is expressed by:  

 dNdWdQdU µ++=  (2.11.1) 

where U is the energy, Q is the heat and W is the work. µ is the energy added to a system when 
adding one particle without adding either heat or work. The amount of heat exchanged depends 
on the temperature, T, and the entropy, S, while the amount of work delivered to a system 
depends on the pressure, p, and the volume, V, or:  

 TdSdQ =  (2.11.2) 

and  

 pdVdW −=  (2.11.3) 

yielding:  

 dNpdVTdSdU µ+−=  (2.11.4) 



   

2.11.3. The Fermi energy 

The Fermi energy, EF, is the energy associated with a particle, which is in thermal equilibrium 
with the system of interest. The energy is strictly associated with the particle and does not consist 
even in part of heat or work. This same quantity is called the electro-chemical potential, µ, in 
most thermodynamics texts.  

2.11.4. Example: an ideal electron gas 

As an example to illustrate the difference between the average energy of particles in a system 
and the Fermi energy we now consider an ideal electron gas. The term ideal refers to the fact that 
the gas obeys the ideal gas law. To be "ideal" the gas must consist of particles, which do not 
interact with each other. 

The total energy of the non-degenerate electron gas containing N particles equals:  

 
cNENkTU +=

2
3

 
(2.11.5) 

as each non-relativistic electron has a thermal energy of kT/2 for each degree of freedom in 
addition to its minimum energy, Ec. The product of the pressure and volume is given by the ideal 
gas law:  

 NkTpV =  (2.11.6) 

While the Fermi energy is given by:  
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The thermodynamic identity can now be used to find the entropy from:  
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(2.11.8) 

yielding:  
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(2.11.9) 

This relation can be visualized on an energy band diagram when one considers the energy, work 
and entropy per electron and compares it to the electro-chemical potential as shown in figure 1.  

 



 

 

Figure 2.11.1 Energy, work and heat per electron in an ideal electron gas visualized on an 
energy band diagram. 

The distinction between the energy and the electro-chemical potential also leads to the following 
observations: Adding more electrons to an ideal electron gas with an energy which equals the 
average energy of the electrons in the gas increases both the particle energy and the entropy as 
heat is added in addition to particles. On the other hand, when bringing in electrons through an 
electrical contact whose voltage equals the Fermi energy (in electron volts) one does not add heat 
and the energy increase equals the Fermi energy times the number of electrons added. 

Therefore, when analyzing the behavior of electrons and holes on an energy band diagram, one 
should be aware of the fact that the total energy of an electron is given by its position on the 
diagram, but that the particle energy is given by the Fermi energy. The difference is the heat 
minus the work per electron or dQ - dW = T dS + p dV.  

2.11.5. Quasi-Fermi energies 

Quasi-Fermi energies are introduced when the electrons and holes are clearly not in thermal 
equilibrium with each other. This occurs when an external voltage is applied to the device of 
interest. The quasi-Fermi energies are introduced based on the notion that even though the 
electrons and holes are not in thermal equilibrium with each other, they still are in thermal 
equilibrium with themselves and can still be described by a Fermi energy which is now different 
for the electrons and the holes. These Fermi energies are referred to as the electron and hole 
quasi-Fermi energies, Fn and Fp. For non-degenerate densities one can still relate the electron and 
hole densities to the two quasi-Fermi energies by the following equations:  
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(2.11.11) 

2.11.6. Energy loss in recombination processes 

The energy loss in a recombination process equals the difference between the electron and hole 
quasi-Fermi energies as the energy loss is only due to the energy of the particles, which are lost:  

 
pn FFU −=∆  (2.11.12) 

No heat or work is removed from the system, just the energy associated with the particles. The 
energy lost in the recombination process can be converted in heat or light depending on the 
details of the process.  

2.11.7. Thermo-electric effects in semiconductors 

The temperature dependence of the current in a semiconductor can be included by generalizing 
the drift-diffusion equation for the current. The proportionality constant between the current 
density and the temperature gradient is the product of the conductivity and the thermo-electric 
power.  

The derivation starts by generalizing the diffusion current to include a possible variation of the 
diffusion constant with position, yielding:  
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If the semiconductor is non-degenerate the electron density can be related to the effective density 
of states and the difference between the Fermi energy and the conduction band edge:  
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yielding:  
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For the case where the material properties do not change with position, all the spatial variations 
except for the gradient of the Fermi energy are caused by a temperature variation. We postulate 
that the current can be written in the following form:  
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and P is the thermo-electric power in Volt/Kelvin. From both equations one then obtains the 
thermo-electric power:  
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If the temperature dependence of the mobility can be expressed as a simple power law:  

 s
n T −∝µ  (2.11.18) 

the thermo-electric power becomes:  
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for n-type material and similarly for p-type material: 
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The Peltier coefficient, Π, is related to the thermo-electric power by: 

 TP=Π  (2.11.21) 

If electrons and holes are present in the semiconductor one has to include the effect of both when 
calculating the Peltier coefficient by 
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The resulting Peltier coefficient as a function of temperature for silicon is shown in the figure 
below: 

 



   

 

 

Figure 2.11.2 Peltier coefficient for p-type (top curve) and n-type (bottom curve) silicon as a 
function of temperature. The doping density equals 1014 cm-3. 

The Peltier coefficient is positive for p-type silicon and negative for n-type silicon at low 
temperature. Al high temperature the semiconductor becomes intrinsic. Given that the mobility 
of electrons is higher than that of holes, the Peltier coefficient of intrinsic silicon is negative.  

The current and heat flow are related to the Fermi energy gradient and the temperature gradient. 
Using the equations above, the current can be written as: 
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where σ is the conductivity of the n-type semiconductor. 

The heat flow, H, with MKS units of W/m2 is given by: 
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This expression was obtained by using the Onsager relations and by requiring that the heat flow 
in the absence of current is given by: 
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Where κ is the thermal conductivity of the material. 

2.11.8. The Thermo-electric cooler 

Thermo-electric effects in semiconductors cause currents to flow due to temperature gradients 
but also cause temperature gradients when an electrical current is applied. The thermo-electric 
cooler is a practical device in which a current is applied to a semiconductor causing a 
temperature reduction and cooling.  

Such thermo-electric cooler consists of multiple semiconductor elements, which are connected in 
series as shown in the figure below. The doping density in the semiconductor elements is graded 
with the highest density at the high temperature end and the low density at the low temperature 
end. An electrical current is applied to the series connection of these elements. n-type and p-type 
elements are used to ensure that the carriers flow in the same direction. While in principle a 
single piece of semiconducting material could have been used, the series connection is typically 
chosen to avoid the high current requirement of the single element.  

 

 

Figure 2.11.3 Cross-section of a thermo-electric cooler showing the alternating n-type and p-
type sections described in the text. 

The operation of the thermo-electric cooler is similar to that of a Joule-Thomson refrigerator in 
that an expansion of a gas is used to cool it down. While heating of a gas can be obtained by 
compressing it as is the case in a bicycle pump (where some of the heating is due to friction), a 
gas can also be cooled by expanding it into a larger volume. This process is most efficient if no 
heat is exchanged with the environment, as it would increase the lowest obtainable temperature. 
This is also referred to as an isentropic expansion as the entropy is constant if no heat is 



   

exchanged.  

The gas in a thermo-electric cooler is the electron or hole gas. As a constant current is applied so 
that carriers flow from the high density to low-density region, one can imagine that the volume 
around a fixed number of carriers must increase as the carriers move towards the lower doped 
region. A possible energy band diagram is shown below:  

 

 

Figure 2.11.4 Energy band diagram of an n-type element of the thermo electric cooler of Figure 
2.11.3 

At constant temperature and in thermal equilibrium there is no current as the diffusion current is 
balanced by the drift current associated with the built-in electric field caused by the graded 
doping density. As a current is applied to the semiconductor the built-in field is reduced so that 
the carriers diffuse from the high to low doping density. This causes a temperature reduction on 
the low-doped side, which continues until the entropy is constant throughout the semiconductor. 
Since the entropy per electron equals the distance between the conduction band edge and the 
Fermi energy plus 5/2 kT one finds that the conduction band edge is almost parallel to the Fermi 
energy.  

An ideal isentropic expansion is not obtained due to the Joule heating caused by the applied 
current and the thermal losses due to the thermal conductivity of the material. The need to 
remove heat at the low temperature further increases the lowest achievable temperature.  

2.11.9. The "hot-probe" experiment 

The "hot-probe" experiment provides a very simple way to distinguish between n-type and p-
type semiconductors using a soldering iron and a standard multi-meter.  



 

The experiment is performed by contacting a semiconductor wafer with a "hot" probe such as a 
heated soldering iron and a "cold" probe. Both probes are wired to a sensitive current meter. The 
hot probe is connected to the positive terminal of the meter while the cold probe is connected to 
the negative terminal. The experimental set-up is shown in the figure below:  

 

 

Figure 2.11.5 Experimental set-up of the "hot-probe" experiment. 

When applying the probes to n-type material one obtains a positive current reading on the meter, 
while p-type material yields a negative current.  

A simple explanation for this experiment is that the carriers move within the semiconductor from 
the hot probe to the cold probe. While diffusion seems to be a plausible mechanism to cause the 
carrier flow it is actually not the most important mechanism since the material is uniformly 
doped. However, as will be discussed below there is a substantial electric field in the 
semiconductor so that the drift current dominates the total current.  

Starting from the assumption that the current meter has zero resistance, and ignoring the (small) 
thermoelectric effect in the metal wires one can justify that the Fermi energy does not vary 
throughout the material. A possible corresponding energy band diagram is shown below:  

 



   

 

Figure 2.11.6 Energy band diagram corresponding to the "hot-probe" experiment illustrated by 
Figure 2.11.5. 

This energy band diagram illustrates the specific case in which the temperature variation causes a 
linear change of the conduction band energy as measured relative to the Fermi energy, and also 
illustrates the trend in the general case. As the effective density of states decreases with 
decreasing temperature, one finds that the conduction band energy decreases with decreasing 
temperature yielding an electric field, which causes the electrons to flow from the high to the low 
temperature. The same reasoning reveals that holes in a p-type semiconductor will also flow 
from the higher to the lower temperature.  

The current can be calculated from the general expression: 
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where 

 








++−=

n
N

dx
dT

kq cn

n
n ln

2
5 µ

µ
P  

(2.11.27) 

The current will therefore increase with doping and with the applied temperature gradient as long 
as the semiconductor does not become degenerate or intrinsic within the applied temperature 
range. 
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Chapter 2: Semiconductor Fundamentals

Examples  

Example 2.1  Calculate the maximum fraction of the volume in a simple cubic crystal occupied by the 
atoms. Assume that the atoms are closely packed and that they can be treated as hard 
spheres. This fraction is also called the packing density. 

Example 2.2  Calculate the energy bandgap of germanium, silicon and gallium arsenide at 300, 400, 500 
and 600 K.

Example 2.3  Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece of silicon 
(m* = 1.08 m0) 100 meV above the conduction band edge. Write the result in units of eV-1.

Example 2.4  Calculate the effective densities of states in the conduction and valence bands of 
germanium, silicon and gallium arsenide at 300 K.

Example 2.4b  Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at 300, 
400, 500 and 600 K.

Example 2.5  Calculate the ionization energy for shallow donors and acceptors in germanium and silicon 
using the hydrogen-like model.

Example 2.6a  A germanium wafer is doped with a shallow donor density of 3ni/2. Calculate the electron 
and hole density.

Example 2.6b  A silicon wafer is doped with a shallow acceptor doping of 1016 cm-3. Calculate the electron 
and hole density.

Example 2.6c  4H-SiC is doped with 2 x 1017 cm-3 nitrogen donor atoms (Ec – Ed = 90 meV). Use Nc = 4 x 
1020 cm-3. 

a.  Calculate the electron density at 300 K. 
b.  Calculate the hole density at 300 K after adding 2 x 1018 cm-3 aluminum acceptor 

atoms (Ea – Ec = 220 meV) Use Nv = 1.6 x 1020 cm-3.

Example 2.7  A piece of germanium doped with 1016 cm-3 shallow donors is illuminated with light 
generating 1015 cm-3 excess electrons and holes. Calculate the quasi-Fermi energies 
relative to the intrinsic energy and compare it to the Fermi energy in the absence of 
illumination.

Example 2.8  Electrons in undoped gallium arsenide have a mobility of 8,800 cm2/V-s. Calculate the 
average time between collisions. Calculate the distance traveled between two collisions 
(also called the mean free path). Use an average velocity of 107 cm/s.

Example 2.9  A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 µm long, 10 µm wide and 1 
µm thick. Calculate the resistance of this sample when contacted one each end. 

Example 2.10  The hole density in an n-type silicon wafer (Nd = 1017 cm-3) decreases linearly from 1014 
cm-3 to 1013 cm-3 between x = 0 and x = 1 µm. Calculate the hole diffusion current density.
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Example 2.11  Calculate the electron and hole densities in an n-type silicon wafer (Nd = 1017 cm-3) 
illuminated uniformly with 10 mW/cm2 of red light (Eph = 1.8 eV). The absorption coefficient 
of red light in silicon is 10-3 cm-1. The minority carrier lifetime is 10 µs.
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Example 2.1 Calculate the maximum fraction of the volume in a simple cubic 
crystal occupied by the atoms. Assume that the atoms are closely 
packed and that they can be treated as hard spheres. This fraction 
is also called the packing density.  

Solution The atoms in a simple cubic crystal are located at the corners of 
the units cell, a cube with side a. Adjacent atoms touch each other 
so that the radius of each atom equals a/2. There are eight atoms 
occupying the corners of the cube, but only one eighth of each is 
within the unit cell so that the number of atoms equals one per unit 
cell. The packing density is then obtained from: 
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or about half the volume of the unit cell is occupied by the atoms. 
The packing density of four cubic crystals is listed in the table 
below. 
 Radius Atoms/ 

unit cell 
Packing density 

Simple cubic 
2
a

 
1 
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Body centered cubic 

4
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Face centered cubic 
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Diamond 

8
3 a
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Example 2.2 Calculate the energy bandgap of germanium, silicon and gallium 
arsenide at 300, 400, 500 and 600 K. 

Solution The bandgap of silicon at 300 K equals: 
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Similarly one finds the energy bandgap for germanium and 
gallium arsenide, as well as at different temperatures, yielding: 

 Germanium Silicon Gallium 
Arsenide 

T = 300 K 0.66 eV 1.12 eV 1.42 eV 
T = 400 K 0.62 eV 1.09 eV 1.38 eV 
T = 500 K 0.58 eV 1.06 eV 1.33 eV 

 

T = 600 K 0.54 eV 1.03 eV 1.28 eV 
 



Example 2.3 Calculate the number of states per unit energy in a 100 by 100 by 
10 nm piece of silicon (m* = 1.08 m0) 100 meV above the 
conduction band edge. Write the result in units of eV-1. 

Solution The density of states equals: 
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So that the total number of states per unit energy equals: 

 eV 1041.2J 101051.1)( -15-12256 ×=××= −VEg  
 



Example 2.4 Calculate the effective densities of states in the conduction and 
valence bands of germanium, silicon and gallium arsenide at 300 
K. 

Solution The effective density of states in the conduction band of 
germanium equals: 
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where the effective mass for density of states was used (see 
appendix 3 or section 2.3.6). Similarly one finds the effective 
density of states in the conduction band for other semiconductors 
and the effective density of states in the valence band: 

 Germanium Silicon Gallium 
Arsenide 

Nc (cm-3) 1.02 x 1019 2.81 x 1019 4.35 x 1017 

 

Nv (cm-3) 5.64 x 1018 1.83 x 1019 7.57 x 1018 
 Note that the effective density of states is temperature dependent 

and can be obtain from: 
2/3)
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where Nc(300 K) is the effective density of states at 300 K. 
 



Example 
2.4b 

Calculate the intrinsic carrier density in germanium, silicon and 
gallium arsenide at 300, 400, 500 and 600 K. 

Solution The intrinsic carrier density in silicon at 300 K equals: 
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Similarly one finds the intrinsic carrier density for germanium and 
gallium arsenide at different temperatures, yielding: 

 Germanium Silicon Gallium 
Arsenide 

300 K 2.02 x 1013 8.72 x 109 2.03 x 106 
400 K 1.38 x 1015 4.52 x 1012 5.98 x 109 
500 K 1.91 x 1016 2.16 x 1014 7.98 x 1011 

 

600 K 1.18 x 1017 3.07 x 1015 2.22 x 1013 
 



Example 2.5 Calculate the ionization energy for shallow donors and acceptors 
in germanium and silicon using the hydrogen-like model. 

Solution Using the effective mass for conductivity calculations (Appendix 
3) one finds the ionization energy for shallow donors in 
germanium to be: 
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The calculated ionization energies for donors and acceptors in 
germanium and silicon are provided below. 

 Germanium Silicon 
donors 6.4 meV 13.8 meV 

 

acceptors 11.2 meV 20.5 meV 
 Note that the actual ionization energies differ from this value and 

depend on the actual donor atom. 
 



Example 2.6a A germanium wafer is doped with a shallow donor density of 
3ni/2. Calculate the electron and hole density. 

Solution The electron density is obtained from equation (2.6.34) 
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and the hole density is obtained using the mass action law: 
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Example 2.6b A silicon wafer is doped with a shallow acceptor doping of 1016 
cm-3. Calculate the electron and hole density. 

Solution Since the acceptor doping is much larger than the intrinsic 
density and much smaller than the effective density of states, the 
hole density equals: 

-316 cm 10 =≅ +
ao Np  

The electron density is then obtained using the mass action law 
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The approach described in example 2.6a yields the same result. 
 



 
Example 2.6c 4H-SiC is doped with 2 x 1017 cm-3 nitrogen donor atoms (Ec – 

Ed = 90 meV). Use Nc = 4 x 1020 cm-3.  
a) Calculate the electron density at 300 K.  
b) Calculate the hole density at 300 K after adding 2 x 1018 

cm-3 aluminum acceptor atoms (Ea – Ec = 220 meV) Use 
Nv = 1.6 x 1020 cm-3. 

Solution a) First we calculate N* 

kT
EEN

N cdc −
= exp

2
* = 6.16 x 1017 cm-3 

The free electron density is then obtained from: 

do NN
NN

n *
2**

4
)(

2
++−= = 4.3 x 1016 cm-3 

As a result 21.5 % of the donors are ionized 
 

b) Since we are now dealing with p-type material we have 
to recalculate N* 
 

kT
EEN

N avv −
= exp

4
* = 8.08 x 1016 cm-3 

where the factor 4 is due to the doubly degenerate 
valence band. The free hole density is then obtained 
from: 
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= 5.52 x 1016 cm-3 
which is identical to (2.6.42) except that the donor and 
acceptor densities have been exchanged. Only 2.76 % of 
the acceptors are ionized while all donors are ionized. 

 



Example 2.7 A piece of germanium doped with 1016 cm-3 shallow donors is 
illuminated with light generating 1015 cm-3 excess electrons and 
holes. Calculate the quasi-Fermi energies relative to the intrinsic 
energy and compare it to the Fermi energy in the absence of 
illumination. 

Solution The carrier densities when illuminating the semiconductor are:  
-3161516 cm 101.11010 ×=+=+= nnn o δ  

-315 cm 10≅+= ppp o δ  
and the quasi-Fermi energies are: 
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In comparison, the Fermi energy in the absence of light equals 

meV 161
102

10
ln0259.0ln

13

16
=

×
×==−

i

o
iF n

n
kTEE  

which is very close to the quasi-Fermi energy of the majority 
carriers. 

 



Example 2.8 Electrons in undoped gallium arsenide have a mobility of 8,800 
cm2/V-s. Calculate the average time between collisions. 
Calculate the distance traveled between two collisions (also 
called the mean free path). Use an average velocity of 107 cm/s. 

Solution The collision time, τc, is obtained from: 
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where the mobility was first converted to MKS units. 
The mean free path, l, equals: 

nm 341034.010 127 =××== −
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Example 2.9 A piece of silicon doped with arsenic (Nd = 1017 cm-3) is 100 µm 
long, 10 µm wide and 1 µm thick. Calculate the resistance of this 
sample when contacted one each end.  

Solution The resistivity of the silicon equals: 
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where the mobility was obtained from Table 2.7.3. 
The resistance then equals: 
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An alternate approach is to first calculate the sheet resistance, Rs: 
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From which one then obtains the resistance: 

Ω=
×

×
×== −

−

k 6.8
1010

10100
860 4

4

W
L

RR s  

 



Example 2.10 The hole density in an n-type silicon wafer (Nd = 1017 cm-3) 
decreases linearly from 1014 cm-3 to 1013 cm-3 between x = 0 and 
x = 1 µm. Calculate the hole diffusion current density. 

Solution The hole diffusion current density equals: 
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where the diffusion constant was calculated using the Einstein 
relation: 

/scm 2.83170259.0 2=×== ptp VD µ  
and the hole mobility in the n-type wafer was obtained from 
Table 2.7.3 as the hole mobility in a p-type material with the 
same doping density. 

 



Example 2.11 Calculate the electron and hole densities in an n-type silicon 
wafer (Nd = 1017 cm-3) illuminated uniformly with 10 mW/cm2 
of red light (Eph = 1.8 eV). The absorption coefficient of red 
light in silicon is 10-3 cm-1. The minority carrier lifetime is 10 
µs. 

Solution The generation rate of electrons and holes equals: 
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where the photon energy was converted into Joules. The excess 
carrier densities are then obtained from: 
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So that the electron and hole densities equal: 
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Chapter 2: Semiconductor Fundamentals

Problems  

1.  Calculate the packing density of the body centered cubic, the face centered cubic and the diamond 
lattice, listed in example 2.1.

2.  At what temperature does the energy bandgap of silicon equal exactly 1 eV?

3.  Prove that the probability of occupying an energy level below the Fermi energy equals the probability that 
an energy level above the Fermi energy and equally far away from the Fermi energy is not occupied.

4.  At what energy (in units of kT) is the Fermi function within 1 % of the Maxwell-Boltzmann distribution 
function? What is the corresponding probability of occupancy?

5.  Calculate the Fermi function at 6.5 eV if EF = 6.25 eV and T = 300 K. Repeat at T = 950 K assuming that 
the Fermi energy does not change. At what temperature does the probability that an energy level at E = 
5.95 eV is empty equal 1 %.

6.  Calculate the effective density of states for electrons and holes in germanium, silicon and gallium 
arsenide at room temperature and at 100 °C. Use the effective masses for density of states 
calculations.

7.  Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at room temperature 
(300 K). Repeat at 100 °C. Assume that the energy bandgap is independent of temperature and use the 
room temperature values.

8.  Calculate the position of the intrinsic energy level relative to the midgap energy 

Emidgap = (Ec + Ev)/2

in germanium, silicon and gallium arsenide at 300 K. Repeat at T = 100 °C. 

9.  Calculate the electron and hole density in germanium, silicon and gallium arsenide if the Fermi energy is 
0.3 eV above the intrinsic energy level. Repeat if the Fermi energy is 0.3 eV below the conduction band 
edge. Assume that T = 300 K.

10.  The equations (2.6.34) and (2.6.35) derived in section 2.6 are only valid for non-degenerate 
semiconductors (i.e. Ev + 3kT < EF < Ec - 3kT). Where exactly in the derivation was the assumption 

made that the semiconductor is non-degenerate? 

11.  A silicon wafer contains 1016 cm-3 electrons. Calculate the hole density and the position of the intrinsic 
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energy and the Fermi energy at 300 K. Draw the corresponding band diagram to scale, indicating the 
conduction and valence band edge, the intrinsic energy level and the Fermi energy level. Use ni = 1010 

cm-3.

12.  A silicon wafer is doped with 1013 cm-3 shallow donors and 9 x 1012 cm-3 shallow acceptors. Calculate 
the electron and hole density at 300 K. Use ni = 1010 cm-3.

13.  The resistivity of a silicon wafer at room temperature is 5 Ωcm. What is the doping density? Find all 
possible solutions.

14.  How many phosphorus atoms must be added to decrease the resistivity of n-type silicon at room 
temperature from 1 Ωcm to 0.1 Ωcm. Make sure you include the doping dependence of the mobility. 
State your assumptions.

15.  A piece of n-type silicon (Nd = 1017 cm-3) is uniformly illuminated with green light (λ = 550 nm) so that 
the power density in the material equals 1 mW/cm2. a) Calculate the generation rate of electron-hole 
pairs using an absorption coefficient of 104 cm-1. b) Calculate the excess electron and hole density using 
the generation rate obtained in (a) and a minority carrier lifetime due to Shockley-Read-Hall 
recombination of 0.1 ms. c) Calculate the electron and hole quasi-Fermi energies (relative to Ei) based 
on the excess densities obtained in (b). 

16.  A piece of intrinsic silicon is instantaneously heated from 0 K to room temperature (300 K). The minority 
carrier lifetime due to Shockley-Read-Hall recombination in the material is 1 ms. Calculate the generation 
rate of electron-hole pairs immediately after reaching room temperature. (Et = Ei). If the generation rate 

is constant, how long does it take to reach thermal equilibrium?

17.  Calculate the conductivity and resistivity of intrinsic silicon. Use ni = 1010 cm-3, µn = 1400 cm2/V-sec and 

µp = 450 cm2/V-sec. 

18.  Consider the problem of finding the doping density which results the maximum possible resistivity of 
silicon at room temperature. (ni = 1010, µn = 1400 cm2/V-sec and µp = 450 cm2V-sec.) 

Should the silicon be doped at all or do you expect the maximum resistivity when dopants are added? 

If the silicon should be doped, should it be doped with acceptors or donors (assume that all dopant are 
shallow). 

Calculate the maximum resistivity, the corresponding electron and hole density and the doping density. 

19.  The electron density in silicon at room temperature is twice the intrinsic density. Calculate the hole 
density, the donor density and the Fermi energy relative to the intrinsic energy. Repeat for n = 5 ni and n 
= 10 ni. Also repeat for p = 2 ni, p = 5 ni and p = 10 ni, calculating the electron and acceptor density as 

well as the Fermi energy relative to the intrinsic energy level. 
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20.  The expression for the Bohr radius can also be applied to the hydrogen-like atom consisting of an 
ionized donor and the electron provided by the donor. Modify the expression for the Bohr radius so that it 
applies to this hydrogen-like atom. Calculate the Bohr radius of an electron orbiting around the ionized 
donor in silicon. ( εr = 11.9 and me* = 0.26 m0)

21.  Calculate the density of electrons per unit energy (in electron volt) and per unit area (per cubic 
centimeter) at 1 eV above the band minimum. Assume that me* = 1.08 m0.

22.  Calculate the probability that an electron occupies an energy level which is 3kT below the Fermi energy. 
Repeat for an energy level which is 3kT above the Fermi energy. 

23.  Calculate and plot as a function of energy the product of the probability that an energy level is occupied 
with the probability that that same energy level is not occupied. Assume that the Fermi energy is zero 
and that kT = 1 eV 

24.  The effective mass of electrons in silicon is 0.26 m0 and the effective mass of holes is 0.36 m0. If the 
scattering time is the same for both carrier types, what is the ratio of the electron mobility and the hole 
mobility. 

25.  Electrons in silicon carbide have a mobility of 1000 cm2/V-sec. At what value of the electric field do the 
electrons reach a velocity of 3 x 107 cm/s? Assume that the mobility is constant and independent of the 
electric field. What voltage is required to obtain this field in a 5 micron thick region? How much time do 
the electrons need to cross the 5 micron thick region? 

26.  A piece of silicon has a resistivity which is specified by the manufacturer to be between 2 and 5 Ohm cm. 
Assuming that the mobility of electrons is 1400 cm2/V-sec and that of holes is 450 cm2/V-sec, what is the 
minimum possible carrier density and what is the corresponding carrier type? Repeat for the maximum 
possible carrier density. 

27.  A silicon wafer has a 2 inch diameter and contains 1014 cm-3 electrons with a mobility of 1400 cm2/V-
sec. How thick should the wafer be so that the resistance between the front and back surface equals 0.1 
Ohm. 

28.  The electron mobility is germanium is 1000 cm2/V-sec. If this mobility is due to impurity and lattice 
scattering and the mobility due to lattice scattering only is 1900 cm2/V-sec, what is the mobility due to 
impurity scattering only? 

29.  A piece of n-type silicon is doped with 1017 cm-3 shallow donors. Calculate the density of electrons per 
unit energy at kT/2 above the conduction band edge. T = 300 K. Calculate the electron energy for which 
the density of electrons per unit energy has a maximum. What is the corresponding probability of 
occupancy at that maximum?

30.  Phosphorous donor atoms with a concentration of 1016 cm-3 are added to a piece of silicon. Assume that 
the phosphorous atoms are distributed homogeneously throughout the silicon. The atomic weight of 
phosphorous is 31.

a.  What is the sample resistivity at 300 K?
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b.  What proportion by weight does the donor impurity comprise? The density of silicon is 2.33 gram/
cm3

c.  If 1017 atoms cm-3 of boron are included in addition to phosphorous, and distributed uniformly, 
what is the resulting resistivity and type (i.e., p- or n-type material)?

d.  Sketch the energy-band diagram under the condition of part c) and show the position of the Fermi 
energy relative to the valence band edge.

31.  Find the equilibrium electron and hole concentrations and the location of the Fermi energy relative to the 
intrinsic energy in silicon at 27 oC, if the silicon contains the following concentrations of shallow dopants.

a.  1 x 1016 cm-3 boron atoms
b.  3 x 1016 cm-3 arsenic atoms and 2.9 x 1016 cm-3 boron atoms.

32.  The electron concentration in a piece of lightly doped, n-type silicon at room temperature varies linearly 
from 1017 cm-3 at x = 0 to 6 x 1016 cm-3 at x = 2 µm. Electrons are supplied to keep this concentration 
constant with time. Calculate the electron current density in the silicon if no electric field is present. 
Assume µn = 1000 cm2/V-s and T = 300 K.
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Problem 2.1 Calculate the packing density of the body centered cubic, the face 
centered cubic and the diamond lattice, listed in example 2.1 p 28.  

Solution The packing density is calculated as in example 2.1 p 28 and 
obtained from: 

3

3

3
4

cellunit   theof Volume
atoms of Volume

a

rπ
=  

The correct radius and number of atoms per unit cell should be 
used.  
A body centered cubic lattice contains an additional atom in the 
middle and therefore contains two atoms per unit cell. The atoms 
touch along the body diagonal, which equals a3 . The radius is 
one quarter of the body diagonal. 
A face centered cubic lattice contains six additional atoms in the 
center of all six faces of the cube. Since only half of the atoms is 
within the cube the total number of atoms per unit cell equals four. 
The atoms touch along the diagonal of the faces of the cube, which 
equals a2 . The radius is one quarter of the diagonal. 
The diamond lattice contains two face centered cubic lattice so 
that the total number of atoms per unit cell equals twice that of the 
face centered lattice, namely eight. The atoms touch along the 
body diagonal, where two atoms are one quarter of the body 
diagonal apart or 4/3 a . The radius equals half the distance 
between the two atoms. 
The radius, number of atoms per unit cell and the packing density 
are summarized in the table below.  
 Radius Atoms/ 

unit cell 
Packing density 

Simple cubic 
2
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Body centered cubic 

4
3 a

 
2 

% 68 
8

3
=

π
 

Face centered cubic 
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Diamond 
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Problem 2.2 At what temperature does the energy bandgap of silicon equal 

exactly 1 eV? 
Solution The energy bandgap is obtained from: 
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This quadratic equation can be solved yielding: 
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which is consistent with Figure 2.3.5 
 



 
Problem 2.3 
(same as 1.9) 

Prove that the probability of occupying an energy level below the 
Fermi energy equals the probability that an energy level above 
the Fermi energy and equally far away from the Fermi energy is 
not occupied. 

Solution 
 

The probability that an energy level with energy ∆E below the 
Fermi energy EF is occupied can be rewritten as: 
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so that it also equals the probability that an energy level with 
energy ∆E above the Fermi energy, EF, is not occupied. 

 



 
Problem 2.4 At what energy (in units of kT) is the Fermi function within 1 % of 

the Maxwell-Boltzmann distribution function? What is the 
corresponding probability of occupancy? 

Solution The Fermi function can be approximated by the Maxwell-
Boltzmann distribution function with an approximate error of 1 % 
if: 

or  , 01.0=
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ff

  
MBFD ff
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using x = (E - EF)/kT, this condition can be rewritten as: 
)exp(01.1)exp(1 xx =+  

from which one finds x = ln(100) = 4.605 so that  
E = EF + 4.605 kT and fFD(EF + 4.605 kT) = 0.0099 

 



 
Problem 2.5 Calculate the Fermi function at 6.5 eV if EF = 6.25 eV and T = 300 

K. Repeat at T = 950 K assuming that the Fermi energy does not 
change. At what temperature does the probability that an energy 
level at E = 5.95 eV is empty equal 1 %. 

Solution The Fermi function at 300 K equals: 
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The Fermi function at 950 K equals: 
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Problem 2.6 Calculate the effective density of states for electrons and holes in 

germanium, silicon and gallium arsenide at room temperature and 
at 100 °C. Use the effective masses for density of states 
calculations. 

Solution The effective density of states in the conduction band for 
germanium equals: 
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where the effective mass for density of states was used (Appendix 
3). Similarly one finds the effective densities for silicon and 
gallium arsenide and those of the valence band, using the effective 
masses listed below: 

 Germanium Silicon Gallium 
Arsenide 

me/m0 0.55 1.08 0.067 

 

Nc (cm-3) 1.02 x 1019 2.82 x 1019 4.35 x 1017 
me/m0 0.37 0.81 0.45  

Nv (cm-3) 5.64 x 1018 1.83 x 1019 7.57 x 1018 
 The effective density of states at 100 °C (372.15 K) are obtain 

from: 
2/3)

300
()K 300()(

T
NTN cc =  

yielding: 
T = 100°C Germanium Silicon Gallium 

Arsenide 
Nc (cm-3) 1.42 x 1019 3.91 x 1019 6.04 x 1017 

 

Nv (cm-3) 7.83 x 1018 2.54 x 1019 1.05 x 1018 
 



 
Problem 2.7 Calculate the intrinsic carrier density in germanium, silicon and 

gallium arsenide at room temperature (300 K). Repeat at 100 °C. 
Assume that the energy bandgap is independent of temperature 
and use the room temperature values. 

Solution The intrinsic carrier density is obtained from: 
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where both effective densities of states are also temperature 
dependent. Using the solution of Problem 2.6 one obtains: 
T = 300 K Germanium Silicon Gallium 

Arsenide 
 

ni (cm-3) 2.16 x 1013 8.81 x 109 1.97 x 106 
T = 100°C Germanium Silicon Gallium 

Arsenide 
 

ni (cm-3) 3.67 x 1014 8.55 x 1011 6.04 x 108 
 



 
 
Problem 2.8 Calculate the position of the intrinsic energy level relative to the 

midgap energy  
Emidgap = (Ec + Ev)/2 

in germanium, silicon and gallium arsenide at 300 K. Repeat at T 
= 100 °C. 
The intrinsic energy level relative to the midgap energy is obtained 
from: 
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where the effective masses are the effective masses for density of 
states calculations as listed in the table below. 
The corresponding values of the intrinsic level relative to the 
midgap energy are listed as well.  
 
 Germanium Silicon Gallium arsenide 
me

*/m0 0.55 1.08 0.067 
mh

*/m0 0.37 0.81 0.45 
T = 300 K -7.68 meV -5.58 meV 36.91 meV 

Solution 

T = 100 C -9.56 meV -6.94 meV 45.92 meV 
 



 
Problem 2.9 Calculate the electron and hole density in germanium, silicon and 

gallium arsenide if the Fermi energy is 0.3 eV above the intrinsic 
energy level. Repeat if the Fermi energy is 0.3 eV below the 
conduction band edge. Assume that T = 300 K. 
The electron density, n, can be calculated from the Fermi energy 
using: 
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and the corresponding hole density equals: 
p = ni

2/n 
the resulting values are listed in the table below. 
 
If the Fermi energy is 0.3 eV below the conduction band edge, one 
obtains the carrier densities using: 
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and the corresponding hole density equals: 
p = ni

2/n 
the resulting values are listed in the table below. 
  Germanium Silicon Gallium 

Arsenide 
 ni (cm-3) 2.03 x 1013 1.45 x 1010 2.03 x 106 
 Nc (cm-3) 1.02 x 1019 6.62 x 1019 4.37 x 1017 

n (cm-3) 2.24 x 1018 1.60 x 1015 2.23 x 1011 EF - Ei  
= 0.3 eV p (cm-3) 1.48 x 108 1.32 x 105 18.4 

n (cm-3) 9.27 x 1013 6.02 x 1014 3.97 x 1012 

Solution 

EF - Ei  
= - 0.3 eV p (cm-3) 4.45 x 1012 3.50 x 105 1.04 

 



 
Problem 2.10 The equations (2.6.34) and (2.6.35) derived in section 2.6 are only 

valid for non-degenerate semiconductors (i.e. Ev + 3kT < EF < Ec - 
3kT). Where exactly in the derivation was the assumption made 
that the semiconductor is non-degenerate? 

Solution Equations (2.6.34) and (2.6.35) were derived using charge 
neutrality and the mass action law. Of those two assumptions, the 
use of the mass action law implies that the semiconductor is non-
degenerate.  
 
The mass action law was derived using (2.6.12) and (2.6.13). 
These equations, representing a closed form solution for the 
thermal equilibrium carrier densities as a function of the Fermi 
energy, were in turn obtained by solving the Fermi integral and 
assuming that: 

Ev + 3kT < EF < Ec - 3kT 
i.e. that the Fermi energy must be at least 3kT away from either 
bandedge and within the bandgap. 

 



 
Problem 2.11 A silicon wafer contains 1016 cm-3 electrons. Calculate the hole 

density and the position of the intrinsic energy and the Fermi 
energy at 300 K. Draw the corresponding band diagram to scale, 
indicating the conduction and valence band edge, the intrinsic 
energy level and the Fermi energy level. Use ni = 1010 cm-3. 

Solution The hole density is obtained using the mass action law: 
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The position of the intrinsic energy relative to the midgap energy 
equals: 
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The position of the Fermi energy relative to the intrinsic energy 
equals: 
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Problem 2.12 A silicon wafer is doped with 1013 cm-3 shallow donors and 9 x 

1012 cm-3 shallow acceptors. Calculate the electron and hole 
density at 300 K. Use ni = 1010 cm-3. 

Solution Since there are more donors than acceptors, the resulting material 
is n-type and the electron density equals the difference between 
the donor and acceptor density or: 

n = Nd – Na = 1013 – 9 x 1012 = 1012 cm-3 
The hole density is obtained by applying the mass action law: 
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Problem 2.13 The resistivity of a silicon wafer at room temperature is 5 Ωcm. 

What is the doping density? Find all possible solutions. 
Solution Starting with a initial guess that the conductivity is due to 

electrons with a mobility of 1400 cm2/V-s, the corresponding 
doping density equals: 

51400106.1
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The mobility corresponding to this doping density equals 
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1366 cm2/V-s 

Since the calculated mobility is not the same as the initial guess, 
this process must be repeated until the assumed mobility is the 
same as the mobility corresponding to the calculated doping 
density, yielding: 

Nd = 9.12 x 1014 cm-3 and µn = 1365 cm2/V-s 
For p-type material one finds: 

Na = 2.56 x 1015 cm-3 and µp = 453 cm2/V-s 
 



 
 
Problem 2.14 How many phosphorus atoms must be added to decrease the 

resistivity of n-type silicon at room temperature from 1 Ω−cm to 
0.1 Ω−cm. Make sure you include the doping dependence of the 
mobility. State your assumptions. 
 

Solution Starting with a initial guess that the conductivity is due to 
electrons with a mobility of 1400 cm2/V-s, the corresponding 
doping density corresponding to the initial resistivity of 1 Ω−cm 
equals: 

11400106.1
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The mobility corresponding to this doping density equals 
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1274 cm2/V-s 

Since the calculated mobility is not the same as the initial guess, 
this process must be repeated until the assumed mobility is the 
same as the mobility corresponding to the calculated doping 
density, yielding: 

Nd,initial = 4.94 x 1015 cm-3 and µn = 1265 cm2/V-s 
Repeating this procedure for a resistivity of 0.1 Ω−cm one find the 
final doping density to be 

Nd,final = 8.08 x 1016 cm-3 and µn = 772 cm2/V-s 
The added density of phosphorous atoms therefore equals 

Nd, added = 4.94 x 1015 -  = 7.59 x 1016 cm-3 
 



 
Problem 2.15 A piece of n-type silicon (Nd = 1017 cm-3) is uniformly illuminated 

with green light (λ = 550 nm) so that the power density in the 
material equals 1 mW/cm2. a) Calculate the generation rate of 
electron-hole pairs using an absorption coefficient of 104 cm-1. b) 
Calculate the excess electron and hole density using the generation 
rate obtained in (a) and a minority carrier lifetime due to 
Shockley-Read-Hall recombination of 0.1 ms. c) Calculate the 
electron and hole quasi-Fermi energies (relative to Ei) based on the 
excess densities obtained in (b). 

Solution a) The generation rate is given by: 
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α
= = 2.77 x 109 cm-3s-1 

b) The excess carrier density then equals the product of the 
generation rate and the minority carrier lifetime τp. Since 
equal numbers of electrons and holes are generated, the 
excess minority carrier density equals the excess majority 
carrier density 

poptGpn τδδ == = 2.77 x 1015 cm-3 
c) The quasi-Fermi energies are then obtained from: 
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and 
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where the total carrier density is obtained from the sum of 
the thermal equilibrium density and the excess carrier 
density. The thermal equilibrium hole density is obtain 
from the electron density using the mass action law. 

 



 
Problem 2.16 A piece of intrinsic silicon is instantaneously heated from 0 K to 

room temperature (300 K). The minority carrier lifetime due to 
Shockley-Read-Hall recombination in the material is 1 ms. 
Calculate the generation rate of electron-hole pairs immediately 
after reaching room temperature. (Et = Ei). If the generation rate is 
constant, how long does it take to reach thermal equilibrium? 

Solution As the material is instantaneously heated from 0 K, the initial 
carrier densities will still be the same as at 0 K, namely zero. 
The initial generation rate will then be: 
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Where ni is the intrinsic carrier density at room temperature. If this 
generation rate were to continue until the electron and hole 
densities equal the intrinsic carrier density at room temperature, 
the time needed would be: 
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t  = 2 ms 

 



 
Problem 2.17 Calculate the conductivity and resistivity of intrinsic silicon. Use 

ni = 1010 cm-3, µn = 1400 cm2/V-sec and µp = 450 cm2/V-sec. 
Solution The conductivity of intrinsic silicon equals: 

ipnpn nqpnq )()( µµµµσ +=+= = 2.96 µS/cm 
The resistivity is the inverse of the conductivity: 

σ
ρ

1
= = 335 kΩ-cm 



 
Problem 2.18 Consider the problem of finding the doping density, which 

results in the maximum possible resistivity of silicon at room 
temperature. (ni = 1010 cm-3, µn = 1400 cm2/V-sec and µp = 450 
cm2/V-sec.) 
Should the silicon be doped at all or do you expect the maximum 
resistivity when dopants are added?  
If the silicon should be doped, should it be doped with acceptors 
or donors (assume that all dopant are shallow).  
Calculate the maximum resistivity, the corresponding electron 
and hole density and the doping density.  

Solution Since the mobility of electrons is larger than that of holes, one 
expects the resistivity to initially decrease as acceptors are added 
to intrinsic silicon. 
The maximum resistivity (or minimum conductivity) is obtained 
from: 
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which yields: 

i
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p
nn
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µ
=  = 0.57 ni = 5.7 x 109 cm-3  

The corresponding hole density equals p = 1.76 ni = 1.76 x 109 
cm-3 and the amount of acceptors one needs to add equals Na = 
1.20 ni = 1.20 x 109 cm-3. The maximum resistivity equals: 
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Problem 2.19 The electron density in silicon at room temperature is twice the 

intrinsic density. Calculate the hole density, the donor density 
and the Fermi energy relative to the intrinsic energy. Repeat for 
n = 5 ni and n = 10 ni. Also repeat for p = 2 ni, p = 5 ni and p = 
10 ni, calculating the electron and acceptor density as well as the 
Fermi energy relative to the intrinsic energy level. 
 

Solution The hole density is obtained using the mass action law: 
p = ni

2/n 
The doping density is obtained by requiring charge neutrality 

Nd - Na = n - p 
The Fermi energy is obtained from: 

EF - Ei = kT ln(n/ni) 
yielding: 

 n = 2 ni n = 5 ni n = 10 ni 
p ni /2 ni /5 ni /10 

 

Nd - Na 1.5 ni 4.8 ni 9.9 ni 
 EF - Ei kT ln(2) 

= 18 meV 
kT ln(5)  

= 42 meV 
kT ln(10) 
= 60 meV 

     
 p = 2 ni p = 5 ni p = 10 ni 

n ni /2 ni /5 ni /10 
 

Nd - Na -1.5 ni -4.8 ni -9.9 ni 
 EF - Ei -kT ln(2) 

= -18 meV 
-kT ln(5) 

= -42 meV 
-kT ln(10) 
= -60 meV 

 



 
Problem 2.20 The expression for the Bohr radius can also be applied to the 

hydrogen-like atom consisting of an ionized donor and the 
electron provided by the donor. Modify the expression for the 
Bohr radius so that it applies to this hydrogen-like atom. 
Calculate the resulting radius of an electron orbiting around the 
ionized donor in silicon. (εr = 11.9 and me

* = 0.26 m0) 
Solution The Bohr radius is obtained from: 
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However since the electron travel through silicon one has to 
replace the permittivity of vacuum with the dielectric constant of 
silicon and the free electron mass with the effective mass for 
conductivity calculations so that: 

a0,donor in silicon 
26.0
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*0 ×==
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rε
 pm = 2.42 nm 

 



 
Problem 2.21 Calculate the maximum density of electrons per unit energy (in 

electron volt) and per unit area (per cubic centimeter) at 1 eV 
above the band minimum. Assume that me

* = 1.08 m0 
Solution The maximum density of electrons of electrons per unit energy 

is obtained from the density of states: 

ccMAX EEm
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28
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where E - Ec = 1.602 x 10-19 Joule, yielding: 
=)(EnMAX 4.77 x 1046 m-3J-1 = 7.65 x 1021 cm-3eV-1 

 



 
Problem 2.22 Calculate the probability that an electron occupies an energy 

level, which is 3kT below the Fermi energy. Repeat for an 
energy level, which is 3kT above the Fermi energy. 

Solution The probability that an electron occupies an energy level, which 
is 3kT below the Fermi energy equals: 
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The probability that an electron occupies an energy level, which 
is 3kT above the Fermi energy equals: 
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Problem 2.23 Calculate and plot as a function of energy the product of the 

probability that an energy level is occupied with the probability 
that that same energy level is not occupied. Assume that the 
Fermi energy is zero and that kT = 1 eV. 
Calculate the energy or energies for which the product of both 
probabilities is 10% 

Solution The product of both probabilities can be written as: 
))(1)(())(1)(()()( EfEfEfEfEfEf −−−=−=−  

The product is therefore an even function and the maximum 
occurs at E = EF where the product is 25 % as can be seen on the 
figure: 

The probability of the sum is therefore 10% for: 
15.05.0)( ±=Ef = 11.7 % or 88.3 % 

The corresponding values for the energies are 2.06 and –2.06 eV 
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Problem 2.24 The effective mass of electrons in silicon is 0.26 m0 and the 

effective mass of holes is 0.36 m0. If the scattering time is the 
same for both carrier types, what is the ratio of the electron 
mobility and the hole mobility. 

Solution Since the mobility is related to the effective mass by: 

m
qτ

µ =  

The ratio of the mobilities will be inversely proportional to the 
ratio of the effective masses, so that: 
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1.39 

 



 
Problem 2.25 Electrons in silicon carbide have a mobility of 1000 cm2/V-sec. 

At what value of the electric field do the electrons reach a 
velocity of 3 x 107 cm/s? Assume that the mobility is constant 
and independent of the electric field. What voltage is required to 
obtain this field in a 5 micron thick region? How much time do 
the electrons need to cross the 5 micron thick region? 

Solution The electric field is obtained from the mobility and the velocity: 

7103

1400

×
==

v
µE  = 30 kV/cm 

Combined with the length one finds the applied voltage. 
V = E L = 30,000 x 5 x 10-4 = 15 V 

The transit time equals the length divided by the velocity: 
tr = L/v = 5 x 10-4/3 x 107 = 16.7 ps 

 
 



 
Problem 2.26 A piece of silicon has a resistivity which is specified by the 

manufacturer to be between 2 and 5 Ohm cm. Assuming that the 
mobility of electrons is 1400 cm2/V-sec and that of holes is 450 
cm2/V-sec, what is the minimum possible carrier density and 
what is the corresponding carrier type? Repeat for the maximum 
possible carrier density. 

Solution The minimum carrier density is obtained for the highest 
resistivity and the material with the highest carrier mobility, i.e. 
the n-type silicon. 
The minimum carrier density therefore equals: 

51400106.1

11
19max ×××

==
ρµ nq

n = 8.92 x 1014 cm-3 

The maximum carrier density is obtained for the lowest 
resistivity and the material with the lowest carrier mobility, i.e. 
the p-type silicon. 
The maximum carrier density therefore equals: 
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Problem 2.27 A silicon wafer has a 2-inch diameter and contains 1014 cm-3 

electrons with a mobility of 1400 cm2/V-sec. How thick should 
the wafer be so that the resistance between the front and back 
surface equals 0.1 Ohm? 

Solution The resistance is given by 

A
L

R ρ=  

Where A is the area of the wafer and L the thickness, so that the 
wafer thickness equals: 
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L = 0.455 mm 

The resistivity, r, was obtained from: 
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Problem 2.28 The electron mobility is germanium is 1000 cm2/V-sec. If this 

mobility is due to impurity and lattice scattering and the mobility 
due to lattice scattering only is 1900 cm2/V-sec, what is the 
mobility due to impurity scattering only? 

Solution The mobility is due to a combination of lattice and impurity 
scattering, namely: 
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so that the mobility due to impurity scattering only equals: 
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Problem 2.29 A piece of n-type silicon is doped with 1017 cm-3 shallow donors. 

Calculate the density of electrons per unit energy at kT/2 above 
the conduction band edge. T = 300 K. Calculate the electron 
energy for which the density of electrons per unit energy has a 
maximum. What is the corresponding probability of occupancy 
at that maximum? 



Solution The density of electrons per unit energy at a given energy 
equals: 
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The position of the Fermi energy is calculated from the doping 
density: 
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This last equation is only valid if the semiconductor is non-
degenerate, which is a justifiable assumption since the electron 
density is much smaller than the effective density of states. The 
Fermi function then becomes: 
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And the density of electrons per unit energy can then be further 
simplified to: 
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The maximum is obtained by setting the derivative equal to zero: 

0
)(

=
dE

Edn
 

This result in: 
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Which can be solved to yield: 
E = Emax = Ec + kT/2 

The corresponding probability of occupancy equals the value of 
the Fermi function calculated above. 
The corresponding electron density per unit energy is: 

)()()( EfEgEn c= = 1.16 x 1037 cm-3 J-1 
 



 
Problem 2.30 Phosphorous donor atoms with a concentration of 1016 cm-3 are 

added to a piece of silicon. Assume that the phosphorous atoms 
are distributed homogeneously throughout the silicon. The 
atomic weight of phosphorous is 31. 

a) What is the sample resistivity at 300 K? 
b) What proportion by weight does the donor impurity 

comprise? The density of silicon is 2.33 gram/cm3. 
c) If 1017 atoms cm-3 of boron are included in addition to 

phosphorous, and distributed uniformly, what is the 
resulting resistivity and type (i.e., p- or n-type material)? 

d) Sketch the energy-band diagram under the condition of 
part c) and show the position of the Fermi energy relative 
to the valence band edge. 



Solution a) The electron mobility in the silicon equals: 
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c) The semiconductor is p-type since Na > Nd  
The hole density is obtained from: 
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and the mobility is calculated from the sum of the donor 
and acceptor densities 
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leading to the conductivity of the material: 
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Problem 2.31 Find the equilibrium electron and hole concentrations and the 

location of the Fermi energy relative to the intrinsic energy in 
silicon at 27 oC, if the silicon contains the following 
concentrations of shallow dopants. 

a) 1 x 1016 cm-3 boron atoms 
b) 3 x 1016 cm-3 arsenic atoms and 2.9 x 1016 cm-3 boron 

atoms. 
Solution a) Boron atoms are acceptors, therefore Na = 1016 cm-3 

Since these are shallow acceptors and the material is not 
compensated, degenerate or close to intrinsic, the hole 
density equals the acceptor density: 

p ≈ 1016 cm-3 
Using the mass action law we then find the electron 
density 

n = ni
2/p = 1 x 104 cm-3 

The Fermi energy is then obtained from: 
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b) Arsenic atoms are donors, therefore Na = 2.9 x 1016 cm-3 
and Nd = 3 x 1016 cm-3 
Since these are shallow acceptors and the material is not 
degenerate or close to intrinsic, the electron density 
approximately equals the difference between the donor 
and acceptor density 

n ≈ Nd – Na = 1015 cm-3 
Using the mass action law we then find the hole density 

p = ni
2/n = 1 x 105 cm-3 

The Fermi energy is then obtained from: 
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Problem 2.32 The electron concentration in a piece of lightly doped, n-type 

silicon at room temperature varies linearly from 1017 cm-3 at x = 
0 to 6 x 1016 cm-3 at x = 2 µm. Electrons are supplied to keep this 
concentration constant with time. Calculate the electron current 
density in the silicon if no electric field is present. Assume µn = 
1000 cm2/V-s and T = 300 K. 

Solution The diffusion current is obtained from: 
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where the diffusion constant Dn is obtained from: 
Dn = µn x Vt = 1000 x 0.0258 = 25.8 cm2 
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Chapter 2: Semiconductor Fundamentals

Review Questions  

1.  Why do solids occur in the form of a crystal? 

2.  How do we classify the different crystals? 

3.  How many Bravais lattices are there in two dimensions? How many in three dimensions? 

4.  List the three cubic bravais lattices. 

5.  How do you explain that the allowed energies for electrons in solids are restricted to energy bands? Why 
are these bands separated energy band gaps? Why are the energies not discreet as in an atom. Why 
are they not continuous, as is the case for a free electron? 

6.  How does the conductivity of a solid depend on whether the energy bands are completely filled, partially 
filled or empty? How does the existence of overlapping bandgaps affect the conductivity? 

7.  Why does a completely filled band not contribute the conductivity of a solid? 

8.  Explain physically why the bandgap of a semiconductor decreases with temperature. 

9.  What are holes? Carefully justify your definition. 

10.  What is a state? 

11.  How many states are there in 1 micron sized cube for which an electron has a kinetic energy less than 1 
eV? Treat the electron as a free electron confined to a box with infinite potential walls. 

12.  What is the physical meaning of the Fermi energy? 

13.  What is the value of the Fermi function at an energy, which is 3kT larger/lower than the Fermi energy? 

14.  What is the basic assumption used in statistical thermodynamics when calculating the probability 
distribution functions? 

15.  What are the two boundary conditions used to find the possible ways to fill energy levels with electrons. 

16.  How does a boson differ from a Fermion? Name two bosons. 

17.  List the assumptions made to obtain equations (2.6.12). 

18.  What is an intrinsic semiconductors? What is the hole density in an intrinsic semiconductor? 
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19.  Why is the product of the electron and hole density in a non-degenerate semiconductor constant rather 
than for instance the sum? This relationship is also referred to as the mass-action law. Why? 

20.  Define a non-degenerate semiconductor. Why do we need this concept? 

21.  What is the difference between a doped semiconductor and an extrinsic semiconductor? 

22.  What assumptions are made when deriving equations (2.6.29) and (2.6.30)? 

23.  Describe the temperature dependence of the carrier density in a semiconductor. Identify the three 
regions and explain what happens by indicating the filled and empty states on an energy band diagram. 
Do this for n-type, p-type and compensated material. 

24.  Name the two transport mechanisms in semiconductors. 

25.  Describe the microscopic behavior of electrons and holes in a semiconductor. 

26.  Define the mobility. 

27.  Explain why the mobility in a semiconductor depends on the doping density. 

28.  Define the resistivity and conductivity of a semiconductor. 

29.  Explain why the velocity in a semiconductor is limited. 

30.  What is the driving force, which causes diffusion? 

31.  Explain the relation between the mean free path, the scattering time and the thermal velocity. 

32.  List three recombination-generation mechanisms. 

33.  Explain why the net recombination rate as described by the simple model depends on the excess carrier 
density. 

34.  Describe the continuity equation in words. 

35.  What assumptions are made to obtain the diffusion equations (2.9.9) and (2.9.10) from the continuity 
equations (2.9.3) and (2.9.4)? 

36.  What is the diffusion length and how does it relate to the diffusion constant and the minority carrier 
lifetime? 

37.  What is the drift-diffusion model?
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Chapter 2: Glossary

Name

Acceptor An atom which is likely to take on one or more electrons when placed in a crystal 
Bandgap The range of energies between existing energy bands where no energy levels exist 
Compensation The process of adding donors and acceptor to a crystal 
Conduction band Lowest empty or partially filled band in a semiconductor 
Conductivity The ratio of the current density to the applied electric field 

Continuity equation Equation which states that the rate of change of a density of particles equals the net 
flux of particles coming in

Crystal A solid which consists of atoms placed in a periodic arrangment 
Crystalline Made of one or multiple crystals
Density of states The density of electronic states per unit energy and per unit volume 
Diffusion Motion of particles caused by thermal energy 

Diffusion length Average distance minority carriers travel in a quasi-neutral region before they 
recombine

Donor An atom which is likely to give off one or more electrons when placed in a crystal 
Drift Motion of carriers caused by an electric field 
Energy band A collection of closely spaced energy levels 
Generation Process by which electron-hole pairs are generated 
Hole Particle associated with an empty electron level in an almost filled band 
Impurity A foreign atom in a crystal 
Intrinsic carrier density The density of electrons and holes in an intrinsic semiconductor 
Intrinsic semiconductor A semiconductors free of defects or impurities 

Ionization The process of adding or removing an electron to/from an atom thereby creating a 
charged atom (i.e. ion) 

Mass action law The law which describes the relation between the densities of species involved in a 
chemical reaction 

Mobility The ratio of the carrier velocity to the applied electric field 
Recombination Process by which electron-hole pairs are removed 
Resistivity The ratio of the applied voltage to the current 
Saturation Velocity Maximum velocity which can be obtained in a specific semiconductor 
Valence band Highest filled or almost filled band in a semiconductor 
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Chapter 3: Metal-Semicond. Junctions

3.1 Introduction

Metal-to-semiconductor junctions are of great importance since they are present in every semiconductor 
device. They can behave either as a Schottky  barrier or as an ohmic contact dependent on the 
characteristics of the interface. We will focus primarily on the Schottky barriers. This chapter contains an 
analysis of the electrostatics of the M-S junction. Calculated are the charge, field and potential distribution 
within the device. This chapter also contains a derivation of the current voltage characteristics due to diffusion, 
thermionic emission and tunneling in Metal-Semiconductor junctions.
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Chapter 3: Metal-Semicond. Junctions

3.2. Structure and principle of operation
3.2.1. Structure
3.2.2. Flatband diagram and built-in potential
3.2.3. Thermal equilibrium
3.2.4. Forward and reverse bias

3.2.1. Structure
 

The structure of a metal-semiconductor junction is shown in Figure 3.2.1. It consists of a metal contacting a 
piece of semiconductor. An ideal Ohmic contact, a contact such that no potential exists between the metal and 
the semiconductor, is made to the other side of the semiconductor. The sign convention of the applied voltage 
and current is also shown on Figure 3.2.1. 

Figure 3.2.1 : Structure and sign convention of a metal-semiconductor junction

3.2.2. Flatband diagram and built-in potential
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Metal-Semicond. Junctions

The barrier between the metal and the semiconductor can be identified on an energy band diagram. To 
construct such diagram we first consider the energy band diagram of the metal and the semiconductor, and 
align them using the same vacuum level as shown in Figure 3.2.2 (a). As the metal and semiconductor are 
brought together, the Fermi energies of the metal and the semiconductor do not change right away. This yields 
the flatband diagram of Figure 3.2.2 (b).

Figure 3.2.2 : Energy band diagram of the metal and the semiconductor before (a) and after (b) contact is 
made.

The barrier height, φB, is defined as the potential difference between the Fermi energy of the metal and the 
band edge where the majority carriers reside. From Figure 3.2.2 (b) one finds that for an n-type semiconductor 
the barrier height is obtained from:

(3.2.1)

Where ΦM is the work function of the metal and χ is the electron affinity. The work function of selected metals 
as measured in vacuum can be found in Table 3.2.1. For p-type material, the barrier height is given by the 
difference between the valence band edge and the Fermi energy in the metal:

(3.2.2)

A metal-semiconductor junction will therefore form a barrier for electrons and holes if the Fermi energy of the 
metal as drawn on the flatband diagram is somewhere between the conduction and valence band edge. 

In addition, we define the built-in potential, φI, as the difference between the Fermi energy of the metal and that 
of the semiconductor. 

(3.2.3)

(3.2.4)
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Metal-Semicond. Junctions

The measured barrier height for selected metal-semiconductor junctions is listed in Table 3.2.1. These 
experimental barrier heights often differ from the ones calculated using (3.2.1) or (3.2.2). This is due to the 
detailed behavior of the metal-semiconductor interface. The ideal metal-semiconductor theory assumes that 
both materials are infinitely pure, that there is no interaction between the two materials nor is there an 
interfacial layer. Chemical reactions between the metal and the semiconductor alter the barrier height as do 
interface states at the surface of the semiconductor and interfacial layers. Some general trends however can 
still be observed. As predicted by (3.2.1), the barrier height on n-type semiconductors increases for metals with 
a higher work function as can be verified for silicon. Gallium arsenide on the other hand is known to have a 
large density of surface states so that the barrier height becomes virtually independent of the metal. 
Furthermore, one finds the barrier heights reported in the literature to vary widely due to different surface 
cleaning procedures.

Table 3.2.1: Workfunction of selected metals and their measured barrier height on germanium, silicon and 
gallium arsenide.

Example 3.1 Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the 
barrier height and the built-in potential. Repeat for a p-type semiconductor with the same 
doping density.

Solution The barrier height equals: 

Note that this value differs from the one listed in Table 3.2.1 since the work function in vacuum 
was used. See the discussion in the text for more details.

The built-in potential equals: 

The barrier height for the chrome/p-silicon junction equals:
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And the built-in potential equals: 

3.2.3. Thermal equilibrium
 

The flatband diagram, shown in Figure 3.2.2 (b), is not a thermal equilibrium diagram, since the Fermi energy in 
the metal differs from that in the semiconductor. Electrons in the n-type semiconductor can lower their energy 
by traversing the junction. As the electrons leave the semiconductor, a positive charge, due to the ionized 
donor atoms, stays behind. This charge creates a negative field and lowers the band edges of the 
semiconductor. Electrons flow into the metal until equilibrium is reached between the diffusion of electrons from 
the semiconductor into the metal and the drift of electrons caused by the field created by the ionized impurity 
atoms. This equilibrium is characterized by a constant Fermi energy throughout the structure. 

Figure 3.2.3 : Energy band diagram of a metal-semiconductor contact in thermal equilibrium.
It is of interest to note that in thermal equilibrium, i.e. with no external voltage applied, there is a region in the 
semiconductor close to the junction ( ), which is depleted of mobile carriers. We call this the depletion region. 
The potential across the semiconductor equals the built-in potential, φi.
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3.2.4. Forward and reverse bias
 

Operation of a metal-semiconductor junction under forward and reverse bias is illustrated with Figure 3.2.4. As 
a positive bias is applied to the metal (Figure 3.2.4 (a)), the Fermi energy of the metal is lowered with respect to 
the Fermi energy in the semiconductor. This results in a smaller potential drop across the semiconductor. The 
balance between diffusion and drift is disturbed and more electrons will diffuse towards the metal than the 
number drifting into the semiconductor. This leads to a positive current through the junction at a voltage 
comparable to the built-in potential.

Figure 3.2.4 : Energy band diagram of a metal-semiconductor junction under (a) forward and (b) reverse bias
As a negative voltage is applied (Figure 3.2.4 (b)), the Fermi energy of the metal is raised with respect to the 
Fermi energy in the semiconductor. The potential across the semiconductor now increases, yielding a larger 
depletion region and a larger electric field at the interface. The barrier, which restricts the electrons to the 
metal, is unchanged so that the flow of electrons is limited by that barrier independent of the applied voltage. 
The metal-semiconductor junction with positive barrier height has therefore a pronounced rectifying behavior. A 
large current exists under forward bias, while almost no current exists under reverse bias.

The potential across the semiconductor therefore equals the built-in potential, φi, minus the applied voltage, Va.

(3.2.5)
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3.3.1. General discussion - Poisson's equation
 

The electrostatic analysis of a metal-semiconductor junction is of interest since it provides knowledge about the 
charge and field in the depletion region. It is also required to obtain the capacitance-voltage characteristics of 
the diode.
The general analysis starts by setting up Poisson's equation: 

(3.3.1)

where the charge density, ρ, is written as a function of the electron density, the hole density and the donor and 
acceptor densities. To solve the equation, we have to express the electron and hole density, n and p, as a 
function of the potential, φ, yielding: 

(3.3.2)

with 

(3.3.3)

where the potential is chosen to be zero in the n-type region, where x >> xn.

This second-order non-linear differential equation (3.3.2) can not be solved analytically. Instead we will make 
the simplifying assumption that the depletion region is fully depleted and that the adjacent neutral regions 
contain no charge. This full depletion approximation is the topic of section 3.3.2. 
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3.3.2. Full depletion approximation
 

The simple analytic model of the metal-semiconductor junction is based on the full depletion approximation. 
This approximation is obtained by assuming that the semiconductor is fully depleted over a distance xd, called 
the depletion region. While this assumption does not provide an accurate charge distribution, it does provide 
very reasonable approximate expressions for the electric field and potential throughout the semiconductor. 
These are derived in section 3.3.3.

3.3.3. Full depletion analysis
 

We now apply the full depletion approximation to an M-S junction containing an n-type semiconductor. We 
define the depletion region to be between the metal-semiconductor interface (x = 0) and the edge of the 
depletion region (x = xd). The depletion layer width, xd, is unknown at this point but will later be expressed as a 
function of the applied voltage.
To find the depletion layer width, we start with the charge density in the semiconductor and calculate the 
electric field and the potential across the semiconductor as a function of the depletion layer width. We then 
solve for the depletion layer width by requiring the potential across the semiconductor to equal the difference 
between the built-in potential and the applied voltage, φi - Va. The different steps of the analysis are illustrated 
by Figure 3.3.1.

As the semiconductor is depleted of mobile carriers within the depletion region, the charge density in that 
region is due to the ionized donors. Outside the depletion region, the semiconductor is assumed neutral. This 
yields the following expressions for the charge density, ρ: 

(3.3.4)

where we assumed full ionization so that the ionized donor density equals the donor density, Nd. This charge 
density is shown in Figure 3.3.1 (a). The charge in the semiconductor is exactly balanced by the charge in the 
metal, QM, so that no electric field exists except around the metal-semiconductor interface. 
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Figure 3.3.1 : (a) Charge density, (b) electric field, (c) potential and (d) energy as obtained with the full 
depletion analysis.

Using Gauss's law we obtain electric field as a function of position, also shown in Figure 3.3.1 (b): 

(3.3.5)

where εs is the dielectric constant of the semiconductor. We also assumed that the electric field is zero outside 
the depletion region. It is expected to be zero there since a non-zero field would cause the mobile carriers to 
redistribute until there is no field. The depletion region does not contain mobile carriers so that there can be an 
electric field. The largest (absolute) value of the electric field is obtained at the interface and is given by: 

(3.3.6)

where the electric field was also related to the total charge (per unit area), Qd, in the depletion layer. Since the 
electric field is minus the gradient of the potential, one obtains the potential by integrating the expression for the 
electric field, yielding: 
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(3.3.7)

We now assume that the potential across the metal can be neglected. Since the density of free carriers is very 
high in a metal, the thickness of the charge layer in the metal is very thin. Therefore, the potential across the 
metal is several orders of magnitude smaller that that across the semiconductor, even though the total amount 
of charge is the same in both regions.

The total potential difference across the semiconductor equals the built-in potential, φi, in thermal equilibrium 
and is further reduced/increased by the applied voltage when a positive/negative voltage is applied to the metal 
as described by equation (3.2.5). This boundary condition provides the following relation between the 
semiconductor potential at the surface, the applied voltage and the depletion layer width: 

(3.3.8)

Solving this expression for the depletion layer width, xd, yields: 

(3.3.9)

3.3.4. Junction capacitance
 

In addition, we can obtain the capacitance as a function of the applied voltage by taking the derivative of the 
charge with respect to the applied voltage yielding: 

(3.3.10)

The last term in the equation indicates that the expression of a parallel plate capacitor still applies. One can 
understand this once one realizes that the charge added/removed from the depletion layer as one decreases/
increases the applied voltage is added/removed only at the edge of the depletion region. While the parallel 
plate capacitor expression seems to imply that the capacitance is constant, the metal-semiconductor junction 
capacitance is not constant since the depletion layer width, xd, varies with the applied voltage. 

Example 3.2 Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the 
depletion layer width, the electric field in the silicon at the metal-semiconductor interface, the 
potential across the semiconductor and the capacitance per unit area for an applied voltage of -
5 V.
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Solution The depletion layer width equals:

where the built-in potential was already calculated in Example 3.1. 

The electric field in the semiconductor at the interface is: 

The potential equals:

And the capacitance per unit area is obtained from: 

3.3.5. Schottky barrier lowering
 

Image charges build up in the metal electrode of a metal-semiconductor junction as carriers approach the 
metal-semiconductor interface. The potential associated with these charges reduces the effective barrier 
height. This barrier reduction tends to be rather small compared to the barrier height itself. Nevertheless this 
barrier reduction is of interest since it depends on the applied voltage and leads to a voltage dependence of the 
reverse bias current. Note that this barrier lowering is only experienced by a carrier while approaching the 
interface and will therefore not be noticeable in a capacitance-voltage measurement. 
An energy band diagram of an n-type silicon Schottky barrier including the barrier lowering is shown in Figure 
3.3.2: 
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Figure 3.3.2: Energy band diagram of a silicon Schottky barrier with φB = 0.8 V and Nd = 1019 cm-3.

Shown is the energy band diagram obtained using the full-depletion approximation, the potential reduction 
experienced by electrons, which approach the interface and the resulting conduction band edge. A rounding of 
the conduction band edge can be observed at the metal-semiconductor interface as well as a reduction of the 
height of the barrier.
The calculation of the barrier reduction assumes that the charge of an electron close to the metal-
semiconductor interface attracts an opposite surface charge, which exactly balances the electron's charge so 
that the electric field surrounding the electron does not penetrate beyond this surface charge. The time to build-
up the surface charge and the time to polarize the semiconductor around the moving electron is assumed to be 
much shorter than the transit time of the electron . This scenario is based on the assumption that there are no 
mobile or fixed charges around the electron as it approaches the metal-semiconductor interface. The electron 
and the induced surface charges are shown in Figure 3.3.3: 

Figure 3.3.3: a) Field lines and surface charges due to an electron in close proximity to a perfect conductor 
and b) the field lines and image charge of an electron. 

It can be shown that the electric field in the semiconductor is identical to that of the carrier itself and another 
carrier with opposite charge at equal distance but on the opposite side of the interface. This charge is called the 
image charge. The difference between the actual surface charges and the image charge is that the fields in the 
metal are distinctly different. The image charge concepts is justified on the basis that the electric field lines are 
perpendicular to the surface a perfect conductor, so that, in the case of a flat interface, the mirror image of the 
field lines provides continuous field lines across the interface. 
The barrier lowering depends on the square root of the electric field at the interface and is calculated from:
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(3.3.11)
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3.3.6. Derivation of Schottky barrier lowering  

 

We now derive this equation by calculating the potential due to the image charge and adding it to 
the potential within the depletion region.  

The electrostatic force between the two particles, one with a positive electronic charge and the 
other with a negative electronic charge, which are both a distance, x, away from the interface at x 
= 0, is given by:  
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The corresponding potential equals:  
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which combined with the potential variation due to the electric field yields the following 
potential energy, V(x), versus position, x:  
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where the field due to the charge in the depletion region is assumed to be constant and set equal 
to the maximum field, Emax:  
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At this point the question arises why a single electron can noticeably alter the potential, while the 
depletion layer contains significantly more charge. To understand this, one has to realize that we 
have assumed that the charge in the depletion region is not quantized, but instead is distributed 
throughout the depletion layer. While this assumption does provide the correct average potential 
it does not accurately reflect the potential variations due to the individual charges of the ionized 
donors or mobile electrons. As we assumed that the single electron is far away from all other 
charges in the semiconductor, the potential energy due to all those charges is close to the average 
potential energy.  

The potential energy due to the distributed charge of the ionized donors and a single electron 
reaches its maximum value at:  
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and the corresponding maximum value of the potential energy equals:  

 BB qqV φφ ∆−=max  (3.3.17) 

where ∆φB is the barrier height reduction given by:  

 

s
B

q
πε

φ
4

maxE
=∆  

(3.3.18) 

 



  

3.3.7. Solution to Poisson’s Equation  

To assess the error made when using the full depletion approximation we now derive the correct 
solution by solving Poisson's equation analytically2. The actual solution for the potential is then 
obtained by numerically integrating the expression for the electric field. We start from the charge 
density, ρ, in a semiconductor for the general case where electrons, holes, ionized acceptors and 
ionized donors are present: 

 )()( −+ −−+= ad NnNpqφρ  (3.3.19) 

Where φ is the potential in the semiconductor. The potential is chosen to equal zero deep into the 
semiconductor. For an n-type semiconductor without acceptors or free holes this can be further 
reduced to: 
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assuming the semiconductor to be non-degenerate and fully ionized. A similar expression can be 
obtained for p-type material. Poisson's law can then be rewritten as: 
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Multiplying both sides with dφ/dx, this equation can be integrated between an arbitrary point x 
and infinity. The electric field at infinity (deep in the semiconductor) is taken to be zero. The 
electric field for a given potential is then: 
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Where the sign function equals +1 or -1 depending on the sign of φ and LD is the Debye length 

given by, 
d

s
D Nq

kT
L 2

ε
= . Equation (3.3.22) is plotted in Figure 3.3.4 using normalized 

parameters. Depletion occurs for negative potentials while accumulation occurs for positive 
potentials. 

                                                 

2This derivation follows that of  Goodman and Perkins, J. Appl. Phys. 35, p 3351, 1964. 
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Figure 3.3.4 Absolute value of the normalized electric field, |E| LD/Vt, versus normalized 
potential, φ/Vt 

Applying Gauss's law (Q = εsE) we the find the relation between the total charge in the 
semiconductor region and the total potential across the semiconductor. The capacitance can also 
be obtained from: 

 

]1)()[exp(2

1)exp(

−−

−
===

tt

t

D

s

a
s

a

VV

V
LdV

d
dV
dQ

C
φφ

φ
ε

ε
E  

(3.3.23) 

where φs is the potential across the semiconductor and equals -φi + Va. This expression can be 
approximated for φs< 0 and |φs| >> Vt yielding: 
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(3.3.24) 

This expression equals (3.3.10) as derived using the full depletion approximation, except for the 
added term, Vt, in the denominator. This expression yields the capacitance value with a relative 
accuracy better than 0.3 % for Va  < φi – 6Vt. 



  

3.3.7.1.Numeric solution 

A numeric solution can be obtained by integrating equation (3.3.21). The solution to the energy 
band diagram, the charge density, the electric field and the potential are shown in the figures 
below: Integration was started four Debye lengths to the right of the edge of the depletion region 
as obtained using the full depletion approximation. Initial conditions were obtained by assuming 
the potential at the starting point to be adequately expressed by a solution to the homogenous 
equation: 
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Shown are solutions for a gold-silicon M-S junction with ΦM = 4.75V, χ = 4.05V, Nd = 1016 cm-3 
and εs/ε0 = 11.9. 
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Figure 3.3.5 Energy band diagram of an M-S junction 
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Figure 3.3.6 Charge density versus position in a M-S junction. The solid line is the numeric 
solution, and the dotted line is the solution based on the full depletion 
approximation. 
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Figure 3.3.7 Electric field versus distance in a M-S junction. The solid line is the numeric 
solution, and the dotted line is the solution based on the full depletion 
approximation. 
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Figure 3.3.8 Potential versus distance of an M-S junction. The solid line is the numeric 
solution, and the dotted line is the solution based on the full depletion 
approximation. 

3.3.7.2. Depletion at the Metal-Semiconductor interface 

Most metal semiconductor contacts have a depletion region adjacent to the interface. We 
distinguish between the case where a large potential variation is found across the semiconductor, 
for which only a small correction is obtained compared to the full depletion approximation, and 
the case where a small potential variation exists across the semiconductor, for which the full 
depletion approximation does not apply. 

3.3.7.2.1. Large potential approximation 

If the potential difference across the semiconductor is larger than the thermal voltage, or φs = Va - 
φi < 0 and |Va - φi| >> kT/q we find the effective depletion layer width, xd, defined as the ratio of 
the total depletion layer charge to the charge density of the fully ionized donors, to be: 
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where LD is the extrinsic Debye length of the semiconductor, which is given by: 
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The small signal capacitance can be expressed by: 



     

 

d

s

tai

t

D

s

a

d

xVV
V

LdV
dQ

C
ε

φ
ε

=
−−

==
)(2

 
(3.3.28) 

where Qd is the total charge per unit area in the depletion layer. This result differs from the one 
obtained by using the full depletion approximation in that the applied voltage is increased by the 
thermal voltage. However the capacitance is still the ratio of the dielectric constant to the 
depletion layer width. 

3.3.7.2.2. Small potential approximation 

If the potential difference across the semiconductor is smaller than the thermal voltage, or φ = Va 

- φi < 0 and |Va - φi| < kT/q, the depletion layer width is proportional to the Debye length and the 
applied voltage: 

 

t

ai
Dd V

V
Lx

−
=

φ
 

(3.3.29) 

and the capacitance is constant, independent of the applied voltage: 
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3.3.7.3.Accumulation at the Metal-Semiconductor interface 

Accumulation occurs at the semiconductor metal interface if the Fermi energy of the metal lies 
between the conduction band edge and the Fermi energy in the n-type semiconductor, or Φs > 

ΦM > χ. A similar condition can be defined for p-type material. Equation [3.1.10] applies for 
depletion as well as accumulation. However it does not provide a solution for the electric field 
and potential as a function of position. Instead we start again from the integral formulation of 
equation [3.1.10] but set the potential equal to zero at the interface and integrate from 0 to x. We 
also assume that the electron concentration at the surface, ns is much larger than the donor 
concentration. Using this convention, equation [3.1.10] can be rewritten as: 
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integrating this equation again from 0 to x yields: 
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from which the charge density can be obtained: 
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Integration of the charge density yields the electric field.  
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The width of the accumulation layer is obtained by solving the expression for the potential for x 
with φ(xd) = φi – Va. 
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The correct solution can also be obtained by integrating [3.1.10]. A solution for a M-S junction  
with ΦM = 4.2V, χ = 4.05V, Nd = 1016 cm-3 and εs/ε0 = 11.9 is shown in the figures below. 
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Figure 3.3.9 Charge density, electric field, potential and energy band diagram of a metal-

semiconductor junction 
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3.4. Schottky diode current
3.4.1. Diffusion current
3.4.2. Thermionic emission
3.4.3. Tunneling
3.4.4. Derivation of the M-S junction current  

The current across a metal-semiconductor junction is mainly due to majority carriers. Three distinctly different 
mechanisms exist: diffusion of carriers from the semiconductor into the metal, thermionic emission of carriers 
across the Schottky barrier and quantum-mechanical tunneling through the barrier. The diffusion theory 
assumes that the driving force is distributed over the length of the depletion layer. The thermionic emission 
theory on the other hand postulates that only energetic carriers, those, which have an energy equal to or larger 
than the conduction band energy at the metal-semiconductor interface, contribute to the current flow. Quantum-
mechanical tunneling through the barrier takes into account the wave-nature of the electrons, allowing them to 
penetrate through thin barriers. In a given junction, a combination of all three mechanisms could exist. 
However, typically one finds that only one limits the current, making it the dominant current mechanism.
The analysis reveals that the diffusion and thermionic emission currents can be written in the following form:

(3.4.1)

This expression states that the current is the product of the electronic charge, q, a velocity, v, and the density of 
available carriers in the semiconductor located next to the interface. The velocity equals the mobility multiplied 
with the field at the interface for the diffusion current and the Richardson velocity (see section 3.4.2) for the 
thermionic emission current. The minus one term ensures that the current is zero if no voltage is applied as in 
thermal equilibrium any motion of carriers is balanced by a motion of carriers in the opposite direction. 
The tunneling current is of a similar form, namely:

(3.4.2)

where vR is the Richardson velocity and n is the density of carriers in the semiconductor. The tunneling 
probability term, Θ, is added since the total current depends on the carrier flux arriving at the tunnel barrier 
multiplied with the probability, Θ, that they tunnel through the barrier. 

3.4.1. Diffusion current
 

This analysis assumes that the depletion layer is large compared to the mean free path, so that the concepts of 
drift and diffusion are valid. The resulting current density equals:

(3.4.3)
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The current therefore depends exponentially on the applied voltage, Va, and the barrier height, φB. The 
prefactor can more easily be understood if one rewrites it as a function of the electric field at the metal-
semiconductor interface, max:

(3.4.4)

yielding:

(3.4.5)

so that the prefactor equals the drift current at the metal-semiconductor interface, which for zero applied 
voltage exactly balances the diffusion current. 

3.4.2 Thermionic emission
 

The thermionic emission theory assumes that electrons, which have an energy larger than the top of the 
barrier, will cross the barrier provided they move towards the barrier. The actual shape of the barrier is hereby 
ignored. The current can be expressed as:

(3.4.6)

where  is the Richardson constant and φB is the Schottky barrier height.

The expression for the current due to thermionic emission can also be written as a function of the average 
velocity with which the electrons at the interface approach the barrier. This velocity is referred to as the 
Richardson velocity given by:

(3.4.7)

So that the current density becomes:

(3.4.8)

3.4.3. Tunneling
 

The tunneling current is obtained from the product of the carrier charge, velocity and density. The velocity 
equals the Richardson velocity, the velocity with which on average the carriers approach the barrier. The carrier 
density equals the density of available electrons, n, multiplied with the tunneling probability, Θ, yielding:

(3.4.9)

Where the tunneling probability is obtained from:
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(3.4.10)

and the electric field equals  = φB/L. 

The tunneling current therefore depends exponentially on the barrier height, φB, to the 3/2 power.
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3.4. Schottky diode current 

3.4.4. Derivation of the Metal-Semiconductor Junction Current  

3.4.4.1.Derivation of the diffusion current 

We start from the expression for the total current and then integrate it over the width of the 
depletion region: 
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which can be rewritten by using E = -dφ/dx and multiplying both sides of the equation with exp(-
φ/Vt), yielding: 
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(3.4.2) 

Integration of both sides of the equation over the depletion region yields: 

 

∫∫ −









−−

=
−

−

=
dd

d

x

t

t

a

t

B
cn

x

t

x

t
n

n

dx
V

V
V

V
NqD

dx
V

V
nqD

J

0

*

0

0

)exp(

1)exp()exp(

)exp(

)exp(

φ

φ

φ

φ

 

(3.4.3) 

Where the following values were used for the electron density and the potential: 

x n(x) φ (x) 

0 Nc exp(-φB/Vt) -φI + Va 

xd Nd = Nc exp(-φB/Vt) exp(φi/Vt) 0 

 

and φ* = φ + φi - Va. The integral in the denominator can be solved using the potential obtained 
from the full depletion approximation solution, or: 
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so that φ* can be written as: 
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where the second term is dropped since the linear term is dominant if x << xd. Using this 



     

approximation one can solve the integral as: 
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for (φi – Va) > Vt. This yields the final expression for the current due to diffusion: 
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(3.4.7) 

This expression indicates that the current depends exponentially on the applied voltage, Va, and 
the barrier height, φB. The prefactor can be understood physically if one rewrites that term as a 
function of the electric field at the metal-semiconductor interface, Emax: 
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yielding: 
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so that the prefactor equals the drift current at the metal-semiconductor interface, which for zero 
applied voltage exactly balances the diffusion current.  

3.4.4.2.Derivation of the thermionic emission current 

The thermionic emission theory1 assumes that electrons which have an energy larger than the top 
of the barrier will cross the barrier provided they move towards the barrier.  The actual shape of 
the barrier is hereby ignored.  The current can be expressed as: 
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For non-degenerately doped material, the density of electrons between E and E + dE is given by: 
(using (2.4.7) and assuming EF,n < Ec - 3kT) 
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Assuming a parabolic conduction band (with constant effective mass m*), the carrier energy E 
can be related to its velocity v as: 

                                                 

1see also S.M. Sze "Physics of Semiconductor Devices", Wiley and Sons, second edition, p. 255 
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Combining (3.4.19) with (3.4.20) yields: 
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while replacing v2 by vx
2 + vy

2 + vz
2 and  4π  v2dv by dvxdvydvz the current becomes: 
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using   
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(3.4.15) 

The velocity vox is obtained by setting the kinetic energy equal to the potential across the n-type 
region: 
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vox is the minimal velocity of an electron in the quasi-neutral n-type region, needed to cross the 
barrier.  Using   
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which is only valid for a metal-semiconductor junction one obtains 
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where  3

2*
* 4

h
kqm

A
π

=  is the Richardson constant and φB is the Schottky barrier height which 

equals the difference between the Fermi level in the metal, EF,M and the conduction band edge, 
Ec, evaluated at the interface between the metal and the semiconductor. The -1 is added to 



     

account for the current flowing from right to left2. The current flow from right to left is 
independent of the applied voltage since the barrier is independent of the bandbending3 in the 
semiconductor and equal to φB. Therefore it can be evaluated at any voltage. For Va = 0 the total 
current must be zero, yielding the -1 term. 

The expression for the current due to thermionic emission can also be written as a function of the 
average velocity with which the electrons at the interface approach the barrier. This velocity is 
referred to as the Richardson velocity given by: 
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So that the current density becomes: 
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3.4.4.3.Derivation of the tunneling current 

We start from the time independent Schrödinger equation: 
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which can be rewritten as 
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Assuming that  V(x) - E is independent of position in a section between x and x+dx  this equation 
can  be solved yielding: 
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The minus sign is chosen since we assume the particle to move from left to right.  For a slowly 
varying potential the amplitude of the wave function at x = L can be related to the wave function 
at x = 0 : 

                                                 

2This method assumes that the effective mass of the carriers is the same on both sides of the barrier. This issue is 
discussed in more detail in section 3.2.3. 
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This equation is referred to as the WKB approximation4. From this the tunneling probability, Θ, 

can be calculated5 for a triangular barrier for which V(x)-E = qφB (1- 
x
L
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The tunneling probability then becomes 
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(3.4.26) 

where the electric field equals E = φB/L.  

The tunneling current is obtained from the product of the carrier charge, velocity and density. 
The velocity equals the Richardson velocity, the velocity with which on average the carriers 
approach the barrier while the carrier density equals the density of available electrons multiplied 
with the tunneling probability, yielding: 

 Θ= nvqJ Rn  (3.4.27) 

The tunneling current therefore depends exponentially on the barrier height to the 3/2 power. 

 

                                                 

4Named after Wigner, Kramers and Brillouin 
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3.5. Metal-Semiconductor Contacts 
Metal-semiconductor contacts are an obvious component of any semiconductor device. At the 
same time, such contacts cannot be assumed to be as low resistance as that of two connected 
metals. In particular, a large mismatch between the Fermi energy of the metal and semiconductor 
can result is a high-resistance rectifying contact. A proper choice of materials can provide a low 
resistance ohmic contact. However for a lot of semiconductors there is no appropriate metal 
available. Instead one then creates a tunnel contact. Such contact consists of a thin barrier – 
obtained by heavily-doping the semiconductor – through which carriers can readily tunnel. 
Contact formation is also affected by thin interfacial layers and is typically finished off with a 
final anneal or alloy formation after the initial deposition of the metal. This section describes 
each of these contacts as well as an analysis of the contact resistance between a metal and a thin 
semiconductor layer. 

3.5.1. Ohmic contacts 

A metal-semiconductor junction results in an ohmic contact (i.e. a contact with voltage 
independent resistance) if the Schottky barrier is zero or negative. In such case, the carriers are 
free to flow in or out of the semiconductor so that there is a minimal resistance across the 
contact. For an n-type semiconductor, this means that the workfunction of the metal must be 
close to or smaller than the electron affinity of the semiconductor. For a p-type semiconductor, it 
requires that the workfunction of the metal must be close to or larger than the sum of the electron 
affinity and the bandgap energy. Since the workfunction of most metals is less than 5 V and a 
typical electron affinity is about 4 V, it can be problematic to find a metal that provides an ohmic 
contact to wide bandgap semiconductors such as GaN or SiC.   

3.5.2. Tunnel contacts 

An alternate and more practical contact is a tunnel contact. Such contacts do have a positive 
barrier at the metal-semiconductor interface, but also have a high enough doping in the 
semiconductor that there is only a thin potential barrier separating the metal from the 
semiconductor. If the width of the depletion region at the metal-semiconductor interface is very 
thin, on the order of 3 nm or less, carriers can readily tunnel across such barrier. The required 
doping density for such contact is 1019 cm-3 or higher. 

3.5.3. Annealed and alloyed contacts 

The fabrication of ohmic contacts frequently includes a high temperature step so that the 
deposited metals can either alloy with the semiconductor or the high-temperature anneal reduces 
the unintentional barrier at the interface.  

In the case of silicon, one can simply deposit a metal such as aluminum and obtain a reasonable 
ohmic contact. However a subsequent anneal at 475°C in a reducing ambient such as forming gas 
(20:1 N2/H2) will further improve the contact resistivity. The temperature is chosen below the 
eutectic temperature of the Si/Al eutectic composition. Annealing at higher temperature causes 
the formation of Si/Al alloys, which in turn cause pits in the silicon. This effect is also referred to 
as spiking and when penetrating through an underlying p-n junction would dramatically affect 
the quality of such junction as can be observed in the form of an enhanced leakage current or 
reduced breakdown voltage. The use of a reducing atmosphere avoids any further oxidation of 



     

the metal during the anneal, while it can also reduce any interfacial oxide between the metal and 
semiconductor. Aluminum deposited onto low-doped silicon (< 1015 cm-3) tends to form 
Schottky barriers, so that it is advantageous to provided a more-highly doped contact region 
underneath the contact metal. The small barrier height can be over come through thermionic 
emission, while the contact resistance is further improved by creating a tunnel barrier using 
degenerately doped contact layers. 

Contacts to compound semiconductors require some more attention. Selecting a material with the 
right workfunction might still not result in the expected ohmic contact. This is due to pinning of 
the Fermi energy at the interface due to the large number of surface states at the metal-
semiconductor interface. This only leaves the tunnel contact. To further improve the tunnel 
contact one adds dopants such as germanium in the case of an n-type contact and zinc in the case 
of a p-type contact to the metal. An anneal around  400°C for a few to tens of minutes in forming 
gas causes the dopants to alloy with the semiconductor, thereby forming a thin high-doped 
region as desired for a tunnel contact.  



3.5.4. Contact resistance to a thin semiconductor layer  

The contact between a metal contact and a thin conducting layer of semiconductor can be 
described with the resistive network shown in Figure 3.5.1, which is obtained by slicing the 
structure into small sections with length ∆x, so that the contact resistance, R1, and the 
semiconductor resistance, R2, are given by: 
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ρc  is the contact resistance of the metal-to-semiconductor interface per unit area with units of 
Ωcm2, Rs is the sheet resistance of the semiconductor layer with units of Ω/o and W is the width 
of the contact. 
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Figure 3.5.1 Distributed resistance model of a contact to a thin semiconductor layer. 

Using Kirchoff's laws one obtains the following relations between the voltages and currents at x 
and x + ∆x. 
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 By letting ∆x approach zero one finds the following differential equations for the current, I(x), 
and voltage, V(x): 
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Which can be combined into: 
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The parameter λ is the characteristic distance over which the current occurs under the metal 
contact and is also referred to as the penetration length. The general solution for I(x) and V(x) 
are: 

 

λ

λ
d

xd

IxI
sinh

sinh
)( 0

−

=  

(3.5.8) 

 

λ

λλ
d

xd

W
R

IxV s

sinh

cosh
)( 0

−

=  

(3.5.9) 

Both are plotted in Figure 3.5.2: 
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Figure 3.5.2 Lateral current and voltage underneath a 5 µm long and 1 mm wide metal contact 
with a contact resistivity of 10-5 Ω-cm2 on a thin semiconductor layer with a sheet 
resistance of 100 Ω/o.  

The total resistance of the contact is: 
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In the limit for an infinitely long contact (or d >> λ) the contact resistance is given by: 
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(3.5.11) 

A measurement of the resistance between a set of contacts with a variable distance L between the 
contacts (also referred to as a transmission line structure) can therefore be fitted to the following 
straight line: 
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so that the resistance per square, Rs, can be obtained from the slope, while the contact resistivity, 
ρc, can be obtained from the intersection with the y-axis. The penetration depth, λ, can be 
obtained from the intersection with the x-axis. This is illustrated with Figure 3.5.3.  
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Figure 3.5.3 Resistance versus contact spacing, L, of a transmission line structure. 

In the limit for a short contact (or d << λ) the contact resistance can be approximated by 
expanding the hyperbolic cotangent1: 
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The total resistance of a short contact therefore equals the resistance between the contact metal 
and the semiconductor layer (i.e. the parallel connection of all the resistors, R1, in Figure 3.5.1), 
plus one third of the end-to-end resistance of the conducting layer underneath the contact metal 
(i.e the series connection of all resistors, R2, in Figure 3.5.1). 



3.5.4. Contact resistance to a thin semiconductor layer  

The contact between a metal contact and a thin conducting layer of semiconductor can be 
described with the resistive network shown in Figure 3.5.1, which is obtained by slicing the 
structure into small sections with length ∆x, so that the contact resistance, R1, and the 
semiconductor resistance, R2, are given by: 
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ρc  is the contact resistance of the metal-to-semiconductor interface per unit area with units of 
Ωcm2, Rs is the sheet resistance of the semiconductor layer with units of Ω/o and W is the width 
of the contact. 
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Figure 3.5.1 Distributed resistance model of a contact to a thin semiconductor layer. 

Using Kirchoff's laws one obtains the following relations between the voltages and currents at x 
and x + ∆x. 
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 By letting ∆x approach zero one finds the following differential equations for the current, I(x), 
and voltage, V(x): 
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Which can be combined into: 
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The parameter λ is the characteristic distance over which the current occurs under the metal 
contact and is also referred to as the penetration length. The general solution for I(x) and V(x) 
are: 
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Both are plotted in Figure 3.5.2: 
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Figure 3.5.2 Lateral current and voltage underneath a 5 µm long and 1 mm wide metal contact 
with a contact resistivity of 10-5 Ω-cm2 on a thin semiconductor layer with a sheet 
resistance of 100 Ω/o.  

The total resistance of the contact is: 
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In the limit for an infinitely long contact (or d >> λ) the contact resistance is given by: 
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A measurement of the resistance between a set of contacts with a variable distance L between the 
contacts (also referred to as a transmission line structure) can therefore be fitted to the following 
straight line: 
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so that the resistance per square, Rs, can be obtained from the slope, while the contact resistivity, 
ρc, can be obtained from the intersection with the y-axis. The penetration depth, λ, can be 
obtained from the intersection with the x-axis. This is illustrated with Figure 3.5.3.  
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Figure 3.5.3 Resistance versus contact spacing, L, of a transmission line structure. 

In the limit for a short contact (or d << λ) the contact resistance can be approximated by 
expanding the hyperbolic cotangent1: 
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The total resistance of a short contact therefore equals the resistance between the contact metal 
and the semiconductor layer (i.e. the parallel connection of all the resistors, R1, in Figure 3.5.1), 
plus one third of the end-to-end resistance of the conducting layer underneath the contact metal 
(i.e the series connection of all resistors, R2, in Figure 3.5.1). 



3.6. Metal-Semiconductor Field Effect Transistor (MESFETs) 
The Metal-Semiconductor-Field-Effect-Transistor (MESFET) consists of a conducting channel 
positioned between a source and drain contact region as shown in the Figure 3.6.1. The carrier 
flow from source to drain is controlled by a Schottky metal gate. The control of the channel is 
obtained by varying the depletion layer width underneath the metal contact which modulates the 
thickness of the conducting channel and thereby the current between source and drain.  

 

Figure 3.6.1 Structure of a MESFET with gatelength L and channel thickness d. 

The key advantage of the MESFET is the higher mobility of the carriers in the channel as 
compared to the MOSFET. Since the carriers located in the inversion layer of a MOSFET have a 
wavefunction, which extends into the oxide, their mobility - also referred to as surface mobility - 
is less than half of the mobility of bulk material. As the depletion region separates the carriers 
from the surface their mobility is close to that of bulk material. The higher mobility leads to a 
higher current, transconductance and transit frequency of the device.  

The disadvantage of the MESFET structure is the presence of the Schottky metal gate. It limits 
the forward bias voltage on the gate to the turn-on voltage of the Schottky diode. This turn-on 
voltage is typically 0.7 V for GaAs Schottky diodes. The threshold voltage therefore must be 
lower than this turn-on voltage. As a result it is more difficult to fabricate circuits containing a 
large number of enhancement-mode MESFET.  

The higher transit frequency of the MESFET makes it particularly of interest for microwave 
circuits. While the advantage of the MESFET provides a superior microwave amplifier or circuit, 
the limitation by the diode turn-on is easily tolerated. Typically depletion-mode devices are used 
since they provide a larger current and larger transconductance and the circuits contain only a 
few transistors, so that threshold control is not a limiting factor. The buried channel also yields a 
better noise performance as trapping and release of carriers into and from surface states and 
defects is eliminated.  

The use of GaAs rather than silicon MESFETs provides two more significant advantages: first of 
all the room temperature mobility is more than 5 times larger, while the saturation velocity is 
about twice that in silicon. Second it is possible to fabricate semi-insulating (SI) GaAs substrates, 
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which eliminates the problem of absorbing microwave power in the substrate due to free carrier 
absorption.  

The threshold voltage, VT, of a MESFET is the voltage required to fully deplete the doped 
channel layer. This threshold voltage equals: 
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where φi is the built-in potential and d is the thickness of the doped region. This threshold 
voltage can also be written as a function of the pinch-off voltage VP: 

 PiT VV −= φ  (3.6.2) 

Where the pinch-off voltage equals: 
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The derivation of the current in a MESFET starts by considering a small section of the device 
between y and y + dy. The current density at that point can be written as a function of the 
gradient of the channel voltage: 
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The drain current is related to the current density and the part of the MESFET channel that is  not 
depleted. 
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Where the depletion layer width at position y is related to the channel voltage, VC(y) 
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The equation for the current can now be integrated from source to drain, yielding: 
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Since the steady-state current in the device is independent of position, the left hand term equals 
ID L so that:  
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saturated region where the depletion layer at the drain end equals the channel thickness d 
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The drain current become independent of the drain voltage and equals: 
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Figure 3.6.2 Drain current versus Drain-Source voltage at a gate-source voltage of 0.2, 0.4, 0.6 
0.8 and 1.0 Volt for a silicon MESFET with built-in potential of 1 V. Channel 
parameters and device dimensions are listed in the table below. 
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Channel length L 1 µm 

Channel mobility µn 100 cm2/V-s 

Channel doping Nd 1017 cm-3 

Channel thickness D 115 nm 

Built-in potential φI 1 V 

Table 3.6.1 MESFET parameters 

The transfer characteristic of a MESFET is shown in /8. 

Figure 3.6.3 and compared to a quadratic expression of the form: 
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where w  is the average depletion layer width in the channel layer. The quadratic expression 
yields the same current at VG = φi for w = 3d/8. 

Figure 3.6.3 Transfer characteristic of a MESFET. Shown is the square root of the drain 
current of the MESFET (solid line) and a quadratic fit with w =3d/8. 
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3.7. Schottky diode with an interfacial layer  
A more elaborate model of the Schottky barrier contains an interfacial layer between the 
semiconductor and the metal. Typically this layer is a thin oxide layer, with thickness d, which 
naturally forms on the surface of a semiconductor when exposed to air. The analysis of the 
Schottky diode can now be repeated using the full depletion approximation yielding the 
following relation between the total applied voltage and the depletion layer width: 
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from which the depletion layer width can be solved. The capacitance of the structure can be 
obtained from the series connection of the oxide and semiconductor capacitance: 
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This expression is very similar to that of equation (3.3.10) except that the oxide layer increases 
the built-in voltage. The potential φn across the semiconductor can be written as: 
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Or alternatively, 
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for zero applied voltage this reduces to: 
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instead of simply φn = φi when no oxide is present. This analysis can be interpreted as follows: 
the interfacial layer reduces the capacitance of the Schottky barrier diode, although a capacitance 
measurement will have the same general characteristics as an ideal Schottky barrier diode except 
that the built-in voltage is increased. However the potential across the semiconductor is 



     

decreased due to the voltage drop across the oxide layer, so that at low voltage the barrier for 
electrons flowing into the semiconductor is reduced yielding a higher current that without the 
oxide. It has been assumed that the interfacial layer forms a very thin tunnel barrier, which at low 
voltages does not restrict the current. As the voltage applied to the Schottky barrier is more 
positive, the depletion layer width reduces, so that the field in the oxide also reduces and with it 
the voltage drop across the oxide. The current under forward bias conditions therefore 
approaches that of the ideal Schottky diode until the tunnel barrier restricts the current flow. This 
results in a higher ideality factor for Schottky barrier with an interfacial layer. From equations 
(3.7.3) and (3.7.4) we find that the effect is largest for highly doped semiconductors and 
interfacial layers with low dielectric constant.  

The current under forward bias is then given by: 
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An interfacial layer between the metal and semiconductor of a Schottky diode affects the 
measured barrier height and built-in potential. The total potential within the device is now 
divided between the interfacial layer and the semiconductor. This causes the potential across the 
semiconductor to be lower so that carriers can more easily flow from the semiconductor into the 
metal, yielding a larger current. The interfacial layer also reduces the capacitance.  

As an example we consider a thin 3 nm thick oxide layer at the interface of a gold-silicon 
Schottky diode. The energy band diagram is shown in the Figure 3.7.3.  



 

Figure 3.7.1 Energy band diagram of a gold-silicon M-S junction with a 3 nm interfacial oxide 
layer. 

Since the interfacial layer can be viewed as an additional capacitor connected in series with the 
capacitance associated with the depletion layer, it is easy to accept that the total capacitance is 
lower than for a diode without interfacial layer. A 1/C2 plot versus the applied voltage is shown 
in the figure below.  

 

Figure 3.7.2 Capacitance-Voltage characteristics of a gold-silicon M-S junction with and 
without a 3 nm interfacial oxide layer. 

This plot reveals that the slope remains the same, while the intercept with the voltage axis shifts 
to higher forward voltages. The fact that the slope remains unchanged is due to the fact that it 
depends on the doping concentration in the semiconductor, which remains unchanged. The 
presence of an interfacial layer therefore increases the measured built-in potential, but does not 
alter the extracted doping concentration.  

The analysis of the forward bias current is more complex since it depends on the transport 



     

properties of the interfacial layer. However if one assumes that the barrier is so thin that carriers 
can easily tunnel through, the diode current analysis can be obtained from the standard diffusion 
analysis, provided that the altered potential across the semiconductor is taken into account.  

A comparison of a gold-silicon diode with and without an interfacial layer is shown in the figure 
below. The figure reveals that the interfacial layer affects both the slope and the intercept of the 
forward-biased current-voltage when plotted on a semi-logarithmic scale.  

Figure 3.7.3 Current-Voltage characteristics of a gold-silicon M-S junction with and without a 
3 nm interfacial oxide layer. 

In summary, an interfacial layer increases the built-in potential as measured with a C-V 
measurement, decreases the internal potential across the semiconductor, which increases the 
measured ideality factor and saturation current. It also decreases the measured barrier height as 
extracted from the temperature dependence of the saturation current and limits the maximum 
current density. 



3.8. Other Unipolar Junctions  

3.8.1. The n-n+ homojunction 
When contacting semiconductor devices one very often includes highly doped semiconductor 
layers to lower the contact resistance between the semiconductor and the metal contact. This 
added layer causes a n-n+ junction within the device. Most often these junctions are ignored in 
the analysis of devices, in part because of the difficulty treating them correctly, in part because 
they can simply be ignored. The build-in voltage of a n-n+ junction is given by: 
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Which means that the built-in voltage is about 59.4 meV if the doping concentrations differ by a 
factor 10. It is because of this small built-in voltage that this junction is often ignored. However 
large ratios in doping concentration do cause significant potential variations. 

The influence of the n-n+ junction must be evaluated in conjunction with its current voltage 
characteristics: if the n-n+ junction is in series with a p-n diode, the issue is whether or not the n-
n+ junction affects the operation of the p-n junction in any way. At low current densities one can 
expect the p-n diode to dominate the current flow, whereas at high current densities the n-n+ 
junction could play a role if not designed properly. 

For the analysis of the n-n+ junction we start from a flat band energy band diagram connecting 
the two regions in absence of an electric field. One can visualize that electrons will flow from the 
n+ region and accumulate in the n-type region. However, since the carrier concentration must be 
continuous (this is only required in a homojunction), the carrier density in the n region is smaller 
that the doping concentration of the n+ region, and the n+ region is not completely depleted. The 
full depletion approximation is therefore not applicable. Instead one recognizes the situation to 
be similar to that of a metal-semiconductor junction: the n+ is depleted but has a small voltage 
across the semiconductor as in a Schottky barrier with small voltage applied, whereas the n 
region is accumulated as in an ohmic contact. A general solution of this structure requires the use 
of equation [3.1.4].  

A simple solution is obtained in the limit where the potential across both regions is smaller than 
the thermal voltage. The charge in the n-n+ structure region is then given by: 
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where the interface is assumed at x equal zero, and LD,n and LD,n+ are the extrinsic Debye lengths 
in the material. Applying Poisson's equation one finds the potentials to be: 



 

DnDnDn

ai
Dnn L

x
LL
V

Lx exp)(
++

−
=

φ
φ  for x < 0 

(3.8.4) 

 

++
++

−
+
−

=
DnDnDn

ai
Dnn L

x
LL
V

Lx exp)(
φ

φ  for x < 0 
(3.8.5) 

The solutions for the charge density, electric field, potential and energy band diagram are plotted 
in the Figure 3.8.1: 
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Figure 3.8.1 Charge, electric field, potential and energy banddiagram in a silicon n-n+ structure 

with Nd = 1016 cm-3, Nd
+ = 1017 cm-3 and Va = 0. 



3.8.2. The n-n+ heterojunction 
Consider a n-n+ heterojunction including a spacer layer with thickness d as shown in Figure 3.8.2 
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Figure 3.8.2 Flatband energy diagram of a n-n+ heterojunction with a spacer layer with 
thickness d. 

The built-in voltage for a n-n+ heterojunction with doping concentrations Nd and Nd
+ is given by: 
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Where Nc,n and Nc,n
+ are the effective densities of states of the low and high-doped region 

respectively. Unlike a homojunction, the heterojunction can have a built-in voltage, which is 
substantially larger than the thermal voltage. This justifies using the full depletion approximation 
for the depleted region. For the accumulated region one has to consider the influence of 
quantization of energy levels because of the confinement of carriers by the electric field and the 
hetero-interface. 

3.8.2.1.Analysis without quantization 

For the classic case where the material does not become degenerate at the interface one can use 
[3.1.4b] to find the total charge in the accumulation layer: 
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while the potentials and the field can be solved for a given applied voltage using: 
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The subscript sp refers to the undoped spacer layer with thickness d, which is located between 
the two doped regions. These equations can be solved by starting with a certain value of φn, 
which enables to calculate the electric field, the other potentials and the corresponding applied 
voltage, Va. 

3.8.2.2.Analysis including quantization 

The analysis of a n-n+ heterojunction including quantized levels is more complicated because the 
energy levels depend on the potential which can only be calculated if the energy levels are 
known. A self-consistent calculation is therefore required to obtain a correct solution. An 
approximate method, which also clarifies the steps needed for a correct solution is described 
below1.  

Starting from a certain density of electrons per unit area, Ns, which are present in the 
accumulation layer, one finds the field at the interface: 
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We assume that only the n = 1 energy level is populated with electrons. The minimal energy can 
be expressed as a function of the electric field using equation2 [A.1.17]: 

 
3/23/1

*

2

1 )
8

9
()

2
( nn qE

m
E

πh
=  

(3.8.12) 

The bandgap discontinuity ∆Ec can then be related to the other potentials of the junction using 
[3.2.4], [3.2.6] and [A.1.8], yielding: 
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(3.8.13) 

where the potentials, φn
+ and φsp, in turn can be expressed as a function of En: 

                                                 

1A similar analysis can also be found in Weisbuch and Vinter, Quantum Semiconductor Structures, pp 40-41, 
Academic Press, 1991. 

2A more detailed quantum mechanical derivation yields the 9π/8 term instead of 3π/2. See for instance F. Stern, 
Phys. Rev. B 5 p 4891, (1972). The two differ by (3/4)3/2=0.826 or 17.5%  
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These equations can be combined into one transcendental equation as a function of the electric 
field, En.  
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Once En is known all potentials can be obtained.  
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Figure 3.8.3 Energy banddiagram of a Al0.4Ga0.6As/GaAs n+-n heterostructure with Nd

+ = 1017 
cm-3, Nd = 1016 cm-3, d = 10 nm and Va = 0.15 V. Comparison of analysis without 
quantization (upper curve) to that with quantization (lower curve) 
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Figure 3.8.4 Electron density, Ns, in the accumulation region versus applied voltage, Va, with 

quantization (top curve) and without quantization (bottom curve). 



3.8.3. Currents across a n+-n heterojunction 
Current transport across a n+-n heterojunction is similar to that of a metal-semiconductor 
junction: Diffusion, thermionic emission as well as tunneling of carriers across the barrier can 
occur. However to identify the current components one must first identify the potentials φn

+ and 
φn by solving the electrostatic problem. From the band diagram one finds that a barrier exists for 
electrons going from the n+ to the n-doped region as well as for electrons going in the opposite 
direction.  

The analysis in the first section discusses the thermionic emission and yields a closed form 
expression based on a set of specific assumptions. The derivation also illustrates how a more 
general expression could be obtained. The next section describes the current-voltage 
characteristics of carriers traversing a depletion region, while the last section discusses how both 
effects can be combined. 

3.8.3.1.Thermionic emission current across a n+-n heterojunction 

The total current due to thermionic emission across the barrier is given by the difference of the 
current flowing from left to right and the current flowing from right to left. Rather than re-
deriving the expression for thermionic emission, we will apply equation [3.1.40] to the n+-n 
heterojunction. One complication arises from the fact that the effective mass of the carriers is 
different on each side of the hetero-junction which would seem to indicate that the Richardson 
constant is different for carrier flow from left to right compared to the flow from right to left. A 
more detailed analysis reveals that the difference in effective mass causes a quantum mechanical 
reflection at the interface, causing carriers with the higher effective mass to be reflected back 
while carriers with the smaller effective mass are to first order unaffected3. We therefore use 
equation [3.1.40] for flow in both directions while using the Richardson constant corresponding 
to the smaller of the two effective masses, yielding: 
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where the potentials are related to the applied voltage by4: 

 ainn V−=++ φφφ  (3.8.18) 

and the built-in voltage is given by: 
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Combining these relations yields: 

                                                 
3A.A. Grinberg, "Thermionic emission in heterojunction systems with different effective electronic masses," Phys. 
Rev. B, pp. 7256-7258, 1986 

4No spacer layer is assumed in this derivation, but could easily be added if desired. 
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where  the barrier height φB
* is defined as: 
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Assuming full depletion in the n+ depletion region and using equation [3.1.10] for the 
accumulated region, the charge balance between the depletion and accumulation layer takes the 
following form: 
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Combining equations [3.2.20] with [3.2.16] yields a solution for φn
+ and φn.  

For the special case where εsn
+Nd

+ = εsnNd  and  φn>>Vt  these equations reduce to: 
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The current (given by [3.2.18]) can then be expressed as a function of the applied voltage Va 
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Whereas this expression is similar to that of a metal-semiconductor barrier, it differs in that the 
temperature dependence is somewhat modified and the reverse bias current increases almost 
linearly with voltage. Under reverse bias the junction can be characterized as a constant 
resistance, RHJ, which equals: 
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where A is the area of the junction. This shows that the resistance changes exponentially with the 
barrier height. Grading of the heterojunction is typically used to reduce the spike in the energy 
band diagram and with it the resistance across the interface. 

3.8.3.2.Calculation of the Current and quasi-Fermi level throughout a Depletion 
Region 

We typically assume the quasi-Fermi level to be constant throughout the depletion region.  This 
assumption can be justified for a homojunction but is not necessarily correct for a heterojunction 
p-n diode. 



For a homojunction p-n diode we derived the following expression for the minority carrier 
density in the quasi-neutral region of a "long" diode 
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so that the maximum change in the quasi-Fermi level, which occurs at the edge of the depletion 
region, equals: 

 

n

in
L
kT

dx
n
n

kTd

dx
dF

≅=
)ln(

 

(3.8.27) 

so that the change of the quasi-Fermi level can be ignored if the depletion region width is smaller 
than the diffusion length as is typically the case in silicon p-n diodes. 

For a hetero-junction p-n diode one can not assume that the quasi-Fermi level is continuous, 
especially when the minority carriers enter a narrow bandgap region in which the recombination 
rate is so high that the current is limited by the drift/diffusion current in the depletion region 
located in the wide bandgap semiconductor. 

The current density can be calculated from: 
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Assuming the field to be constant throughout the depletion region one finds for a constant 
current density the following expression for the carrier density at the interface: 
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While for zero current one finds, for an arbitrary field 
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Combining the two expressions we postulate the following expression for the carrier density: 
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The carrier density can also be expressed as a function of the total change in the quasi-Fermi 
level across the depletion region, ∆Efn; 
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which yields the following expressions for the current density due to drift/diffusion: 
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where is max the field at the heterojunction interface. If ∆Efn equals the applied voltage, as is 
the case for an n+- n   heterostructure, this expression equals: 
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which reduces for a MS junction to: 
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so that thermionic emission dominates for vR << µn max or when the drift velocity is larger than 
the Richardson velocity.5 

3.8.3.3.Calculation of the current due to thermionic emission and drift/diffusion 

The calculation of the current through a n+-n junction due to thermionic emission and 
drift/diffusion becomes straightforward once one realizes that the total applied voltage equals the 
sum of the quasi-Fermi level variation, ∆Efn, across each region. For this analysis we therefore 
rewrite the current expressions as a function of ∆Efn, while applying the expression for the 

drift/diffusion current to the n+ material.  
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5It should be noted here that the drift/diffusion model is not valid anymore as the drift velocity of the carriers 
approaches the thermal velocity. 



3.9. Currents through insulators  
Current mechanisms through materials, which do not contain free carriers can be distinctly 
different from those in doped semiconductors or metals. The following section discusses Fowler-
Nordheim Tunneling, Poole-Frenkel emission, Space charge effects as well as Ballistic transport 

3.9.1. Fowler-Nordheim tunneling 

Fowler-Nordheim tunneling has been studied extensively in Metal-Oxide-Semiconductor 
structures where it has been shown to be the dominant current mechanism, especially for thick 
oxides. The basic idea is that quantum mechanical tunneling from the adjacent conductor into the 
insulator limits the current through the structure. Once the carriers have tunneled into the 
insulator they are free to move within the valence or conduction band of the insulator. The 
calculation of the current is based on the WKB approximation (as derived section 3.4.4) yielding 
the following relation between the current density, JFN, and the electric field in the oxide, Eox: 
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where φB is the barrier height at the conductor/insulator interface in Volt, as shown in the figure 
below for electron tunneling from highly1 n-type doped silicon into the silicon dioxide. 

To check for this current mechanism, experimental I-V characteristics are typically plotted as 
ln(JFN//Eox 2) versus 1/Eox, a so-called Fowler-Nordheim plot. Provided the effective mass of the 
insulator is known (for SiO2, mox

* = 0.42 m0) one can then fit the experimental data to a straight 
line yielding a value for the barrier height.  

It is this type of measurement which has yielded experimental values for the conduction band 
difference between silicon and silicon-dioxide. The same method could also be used to determine 
heterojunction energy band off-sets provided Fowler-Nordheim tunneling is indeed the dominant 
current mechanism2. It is important to stress that carriers must tunnel through the insulator, 
which requires: 

 
Boxd φ≥E  (3.9.2) 

which is typically the case for thick oxides and high electric fields. 

3.9.2. Poole-Frenkel emission 

The expression for Fowler-Nordheim tunneling implies that carriers are free to move through the 
insulator. Whereas this is indeed the case in thermally grown silicon-dioxide it is frequently not 
so in deposited insulators which contain a high density of structural defects. Silicon nitride 
(Si3N4) is an example of such material. The structural defects cause additional energy states 
close to the bandedge called traps. These traps restrict the current flow because of a capture and 

                                                 

1This condition is added to eliminate additional complexity caused by bandbending at the interface. 

2This condition would required very large energy band discontinuities. 



     

emission process, thereby becoming the dominant current mechanism. The current is a simple 
drift current described by 

 
NqnJ Eµ=  (3.9.3) 

while the carrier density depends exponentially on the depth of the trap which is corrected for the 
electric field3.  
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The total current then equals: 
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The existence of a large density of shallow4 traps in CVD silicon nitride makes Poole-Frenkel 
emission5 a frequently observed and well-characterized mechanism. 

3.9.3. Space charge limited current 

Both Fowler-Nordheim tunneling and Poole-Frenkel emission mechanism yield very low current 
densities with correspondingly low carrier densities. For structures where carriers can readily 
enter the insulator and freely flow through the insulator one finds that the resulting current and 
carrier densities are much higher. The density of free carriers causes a field gradient, which 
limits the current density. This situation occurs in lowly doped semiconductors and vacuum 
tubes. Starting from an expression for the drift current and Gauss's law (where we assume that 
the insulator contains no free carriers if no current flows) 

 EµqpJ =  (3.9.6) 
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we can eliminate the carrier density, p, yielding: 

                                                 

3This correction is equivalent to the Schottky barrier lowering due to the presence of an electric field. 

4deep traps also exist in silicon nitride. While these easily capture carriers, they are too deep to allow emission even 
in the presence of large fields. This causes a fixed charge in the silicon nitride which remains when the applied bias 
is removed. This charge trapping mechanism is used in non-volatile MNOS memory devices. 

5J. Frenkel, "On Pre-Breakdown Phenomena in insulators and Electronic Semiconductors," Phys. Rev., Vo l 54, p 
647, 1938. 
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Integrating this expression from 0 to x, where we assume the electric field to be zero6 at x = 0 
one obtains: 
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integrating once again from x = 0 to x = d with V(0) = V and V(d) = 0, one finds: 
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from which one obtains the expression for the space-charge-limited current: 
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3.9.4. Ballistic Transport in insulators 

Ballistic transport is carrier transport without scattering or any other mechanism, which would 
cause a loss of energy. Combining energy conservation, current continuity and Gauss's law one 
finds the following current-voltage relation: 
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where d is the thickness of the insulator and m* is the effective mass of the carriers. 

                                                 

6This implies an infinite carrier density. The analysis can be modified to allow for a finite carrier density. However 
the carrier pile-up do to the current restriction typically provides a very high carrier density at x=0. 
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Chapter 3: Metal-Semicond. Junctions

Examples

Example 3.1  Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the 
barrier height and the built-in potential. Repeat for a p-type semiconductor with the same 
doping density.

Example 3.2  Consider a chrome-silicon metal-semiconductor junction with Nd = 1017 cm-3. Calculate the 
depletion layer width, the electric field in the silicon at the metal-semiconductor interface, 
the potential across the semiconductor and the capacitance per unit area for an applied 
voltage of -5 V.
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Example 3.1 Consider a chrome-silicon metal-semiconductor junction with Nd 
= 1017 cm-3. Calculate the barrier height and the built-in 
potential. Repeat for a p-type semiconductor with the same 
doping density. 

Solution The barrier height equals: 
V 45.005.45.4 =−=−Φ= χφ MB  

Note that this value differs from the one listed in Table 3.2.1 
since the work function in vacuum was used. See the discussion 
in the text for more details. 
The built-in potential equals: 
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The barrier height for the chrome/p-silicon junction equals: 
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Example 3.2 Consider a chrome-silicon metal-semiconductor junction with Nd 
= 1017 cm-3. Calculate the depletion layer width, the electric field 
in the silicon at the metal-semiconductor interface, the potential 
across the semiconductor and the capacitance per unit area for an 
applied voltage of -5 V. 

Solution The depletion layer width equals: 
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where the built-in potential was already calculated in Example 
3.1. The electric field in the semiconductor at the interface is: 

V/cm 100.4
1085.89.11

106.210106.1
              

)0(

5
14

51719
×=

××

××××
=

==

−

−−
s

dd xqN
x

ε
E

 

The potential equals: 
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And the capacitance per unit area is obtained from: 
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Chapter 3: Metal-Semicond. Junctions

Problems  

1.  Consider a gold-GaAs Schottky diode with a capacitance of 1 pF at -1 V. What is the doping density of 
the GaAs? Also calculate the depletion layer width at zero bias and the field at the surface of the 
semiconductor at -10 V. The area of the diode is 10-5 cm2.

2.  Consider two Schottky diodes with built-in potential φi = 0.6 V. The diodes are connected in series and 
reversed biased. The diodes are identical except that the area of one is four times larger than that of the 
other one. Calculate the voltage at the middle node, Vout, as a function of the applied voltage, Vin. 
Assume there is no dc current going through either diode so that the charge at the middle node is 
independent of the applied voltage.

3.  Using the work functions listed in table 3.2.1, predict which metal-semiconductor junctions are expected 
to be ohmic contacts. Use the ideal interface model.

4.  Design a platinum-silicon diode with a capacitance of 1 pF and a maximum electric field less than 104 V/
cm at -10 V bias. Provide a possible doping density and area. Make sure the diode has an area between 
10-5 and 10-7 cm2. Is it possible to satisfy all requirements if the doping density equals 1017 cm-3?

5.  A platinum-silicon diode (area = 10-4 cm-3, Nd = 1017 cm-3) is part of an LC tuning circuit containing a 
100 nH inductance. The applied voltage must be less than 5 V. What is the tuning range of the circuit? 
The resonant frequency equals

, where L is the inductance and C is the diode capacitance.
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Chapter 3: Metal-Semicond. Junctions

Review Questions  

1.  What is a flatband diagram? 

2.  Define the barrier height of a metal-semiconductor junction. Can the barrier height be negative? Explain.

3.  Define the built-in potential. Also provide an equation and state the implicit assumption(s). 

4.  Name three possible reasons why a measured barrier height can differ from the value calculated using 
equations (3.2.1) or (3.2.2).

5.  How does the energy band diagram of a metal-semiconductor junction change under forward and 
reverse bias? How does the depletion layer width change with bias?

6.  What is the full depletion approximation? Why do we need the full depletion approximation? 

7.  What mechanism(s) cause(s) current in a metal-semiconductor junction? 
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Chapter 3: Glossary

Name

Applied bias Voltage applied to the structure 
Flatband diagram Energy band diagram of a M-S junction containing no net charge

Richardson constant Material constant which affects the thermionic emission current in a metal-
semiconductor junction 

Richardson velocity Average thermal velocity of carriers moving in a specific direction

Schottky barrier Barrier between a metal and semiconductor as seen by an electron or hole at the 
Fermi energy in the metal 

Schottky barrier lowering Lowering of the Schottky barrier height due to image forces (only used in current 
calculations) 
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Equations  

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.3.1)
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Chapter 4: p-n Junctions

4.1. Introduction

P-n junctions consist of two semiconductor regions of opposite type. Such junctions show a pronounced 
rectifying behavior. They are also called p-n diodes.
The p-n junction is a versatile element, which can be used as a rectifier, as an isolation structure and as a 
voltage-dependent capacitor. In addition, they can be used as solar cells, photodiodes, light emitting diodes 
and even laser diodes. They are also an essential part of Metal-Oxide-Silicon Field-Effects-Transistors 
(MOSFETs) and Bipolar Junction Transistors (BJTs). 
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Chapter 4: p-n Junctions

4.2. Structure and principle of operation
4.2.1. Structure
4.2.2. Thermal equilibrium
4.2.3. The built-in potential
4.2.4. Forward and reverse bias

A p-n junction consists of two semiconductor regions with opposite doping type as shown in Figure 4.2.1. The 
region on the left is p-type with an acceptor density Na, while the region on the right is n-type with a donor 
density Nd. The dopants are assumed to be shallow, so that the electron (hole) density in the n-type (p-type) 
region is approximately equal to the donor (acceptor) density. 

Figure 4.2.1 : Cross-section of a p-n junction
We will assume, unless stated otherwise, that the doped regions are uniformly doped and that the transition 
between the two regions is abrupt. We will refer to this structure as being an abrupt p-n junction. 
Frequently we will deal with p-n junctions in which one side is distinctly higher-doped than the other. We will 
find that in such a case only the low-doped region needs to be considered, since it primarily determines the 
device characteristics. We will refer to such a structure as a one-sided abrupt p-n junction. 
The junction is biased with a voltage Va as shown in Figure 4.2.1. We will call the junction forward-biased if a 
positive voltage is applied to the p-doped region and reversed-biased if a negative voltage is applied to the p-
doped region. The contact to the p-type region is also called the anode, while the contact to the n-type region is 
called the cathode, in reference to the anions or positive carriers and cations or negative carriers in each of 
these regions. 
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p-n Junctions

4.2.1. Flatband diagram 
 

The principle of operation will be explained using a gedanken experiment, an experiment, which is in principle 
possible but not necessarily executable in practice. We imagine that one can bring both semiconductor regions 
together, aligning both the conduction and valence band energies of each region. This yields the so-called 
flatband diagram shown in Figure 4.2.2. 

Figure 4.2.2 : Energy band diagram of a p-n junction (a) before and (b) after merging the n-type and p-type 
regions

Note that this does not automatically align the Fermi energies, EFn and EFp. Also, note that this flatband 
diagram is not an equilibrium diagram since both electrons and holes can lower their energy by crossing the 
junction. A motion of electrons and holes is therefore expected before thermal equilibrium is obtained. The 
diagram shown in Figure 4.2.2 (b) is called a flatband diagram. This name refers to the horizontal band edges. 
It also implies that there is no field in the semiconductor and no charge.

4.2.2. Thermal equilibrium
 

To reach thermal equilibrium, electrons/holes close to the metallurgical junction diffuse across the junction into 
the p-type/n-type region where hardly any electrons/holes are present. This process leaves the ionized donors 
(acceptors) behind, creating a region around the junction, which is depleted of mobile carriers. We call this 
region the depletion region, extending from x = -xp to x = xn. The charge due to the ionized donors and 
acceptors causes an electric field, which in turn causes a drift of carriers in the opposite direction. The diffusion 
of carriers continues until the drift current balances the diffusion current, thereby reaching thermal equilibrium 
as indicated by a constant Fermi energy. This situation is shown in Figure 4.2.3: 
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p-n Junctions

Figure 4.2.3 : Energy band diagram of a p-n junction in thermal equilibrium
While in thermal equilibrium no external voltage is applied between the n-type and p-type material, there is an 
internal potential, φi, which is caused by the workfunction difference between the n-type and p-type 
semiconductors. This potential equals the built-in potential, which will be further discussed in the next section. 

4.2.3. The built-in potential
 

The built-in potential in a semiconductor equals the potential across the depletion region in thermal equilibrium. 
Since thermal equilibrium implies that the Fermi energy is constant throughout the p-n diode, the built-in 
potential equals the difference in the Fermi energies, EFn and EFp, divided by the electronic charge. It also 
equals the sum of the bulk potentials of each region, φn and φp, since the bulk potential quantifies the distance 
between the Fermi energy and the intrinsic energy. This yields the following expression for the built-in potential. 

(4.2.1)

Example 4.1 An abrupt silicon p-n junction consists of a p-type region containing 2 x 1016 cm-3 acceptors 
and an n-type region containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors. 

a.  Calculate the thermal equilibrium density of electrons and holes in the p-type region as 
well as both densities in the n-type region.

b.  Calculate the built-in potential of the p-n junction.
c.  Calculate the built-in potential of the p-n junction at 400 K.
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p-n Junctions

Solution a.  The thermal equilibrium densities are:
In the p-type region:

p = Na = 2 x 1016 cm-3

n = ni2/p = 1020/2 x 1016 = 5 x 103 cm-3

In the n-type region
n = Nd - Na = 9 x 1016 cm-3

p = ni2/n = 1020/(1 x 1016) = 1.11 x 103 cm-3

b.  The built-in potential is obtained from:

c.  Similarly, the built-in potential at 400 K equals:

where the instrinsic carrier density at 400 K was obtained from example 2.4.b

4.2.4. Forward and reverse bias
 

We now consider a p-n diode with an applied bias voltage, Va. A forward bias corresponds to applying a 
positive voltage to the anode (p-type region) relative to the cathode (n-type region). A reverse bias corresponds 
to a negative voltage applied to the cathode. Both bias modes are illustrated with Figure 4.2.4. The applied 
voltage is proportional to the difference between the Fermi energy in the n-type and p-type quasi-neutral 
regions. 
As a negative voltage is applied, the potential across the semiconductor increases and so does the depletion 
layer width. As a positive voltage is applied, the potential across the semiconductor decreases and with it the 
depletion layer width. The total potential across the semiconductor equals the built-in potential minus the 
applied voltage, or:

(4.2.1)
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p-n Junctions

Figure 4.2.4: Energy band diagram of a p-n junction under reverse and forward bias

http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_2.htm (5 of 5)11/10/2004 16:49:04

PARTH
Highlight
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Chapter 4: p-n Junctions

4.3. Electrostatic analysis of a p-n diode
4.3.1. General discussion - Poisson's equation
4.3.2. The full-depletion approximation
4.3.3. Full depletion analysis
4.3.4. Junction capacitance

The electrostatic analysis of a p-n diode is of interest since it provides knowledge about the charge density and 
the electric field in the depletion region. It is also required to obtain the capacitance-voltage characteristics of 
the diode. The analysis is very similar to that of a metal-semiconductor junction (section 3.3). A key difference 
is that a p-n diode contains two depletion regions of opposite type.

4.3.1. General discussion - Poisson's equation
 

The general analysis starts by setting up Poisson's equation: 

(4.3.1)

where the charge density, ρ, is written as a function of the electron density, the hole density and the donor and 
acceptor densities. To solve the equation, we have to express the electron and hole density, n and p, as a 
function of the potential, φ, yielding: 

(4.3.2)

with 

(4.3.3)

where the potential is chosen to be zero in the n-type region, far away from the p-n interface.
This second-order non-linear differential equation (4.3.2) can not be solved analytically. Instead we will make 
the simplifying assumption that the depletion region is fully depleted and that the adjacent neutral regions 
contain no charge. This full depletion approximation is the topic of the next section. 

4.3.2. The full-depletion approximation
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Electrostatic analysis of a p-n diode

The full-depletion approximation assumes that the depletion region around the metallurgical junction has well-
defined edges. It also assumes that the transition between the depleted and the quasi-neutral region is abrupt. 
We define the quasi-neutral region as the region adjacent to the depletion region where the electric field is 
small and the free carrier density is close to the net doping density.
The full-depletion approximation is justified by the fact that the carrier densities change exponentially with the 
position of the Fermi energy relative to the band edges. For example, as the distance between the Fermi 
energy and the conduction band edge is increased by 59 meV, the electron concentration at room temperature 
decreases to one tenth of its original value. The charge in the depletion layer is then quickly dominated by the 
remaining ionized impurities, yielding a constant charge density for uniformly doped regions. 
We will therefore start the electrostatic analysis using an abrupt charge density profile, while introducing two 
unknowns, namely the depletion layer width in the p-type region, xp, and the depletion region width in the n-
type region, xn. The sum of the two depletion layer widths in each region is the total depletion layer width xd, or: 

(4.3.4)

From the charge density, we then calculate the electric field and the potential across the depletion region. A 
first relationship between the two unknowns is obtained by setting the positive charge in the depletion layer 
equal to the negative charge. This is required since the electric field in both quasi-neutral regions must be zero. 
A second relationship between the two unknowns is obtained by relating the potential across the depletion 
layer width to the applied voltage. The combination of both relations yields a solution for xp and xn, from which 
all other parameters can be obtained. 

4.3.3. Full depletion analysis
 

Once the full-depletion approximation is made it is easy to find the charge density profile: It equals the sum of 
the charges due to the holes, electrons, ionized acceptors and ionized holes: 

(4.3.5)

where it is assumed that no free carriers are present within the depletion region. For an abrupt p-n diode with 
doping densities, Na and Nd, the charge density is then given by:

(4.3.6)

This charge density, ρ, is shown in Figure 4.3.1 (a). 
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Electrostatic analysis of a p-n diode

Figure 4.3.1: (a) Charge density in a p-n junction, (b) Electric field, (c) Potential and (d) Energy band 
diagram 

As can be seen from Figure 4.3.1 (a), the charge density is constant in each region, as dictated by the full-
depletion approximation. The total charge per unit area in each region is also indicated on the figure. The 
charge in the n-type region, Qn, and the charge in the p-type region, Qp, are given by:

(4.3.7)

(4.3.8)

The electric field is obtained from the charge density using Gauss's law, which states that the field gradient 
equals the charge density divided by the dielectric constant or: 

(4.3.9)

The electric field is obtained by integrating equation (4.3.9). The boundary conditions consistent with the full 
depletion approximation are that the electric field is zero at both edges of the depletion region, namely at x = -
xp and x = xn. The electric field has to be zero outside the depletion region since any field would cause the free 
carriers to move thereby eliminating the electric field. Integration of the charge density in an abrupt p-n diode as 
shown in Figure 4.3.1 (a) is given by:
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(4.3.10)

The electric field varies linearly in the depletion region and reaches a maximum value at x = 0 as can be seen 
on Figure 4.3.1(b). This maximum field can be calculated on either side of the depletion region, yielding: 

(4.3.11)

This provides the first relationship between the two unknowns, xp and xn, namely: 

(4.3.12)

This equation expresses the fact that the total positive charge in the n-type depletion region, Qn, exactly 
balances the total negative charge in the p-type depletion region, Qp. We can then combine equation (4.3.4) 
with expression (4.3.12) for the total depletion-layer width, xd, yielding: 

(4.3.13)

and 

(4.3.14)

The potential in the semiconductor is obtained from the electric field using: 

(4.3.15)

We therefore integrate the electric field yielding a piece-wise parabolic potential versus position as shown in 
Figure 4.3.1 (c)

The total potential across the semiconductor must equal the difference between the built-in potential and the 
applied voltage, which provides a second relation between xp and xn, namely: 

(4.3.16)

The depletion layer width is obtained by substituting the expressions for xp and xn, (4.3.13) and (4.3.14), into 
the expression for the potential across the depletion region, yielding: 

(4.3.17)
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from which the solutions for the individual depletion layer widths, xp and xn are obtained: 

(4.3.18)

(4.3.19)

Example 4.2 An abrupt silicon (nI = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-3 
acceptors and an n-type region containing 5 x 1016 cm-3 donors. 

a.  Calculate the built-in potential of this p-n junction.
b.  Calculate the total width of the depletion region if the applied voltage Va equals 0, 0.5 

and -2.5 V.
c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V.
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 

and -2.5 V.

Solution The built-in potential is calculated from:

The depletion layer width is obtained from:

the electric field from

and the potential across the n-type region equals

where
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one can also show that:

This yields the following numeric values:

4.3.4. Junction capacitance
 

Any variation of the charge within a p-n diode with an applied voltage variation yields a capacitance, which 
must be added to the circuit model of a p-n diode. This capacitance related to the depletion layer charge in a p-
n diode is called the junction capacitance. 
The capacitance versus applied voltage is by definition the change in charge for a change in applied voltage, 
or: 

(4.3.20)

The absolute value sign is added in the definition so that either the positive or the negative charge can be used 
in the calculation, as they are equal in magnitude. Using equation (4.3.7) and (4.3.18) one obtains:

(4.3.21)

A comparison with equation (4.3.17), which provides the depletion layer width, xd, as a function of voltage, 
reveals that the expression for the junction capacitance, Cj, seems to be identical to that of a parallel plate 
capacitor, namely:

(4.3.22)

The difference, however, is that the depletion layer width and hence the capacitance is voltage dependent. The 
parallel plate expression still applies since charge is only added at the edge of the depletion regions. The 
distance between the added negative and positive charge equals the depletion layer width, xd. A capacitance 
versus voltage measurement can be used to obtain the built-in voltage and the doping density of a one-sided p-
n diode. When plotting the inverse of the capacitance squared, one expects a linear dependence as expressed 
by: 
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(4.3.23)

The capacitance-voltage characteristic and the corresponding 1/C2 curve are shown in Figure 4.3.2.

Figure 4.3.2 : Capacitance and 1/C2 versus voltage of a p-n diode with Na = 1016 cm-3, Nd = 1017 cm-3 and 
an area of 10-4 cm2.

The built-in voltage is obtained at the intersection of the 1/C2 curve and the horizontal axis, while the doping 
density is obtained from the slope of the curve. 

(4.3.24)

Example 4.3 Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016 cm-3. Calculate the junction 
capacitance at zero bias. The diode area equals 10-4 cm2. Repeat the problem while treating 
the diode as a one-sided diode and calculate the relative error.

Solution The built in potential of the diode equals:

The depletion layer width at zero bias equals:

And the junction capacitance at zero bias equals:
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Repeating the analysis while treating the diode as a one-sided diode, one only has to consider 
the region with the lower doping density so that

And the junction capacitance at zero bias equals

The relative error equals 0.5 %, which justifies the use of the one-sided approximation.

A capacitance-voltage measurement also provides the doping density profile of one-sided p-n diodes. For a p+-
n diode, one obtains the doping density from: 

(4.3.25)

while the depth equals the depletion layer width which is obtained from xd = εsA/Cj. Both the doping density and 
the corresponding depth can be obtained at each voltage, yielding a doping density profile. Note that the 
capacitance in equations (4.3.21), (4.3.22), (4.3.23), and (4.3.25) is a capacitance per unit area.

As an example, we consider the measured capacitance-voltage data obtained on a 6H-SiC p-n diode. The 
diode consists of a highly doped p-type region on a lightly doped n-type region on top of a highly doped n-type 
substrate. The measured capacitance as well as 1/C2 is plotted as a function of the applied voltage. The dotted 
line forms a reasonable fit at voltages close to zero from which one can conclude that the doping density is 
almost constant close to the p-n interface. At large negative voltages the capacitance becomes almost constant 
which corresponds to a high doping density according to equation (4.3.25). 
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Figure 4.3.3 : Capacitance and 1/C2 versus voltage of a 6H-SiC p-n diode.
The doping profile calculated from the date presented in Figure 4.3.3 is shown in Figure 4.3.4. The figure 
confirms the presence of the highly doped substrate and yields the thickness of the n-type layer. No information 
is obtained at the interface (x = 0) as is typical for doping profiles obtained from C-V measurements. This is 
because the capacitance measurement is limited to small forward bias voltages since the forward bias current 
and the diffusion capacitance affect the accuracy of the capacitance measurement. 

Figure 4.3.4 : Doping profile corresponding to the measured data, shown in Figure 4.3.3.
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4.3.6. The abrupt p-i-n junction   

For a p-i-n junction the above expressions take the following modified form: 

 aiupn V−=++ φφφφ  (4.3.36) 
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 ndpa xqNxqN =  (4.3.38) 

Where φu is the potential across the middle undoped region of the diode, which has a thickness d. 
Equations (4.3.36) through (4.3.38) can be solved for xn yielding: 
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From xn and xp, all other parameters of the p-i-n junction can be obtained. The total depletion 
layer width, xd, is obtained from: 
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The potential throughout the structure is given by: 
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where the potential at x = -xn was assumed to be zero. 



4.3.6.1. Capacitance of the p-i-n junction 

The capacitance of a p-i-n diode can be obtained from the series connection of the capacitances 
of each region, simply by adding both depletion layer widths and the width of the undoped 
region: 
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4.3.7. Solution to Poisson’s Equation for an Abrupt p-n Junction  

Applying Gauss's law one finds that the total charge in the n-type depletion region equals minus 
the charge in the p-type depletion region: 

 psn QxQ −=== )0(Eε       (4.3.45) 

Poisson's equation can be solved separately in the n and p-type region as was done in section 
3.1.1 yielding an expression for E(x = 0) which is almost identical to equation [3.1.4]: 
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where φn and  φp are assumed negative if the semiconductor is depleted. Their relation to the 
applied voltage is given by: 

 iapn V φφφ −=+       (4.3.47) 

Solving the transcendental equations one finds φn and φp as a function of the applied voltage.  In 
the special case of a symmetric doping profile, or Nd = Na these equations can easily be solved 
yielding: 
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The depletion layer widths also equal each other and are given by: 
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Using the above expression for the electric field at the origin we find: 
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where LD is the extrinsic Debye length. The relative error of the depletion layer width as obtained 
using the full depletion approximation equals: 
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for 
t

ai
V

V−φ
 = 1, 2, 5, 10, 20 and 40 one finds the relative error to be 45, 23, 10, 5.1, 2.5 and 1.26 

%. 



 

     

4.3.8. The hetero p-n junction  

The heterojunction p-n diode is in principle very similar to a homojunction. The main problem 
that needs to be tackled is the effect of the bandgap discontinuities and the different material 
parameters, which make the actual calculations more complex even though the p-n diode 
concepts need almost no changing. An excellent detailed treatment can be found in Wolfe et al.1. 

4.3.8.1.Band diagram of a heterojunction p-n diode under Flatband conditions 

The flatband energy band diagram of a heterojunction p-n diode is shown in the figure below. As 
a convention we will assume ∆Ec to be positive if Ec,n > Ec,p and ∆Ev to be positive if Ev,n < Ev,p.  
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Figure 4.3.5 Flat-band energy band diagram of a p-n heterojunction 

4.3.8.2.Calculation of the contact potential (built-in voltage) 

The built-in potential is defined as the difference between the Fermi levels in both the n-type and 
the p-type semiconductor. From the energy diagram we find: 

 pFpcncncnFpFnFi EEEEEEEq ,,,,,,, −++−=−=φ       (4.3.52) 

which can be expressed as a function of the electron concentrations and the effective densities of 
states in the conduction band: 

                                                 

1Wolfe, C. Holonyak, N. Stillman, G. Physical properties of semiconductors, Prentice Hall, Chapter 9. 
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The built-in voltage can also be related to the hole concentrations and the effective density of 
states of the valence band: 
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Combining both expressions yields the built-in voltage independent of the free carrier 
concentrations: 
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where nin and nip are the intrinsic carrier concentrations of the n and p-type region, respectively. 
∆Ec and ∆Ev are positive quantities if the bandgap of the n-type region is smaller than that of the 
p-type region and the sum of both equals the bandgap difference. The above expression reduces 
to that of the built-in junction of a homojunction if the material parameters in the n-type region 
equal those in the p-type region. If the effective densities of states are the same the expression 
reduces to: 
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4.3.8.3.Abrupt p-n junction 

For the calculation of the charge, field and potential distribution in an abrupt p-n junction we 
follow the same approach as for the homojunction. First of all we use the full depletion 
approximation and solve Poisson's equation. The expressions derived in section 4.1.1 then still 
apply. 
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 ndpa xqNxqN =       (4.3.59) 

The main differences are the different expression for the built-in voltage and the discontinuities 
in the field distribution (because of the different dielectric constants of the two regions) and in 
the energy band diagram. However the expressions for xn and xp for a homojunction can still be 
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The capacitance per unit area can be obtained from the series connection of the capacitance of 
each layer: 
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4.3.8.4.Abrupt P-i-N junction 

For a P-i-N junction the above expressions take the following modified form: 

 aiupn V−=++ φφφφ       (4.3.62) 
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 ndpa xqNxqN =       (4.3.64) 

Where φu is the potential across the middle undoped region of the diode, having a thickness d. 
The depletion layer width and the capacitance are given by: 

 xd = xn + xp + d (4.3.65) 

 

sps

p

ns

n
j dxx

C

εεε
++

=

,,

1
      

(4.3.66) 

Equations [4.2.11] through [4.2.13] can be solved for xn yielding: 
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A solution for xp can be obtained from [4.2.16] by replacing Nd by Na, Na by Nd, εs,n by εs,p, and 
εs,p by εs,n. Once xn and xp are determined all other parameters of the P-i-N junction can be 



obtained. The potential throughout the structure is given by: 
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where the potential at x = -xn was assumed to be zero. 
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Figure 4.3.6 Charge distribution, electric field, potential and energy band diagram of an 

AlGaAs/GaAs p-n heterojunction with Va = 0.5 V, x = 0.4 on the left and x = 0 on 
the right. Nd = Na = 1017cm-3 

The above derivation ignores the fact that, because of the energy band discontinuities, the carrier 
densities in the intrinsic region could be substantially larger than in the depletion regions in the 
n-type and p-type semiconductor. Large amounts of free carriers imply that the full depletion 
approximation is not valid and that the derivation has to be repeated while including a possible 
charge in the intrinsic region. 

4.3.8.5.A P-M-N junction with interface charges 

Real P-i-N junctions often differ from their ideal model, which was described in section b). The 



 

     

intrinsic region could be lightly doped, while a fixed interface charge could be present between 
the individual layers. Assume the middle layer to have a doping concentration Nm = Ndm  - Nam  
and a dielectric constant εs,m. A charge Q1 is assumed between the N and M layer, and a charge 
Q2 between the M and P layer. Equations [4.2.11] through [4.2.13] then take the following form: 

 aimpn V−=++ φφφφ       (4.3.71) 
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 pamnd xqNdqNQQxqN =+++ 21       (4.3.73) 

These equations can be solved for xn and xp yielding a general solution for this structure. Again it 
should be noted that this solution is only valid if the middle region is indeed fully depleted. 

Solving the above equation allows to draw the charge density, the electric field distribution, the 
potential and the energy band diagram. 
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Figure 4.3.7 Charge distribution, electric field, potential and energy band diagram of an 

AlGaAs/GaAs p-i-n heterojunction with Va = 1.4 V, x = 0.4 on the left, x = 0 in 
the middle and x = 0.2 on the right. d = 10 nm and Nd = Na = 1017cm-3 



4.3.8.6.Quantum well in a p-n junction 

Consider a p-n junction with a quantum well located between the n and p region as shown in the 
figure below. 
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Figure 4.3.8 Flat-band energy band diagram of a p-n heterojunction with a quantum well at the 
interface. 

Under forward bias charge could accumulate within the quantum well. In this section we will 
outline the procedure to solve this structure. The actual solution can only be obtained by solving 
a transcendental equation. Approximations will be made to obtain useful analytic expressions. 

The potentials within the structure can be related to the applied voltage by: 

 aipqwn V−=++ φφφφ       (4.3.74) 

where the potentials across the p and n regions are obtained using the full depletion 
approximation: 
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The potential across the quantum well is to first order given by: 
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where P and N are the hole respectively electron densities per unit area in the quantum well. This 
equation assumes that the charge in the quantum well Q = q (P - N) is located in the middle of 
the well. Applying Gauss's law to the diode yields the following balance between the charges: 



 

     

 pand xqNqPqNxqN +−=−       (4.3.77) 

where the electron and hole densities can be expressed as a function of the effective densities of 
states in the quantum well: 
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with ∆En,e and ∆En,h given by: 
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where En,e and En,h are the nth energies of the electrons respectively holes relative to the 
conduction respectively valence band edge. These nine equations can be used to solve for the 
nine unknowns by applying numerical methods. A quick solution can be obtained for a 
symmetric diode, for which all the parameters (including material parameters) of the n and p 
region are the same. For this diode N equals P because of the symmetry. Also xn equals xp and φn 
equals φp. Assuming that only one energy level namely the n = 1 level is populated in the 
quantum well one finds: 
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where Eg is the bandgap of the quantum well material. 

Numeric simulation for the general case reveal that, especially under large forward bias 
conditions, the electron and hole density in the quantum well are the same to within a few 
percent.  An energy band diagram calculated using the above equations is shown in the figure 
below: 
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Figure 4.3.9 Energy band diagram of a GaAs/AlGaAs p-n junction with a quantum well in 

between. The aluminum concentration is 40 % for both the p and n region, and 
zero in the well. The doping concentrations Na and Nd are 4 x 1017 cm-3 and Va = 
1.4 V. 

From the numeric simulation of a GaAs n-qw-p structure we find that typically only one electron 
level is filled with electrons, while several hole levels are filled with holes or 

 ...3211 +++=≅= PPPPNN       (4.3.83) 

If all the quantized hole levels are more than 3kT below the hole quasi-Fermi level one can 
rewrite the hole density as: 
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and the applied voltage is given by: 
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4.4.1. General discussion
 

The current in a p-n diode is due to carrier recombination or generation somewhere within the p-n diode 
structure. Under forward bias, the diode current is due to recombination. This recombination can occur within 
the quasi-neutral semiconductor, within the depletion region or at the metal-semiconductor Ohmic contacts. 
Under reverse bias, the current is due to generation. Carrier generation due to light will further increase the 
current under forward as well as reverse bias. 
In this section, we first derive the ideal diode current. We will also distinguish between the "long" diode and 
"short" diode case. The "long" diode expression applies to p-n diodes in which recombination/generation occurs 
in the quasi-neutral region only. This is the case if the quasi-neutral region is much larger than the carrier 
diffusion length. The "short" diode expression applies to p-n diodes in which recombination/generation occurs 
at the contacts only. In a short diode, the quasi-neutral region is much smaller than the diffusion length. In 
addition to the "long" and "short" diode expressions, we also present the general result, which deals with 
recombination/generation in a finite quasi-neutral region.
Next, we derive expressions for the recombination/generation in the depletion region. Here we have to 
distinguish between the different recombination mechanisms - band-to-band recombination and Shockley-Hall-
Read recombination - as they lead to different current-voltage characteristics. 

4.4.2. The ideal diode current
 

4.4.2.1. General discussion and overview

When calculating the current in a p-n diode one needs to know the carrier density and the electric field 
throughout the p-n diode which can then be used to obtain the drift and diffusion current. Unfortunately, this 
requires the knowledge of the quasi-Fermi energies, which is only known if the currents are known. The 
straightforward approach is to simply solve the drift-diffusion equation listed in section 2.10 simultaneously. 
This approach however does not yield an analytic solution.

http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_4.htm (1 of 14)11/10/2004 16:49:55



The p-n diode current

To avoid this problem we will assume that the electron and hole quasi-Fermi energies in the depletion region 
equal those in the adjacent n-type and p-type quasi-neutral regions. We will derive an expression for "long" and 
"short" diodes as well as a general expression, which is to be used if the quasi-neutral region is comparable in 
size to the diffusion length. 

4.4.2.2. Assumptions and boundary conditions

The electric field and potential are obtained by using the full depletion approximation. Assuming that the quasi-
Fermi energies are constant throughout the depletion region, one obtains the minority carrier densities at the 
edges of the depletion region, yielding: 

(4.4.1)

and

(4.4.2)

These equations can be verified to yield the thermal-equilibrium carrier density for zero applied voltage. In 
addition, an increase of the applied voltage will increase the separation between the two quasi-Fermi energies 
by the applied voltage multiplied with the electronic charge and the carrier density depends exponentially on 
this quantity.
The carrier density at the metal contacts is assumed to equal the thermal-equilibrium carrier density. This 
assumption implies that excess carriers immediately recombine when reaching either of the two metal-
semiconductor contacts. As recombination is typically higher at a semiconductor surface and is further 
enhanced by the presence of the metal, this is found to be a reasonable assumption. This results in the 
following set of boundary conditions:

(4.4.3)

and

(4.4.4)

4.4.2.3. General current expression

The general expression for the ideal diode current is obtained by applying the boundary conditions to the 
general solution of the diffusion equation for each of the quasi-neutral regions, as described by equation 
(2.9.13) and (2.9.14): 

(2.9.13)

(2.9.14)

The boundary conditions at the edge of the depletion regions are described by (4.4.1), (4.4.2), (4.4.3) and 
(4.4.4).

Before applying the boundary conditions, it is convenient to rewrite the general solution in terms of hyperbolic 
functions:

(4.4.5)
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The p-n diode current

(4.4.6)

where A*, B*, C* and D* are constants whose value remains to be determined. Applying the boundary 
conditions then yields:

(4.4.7)

(4.4.8)

Where the quasi-neutral region widths, wn' and wp', are defined as:

(4.4.9)

and 

(4.4.10)

The current density in each region is obtained by calculating the diffusion current density using equations 
(2.7.22) and (2.7.23):

(4.4.11)

(4.4.12)

The total current must be constant throughout the structure since a steady state case is assumed. No charge 
can accumulate or disappear somewhere in the structure so that the charge flow must be constant throughout 
the diode. The total current then equals the sum of the maximum electron current in the p-type region, the 
maximum hole current in the n-type regions and the current due to recombination within the depletion region. 
The maximum currents in the quasi-neutral regions occur at either side of the depletion region and can 
therefore be calculated from equations (4.4.11) and (4.4.12). Since we do not know the current due to 
recombination in the depletion region we will simply assume that it can be ignored. Later we will more closely 
examine this assumption. The total current is then given by: 

(4.4.13)

where Is can be written in the following form: 

(4.4.14)
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4.4.2.4. The p-n diode with a "long" quasi-neutral region

A diode with a "long" quasi-neutral region has a quasi-neutral region which is much larger than the minority-
carrier diffusion length in that region, or wn' > Lp and wp' > Ln. The general solution can be simplified under 
those conditions using:

(4.4.15)

Yielding the following carrier densities, current densities and saturation currents: 

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

We now come back to our assumption that the current due to recombination in the depletion region can be 
simply ignored. Given that there is recombination in the quasi-neutral region, it would be unreasonable to 
suggest that the recombination rate would simply drop to zero in the depletion region. Instead, we assume that 
the recombination rate is constant in the depletion region. To further simplify the analysis we will consider a p+-
n junction so that we only need to consider the recombination in the n-type region. The current due to 
recombination in the depletion region is then given by: 

(4.4.21)

so that Ir can be ignored if: 

(4.4.22)

A necessary, but not sufficient requirement is therefore that the depletion region width is much smaller than the 
diffusion length for the ideal diode assumption to be valid. Silicon and germanium p-n diodes usually satisfy this 
requirement, while gallium arsenide p-n diodes rarely do because of the short carrier lifetime and diffusion 
length.

As an example we now consider a silicon p-n diode with Na = 1.5 x 1014 cm-3 and Nd = 1014 cm-3. The minority 
carrier lifetime was chosen to be very short, namely 400 ps, so that most features of interest can be easily 
observed. We start by examining the electron and hole density throughout the p-n diode, shown in Figure 4.4.1: 
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Figure 4.4.1 : Electron and hole density throughout a forward biased p-n diode. 

The majority carrier densities in the quasi-neutral region simply equal the doping density. The minority carrier 
densities in the quasi-neutral regions are obtained from the equations (4.4.16) and (4.4.17). The electron and 
hole densities in the depletion region are calculating using the assumption that the electron/hole quasi-Fermi 
energy in the depletion region equals the electron/hole quasi-Fermi energy in the quasi-neutral n-type/p-type 
region. The corresponding band diagram is shown in Figure 4.4.2: 

Figure 4.4.2 : Energy band diagram of a p-n diode. Shown are the conduction band edge, Ec, and the 
valence band edge, Ev, the intrinsic energy, EI, the electron quasi-Fermi energy, Fn, and the 
hole quasi-Fermi energy, Fp. 

The quasi-Fermi energies were obtained by combining (4.4.16) and (4.4.17) with (2.6.37) and (2.6.38). Note 
that the quasi-Fermi energies vary linearly within the quasi-neutral regions.
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Next, we discuss the current density. Shown in Figure 4.4.3 is the electron and hole current density as 
calculated using (4.4.18) and (4.4.19). The current due to recombination in the depletion region was assumed 
to be constant. 

Figure 4.4.3 : Electron and hole current density versus position. The vertical lines indicate the edges of the 
depletion region. 

4.4.2.5. The p-n diode with a "short" quasi-neutral region

A "short" diode is a diode with quasi-neutral regions, which are much shorter than the minority-carrier diffusion 
lengths. As the quasi-neutral region is much smaller than the diffusion length one finds that recombination in 
the quasi-neutral region is negligible so that the diffusion equations are reduced to: 

(4.4.23)

The resulting carrier density varies linearly throughout the quasi-neutral region and in general is given by: 

(4.4.24)

where A, B, C and D are constants obtained by satisfying the boundary conditions. Applying the same 
boundary conditions at the edge of the depletion region as above (equations (4.4.3) and (4.4.4)) and requiring 
thermal equilibrium at the contacts yields: 

(4.4.25)

(4.4.26)

for the hole and electron density in the n-type quasi-neutral region. 
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The current in a "short" diode is again obtained by adding the maximum diffusion currents in each of the quasi-
neutral regions and ignoring the current due to recombination in the depletion region, yielding: 

(4.4.27)

where the saturation current, Is is given by: 

(4.4.28)

A comparison of the "short" diode expression with the "long" diode expression reveals that they are the same 
except for the use of either the diffusion length or the quasi-neutral region width in the denominator, whichever 
is smaller. 
Given that we now have two approximate expressions, it is of interest to know when to use one or the other. To 
this end, we now consider a one-sided n+-p diode. The p-type semiconductor has a width wp and we normalize 
the excess electron density relative to its value at x = 0. The Ohmic contact to the p-type region is ideal so that 
the excess density is zero at x = wp'. The normalized excess carrier density is shown in Figure 4.4.4 for 
different values of the diffusion length. 

Figure 4.4.4 : Excess electron density versus position as obtained by solving the diffusion equation with δn(x 
= 0) = 1 and δn(x/wp' = 1) = 0 . The ratio of the diffusion length to the width of the quasi-neutral 
region is varied from 0.1 (Bottom curve), 0.3, 0.5, 1 and 10 (top curve)

The figure illustrates how the excess electron density changes as the diffusion length is varied relative to the 
width of the quasi-neutral region. For the case where the diffusion length is much smaller than the width (Ln << 
wp'), the electron density decays exponentially and the "long" diode expression can be used. If the diffusion 
length is much longer than the width (Ln >> wp'), the electron density reduces linearly with position and the 
"short" diode expression can be used. If the diffusion length is comparable to the width of the quasi-neutral 
region width one must use the general expression. A numeric analysis reveals that the error is less than 10 % 
when using the short diode expression with Ln > wp'/2 and when using the long diode expression with Ln > 2 wp'.
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Example 4.4 An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 
V. Calculate the ideal diode current assuming that the n-type region is much smaller than the 
diffusion length with wn' = 1 µm and assuming a "long" p-type region. Use µn = 1000 cm2/V-s 
and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the diode area is 100 µm by 
100 µm. 

Solution The current is calculated from: 

with 

●     Dn = µn Vt = 1000 x 0.0258 = 25.8 cm2/V-s

●     Dp = µp Vt = 300 x 0.0258 = 7.75 cm2/V-s

●     np0 = ni2/Na = 1020/1016 = 104 cm-3

●     pn0 = ni2/Nd = 1020/4 x 1016 = 2.5 x 103 cm-3 

yielding I = 40.7 mA

Note that the hole diffusion current occurs in the "short" n-type region and therefore depends 
on the quasi-neutral width in that region. The electron diffusion current occurs in the "long" p-
type region and therefore depends on the electron diffusion length in that region.

4.4.3. Recombination-Generation current
 

4.4.3.1. Band-to-band Recombination-Generation current

The recombination/generation current due to band-to-band recombination/generation is obtained by integrating 
the net recombination rate, Ub-b, over the depletion region: 

(4.4.29)

where the net recombination rate is given by:

(4.4.30)
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The carrier densities can be related to the constant quasi-Fermi energies and the product is independent of 
position: 

(4.4.31)

This allows the integral to be solved analytically yielding: 

(4.4.32)

The current due to band-to-band recombination has therefore the same voltage dependence as the ideal diode 
current and simply adds an additional term to the expression for the saturation current. 

4.4.3.2. Shockley-Hall-Read Recombination-Generation current

The current due to trap-assisted recombination in the depletion region is also obtained by integrating the trap-
assisted recombination rate over the depletion region width: 

(4.4.33)

Substituting the expression for the recombination rate yields: 

(4.4.34)

where the product of the electron and hole densities was obtained by assuming that the quasi-Fermi energies 
are constant throughout the depletion region, which leads to: 

(4.4.35)

The maximum recombination rate is obtained when the electron and hole densities are equal and therefore 
equals the square root of the product yielding: 

(4.4.36)

From which an effective width can be defined which, when multiplied with the maximum recombination rate, 
equals the integral of the recombination rate over the depletion region. This effective width, x', is then defined 
by: 

(4.4.37)

and the associated current due to trap-assisted recombination in the depletion region is given by: 

(4.4.38)
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This does not provide an actual solution since the effective width, x', still must be determined by performing a 
numeric integration. Nevertheless, the above expression provides a way to obtain an upper estimate by 
substituting the depletion layer width, xd, as it is always larger than the effective width. 

4.4.4. I-V characteristics of real p-n diodes
 

The forward biased I-V characteristics of real p-n diodes are further affected by high injection and the series 
resistance of the diode. To illustrate these effects while summarizing the current mechanisms discussed 
previously we consider the I-V characteristics of a silicon p+-n diode with Nd = 4 x 1014 cm-3, τp = 10 ms, and 
µp = 450 cm2/V-s. The I-V characteristics are plotted on a semi-logarithmic scale and four different regions can 
be distinguished as indicated on Figure 4.4.5. First, there is the ideal diode region where the current increases 
by one order of magnitude as the voltage is increased by 60 mV. This region is referred to as having an ideality 
factor, n, of one. This ideality factor is obtained by fitting a section of the curve to the following expression for 
the current:

(4.4.39)

The ideality factor can also be obtained from the slope of the curve on a semi-logarithmic scale using:

(4.4.40)

where the slope is in units of V/decade. To the left of the ideal diode region there is the region where the 
current is dominated by the trap-assisted recombination in the depletion region described in section 4.4.3.2. 
This part of the curve has an ideality factor of two. To the right of the ideal diode region, the current becomes 
limited by high injection effects and by the series resistance.
High injection occurs in a forward biased p-n diode when the injected minority carrier density exceeds the 
doping density. High injection will therefore occur first in the lowest doped region of the diode since that region 
has the highest minority carrier density.

Using equations (4.4.1) and (4.4.2), one finds that high injection occurs in a p+-n diode for the following applied 
voltage:

(4.4.41)

or at Va = 0.55 V for the diode of Figure 4.4.5 as can be verified on the figure as the voltage where the ideality 
factor changes from one to two. For higher forward bias voltages, the current does no longer increase 
exponentially with voltage. Instead, it increases linearly due to the series resistance of the diode. This series 
resistance can be due to the contact resistance between the metal and the semiconductor, due to the resistivity 
of the semiconductor or due to the series resistance of the connecting wires. This series resistance increases 
the external voltage, Va*, relative to the internal voltage, Va, considered so far.

(4.4.42)

Where I is the diode current and Rs is the value of the series resistance.

These four regions can be observed in most p-n diodes although the high-injection region rarely occurs, as the 
series resistance tends to limit the current first.
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Figure 4.4.5: Current-Voltage characteristics of a silicon diode under forward bias. 

4.4.5. The diffusion capacitance
 

As a p-n diode is forward biased, the minority carrier distribution in the quasi-neutral region increases 
dramatically. In addition, to preserve quasi-neutrality, the majority carrier density increases by the same 
amount. This effect leads to an additional capacitance called the diffusion capacitance. 
The diffusion capacitance is calculated from the change in charge with voltage:

(4.4.43)

Where the charge, ∆Q, is due to the excess carriers. Unlike a parallel plate capacitor, the positive and negative 
charge is no longer separated in space. Instead, the electrons and holes are separated by the energy bandgap. 
Nevertheless, these voltage dependent charges yield a capacitance just as the one associated with a parallel 
plate capacitor. The excess minority-carrier charge is obtained by integrating the charge density over the quasi-
neutral region:

(4.4.44)

We now distinguish between the two limiting cases as discussed when calculating the ideal diode current, 
namely the "long" diode and a "short" diode. The carrier distribution, pn(x), in a "long" diode is illustrated by 
Figure 4.4.6 (a). 
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Figure 4.4.6: Minority carrier distribution in (a) a "long" diode, and (b) a "short" diode. The excess minority-
carrier charge, ∆Qp, in the quasi-neutral region, is proportional to the area defined by the solid 
and dotted lines.

Using equation (4.4.18), the excess charge, ∆Qp, becomes:

(4.4.45)

where Is,p is the saturation current for holes, given by:

(4.4.46)

Equation (4.4.45) directly links the excess charge to the diffusion current. Since all injected minority carriers 
recombine in the quasi-neutral region, the current equals the excess charge divided by the average time 
needed to recombine with the majority carriers, i.e. the carrier lifetime, τp. This relation is the corner stone of 
the charge control model of p-n diodes and bipolar junction transistors. 
The diffusion capacitance then equals: 

(4.4.47)

Similarly, for a "short" diode, as illustrated by Figure 4.4.6 (b), one obtains:

(4.4.48)

Where tr,p is the hole transit time given by:

(4.4.49)
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Again, the excess charge can be related to the current. However, in the case of a "short" diode all minority 
carriers flow through the quasi-neutral region and do not recombine with the majority carriers. The current 
therefore equals the excess charge divided by the average time needed to traverse the quasi-neutral region, i.
e. the transit time, tr,p.

The total diffusion capacitance is obtained by adding the diffusion capacitance of the n-type quasi-neutral 
region to that of the p-type quasi-neutral region.
The total capacitance of the junction equals the sum of the junction capacitance, discussed in section 4.3.4, 
and the diffusion capacitance. For reverse biased voltages and small forward bias voltages, one finds that the 
junction capacitance is dominant. As the forward bias voltage is further increased the diffusion capacitance 
increases exponentially and eventually becomes larger than the junction capacitance.
Example 4.5 a.  Calculate the diffusion capacitance of the diode described in Example 4.4 at zero bias. 

Use µn= 1000 cm2/V-s, µp = 300 cm2/V-s, wp' = 1 µm and wn' = 1 mm. The minority 
carrier lifetime equals 0.1 ms.

b.  For the same diode, find the voltage for which the junction capacitance equals the 
diffusion capacitance.

Solution a.  The diffusion capacitance at zero volts equals

using

and

where the "short" diode expression was used for the capacitance associated with the 
excess charge due to electrons in the p-type region. The "long" diode expression was 
used for the capacitance associated with the excess charge due to holes in the n-type 
region.The diffusion constants and diffusion lengths equal

Dn = µn x Vt = 25.8 cm2/s

Dp = µp x Vt = 7.75 cm2/s
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And the electron transit time in the p-type region equals

b.  The voltage at which the junction capacitance equals the diffusion capacitance is 
obtained by solving

yielding Va = 0.442 V
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4.4.6.  High Injection Effects  

High injection of carriers1 causes to violate one of the approximations made in the derivation of 
the ideal diode characteristics, namely that the majority carrier density equals the thermal 
equilibrium value. Excess carriers will dominate the electron and hole concentration and can be 
expressed in the following way: 
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where all carrier densities with subscript n are taken at x = xn and those with subscript p at x = -
xp. Solving the resulting quadratic equation yields: 
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where the second terms are approximations for large Va. From these expressions one can 
calculate the minority carrier diffusion current assuming a "long" diode. We also ignore carrier 
recombination in the depletion region. 
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This means that high injection in a p-n diode will reduce the slope on the current-voltage 
characteristic on a semi-logarithmic scale to 119mV/decade. 

High injection also causes a voltage drop across the quasi-neutral region. This voltage can be 
calculated from the carrier densities. Let's assume that high injection only occurs in the (lower 
doped) p-type region. The hole density at the edge of the depletion region (x = xp) equals: 

                                                 

1A more complete derivation can be found in R.S. Muller and T.I. Kamins, "Device Electronics for Integrated 
Circuits", Wiley and sons, second edition p. 323-324.  
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where V1 is the voltage drop across the p-type quasi-neutral region. This equation can then be 
solved for V1 yielding 
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High injection occurs (by definition) when the excess minority carrier density exceeds the 
doping density in the material. It is under such conditions that also the majority carrier density 
increases since, for charge neutrality to exist, the excess electron density has to equal the excess 
hole density: If there exists a net charge, the resulting electric field causes the carriers to move so 
that charge neutrality is restored. 

Up till now we have assumed that the minority carrier densities in the n-type and p-type region 
are small compared to the doping density. However as the forward bias voltage is increased the 
minority carrier density exceeds the doping density.  

The analysis starts by assuming a certain excess carrier density so that the total density can be 
written as the sum of the thermal equilibrium density plus the excess carrier density. For an n-
type region this yields the following equations: 
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The product of the carrier densities can be expressed as a function of the intrinsic density in the 
following way: 
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where it was assumed that the semiconductor is non-degenerate and that the difference between 
the electron and hole quasi Fermi energies in electron volt equals the applied voltage in volt. 
Quasi-neutrality implies that the excess densities are the same, which yields a quadratic equation 
for the minority carrier density pn:  
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which yields a value for the minority carrier density at the edge of the depletion region. 
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The associated current is a diffusion current and using a procedure similar to that for calculating 
the ideal diode current in a "long" diode one obtains the following hole current2. 
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The electron current due to diffusion of electrons in the p-type region is given by a similar 
expression: 
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These expressions can be reduced to the ideal diode expressions provided that the excess 
minority density is much smaller than one quarter of the doping density, or: 
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while if the excess minority carrier density is much larger than one quarter of the doping density 
and expression is obtained which is only valid under high injection conditions: 
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A closer examination of the problem prompts the question whether the full depletion 
approximation is still valid since the sign of potential across the semiconductor reverses. 
However the increase of the majority carrier density beyond the doping density causes a potential 
variation across the "quasi-neutral" region. This voltage in the n-type region is given by: 

                                                 

2 The reader should note that the potential across the "quasi-neutral" regions goes hand-in-hand with an electric 
field. The region is therefore not neutral so that the diffusion equation is no longer valid. Instead one has to calculate 
the current based on the diffusion and drift of the carriers. The equations above were derived using the diffusion 
equation and should therefore be used with caution. 
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and similarly for the p-type region: 
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The potentials across the "quasi-neutral" region causes a larger potential across the depletion 
layer, since they have opposite sign, so that the depletion layer width as calculated using the 
modified potential φ = φi – Va + Vn + Vp does not become zero. 

As an example we now consider an abrupt one-sided p-n diode. The current is shown as function 
of the voltage in the figure below. It is calculated for an n-type doping of 1013 cm-3. 

 

Figure 4.4.7 Current-Voltage characteristics of a p+-n diode including the effects of high 
injection and a linear series resistance. 

The dotted line on the figure fits the current at high forward bias. The slope is 1 decade/120 mV 
which corresponds to an ideality factor of 2.  



 

     

 

Figure 4.4.8 Electron and hole density under high injection conditions. 

 

Figure 4.4.9 Energy band diagram under high injection conditions. 

Influence of the Series Resistance 

The influence of a series resistance in a p-n diode can be calculated using Ohm's law. The total 
series resistance is the sum of the contact resistances and the resistances of the neutral 
semiconductor regions. For each semiconductor region one can find the resistivity if the doping 
density is known. The only complication arises when the exact length of the semiconductor 
regions is concerned, since it equals the average length the majority carriers travel through these 



regions.  

Once the total resistance is determined, one finds the external diode voltage by adding the 
voltage drop across the resistor to the internal diode voltage.  

Numerical Analysis and Comparison 

The numerical analysis is performed for an abrupt one-sided silicon p-n diode. The diode 
consists of a thin highly doped p-type region on top of a lower doped n-type substrate. Only the 
hole current is calculated since it is dominant is such a diode. The current due to recombination 
in the depletion region was not included in this analysis. Included are the diffusion of holes even 
if their density exceeds the doping of the n-type substrate and the series resistance of the low-
doped n-type substrate. The contact resistances to the n and p-type semiconductor as well as the 
resistance of the thin highly doped p-type layer have been ignored. 

Related Exercises:  

Find the inverse slope of the current voltage characteristic between 0.5 and 0.7 Volt in units of 
Volt/decade. What is the corresponding ideality factor? Write down a relation between the 
ideality factor and the inverse slope. 

"Measure" the ideality factor at high forward bias and compare it to the ideality factor at low 
bias. Verify that the ideality factor n = 2 when high injection occurs 

Increase the doping concentration of the n-type substrate and observe the changes. Why does the 
high injection region as characterized with an n = 2 region disappear for high substrate doping? 

 



 

     

4.4.7. Heterojunction Diode Current  

This section is very similar to the one discussing currents across a homojunction. Just as for the 
homojunction we find that current in a p-n junction can only exist if there is recombination or 
generation of electron and holes somewhere throughout the structure. The ideal diode equation is 
a result of the recombination and generation in the quasi-neutral regions (including 
recombination at the contacts) whereas recombination and generation in the depletion region 
yield enhanced leakage or photocurrents. 

4.4.6.1.Ideal diode equation 

For the derivation of the ideal diode equation we will again assume that the quasi-Fermi levels 
are constant throughout the depletion region so that the minority carrier densities at the edges of 
the depletion region and assuming "low" injection are still given by: 
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Where ni,n and ni,p refer to the intrinsic concentrations of the n and p region. Solving the diffusion 
equations with these minority carrier densities as boundary condition and assuming a "long" 
diode we obtain the same expressions for the carrier and current distributions:  

 

n

p

t

a
ppp L

xx

V
V

nnxn
+

−+= exp)1(exp)( 00  for x < -xp 
(4.4.59) 

 
)exp()1(exp)( 00

p

n

t

a
nnn L

xx
V
V

ppxp
−

−−+=  for xn < x 
(4.4.60) 

 

n

p

t

a

n

pn
nn L

xx

V
V

L

nD
q

dx
dn

qDxJ
+

−== exp)1(exp)( 0  for x < -xp 
(4.4.61) 

 
)exp()1(exp)( 0

n

n

t

a

p

np
pp L

xx
V
V

L

pD
q

dx
dp

qDxJ
−

−−==  for xn < x 
(4.4.62) 

Where Lp and Ln are the hole respectively the electron diffusion lengths in the n-type and p-type 
material, respectively The difference compared to the homojunction case is contained in the 
difference of the material parameters, the thermal equilibrium carrier densities and the width of 
the depletion layers. Ignoring recombination of carriers in the base yields the total ideal diode 



current density Jideal: 

 
)1)(exp()()( 00 −+=−=+==

t

a

p

np

n

pn
nppnideal V

V
L

pD

L

nD
qxxJxxJJ

 

(4.4.63) 

 
)1)(exp(

2
,

2
, −+=

t

a

dp

nip

an

pin
ideal V

V
NL

nD

NL

nD
qJ  

(4.4.64) 

This expression is valid only for a p-n diode with infinitely long quasi-neutral regions.  For 
diodes with a quasi-neutral region shorter than the diffusion length, and assuming an infinite 
recombination velocity at the contacts, the diffusion length can simply be replaced by the width 
of the quasi-neutral region. For more general boundary conditions, we refer to section 4.2.1.c 

Since the intrinsic concentrations depend exponentially on the energy bandgap, a small 
difference in bandgap between the n-type and i-type material can cause a significant difference 
between the electron and hole current and that independent of the doping concentrations.  

4.4.6.2.Recombination/generation in the depletion region 

Recombination/generation currents in a heterojunction can be much more important than in a 
homojunction because most recombination/generation mechanisms depend on the intrinsic 
carrier concentration which depends strongly on the energy bandgap. We will consider only two 
major mechanisms: band-to-band recombination and Shockley-Hall-Read recombination. 

4.4.6.2.1. Band-to-band recombination 

The recombination/generation rate is due to band-to-band transitions is given by: 

 )( 2
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where b is the bimolecular recombination rate. For bulk GaAs this value is 1.1 x 10-10 cm3s-1. For 
2
innp >  (or under forward bias conditions) recombination dominates, whereas for 2

innp <  
(under reverse bias conditions) thermal generation of electron-hole pairs occurs. Assuming 
constant quasi-Fermi levels in the depletion region this rate can be expressed as a function of the 

applied voltage by using the "modified" mass-action law ta VV
innp /2e= , yielding: 

 
)1(exp2 −=−

t

a
ibb V

V
bnU  

(4.4.66) 

The current is then obtained by integrating the recombination rate throughout the depletion 
region: 
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For uniform material (homojunction) this integration yielded: 
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Whereas for a p-n heterojunction consisting of two uniformly doped regions with different 
bandgap, the integral becomes: 
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4.4.6.2.2. Schockley-Hall-Read recombination 

Provided bias conditions are "close" to thermal equilibrium the recombination rate due to a 
density Nt of traps with energy Et and a recombination/generation cross-section σ is given by 
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where ni is the intrinsic carrier concentration, vth is the thermal velocity of the carriers and Ei is 

the intrinsic energy level.  For Ei = Et and 
tht vN σ

τ
1

0 =  this expression simplifies to: 
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Throughout the depletion region, the product of electron and hole density is given by the 
"modified" mass action law: 
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This enables to find the maximum recombination rate which occurs for n = p = ni ta VV 2/e  
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The total recombination current is obtained by integrating the recombination rate over the 
depletion layer width: 
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which can be written as a function of the maximum recombination rate and an "effective" width 
x': 
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where 
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Since USHR,max  is larger than or equal to USHR anywhere within the depletion layer one finds that 
x ' has to be smaller than xd = xn + xp.  (Note that for a p-i-N or p-qw-N structure the width of the 
intrinsic/qw layer has to be included).   

The calculation of x ' requires a numerical integration.  The carrier concentrations n and p in the 
depletion region are given by: 
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Substituting these equations into [4.5.18] then yields x '. 

4.4.6.3.Recombination/generation in a quantum well 

4.4.6.3.1. Band-to-band recombination 

Recognizing that band-to-band recombination between different states in the quantum well has a 
different coefficient, the total recombination including all possible transitions can be written as: 
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where En,e and En,h are calculated in the absence of an electric field. To keep this derivation 
simple, we will only consider radiative transitions between the n = 1 states for which: 
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both expressions can be combined yielding 

 

q

E
V

q

EE
V qwgNPNN

t
pFnF

a
qwvqwc 1,,//,, )]1e)(1eln[( ,1,1 +−−=

−
=  

(4.4.84) 

4.4.6.3.1.1. Low voltage approximation (non-degenerate carrier concentration)  

For low or reversed bias conditions the carrier densities are smaller that the effective densities of 
states in the quantum well. Equation [4.2.55] then simplifies to: 
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and the current becomes 

 
)1(exp2

1,1,, −== −−
t

a
iqwbbqwbb V

V
NqBqUJ  

(4.4.86) 

This expression is similar to the band-to-band recombination current in bulk material. 

4.4.6.3.1.2. High voltage approximation (strongly degenerate) 

For strong forward bias conditions the quasi-Fermi level moves into the conduction and valence 
band. Under these conditions equation [4.4.26] reduces to: 
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If in addition one assumes that N1 = P1 and Nc,qw << Nv,qw this yields:   
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and the current becomes: 
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for GaAs/AlGaAs quantum wells, B1 has been determined experimentally to be 5 x 10-5cm2s-1 

4.4.6.3.2. SHR recombination 

A straight forward extension of the expression for bulk material to two dimensions yields 
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and the recombination current equals: 
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This expression implies that carriers from any quantum state are equally likely to recombine with 
a midgap trap. 

4.4.6.4.Recombination mechanisms in the quasi-neutral region 

Recombination mechanisms in the quasi-neutral regions do not differ from those in the depletion 
region. Therefore, the diffusion length in the quasi-neutral regions, which is defined as Ln = 

nnD τ  and Lp = ppD τ , must be calculated based on band-to-band as well as SHR 

recombination. Provided both recombination rates can be described by a single time constant, the 
carrier lifetime is obtained by summing the recombination rates and therefore summing the 
inverse of the life times.  
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for low injection conditions and assuming n-type material, we find:  
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yielding the hole life time in the quasi-neutral n-type region: 
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4.4.6.5.The total diode current 

Using the above equations we find the total diode current to be: 

 idealSHRbbtotal JJJJ ++= −  (4.4.96) 

from which the relative magnitude of each current can be calculated. This expression seems to 
imply that there are three different recombination mechanisms. However the ideal diode equation 
depends on all recombination mechanism, which are present in the quasi-neutral region as well 
as within the depletion region, as described above.  

The expression for the total current will be used to quantify performance of heterojunction 
devices. For instance, for a bipolar transistor it is the ideal diode current for only one carrier type, 
which should dominate to ensure an emitter efficiency close to one. Whereas for a light emitting 
diode the band-to-band recombination should dominate to obtain a high quantum efficiency.  

4.4.6.6.The graded p-n diode 

4.4.6.6.1. General discussion of a graded region 

Graded regions can often be found in heterojunction devices. Typically they are used to avoid 
abrupt heterostructures, which limit the current flow. In addition they are used in laser diodes 
where they provide a graded index region, which guides the lasing mode. An accurate solution 
for a graded region requires the solution of a set of non-linear differential equations.  

Numeric simulation programs provide such solutions and can be used to gain the understanding 
needed to obtain approximate analytical solutions. A common misconception regarding such 
structures is that the flatband diagram is close to the actual energy band diagram under forward 
bias.  Both are shown in the figure below for a single-quantum-well graded-index separate-
confinement heterostructure (GRINSCH) as used in edge-emitting laser diodes which are 
discussed in more detail in Chapter 6.  
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Fig. 4.6 Flat band diagram of a graded AlGaAs p-n diode with x = 40 % in the 

cladding regions, x varying linearly from 40 % to 20 % in the graded regions 
and x = 0% in the quantum well. 
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Fig. 4.7 Energy band diagram of the graded p-n diode shown above under forward 

bias. Va = 1.5 V, Na = 4 x 1017 cm-3, Nd = 4 x 1017 cm-3. Shown are the 
conduction and valence band edges (solid lines) as well as the quasi-Fermi 
energies (dotted lines). 

The first difference is that the conduction band edge in the n-type graded region as well as the 
valence band edge in the p-type graded region are almost constant. This assumption is correct if 
the majority carrier quasi-Fermi energy, the majority carrier density and the effective density of 
states for the majority carriers don't vary within the graded region. Since the carrier 
recombination primarily occurs within the quantum well (as it should be in a good laser diode), 



 

     

the quasi-Fermi energy does not change in the graded regions, while the effective density of 
states varies as the three half power of the effective mass, which varies only slowly within the 
graded region. The constant band edge for the minority carriers implies that the minority carrier 
band edge reflects the bandgap variation within the graded region. It also implies a constant 
electric field throughout the grade region which compensates for the majority carrier bandgap 
variation or: 
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where Ec0(x) and Ev0(x) are the conduction and valence band edge as shown in the flatband 
diagram. The actual electric field is compared to this simple expression in the figure below. The 
existence of an electric field requires a significant charge density at each end of the graded 
regions caused by a depletion of carriers. This also causes a small cusp in the band diagram.  
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Fig. 4.8 Electric Field within a graded p-n diode. Compared are a numeric simulation 

(solid line) and equation [4.5.39] (dotted line). The field in the depletion 
regions around the quantum well was calculated using the linearized Poisson 
equation as described in the text. 

Another important issue is that the traditional current equation with a drift and diffusion term has 
to be modified. We now derive the modified expression by starting from the relation between the 
current density and the gradient of the quasi-Fermi level: 
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where it was assumed that the electron density is non-degenerate. At first sight it seems that only 
the last term is different from the usual expression. However the equation can be rewritten as a 
function of Ec0(x), yielding: 
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This expression will be used in the next section to calculate the ideal diode current in a graded p-
n diode. We will at that time ignore the gradient of the effective density of states. A similar 
expression can be derived for the hole current density, Jp. 

4.4.6.6.2. Ideal diode current 

Calculation of the ideal diode current in a graded p-n diode poses a special problem since a 
gradient of the bandedge exists within the quasi-neutral region. The derivation below can be 
applied to a p-n diode with a graded doping concentration as well as one with a graded bandgap 
provided that the gradient is constant. For a diode with a graded doping concentration this 
implies an exponential doping profile as can be found in an ion-implanted base of a silicon 
bipolar junction transistor. For a diode with a graded bandgap the bandedge gradient is constant 
if the bandgap is linearly graded provided the majority carrier quasi-Fermi level is parallel to the 
majority carrier band edge. 

Focusing on a diode with a graded bandgap we first assume that the gradient is indeed constant 
in the quasi-neutral region and that the doping concentration is constant. Using the full depletion 
approximation one can then solve for the depletion layer width. This requires solving a 
transcendental equation since the dielectric constant changes with material composition (and 
therefore also with bandgap energy). A first order approximation can be obtained by choosing an 
average dielectric constant within the depletion region and using previously derived expressions 
for the depletion layer width. Under forward bias conditions one finds that the potential across 
the depletion regions becomes comparable to the thermal voltage. One can then use the 
linearized Poisson equation or solve Poisson's equation exactly (section 4.1.2) This approach was 
taken to obtain the electric field in Fig.4.8. 

The next step requires solving the diffusion equation in the quasi-neutral region with the correct 
boundary condition and including the minority carrier bandedge gradient. For electrons in a p-
type quasi-neutral region we have to solve the following modified diffusion equation 
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which can be normalized yielding: 
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If the junction interface is at x = 0 and the p-type material is on the right hand side, extending up 
to infinity, the carrier concentrations equals: 
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where we ignored the minority carrier concentration under thermal equilibrium which limits this 
solution to forward bias voltages.  Note that the minority carrier concentration np0(xp) at the edge 
of the depletion region (at x = xp) is strongly voltage dependent since it is exponentially 
dependent on the actual bandgap at x = xp. 

The electron current at x = xp is calculated using the above carrier concentration but including the 
drift current since the bandedge gradient is not zero, yielding: 

 
)1

)(

1
1(e)( 2

/
0 −+−=

α
α

n

VV
ppnn

L
xnqDJ ta  

(4.4.105) 

The minus sign occurs since the electrons move from left to right for a positive applied voltage. 
For α = 0, the current equals the ideal diode current in a non-graded junction: 
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while for strongly graded diodes (αLn >> 1) the current becomes: 

 
ta VV

n

npn
n

L

xnqD
J /

2
0 e

2

)(

α
=  

(4.4.107) 

For a bandgap grading given by: 
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one finds 
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and the current density equals: 
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where Jn(α = 0) is the current density in the absence of any bandgap grading. 
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4.5.1. General breakdown characteristics
 

The maximum reverse bias voltage that can be applied to a p-n diode is limited by breakdown. Breakdown is 
characterized by the rapid increase of the current under reverse bias. The corresponding applied voltage is 
referred to as the breakdown voltage. 
The breakdown voltage is a key parameter of power devices. The breakdown of logic devices is equally 
important as one typically reduces the device dimensions without reducing the applied voltages, thereby 
increasing the internal electric field.
Two mechanisms can cause breakdown, namely avalanche multiplication and quantum mechanical tunneling 
of carriers through the bandgap. Neither of the two breakdown mechanisms is destructive. However heating 
caused by the large breakdown current and high breakdown voltage causes the diode to be destroyed unless 
sufficient heat sinking is provided.
Breakdown in silicon at room temperature can be predicted using the following empirical expression for the 
electric field at breakdown. 

(4.5.1)

Assuming a one-sided abrupt p-n diode, the corresponding breakdown voltage can then be calculated, yielding:

(4.5.2)

The resulting breakdown voltage is inversely proportional to the square of the doping density if one ignores the 
weak doping dependence of the electric field at breakdown. The corresponding depletion layer width equals:

(4.5.3)

4.5.2. Edge effects
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Reverse bias breakdown

Few p-n diodes are truly planar and typically have higher electric fields at the edges. Since the diodes will 
break down in the regions where the breakdown field is reached first, one has to take into account the radius of 
curvature of the metallurgical junction at the edges. Most doping processes including diffusion and ion 
implantation yield a radius of curvature on the order of the junction depth, xj. The p-n diode interface can then 
be approximated as having a cylindrical shape along a straight edge and a spherical at a corner of a 
rectangular pattern. Both structures can be solved analytically as a function of the doping density, N, and the 
radius of curvature, xj. 

The resulting breakdown voltages and depletion layer widths are plotted below as a function of the doping 
density of an abrupt one-sided junction.

Figure 4.5.1 : Breakdown voltage and depletion layer width at breakdown versus doping density of an abrupt 
one-sided p-n diode. Shown are the voltage and width for a planar (top curves), cylindrical 
(middle curves) and spherical (bottom curves) junction.

4.5.3. Avalanche breakdown
 

Avalanche breakdown is caused by impact ionization of electron-hole pairs. This process was described 
previously in section 2.8. When applying a high electric field, carriers gain kinetic energy and generate 
additional electron-hole pairs through impact ionization. The ionization rate is quantified by the ionization 
constants of electrons and holes, an and ap. These ionization constants are defined as the change of the 
carrier density with position divided by the carrier density or:

(4.5.4)

The ionization causes a generation of additional electrons and holes. Assuming that the ionization coefficients 
of electrons and holes are the same, the multiplication factor M, can be calculated from:
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Reverse bias breakdown

(4.5.5)

The integral is taken between x1 and x2, the region within the depletion layer where the electric field is 
assumed constant and large enough to cause impact ionization. Outside this range, the electric field is 
assumed to be too low to cause impact ionization. The equation for the multiplication factor reaches infinity if 
the integral equals one. This condition can be interpreted as follows: For each electron coming to the high field 
at point x1 one additional electron-hole pair is generated arriving at point x2. This hole drifts in the opposite 
direction and generates an additional electron-hole pair at the starting point x1. One initial electron therefore 
yields an infinite number of electrons arriving at x2, hence an infinite multiplication factor.

The multiplication factor is commonly expressed as a function of the applied voltage and the breakdown 
voltage using the following empirical relation:

(4.5.6)

4.5.4. Zener breakdown
 

Quantum mechanical tunneling of carriers through the bandgap is the dominant breakdown mechanism for 
highly doped p-n junctions. The analysis is identical to that of tunneling in a metal-semiconductor junction 
where the barrier height is replaced by the energy bandgap of the material.
The tunneling probability equals:

(4.5.7)

where the electric field equals  = Eg/(qL). 

The tunneling current is obtained from the product of the carrier charge, velocity and carrier density. The 
velocity equals the Richardson velocity, the velocity with which on average the carriers approach the barrier 
while the carrier density equals the density of available electrons multiplied with the tunneling probability, 
yielding:

(4.5.8)

The tunneling current therefore depends exponentially on the bandgap energy to the 3/2 power.
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P-n junctions are an integral part of several optoelectronic devices. These include photodiodes, solar cells light 
emitting diodes (LEDs) and semiconductor lasers. In this section we discuss the principle of operation of these 
devices and derive an expression for key parameters.

4.6.1. Photodiodes
 

Photodiodes and crystalline solar cells are essentially the same as the p-n diodes, which have been described 
in this chapter. However, the diode is exposed to light, which yields a photocurrent in addition to the diode 
current so that the total diode current is given by: 

(4.6.1)

where the additional photocurrent, Iph, is due to photogeneration of electrons and holes shown in Figure 4.6.1. 
These electrons and holes are pulled into the region where they are majority carriers by the electric field in the 
depletion region.

Figure 4.6.1: Motion of photo-generated carriers in a p-n photodiode.
The photo-generated carriers cause a photocurrent, which opposes the diode current under forward bias. 
Therefore, the diode can be used as a photodetector - using a reverse or zero bias voltage - as the measured 
photocurrent is proportional to the incident light intensity. The diode can also be used as a solar cell - using a 
forward bias - to generate electrical power.
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The primary characteristics of a photodiode are the responsivity, the dark current and the bandwidth. The 
responsivity is the photocurrent divided by the incident optical power. The maximum photocurrent in a 
photodiode equals

(4.6.2)

Where Pin is the incident optical power. This maximum photocurrent occurs when each incoming photon 
creates one electron-hole pair, which contributes to the photocurrent. The photocurrent in the presence of a 
reflection R at the surface of the photodiode and an absorption over a thickness d in a material with an 
absorption coefficient α is given by:

(4.6.3)

The photocurrent is further reduced if photo-generated electron-hole pairs recombine within the photodiode 
instead of being swept into the regions where they are majority carriers. 
The dark current is the current through the diode in the absence of light. This current is due to the ideal diode 
current, the generation/recombination of carriers in the depletion region and any surface leakage, which occurs 
in the diode. The dark current obviously limits the minimum power detected by the photodiode, since a 
photocurrent much smaller than the dark current would be hard to measure. 
However, the true limitation is the shot noise generated by the current through the diode. The shot noise as 
quantified by the average of the square of the noise current is given by:

(4.6.4)

Where I is the diode current and ∆f is the bandwidth of the detector. The bandwidth of the diode is affected by 
the transit time of the photo-generated carriers through the diode and by the capacitance if the diode. The 
carrier transit time yields the intrinsic bandwidth of the diode while the capacitance together the impedance of 
the amplifier or the transmission line connected to the diode yields a the parasitic RC delay.

4.6.2. Solar cells
 

Solar cells are typically illuminated with sunlight and are intended to convert the solar energy into electrical 
energy. The solar energy is in the form of electromagnetic radiation, more specifically "black-body" radiation as 
described in section 1.2.3. The sun's spectrum is consistent with that of a black body at a temperature of 5800 
K. The radiation spectrum has a peak at 0.8 eV. A significant part of the spectrum is in the visible range of the 
spectrum (400 - 700 nm). The power density is approximately 100 mW/cm2. 
Only part of the solar spectrum actually makes it to the earth's surface. Scattering and absorption in the earth's 
atmosphere, and the incident angle affect the incident power density. Therefore, the available power density 
depends on the time of the day, the season and the latitude of a specific location. 
Of the solar light, which does reach a solar cell, only photons with energy larger than the energy bandgap of 
the semiconductor generate electron-hole pairs. In addition, one finds that the voltage across the solar cell at 
the point where it delivers its maximum power is less than the bandgap energy in electron volt. The overall 
power-conversion efficiency of single-crystalline solar cells ranges from 10 to 30 % yielding 10 to 30 mW/cm2. 
The calculation of the maximum power of a solar cell is illustrated by Figure 4.6.2 and Figure 4.6.3. The sign 
convention of the current and voltage is shown as well. It considers a current coming out of the cell to be 
positive as it leads to electrical power generation. The power generated depends on the solar cell itself and the 
load connected to it. As an example, a resistive load is shown in the diagram below. 
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Figure 4.6.2 : Circuit diagram and sign convention of a p-n diode solar cell connected to a resistive load.
The current and the power as function of the forward bias voltage across the diode are shown in Figure 4.6.3 
for a photocurrent of 1 mA: 

Figure 4.6.3 : Current-Voltage (I-V) and Power-Voltage (P-V) characteristics of a p-n diode solar cell with Iph 
= 1 mA and Is = 10-10 A. The crosshatched area indicates the power generated by the solar 
cell. The markers indicate the voltage and current, Vm and Im, for which the maximum power, 
Pm is generated. 

We identify the open-circuit voltage, Voc, as the voltage across the illuminated cell at zero current. The short-
circuit current, Isc, is the current through the illuminated cell if the voltage across the cell is zero. The short-
circuit current is close to the photocurrent while the open-circuit voltage is close to the turn-on voltage of the 
diode as measured on a current scale similar to that of the photocurrent. 
The power equals the product of the diode voltage and current and at first increases linearly with the diode 
voltage but then rapidly goes to zero around the turn-on voltage of the diode. The maximum power is obtained 
at a voltage labeled as Vm with Im being the current at that voltage. 

The fill factor of the solar cell is defined as the ratio of the maximum power of the cell to the product of the open-
circuit voltage, Voc, and the short-circuit current, Isc, or: 

(4.6.5)
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Example 4.6 A 1 cm2 silicon solar cell has a saturation current of 10-12 A and is illuminated with sunlight 
yielding a short-circuit photocurrent of 25 mA. Calculate the solar cell efficiency and fill factor.

Solution The maximum power is generated for:

where the voltage, Vm, is the voltage corresponding to the maximum power point. This voltage 
is obtained by solving the following transcendental equation:

Using iteration and a starting value of 0.5 V one obtains the following successive values for Vm:

Vm = 0.5, 0.542, 0.540 V

and the efficiency equals:

The current, Im, corresponding to the voltage, Vm, was calculated using equation (4.6.1) and 
the power of the sun was assumed 100 mW/cm2. The fill factor equals:

where the open circuit voltage is calculated using equation (4.6.1) and I = 0. The short circuit 
current equals the photocurrent.

4.6.3. LEDs
 

Light emitting diodes are p-n diodes in which the recombination of electrons and holes yields a photon. This 
radiative recombination process occurs primarily in direct bandgap semiconductors where the lowest 
conduction band minimum and the highest valence band maximum occur at k = 0, where k is the wavenumber. 
Examples of direct bandgap semiconductors are GaAs, InP, GaP, GaN while most group IV semiconductors 
including Si, Ge and SiC are indirect bandgap semiconductors.
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The radiative recombination process is in competition with non-radiative recombination processes such as trap-
assisted recombination. Radiative recombination dominates at high minority-carrier densities. Using a quantum 
well, a thin region with a lower bandgap, positioned at the metallurgical junction, one can obtain high carrier 
densities at low current densities. These quantum well LEDs have high internal quantum efficiency as almost 
every electron injected in the quantum well recombines with a hole yielding a photon.
The external quantum efficiency of planar LEDs is much lower than unity due to total internal reflection. As the 
photons are generated in the semiconductor, which has a high refractive index, only photons traveling normal 
to the semiconductor-air interface can exit the semiconductor. For GaAs with a refractive index of 3.5, the angle 
for total internal reflection equals 17o so that only a few percent of the generated photons can escape the 
semiconductor. This effect can be avoided by having a spherical semiconductor shape, which ensures that 
most photons are normal to the interface. The external quantum efficiency can thereby be increased to values 
larger than 50%.

4.6.4. Laser diodes
 

Laser diodes are very similar to LEDs since they also consist of a p-n diode with an active region where 
electrons and holes recombine resulting in light emission. However, a laser diode also contains an optical 
cavity where stimulated emission takes place. The laser cavity consists of a waveguide terminated on each end 
by a mirror. As an example, the structure of an edge-emitting laser diode is shown in Figure 4.6.4. Photons, 
which are emitted into the waveguide, can travel back and forth in this waveguide provided they are reflected at 
the mirrors. 

Figure 4.6.4 : Structure of an edge-emitting laser diode.
The light in the waveguide is amplified by stimulated emission. Stimulated emission is a process where a 
photon triggers the radiative recombination of an electron and hole thereby creating an additional photon with 
the same energy and phase as the incident photon. This process is illustrated with Figure 4.6.5. This "cloning" 
of photons results in a coherent beam.
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Optoelectronic devices

Figure 4.6.5 : Stimulated emission of a photon.
The stimulated emission process yields an increase in photons as they travel along the waveguide. Combined 
with the waveguide losses, stimulated emission yields a net gain per unit length, g. The number of photons can 
therefore be maintained if the roundtrip amplification in a cavity of length, L, including the partial reflection at 
the mirrors with reflectivity R1 and R2 equals unity.

This yields the following lasing condition:

(4.6.6)

If the roundtrip amplification is less than one then the number of photons steadily decreases. If the roundtrip 
amplification is larger than one, the number of photons increases as the photons travel back and forth in the 
cavity and no steady state value would be obtained. The gain required for lasing therefore equals:

(4.6.7)

Initially, the gain is negative if no current is applied to the laser diode as absorption dominates in the 
waveguide. As the laser current is increased, the absorption first decreases and the gain increases. The 
current for which the gain satisfies the lasing condition is the threshold current of the laser, Ith. Below the 
threshold current very little light is emitted by the laser structure. For an applied current larger than the 
threshold current, the output power, Pout, increases linearly with the applied current, as each additional 
incoming electron-hole pair is converted into an additional photon. The output power therefore equals:

(4.6.8)

where hν is the energy per photon. The factor, η, indicates that only a fraction of the generated photons 
contribute to the output power of the laser as photons are partially lost through the other mirror and throughout 
the waveguide.

Figure 4.6.6 : Output power from a laser diode versus the applied current.
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4.7. Photodiodes  

4.7.1. P-i-N photodiodes 
P-i-N photodiodes are commonly used in a variety of applications. A typical P-i-N photodiode is 
shown in figure 5.1. It consists of a p-type highly doped transparent contact layer on top of an 
undoped absorbing layer and an n-type highly doped contact layer on the bottom. For discreet 
photodiodes, the devices are made on a conductive substrate as shown in the figure, which 
facilitates the formation of the n-type contact and reduces the number of process steps. The top 
contact is typically a metal ring contact, which has a low contact resistance and still allows the 
light to be absorbed in the semiconductor. One alternative is the use of a transparent conductor 
such as Indium Tin Oxide (ITO). The active device area is formed by mesa etching. An 
alternative method is proton implantation of the adjacent area, which makes it isolating. A 
dielectric layer is added around the active area to reduce leakage currents and to ensure a low 
parasitic capacitance of the contact pad. 

Top view

A Metal contact ring

Vertical structure

A'

P AlGaAs contact layer

i-GaAs absorbing layer

n-GaAs substrate

Back contact

hν

Contact 
pad

Anti-reflection coating

0

d
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Figure 4.7.1 Top view and vertical structure through section A-A' of a P-i-N heterostructure 
photodiode. 

Grading of the material composition between the transparent contact layer and the absorbing 
layer is commonly used to reduce the n-n+ or p-p+ barrier formed at the interface.  
The above structure evolved mainly from one basic requirement: light should be absorbed in the 
depletion region of the diode to ensure that the electrons and holes are separated in the electric 
field and contribute to the photocurrent, while the transit time must be minimal. 
This implies that a depletion region larger than the absorption length must exist in the detector. 
This is easily assured by making the absorbing layer undoped. Only a very small voltage is 
required to deplete the undoped region. If a minimum electric field is required throughout the 
absorbing layer, to ensure a short transit time, it is also the undoped structure, which satisfies this 
condition with a minimal voltage across the region, because the electric field is constant. An 
added advantage is that the recombination/generation time constant is longest for undoped 
material, which will provide a minimal thermal generation current. 
It also implies that the top contact layer should be transparent to the incoming light. In silicon 
photodiodes one uses a thin highly doped contact layer to minimize the absorption. By using a 
contact layer with a wider band gap (also called the window layer) absorption in the contact layer 
can be eliminated (except for a small fraction due to free carrier absorption) which improves the 
responsivity. 
Electron-hole pairs which are absorbed in the quasi-neutral regions can still contribute to the 
photocurrent provided they are generated within a diffusion length of the depletion region. 



 

However the collection of carriers due to diffusion is relatively inefficient and leads to long tails 
in the transient response. It therefore should be avoided.  
Because of the large difference in refractive index between air and most semiconductors there is 
a substantial reflection at the surface. The reflection at normal incidence between two materials 
with refractive index n1 and n2 is given by: 
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For instance the reflection between air and GaAs (n = 3.5) is 31 %. 
By coating the semiconductor surface with a dielectric material (anti-reflection coating) of 
appropriate thickness this reflection can largely be eliminated. 
The reflectivity for an arbitrary angle of incidence is given by: 
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with itt nn θθ sinsin2 =  
with θi the incident angle, and θt the transmitted angle. RTE is the reflectivity if the 
electric field is parallel to the surface while RTM is the reflectivity if the magnetic field is 
parallel to the surface. The reflectivity as a function of θi, for an air-GaAs interface is 
shown in the figure below: 
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Figure 4.7.2 Reflectivity versus incident angle for a transverse electric, RTE, and transverse 

magnetic, RTM, incident field. 



 

4.7.1.1.Responsivity of a P-i-N photodiode 

4.7.1.1.1. Generation of electron hole pairs 

The generation of electron-hole pairs in a semiconductor is directly related to the absorption of 
light since every absorbed photon generates one electron-hole pair. The optical generation rate 
gop is given by1: 
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(4.7.4) 

where A is the illuminated area of the photodiode, Popt is the incident optical power, α is the 
absorption coefficient and hν is the photon energy. Note that the optical power is position 
dependent and obtained by solving: 
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The resulting generation rate must be added to the continuity equation and solved throughout the 
photodiode which results in the photocurrent. 

4.7.1.1.2. Photocurrent due to absorption in the depletion region 

Assuming that all the generated electron-hole pairs contribute to the photocurrent, the 
photocurrent is simply the integral of the generation rate over the depletion region: 
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where d is the thickness of the undoped region. The minus sign is due to the convention of the 
positive x direction shown on figure 5.1 . For a P-i-N diode with heavily doped n and p-type 
region and a transparent top contact layer, this integral reduces to: 
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where Pin is the incident optical power and R is the reflection at the surface. 

4.7.1.1.3. Photocurrent due to absorption in the quasi-neutral region 

To find the photocurrent due to absorption in the quasi-neutral region we first have to solve the 
diffusion equation in the presence of light. For holes in the n-type contact layer this means 
solving: 
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1see section 1.3 



 

Where the electron-hole pair generation gop depends on position. Assuming the n-type contact 
layer to have the same energy bandgap as the absorption layer, the optical generation rate equals: 
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and the photocurrent due to holes originating in the n-type contact layer equals: 
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The first term is due to light whereas the second term is the due to thermal generation of 
electron-hole pairs. This derivation assumes that the thickness of the n-type contact layer is much 
larger than the diffusion length. 

4.7.1.1.4. Absorption in the p-contact region 

Even though the contact layer was designed so that no light absorbs in this layer, it will become 
absorbing at shorter wavelengths.  Assuming a worst-case scenario where all the electron-hole 
pairs, which are generated in the p-type contact layer, recombine without contributing to the 
photocurrent.  The optical power incident on the undoped region is reduced by exp(- 
α*wp

’) where wp
’ is the width of the quasi-neutral p region and α* is the absorption coefficient in 

that region. 

4.7.1.1.5. Total responsivity: 

Combining all the above effects the total responsivity of the detector equals: (ignoring the dark 
current) 
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Note that α*, α and hν are wavelength dependent and given by: 
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The quantum efficiency then equals: 
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4.7.1.1.6. Dark current of the Photodiode: 

The dark current of a p-n diode including the ideal diode current, as well as 
recombination/generation in the depletion region is given by: 
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Under reverse bias conditions this expression reduces to: 
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The ideal diode current due to recombination of electrons has been ignored since np0 = ni,p
2/Na is 

much smaller than pn0 because the p-layer has a larger band gap.  In the undoped region one 
expects the trap-assisted generation to be much larger than bimolecular generation. Which 
further reduces the current to: 
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The trap-assisted recombination tends to dominate for most practical diodes. For photodiodes 
made with a very pure intrinsic region and/or a narrow band gap, one finds that the dark current 
depends on thermal generation. 

4.7.1.2.Noise in a photodiode 

4.7.1.2.1. Shot noise sensitivity 

Noise in a p-i-n photodiode is primarily due to shot noise; the random nature of the generation of 
carriers in the photodiode yields also a random current fluctuation. The square of the current 
fluctuations equals: 
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where Ij are the currents due to different recombination/generation mechanisms and ∆f is the 
frequency range. Including the ideal diode current, Shockley-Hall-Read and band-to-band 
recombination as well as generation due to light one obtains: 
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The minimum detectable input power depends on the actual signal and the required signal to 
noise ration. As a first approximation we now calculate the minimum detectable power as the 



 

power, which generates a current equal to the RMS noise current. (A more detailed model for 
sinusoidal modulated signals is described in section d) 
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The minimal noise current is obtained at Va = 0 for which the noise current and minimal power 
equal: 
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4.7.1.2.2. Equivalence of shot noise and Johnson noise 

The following derivation nicely illustrates that shot noise and Johnson noise are not two 
independent noise mechanisms. In fact we will show that both are the same for the special case 
of an ideal p-n diode under zero bias. At zero bias the photodetector is also a resistor.  Therefore 
the expression for Johnson noise should apply:   
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The resistance of a photodiode with )1e( / −= ta VV
sII   is   
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or for zero bias the Johnson noise current is given by: 
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whereas the shot noise current at Va = 0 is given by: 
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where we added the noise due to the diffusion current to the noise due to the (constant) drift 
current, since both noise mechanisms do not cancel each other as do the corresponding currents. 
Equations (4.7.24) and (4.7.25) are identical, thereby proving the equivalence between shot noise 
and Johnson noise in a photodiode at zero voltage. Note that this relation does not apply if the 
current is dominated by trap-assisted recombination/generation in the depletion region because 
of the non-equilibrium nature of the recombination/generation process. 



 
4.7.1.2.3. Examples. 

For a diode current of 1µA, a bandwidth ∆f of 1 GHz and a responsivity, R, of 0.2A/W, the noise 

current >< 2i  equals 18 nA, corresponding to a minimum detectable power of 89 nW or -40.5 
dBm. Johnson noise in a 50 Ω resistor, over a bandwidth ∆f of 1 GHz, yields a noise current of 
0.58 µA and Pmin = 2.9 µW or -25.4 dBm.    
If the diode current is only due to the optical power, or I = PminR, then 
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The sensitivity for a given bandwidth can also be expressed as a number of photons per bit: 
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For instance, for a minimal power of -30 dBm and a bandwidth of 1 GHz, this sensitivity 
corresponds to 4400 photons per bit. 

4.7.1.2.4. Noise equivalent Power and ac noise analysis 

Assume the optical power with average value P0 is amplitude modulated with modulation depth, 
m, as described by: 
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The ac current (RMS value) in the photodiode with responsivity, R, is then 
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which yields as an equivalent circuit of the photodiode a current source >< 2i  in parallel with 

a resistance, Req, where Req is the equivalent resistance across the diode and >< 2i   is the noise 
source, which is given by: 
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where the equivalent dark current also includes the Johnson noise of the resistor, Req: 
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The signal to noise ratio is then given by: 
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from the above equation one can find the required optical power P0 needed to obtain a given 
signal to noise ratio, S/N: 
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The noise equivalent power is now defined as the ac (RMS) optical power needed to obtain a 
signal-to-noise ratio of one for a bandwidth of 1 Hz or: 
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4.7.1.2.5. Optical power limited NEP 

for 
q

mIeq
2

 << 1 it is the average optical power rather than the dark current which limits the 

NEP. 
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The noise equivalent power can also be used to calculate the ac optical power if the bandwidth 
differs from 1Hz from: 
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where the noise equivalent power has units of W/Hz. However, the optical power is mostly 
limited by the dark current for which the expressions are derived below. 

4.7.1.2.6. Dark current limited NEP 

for  
q

mIeq
2

  >> 1  it is the dark current (including the Johnson noise of the resistor) which limits 

the NEP 
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Again one can use the noise equivalent power to calculate the minimum detectable power for a 
given bandwidth: 
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where the noise equivalent power has now units of HzW/ . 



 

4.7.1.3.Switching of a P-i-n photodiode 
A rigorous solution for the switching time of a P-i-n photodiode starts from the continuity 
equations for electrons and holes: 
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with 
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and the electric field is obtained from Gauss's law for a P-i-n diode with generation only at t = 0 
and neglecting recombination and diffusion these equations reduce to: 
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Where the electric field, E, is assumed to be constant and equals: 
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replacing  n(x,t)  by  n*(x - vnt)  and  p(x,t)  by  p*(x - vpt)  yields  vn = -µnE and  vp = µpE 
the carrier distributions therefore equal those at t = 0 but displaced by a distance µnEt for holes 
and -µpEt for electrons.  The total current due to the moving charge is a displacement current 
which is given by: 
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for t < |d/vn|  and  t < |d/vp| . For a uniform carrier generation this reduces to: 
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In the special case where vn  = vp  (µn = µp) the full width half maximum (FWHM) of the impulse 
response is: 
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(4.7.50) 

Note:  Rule of thumb to convert a pulse response to –3 dB frequency: 
Assuming the photodiode response to be linear, the FWHM can be related to the half-power 
frequency by calculating the fourier transform.  For a gaussian pulse response (which also yields 
a gaussian frequency response) this relation becomes 
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Since the bandwidth depends on the transit time, which in turn depends on the depletion layer 
width, there is a tradeoff between the bandwidth and the quantum efficiency. 

4.7.1.3.1. Solution in the presence of drift, diffusion and recombination 

If we simplify the SHR recombination rate to n/τ and p/τ and assume a constant electric field and 
initial condition n(x,0) = n0 , the electron concentration can be obtained by solving the continuity 
equation, yielding: 
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where 
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For this analysis we solved the continuity equation with n(0,t) = n(L,t) = 0 implying infinite 
recombination at the edges of the depletion region. The initial carrier concentration n0 can also 
be related to the total energy which is absorbed in the diode at time t = 0: 
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and the photo current (calculated as described above) is 
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with Ck given by 
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The above equations can be used to calculate the impulse response of a photodiode. Each 
equation must be applied to electrons as well as holes since both are generated within the diode. 
Typically electrons and holes have a different mobility, which results in two regions with 
different slopes. This effect is clearly visible in GaAs diodes as illustrated with the figure below. 
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Figure 4.7.3 Photocurrent calculated using equation [5.1.50] for a GaAs diode with φi -Va = 

0.3 V, Epulse = 10-13 J, Eph = 2 eV and d = 2µm. 

4.7.1.3.2. Harmonic solution2 
Whereas section b) solves the pulse response one can also solve the frequency response when 
illuminating with a photon flux Φ1ejωt .  (If the photodiode has a linear response, both methods 
should be equivalent.)  To simplify the derivation we assume that the total flux (in photons/s 
cm2) is absorbed at x = 0. This is for instance the case for a p-i-n diode with a quantum well at 
the interface between the p-type and intrinsic region and which is illuminated with long 
wavelength photons, which only absorb in the quantum well. The carriers moving through the 
depletion region cause a conduction current, Jcond(x): 

                                                 
2See also S.M. Sze "Physics of Semiconductor Devices", Wiley and Sons, second edition p. 756 
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where vn = µn E is a constant velocity. 
From Ampere's law applied to a homogeneous medium: 
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we can find the total  current as a sum of the conduction and the displacement current: 
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if we assume that the electric field is independent of time, the total photo current equals 
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from the figure one finds the –3 dB frequency to be: 
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4.7.1.3.3. Time response due to carriers generated in the Q.N. region 

For an infinitely long quasi-neutral (Q.N.) region under stationary conditions, the generated 
carriers are only collected if they are generated within a diffusion length of the depletion region.  
The average time to diffuse over one diffusion length is the recombination time, τ.  Postulating a 
simple exponential time response we find that the current equals 

 τ/)0()( t
phph eItI −=  (4.7.63) 

Because of the relatively long carrier lifetime in fast photodiodes, carriers absorbed in the quasi-
neutral region produce a long "tail" in the pulse response and should be avoided. 

4.7.1.3.4. Dynamic range of a photodiode 

The dynamic range is the ratio of the maximal optical power which can be detected to the 
minimal optical power.  In most applications the dynamic range implies that the response is 
linear as well. The saturation current, defined as the maximum current which can flow through 
the external circuit, equals: 
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which yields an optimistic upper limit for the optical power: 
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and the dynamic range is defined as the ratio of the maximum to the minimum power: 
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Using [5.1.17] for the minimum power the dynamic range becomes independent of the 
responsivity and equals: 

 

><

−
=

2
..

iR

V
RD aiφ

 
(4.7.67) 

for example if the equivalent noise current equals Ieq = 1µA, the bandwidth ∆f = 1 GHz, the 
impedance R = 50 Ω, and the applied voltage Va = 0, then the dynamic range equals 1.35 × 106   
(for φi = 1.2 V) or 61.3 dB. 

4.7.2. Photoconductors 
Photoconductors consist of a piece of semiconductor with two ohmic contacts. Under 
illumination the conductance of the semiconductor changes with the intensity of the incident 
optical power. The current is mainly due to majority carriers since they are free to flow across 
the ohmic contacts. However the majority carrier current depends on the presence of the minority 
carriers. The minority carriers pile up at one of the contacts, where they cause additional 
injection of majority carriers until the minority carriers recombine. This effect can cause large 
"photoconductive" gain, which depends primarily of the ratio of the minority carrier lifetime to 
the majority carrier transit time. Long carrier life times therefore cause large gain, but also a slow 
response time. The gain bandwidth product of the photoconductor is almost independent of the 
minority carrier lifetime and depends only on the majority carrier transit time.   
Consider now a photoconductor with length, L, width W and thickness d, which is illuminated a 
total power, P. The optical power, P(x), in the material decreases with distance due to absorption 
and is described by: 
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The optical power causes a generation of electrons and holes in the material. Solving the 
diffusion equation [5.1.7] for the steady state case and in the absence of a current density 
gradient one obtains for the excess carrier densities: 
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Where it was assumed that the majority carriers, which primarily contribute to the photocurrent 
are injected from the contacts as long as the minority carriers are present. The photo current due 
to the majority carriers (here assumed to be n-type) is: 
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where tr is the majority carrier transit time given by: 
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The equation above also includes the power reduction due to the reflection at the surface of the 
semiconductor. The normalized photocurrent is plotted below as a function of the normalized 
layer thickness for different ratio of lifetime to transit time. 
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Figure 4.7.4 Normalized current 
q

h
P
I

in

n ιν
 versus normalized thickness αd as a function of the 

ratio of the minority carrier lifetime to the majority carrier transit time, τ/tr, 
ranging from 0.01 (bottom curve) to 100 (top curve) 

Example: A silicon photoconductor with µn = 1400 cm2/V-s and τ = 1 µs has a length of 10 
micron and width of 100 micron. For an applied voltage of 5 Volt the transit time is 143 ps 
yielding a photoconductive gain of 7000. For a normalized distance αd = 1 and incident power of 
1 mW the photocurrent equals 1.548 mA. A reflectivity of 30 % was assumed at the air/silicon 
interface.  
High photoconductive gain is typically obtained for materials with a long minority carrier 
lifetime, τ, high mobility, µn, and above all a photoconductor with a short distance, L, between 
the electrodes.  



 

4.7.3. Metal-Semiconductor-Metal (MSM) Photodetectors 

4.7.3.1.Responsivity of an MSM detector 
The responsivity for a detector with thickness, d, surface reflectivity, R, finger spacing, L, and 
finger width, w, is given by: 
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Where α is the absorption length and the reflectivity, R, of the air-semiconductor interface as a 
function of the incident angle is given by: 
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with itt nn θθ sinsin2 =  
with θi the incident angle, and θt the transmitted angle. RTE is the reflectivity if the 
electric field is parallel to the surface while RTM is the reflectivity if the magnetic field is 
parallel to the surface. The reflectivity as a function of θi, for an air-GaAs interface is 
shown in the figure below: 
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Figure 4.7.5 Angular dependencies of the reflectivity of an Air-to-GaAs interface 

Including drift, diffusion and recombination the responsivity becomes: 
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with  
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The above expression can be used to calculate the current as a function of the applied voltage. 
An example is shown below. Both the electron and the hole current are plotted as is the total 



 

current. The difference between the electron and hole current is due to the recombination of 
carriers. For large voltages all carriers generated are swept out yielding a saturation of the 
photocurrent with applied voltage, whereas for small voltages around zero diffusion is found to 
be the dominant mechanism. Around zero volts it is the ratio of the transit time to the diffusion 
time, which determines the current. In the absence of velocity saturation both times depend on 
the carrier mobility so that the ratio becomes independent of the carrier mobility. This causes the 
I-V curves to be identical for electrons and holes in the absence of recombination.  
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Figure 4.7.6 Current - Voltage characteristic of an MSM photodiode. 

4.7.3.2.Pulse response of an MSM detector  
The pulse response can be calculated by solving the time dependent continuity equation, 
yielding: 

 
∑ −−− +−

+
−

=
k

t
p

t
nk

da
ph

kpknC
wL

LR
L

qAV
tI ]ee[]e1[

)1(
)(

ξξα µµ  
(4.7.81) 

with Ck given by: 
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where 
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Figure 4.7.7 Transient behavior (Pulse energy, Epulse = 0.1 pJ, Va = 0.3V) 

4.7.3.3.Equivalent circuit of an MSM detector. 
The equivalent circuit of the diode consists of the diode capacitance, Cp, a parallel resistance, Rp, 
obtained from the slope of the I-V characteristics at the operating voltage in parallel to the 
photocurrent, Iph, which is obtained by calculating the convolution of the impulse response and 
the optical input signal. A parasitic series inductance, LB, primarily due to the bond wire, and a 
series resistance, Rs, are added to complete the equivalent circuit. 
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Figure 4.7.8 Equivalent circuit of an MSM detector 



4.8. Solar cells  
Solar cells are p-i-n photodiodes which are operated under forward bias.  The intention is to 
convert the incoming optical power into electrical power with maximum efficiency 

4.8.1. The solar spectrum 

The solar spectrum is shown in Figure 4.8.1.  The spectrum as seen from a satellite is referred to 
as the AM0 spectrum (where AM stands for air mass) and closely fits the spectrum of a black 
body at 5800 K.  The total power density is 1353 W/m2. 
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Figure 4.8.1 The solar spectrum under of AM1 conditions 

The solar spectrum as observed on earth is modified due to absorption in the atmosphere.  For 
AM1 (normal incidence) the power density is reduced to 925 W/cm2 whereas for AM1.5 (45° 
above the horizon) the power density is 844 W/m2.  The irregularities in the spectrum are due to 
the absorption, which occurs at specific photon energies. 
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Figure 4.8.2 Cumulative Photocurrent versus Photon Energy under AM1 conditions 

4.8.2. Calculation of maximum power 

The current through the solar cell can be written as: 
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where Is is the saturation current of the diode and Iph is the photo current (which is assumed to be 
independent of the applied voltage Va). This expression only includes the ideal diode current of 
the diode, thereby ignoring recombination in the depletion region. The short circuit current, Isc, is 
the current at zero voltage equals Isc = -Iph and the open circuit voltage equals: 
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The total power is then: 
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The maximum power occurs at 0=
adV

dP
. The voltage and current corresponding to the maximal 

power point are Vm and Im. 
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This equation can be rewritten as:  
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Using equation [5.3.2] for the open circuit voltage Voc. The most accurate solution is obtained by 
solving this transcendental equation and substituting into equations [5.3.1] and [5.3.3]. The 
maximum power can be approximated by: 
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or   
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where     
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The energy Em is the energy of one photon, which is converted to electrical energy at the 
maximum power point. The total photo current is calculated as (for a given bandgap Eg) 

 qEJ gph =)(  (4.8.10) 

and the efficiency equals: 
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4.8.3. Conversion efficiency for monochromatic illumination 

This first order model provides an analytic approximation for the efficiency of a solar cell under 
monochromatic illumination. Starting from the result of the previous paragraph: 
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We replace Voc by the largest possible open circuit voltage, 
q

Eg ,  yielding: 
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and 
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for  a GaAs solar cell at 300K, 
q

Eg  = 55 so that the efficiency equals η = 85% 

4.8.4. Effect of diffusion and recombination in a solar cell 

4.8.4.1.Photo current versus voltage 

The photo current is obtained by first solving the continuity equation for electrons 
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as well as a similar equation for holes.  The photo current is obtained from 
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Once this photocurrent is obtained the total current is obtained from: 
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To obtain the corresponding maximum power one has to repeat the derivation of section 5.3.2. 



 

4.8.5. Spectral response 

Because of the wavelength dependence of the absorption coefficient one expects the shorter 
wavelengths to be absorbed closer to the surface while the longer wavelengths are absorbed deep 
in the bulk.  Surface recombination will therefore be more important for short wavelengths while 
recombination in the quasi-neutral region is more important for long wavelengths. 

4.8.6. Influence of the series resistance 
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Repeating the derivation of section 5.3.2 one can shown that the maximum power condition is 
given by the following set of transcendental equations: 
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while the maximum external power equals: Pm,ext = Im (Vm + Im Rs) 



4.9. LEDs  
A light emitting diode consists of a p-n diode, which is designed so that radiative recombination 
dominates.  Homojunction p-n diodes, heterojunction p-i-n diodes where the intrinsic layer has a 
smaller bandgap (this structure is also referred to as a double-hetero-structure) and p-n diodes 
with a quantum well in the middle are all used for LEDs.  We will only consider the p-n diode 
with a quantum well because the analytical analysis is more straightforward and also since this 
structure is used often in LEDs and even more frequently in laser diodes. 

4.9.1. Rate equations 

The LED rate equations are derived from the continuity equations as applied to the p-n diode: 
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where G is the generation rate per unit volume and R is the recombination rate per unit volume.  
This equation is now simplified by integrating in the direction perpendicular to the plane of the 
junction.  We separate the integral in two parts: one for the quantum well, one for the rest of the 
structure. 
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where k refers to the quantum number in the well. If we ignore the carriers everywhere except in 
the quantum well and assume that only the first quantum level is populated with electrons/holes 
and that the density of electrons equals the density of holes, we obtain: 
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where the last term is added to include reabsorption of photons.  The rate equation for the photon 
density including loss of photons due to emission (as described with the photon lifetime τph) and 
absorption (as described with the photon absorption time τab) equals: 
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The corresponding voltage across the diode equals: 
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Where the modified effective hole density of states in the quantum well, Nv*, accounts for the 
occupation of multiple hole levels as described in section 4.4.3.d. The optical output power is 
given by the number of photons, which leave the semiconductor per unit time, multiplied with 
the photon energy: 
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where A is the active area of the device, R is the reflectivity at the surface and Θc is the critical 
angle for total internal reflection1 
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The reflectivity and critical angle for a GaAs Air interface are 30 % and 16º respectively. 

4.9.2. DC solution to the rate equations 

The time independent solution in the absence of reabsorption, as indicated with the subscript 0, is 
obtained from:   
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where B is the bimolecular recombination constant. Solving these equations yields: 
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for small currents this reduces to:  (J << q/16τnr
2B) 
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which indicates that SHR recombination dominates, whereas for large currents one finds:  (J >> 
q/16τnr

2B) 
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The DC optical output power is: 

                                                 

1See Appendix A.7 for the derivation of the reflectivity at dielectric interfaces. 
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This expression explains the poor efficiency of an LED. Even if no non-radiative recombination 
occurs in the active region of the LED, most photons are confined to the semiconductor because 
of the small critical angle. Typically only a few percent of the photons generated escape the 
semiconductor. This problem is most severe for planar surface emitting LEDs. Better efficiencies 
have been obtained for edge emitting, "superluminescent" LEDs (where stimulated emission 
provides a larger fraction of photons which can escape the semiconductor) and LEDs with 
curved surfaces. 

4.9.3. AC solution to the rate equations 

Assume that all variables can be written as a sum of a time independent term and a time 
dependent term (note that n(t) is still a density per unit area): 
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The rate equations for the time dependent terms the given by: 
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Assuming the AC current of the form j1 = j1,0ejωt and ignoring the higher order terms we can 
obtain a harmonic solution of the form: 

 tjnn ωe0,11 =  tjss ωe0,11 =  tjpp ωe0,11 =  (4.9.19) 

yielding: 
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where τeff depends on N0 as: 
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and the AC responsivity is: 
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at ω = 0 this also yields the differential quantum efficiency (D.Q.E) 
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4.9.4. Equivalent circuit of an LED 

The equivalent circuit of an LED consists of the p-n diode current source parallel to the diode 
capacitance and in series with a linear series resistance, R. The capacitance, C, is obtained from: 
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or 
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with   
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for  N0 << Nc and/or Nv,  m = 2 while for N0 >> Nc and/or Nv, 
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4.10. Laser diodes  

4.10.1. Emission, Absorption and modal gain 

The analysis of a semiconductor laser diode requires a detailed knowledge of the modal gain, 
which quantifies the amplification of light confined to the lasing mode. To find the modal gain, 
one starts from the notion that the emission as well as absorption of photons, requires the 
conservation of energy and momentum of all particles involved in the process. The conservation 
of energy requires that the photon energy equals the difference between the electron and hole 
energy: 
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The conservation of momentum requires that the electron momentum equals that of the empty 
state it occupies in the valence band plus the momentum of the photon: 

 phpn kkk +=  (4.10.4) 

The photon momentum is much smaller than that of the electron and hole, so that the electron 
and hole momentum are approximately equal. As a result we can replace kn and kp by a single 
variable k. Equations (4.10.1), (4.10.2), (4.10.3) and (4.10.4) then result in: 
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where  Eg,qw1 is the energy between the lowest electron energy in the conduction band and the 
lowest hole energy in the valence band. mr

* is the reduced effective mass given by:  

 
***

111

pnr mmm
+=  

(4.10.6) 

The electron and hole energies, En and Ep, can then be expressed as a function of the photon 
energy by: 
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The emission and absorption spectra (β(Eph) and α(Eph)) of a quantum well depend on the 
density of states and the occupancy of the relevant states in the conduction and valence band. 
Since the density of states in the conduction and valence band are constant in a quantum well, the 
emission and absorption can be expressed as a product of a maximum emission and absorption 
rate and the probability of occupancy of the conduction and valence band states, namely: 

 [ ])(1)()( max ppnnph EfEfE −= ββ  (4.10.9) 

 [ ] )()(1)( max ppnnph EfEfE −= αα  (4.10.10) 

Stimulated emission occurs if an incoming photon triggers the emission of another photon.  The 
net gain in the semiconductor is the stimulated emission minus the absorption. The maximum 
stimulated emission equals the maximum absorption since the initial and final states are simply 
reversed so that the transition rates as calculated based on the matrix elements are the same. The 
net gain is then given by: 

 )]()([)()()( max ppnnphphph EfEfgEEEg −=−= αβ  (4.10.11) 

where the maximum stimulated emission and the maximum absorption were replaced by the 
maximum gain, gmax. The normalized gain spectrum is shown in Figure 4.10.1 for different 
values of the carrier density. The two staircase curves indicate the maximum possible gain and 
the maximum possible absorption in the quantum well.  
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Figure 4.10.1 Normalized gain versus photon energy of a 10nm GaAs quantum well for a 
carrier density of 1012 (lower curve), 3 x 1012, 5 x 1012, 7 x 1012 and 9 x 1012 



 

(upper curve) cm-2. 

The theoretical gain curve of Figure 4.10.1 exhibits a sharp discontinuity at Eph = Eg,qw1. The gain 
can also be expressed as a function of the carrier densities, N and P, when assuming that only 
one electron and one hole level is occupied: 
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The peak value at Eph = Eg,qw1, assuming quasi-neutrality (N = P) is then: 
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max1, e1)( −− −−==  (4.10.13) 

The maximum gain can be obtained from the absorption of light in bulk material since the 
wavefunction of a free electron in bulk material is the same as the wavefunction in an infinite 
stack of infinitely deep quantum wells, provided the barriers are infinitely thin and placed at the 
nodes of the bulk wavefunction. This means that for such a set of quantum wells the absorption 
would be the same as in bulk provided that the density of states is also the same. This is the case 
for Eph = Eqw1 so that the maximum gain per unit length is given by: 
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where Lx is the width of the quantum well. This expression shows that the total gain of a single 
quantum well due to a single quantized level is independent of the width1. The corresponding 
value for GaAs quantum wells is 0.006 or 0.6%. 

Experimental gain curves do not show the discontinuity at Eph = Eqw1 due to inter-carrier 
scattering which limits the lifetime of carriers in a specific state. The line width of a single set of 
electron and hole levels widens as a function of the scattering time, which disturbs the phase of 
the atomic oscillator. Therefore, an approximation to the actual gain curve can be obtained by 
convoluting (6.2.10) with a Lorenzian line shape function: 

                                                 

1There is a weak dependence of m* on the width of the well. 
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with 
τπ

ν
11

=∆  , where τ is the carrier collision time in the quantum well. The original and 

convoluted gain curves are shown in Figure 4.10.2. 
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Figure 4.10.2 Original and convoluted gain spectrum of a 10 nm GaAs quantum well with a 
carrier density of 3 x 1012 cm-2 and a collision time of 0.09 ps. 

For lasers with long cavities such as edge-emitter lasers, one finds that the longitudinal modes 
are closely spaced so that lasing will occur at or close to the peak of the gain spectrum. It is 
therefore of interest to find an expression for the peak gain as a function of the carrier density2. A 
numeric solution is shown in Figure 4.10.3 where the peak gain is normalized to the maximum 
value of the first quantized energy level. Initially, the gain peak is linear with carrier 
concentration but saturates because of the constant density of states, until the gain peak 
associated with the second quantized level takes over. Since the peak gain will be relevant for 
lasing we will consider it more closely. As a first order approximation we will set the peak gain 

                                                 

2Experimental values for the gain versus current density can be found in: G. Hunziker, W. Knop and C. Harder, 
"Gain Measurements on One, Two and Three Strained GaInP Quantum Well Laser Diodes", IEEE Trans. Quantum 
Electr., Vol. 30, p 2235-2238, 1994. 



 

g(N) equal to: 

 )()( trNNNg −= l  (4.10.16) 

where l is the differential gain coefficient. This approximation is only valid close to N = Ntr, and 
even more so for quantum well lasers as opposed to double-hetero-structure lasers. An 
approximate value for the differential gain coefficient of a quantum well can be calculated from 
(6.2.13) yielding: 
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Figure 4.10.3 Calculated gain versus carrier density for a 10 nm GaAs quantum well (solid line) 
compared to equation [6.2.13] 

From Figure 4.10.3 one finds that the material becomes "transparent" when the gain equals zero 
or: 

 )]())(1())(1)(([0)( max ppnnppnntr EFEFEFEFgNg −−−==  (4.10.18) 

which can be solved yielding: 
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The transparency current density is defined as the minimal current density for which the material 
becomes transparent for any photon energy larger than or equal to Eg,qw1. This means that the 

transparency condition is fulfilled for 
q

E
V qwg

a
1.= . The corresponding carrier density is referred 

to as Ntr, the transparency carrier density. The transparency carrier density can be obtained from 
by setting gmax = 0, yielding 

 )1ln( / vtr NN
ctr eNN −−=  (4.10.20) 

This expression can be solved by iteration for Nv > Nc. The solution is shown in Figure 4.10.4.  
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Figure 4.10.4 Normalized transparency carrier density versus the ratio of the effective density of 
states in the valence and conduction band. 

To include multiple hole levels one simply replaces Nv by Nv* as described in section 4.4.3.d. 

4.10.2. Principle of operation of a laser diode 

A laser diode consists of a cavity, defined as the region between two mirrors with reflectivity R1 
and R2, and a gain medium, in our case a quantum well. The optical mode originates in 
spontaneous emission, which is confined to the cavity by the waveguide. This optical mode is 
amplified by the gain medium and partially reflected by the mirrors. The modal gain depends on 
the gain of the medium, multiplied with the overlap between the gain medium and the optical 
mode which we call the confinement factor,  Γ, or: 

 Γ= )(gain modal Ng  (4.10.21) 



 

This confinement factor will be calculated in section 6.2.5. Lasing occurs when for light 
traveling round trip through the cavity the optical gain equals the losses.  For a laser with modal 
gain g(N)Γ  and wave guide loss α  this condition implies: 

 1]))((2exp[21 =− LNgRR α  (4.10.22) 

where L  is the length of the cavity.  The distributed loss of the mirrors is therefore: 
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4.10.3. Longitudinal modes in the laser cavity. 

Longitudinal modes in the laser cavity correspond to standing waves between the mirrors. If we 
assume total reflection at the mirrors this wave contains N/2 periods where N is an integer.  For a 
given wave length λ and a corresponding effective index, neff, this yields: 
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Because of dispersion in the waveguide, a second order model should also include the 
wavelength dependence of the effective index. Ignoring dispersion we find the difference in 
wavelength between two adjacent longitudinal modes from: 
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Longer cavities therefore have closer spaced longitudinal modes.  An edge emitting (long) cavity 
with length of 300 µm, neff = 3.3, and λ = 0.8 µm has a wavelength spacing ∆λ of 0.32 nm while 
a surface emitting (short) cavity of 3 µm has a wavelength spacing of only 32 nm. These 
wavelength differences can be converted to energy differences using: 
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so that 0.32 nm corresponds to -6.2 meV and 32 nm to 620 meV. A typical width of the optical 
gain spectrum is 60 meV, so that an edge emitter biased below threshold can easily contain 10 
longitudinal modes, while for a surface emitter the cavity must be carefully designed so that the 



    

longitudinal mode overlaps with the gain spectrum. 

A more detailed analysis of a Fabry-Perot etalon is described in A.7.3, providing the reflectivity, 
absorption and transmission as a function of photon energy. 

4.10.4. Waveguide modes3 

The optical modes in the waveguide determine the effective index used to calculate the 
longitudinal modes as well as the confinement factor which affects the modal gain. Starting from 
Maxwell's equations in the absence of sources: 
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and assuming a propagating wave in the z-direction and no variation in the y-direction we obtain 
the following one-dimensional reduced wave equation for a time harmonic field, E = Ex ejωt, of 
a TM mode: 
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with  the propagation constant given by effn
c
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β = ,  and 
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= ,  this equation becomes: 
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this equation is very similar to the Schrödinger equation. In fact previous solutions for quantum 
wells can be used to solve Maxwell's equation by setting the potential V(x) equal to  -n2 (x) and 

replacing 
2

2

c

ω
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h

m
. The energy eigenvalues, El, can then be interpreted as minus the 

effective indices of the modes: -n2
eff,l. One particular waveguide of interest is a slab waveguide 

consisting of a piece of high refractive index material, n1, with thickness d, between two 
infinitely wide cladding layers consisting of lower refractive index material, n2. From Appendix 
A.1.3. one finds that only one mode exists for: 
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3A detailed description of modes in dielectric waveguides can be found in Marcuse, "dielectric waveguides", 2nd ed. 
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For  λ = 0.8 µm, n1 = 3.5 and n2 = 3.3  one finds d ≤ 0.34 µm. 

4.10.5. The confinement factor 

The confinement factor is defined as the ratio of the modal gain to the gain in the active medium 
at the wavelength of interest: 
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for a quantum well with width Lx, the confinement factor reduces to 

 

∫

∫
∞

∞−

−
=Γ

dx

dx

x

L

L
x

x

x

2

2/

2/

2

E

E

 

(4.10.36) 

≅ 0.02...0.04 for a typical GaAs single quantum well laser  

4.10.6. The rate equations for a laser diode. 

Rate equations for each longitudinal mode, λ, with photon density Sλ and carrier density Nλ 
which couple into this mode are: 
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Rather than using this set of differential equations for all waveguide modes, we will only 
consider one mode with photon density S, whose photon energy is closest to the gain peak.  The 
intensity of this mode will grow faster than all others and eventually dominate. This 
simplification avoids the problem of finding the parameters and coefficients for every single 



    

mode. On the other hand it does not enable to calculate the emission spectrum of the laser diode. 
For a single longitudinal mode the rate equations reduce to: 
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4.10.6.1. DC  solution to the rate equations  

The time independent rate equations, ignoring spontaneous emission are: 
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where the photon life time is given by: 
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from which we can solve the carrier concentration while lasing: 
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which is independent of the photon density4. The threshold current density is obtained when S0 = 
0 
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The photon density above lasing threshold, and power emitted through mirror R1, are given by: 

                                                 

4a more rigorous analysis including gain saturation reveals that the carrier concentration does increase with 
increasing current, even above lasing. However this effect tends to be small in most laser diodes. 
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and the power emitted through mirror 1 is: 
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The differential efficiency of the laser diode is: 
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and the quantum efficiency is: 
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Efficient lasers are therefore obtained by reducing the waveguide losses, increasing the 
reflectivity of the back mirror, decreasing the reflectivity of the front mirror and decreasing the 
length of the cavity. Decreasing the reflectivity of the mirror also increases the threshold current 
and is therefore less desirable. Decreasing the cavity length at first decreases the threshold 
current but then rapidly increases the threshold current.  

4.10.6.2. AC solution to the rate equations  

Assuming a time-harmonic solution and ignoring higher order terms (as we did for the LED) the 
rate equations become: 
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where τeff is the same as for an LED and given by equation [6.1.19]. Using 
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replacing n1 by relating it to the small signal voltage v1 
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The equation for the small signal current, i1, can be written as 
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and 
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4.10.6.3. Small signal equivalent circuit 

Adding parasitic elements and the circuit described by the equation [6.2.48] we obtain the 
following equivalent circuit, where LB is a series inductance, primarily due to the bond wire, Rs is 
the series resistance in the device and Cp is the parallel capacitance due to the laser contact and 
bonding pad.  
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Figure 4.10.5 Small signal equivalent circuit of a laser diode 



 

The resistor, Rd, in series with the inductor, L, is due to gain saturation5 and can be obtained by 
adding a gain saturation term to equation [6.2.16]. The optical output power is proportional to the 
current through inductor L, i1,L, which is given by: 
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and the corresponding power emitted from mirror R1 
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Ignoring the parasitic elements and the gain saturation resistance, Rd, one finds the ac 
responsivity  p1/i1 as: 
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from which we find the relaxation frequency of the laser: 
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or the relaxation frequency is proportional to the square root of the DC output power. The 
amplitude at the relaxation frequency relative to that at zero frequency equals: 
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4.10.7. Threshold current of multi-quantum well laser 

Comparing threshold currents of laser diodes with identical dimensions and material parameters 
but with a different number of quantum wells, m, one finds that the threshold currents are not 
simple multiples of that of a single quantum well laser. 

                                                 

5for a more detailed equivalent circuit including gain saturation see:  Ch. S. Harder et al. High-speed GaAs/AlGaAs 
optoelectronic devices for computer applications, IBM J. Res. Develop., Vol 34, No. 4, July 1990, p. 568-584. 



    

Let us assume that the modal gain, g, is linearly proportional to the carrier concentration in the 
wells and that the carriers are equally distributed between the m wells. For m quantum wells the 
modal gain can be expressed as: 

 NmNNmg tr ∆=−= ll )(  (4.10.63) 

where l is the differential gain coefficient and Ntr is the transparency carrier density. Since the 
total modal gain is independent of the number of quantum wells we can express the carrier 
density as a function modal gain at lasing6. 
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The radiative recombination current at threshold is then 
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This means that the threshold current density is a constant plus a component, which is 
proportional to the number of quantum wells.  The last term can be ignored for m >> 1 and ∆N 
<< Ntr.  

4.10.8. Large signal switching of a laser diode 

Because of the non-linear terms in the rate equations the large signal switching of a laser diode 
exhibits some peculiar characteristics.  The response to a current step is shown in the figure 
below.  The carrier density initially increases linearly with time while the photon density remains 
very small since stimulated emission only kicks in for N > N0. 

                                                 

6We assume here that we are comparing identical lasers, which only differ by the number of quantum wells. 
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Figure 4.10.6 Optical power and normalized carrier concentration versus time when applying a 
step current at t = 0 from I = 0.95 Ith to I = 1.3 Ith. 

Both the carrier density and the photon density oscillate around their final value. The oscillation 
peaks are spaced by roughly 2π/ω0, where ω0 is the small signal relaxation frequency at the final 
current. The photon and carrier densities are out of phase as carriers are converted into photons 
due to stimulated emission, while photons are converted back into electron-hole pairs due to 
absorption.  High-speed operation is obtained by biasing close to the threshold current and 
driving the laser well above the threshold. In addition one can use the non-linear behavior to 
generate short optical pulses. By applying a current pulse, which is long enough to initiate the 
first peak in the oscillation, but short enough to avoid the second peak, one obtains an optical 
pulse which is significantly shorter that the applied current pulse. This method is referred to as 
gain switching or current spiking. 
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Chapter 4: p-n Junctions

Examples

Example 4.1  An abrupt silicon p-n junction consists of a p-type region containing 2 x 1016 cm-3 
acceptors and an n-type region containing also 1016 cm-3 acceptors in addition to 1017 cm-
3 donors. 

Example 4.2  An abrupt silicon (nI = 1010 cm-3) p-n junction consists of a p-type region containing 1016 
cm-3 acceptors and an n-type region containing 5 x 1016 cm-3 donors. 

a.  Calculate the built-in potential of this p-n junction.
b.  Calculate the total width of the depletion region if the applied voltage Va equals 0, 

0.5 and -2.5 V.
c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V.
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 

0.5 and -2.5 V.

Example 4.3  Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016 cm-3. Calculate the 
junction capacitance at zero bias. The diode area equals 10-4 cm2. Repeat the problem 
while treating the diode as a one-sided diode and calculate the relative error.

Example 4.4  An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 
0.6 V. Calculate the ideal diode current assuming that the n-type region is much smaller 
than the diffusion length with wn' = 1 µm and assuming a "long" p-type region. Use µn = 
1000 cm2/V-s and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the diode 
area is 100 µm by 100 µm. 

Example 4.5  a.  Calculate the diffusion capacitance of the diode described in Example 4.4 at zero 
bias. Use µn= 1000 cm2/V-s, µp = 300 cm2/V-s, wp' = 1 µm and wn' = 1 mm. The 
minority carrier lifetime equals 0.1 ms.

b.  For the same diode, find the voltage for which the junction capacitance equals the 
diffusion capacitance.

Example 4.6  A 1 cm2 silicon solar cell has a saturation current of 10-12 A and is illuminated with sunlight 
yielding a short-circuit photocurrent of 25 mA. Calculate the solar cell efficiency and fill 
factor.
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Example 4.1 An abrupt silicon p-n junction consists of a p-type region
containing 2 x 1016 cm-3 acceptors and an n-type region
containing also 1016 cm-3 acceptors in addition to 1017 cm-3

donors.
a. Calculate the thermal equilibrium density of electrons

and holes in the p-type region as well as both densities in
the n-type region.

b. Calculate the built-in potential of the p-n junction.
c. Calculate the built-in potential of the p-n junction at 400

K.
Solution a. The thermal equilibrium densities are:

In the p-type region:
p = Na = 2 x 1016 cm-3

n = ni
2/p = 1020/2 x 1016 = 5 x 103 cm-3

In the n-type region
n = Nd - Na = 9 x 1016 cm-3

p = ni
2/n = 1020/1 x 1016 = 1.11 x 103 cm-3

b. The built-in potential is obtained from

2ln
i

np
ti n

np
V=φ =

20

1616

10

109102
ln0259.0

×××
= 0.79 V

c. Similarly, the built-in potential at 400 K equals

2
ln

i

np
ti n

np
V=φ =

212

1616

)1052.4(

109102
ln0345.0

×
×××

= 0.63 V

where the intrinsic carrier density at 400 K was obtained
from Example 2.4 b.



Example 4.2 An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-
type region containing 1016 cm-3 acceptors and an n-type region
containing 5 x 1016 cm-3 donors.

a. Calculate the built-in potential of this p-n junction.
b. Calculate the total width of the depletion region if the

applied voltage Va equals 0, 0.5 and -2.5 V.
c. Calculate maximum electric field in the depletion region

at 0, 0.5 and -2.5 V.
d. Calculate the potential across the depletion region in the

n-type semiconductor at 0, 0.5 and -2.5 V.
The built-in potential is calculated from:
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= 0.76 V

The depletion layer width is obtained from:
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This yields the following numeric values:

Va = 0 V Va = 0.5 V Va = -2.5 V
w 0.315 µm 0.143 µm 0.703 µm
E 40 kV/cm 18 kV/cm 89 kV/cm
φn 0.105 V 0.0216 V 0.522 V



Example 4.3 An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016

cm-3) is biased with Va = 0.6 V. Calculate the ideal diode current
assuming that the n-type region is much smaller than the
diffusion length with wn

' = 1 µm and assuming a "long" p-type
region. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The
minority carrier lifetime is 10 µs and the diode area is 100 µm
by 100 µm.
The current is calculated from:
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with
Dn = µn Vt = 1000 x 0.0258 = 25.8 cm2/V-s
DP = µP Vt = 300 x 0.0258 = 7.75 cm2/V-s

np0 = ni
2/Na = 1020/1016 = 104 cm-3

pn0 = ni
2/Nd = 1020/4 x 1016 = 2.5 x 103 cm-3

=×== −5108.25nnn DL τ 161 µm

yielding I = 40.7 µΑ
Note that the hole diffusion current occurs in the "short" n-type
region and therefore depends on the quasi-neutral width in that
region. The electron diffusion current occurs in the "long" p-type
region and therefore depends on the electron diffusion length in
that region.



Example 4.4 Consider an abrupt p-n diode with Na = 1018 cm-3 and Nd = 1016

cm-3. Calculate the junction capacitance at zero bias. The diode
area equals 10-4 cm2. Repeat the problem while treating the
diode as a one-sided diode and calculate the relative error.

Solution The built in potential of the diode equals:

2
ln

i

ad
ti

n

NN
V=φ = 0.83 V

The depletion layer width at zero bias equals:

d

is

qN
w
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= 0.33 µm

And the junction capacitance at zero bias equals:

0
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=
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s
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= 3.17 pF

Repeating the analysis while treating the diode as a one-sided
diode, one only has to consider the region with the lower doping
density so that

w = )(
2
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s
n V
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= 0.31 µm

And the junction capacitance at zero bias equals

0
0

=

=
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s
j w

C
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= 3.18 pF

The relative error equals 0.5 %, which justifies the use of the
one-sided approximation.



Example 4.5 a. Calculate the diffusion capacitance of the diode described in
Example 4.4 at zero bias. Use µn = 1000 cm2/V-s, µp = 300
cm2/V-s, wp' = 1 µm and wn' = 1 mm. The minority carrier
lifetime equals 0.1 ms.

b. For the same diode, find the voltage for which the junction
capacitance equals the diffusion capacitance.

Solution a. The diffusion capacitance at zero volts equals
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= 1.73 x 10-19 F
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Where the "short" diode expression was used for the
capacitance associated with the excess charge due to
electrons in the p-type region. The "long" diode expression
was used for the capacitance associated with the excess
charge due to holes in the n-type region.
The diffusion constants and diffusion lengths equal

Dn = µn x Vt = 25.8 cm2/s
Dp = µp x Vt = 7.75 cm2/s

ppp DL τ=

And the electron transit time in the p-type region equals

n

p
nr D
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b. The voltage at which the junction capacitance equals the
diffusion capacitance is obtained by solving
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yielding Va = 0.442 V

:



Example 4.6 A 1 cm2 silicon solar cell has a saturation current of 10-12 A and
is illuminated with sunlight yielding a short-circuit photocurrent
of 25 mA. Calculate the solar cell efficiency and fill factor.

Solution The maximum power is generated for:
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where the voltage, Vm, is the voltage corresponding to the
maximum power point. This voltage is obtained by solving the
following transcendental equation:
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Using iteration and a starting value of 0.5 V one obtains the
following successive values for Vm:

Vm = 0.5, 0.542, 0.540 V
and the efficiency equals:
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The current, Im, corresponding to the voltage, Vm, was calculated
using equation (4.6.1) and the power of the sun was assumed
100 mW/cm2. The fill factor equals:
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×
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IV
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where the open circuit voltage is calculated using equation
(4.6.1) and I = 0. The short circuit current equals the
photocurrent.
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Chapter 4: p-n Junctions

Problems  

1.  A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = -3 V. Calculate the built-
in potential, the depletion layer width and the maximum electric field of the junction.

2.  An abrupt silicon p-n junction consists of a p-type region containing 1016 cm-3 acceptors and an n-type 
region containing also 1016 cm-3 acceptors in addition to 1017 cm-3 donors. 

a.  Calculate the thermal equilibrium density of electrons and holes in the p-type region as well as 
both densities in the n-type region.

b.  Calculate the built-in potential of the p-n junction. 
c.  Calculate the built-in potential of the p-n junction at 100°C. 

3.  For a p-n junction with a built-in potential of 0.62 V 
a.  What is the potential across the depletion region at an applied voltage, Va, of 0, 0.5 and -2 Volt? 
b.  If the depletion layer is 1 micrometer at Va = 0 Volt, find the maximum electric field in the depletion 

region. 
c.  Assuming that the net doping density |Nd - Na| is the same in the n-type and p-type region of the 

diode, carefully sketch the electric field and the potential as a function of position throughout the 
depletion region. Add numeric values wherever possible.

4.  

5.  An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-type region containing 1016 cm-3 acceptors 
and an n-type region containing 5 x 1016 cm-3 donors. 

a.  Calculate the built-in potential of this p-n junction. 
b.  Calculate the total width of the depletion region if the applied voltage, Va equals 0, 0.5 and -2.5 V. 
c.  Calculate maximum electric field in the depletion region at 0, 0.5 and -2.5 V. 
d.  Calculate the potential across the depletion region in the n-type semiconductor at 0, 0.5 and -2.5 

V. 

6.  Consider an abrupt p-n diode in thermal equilibrium with as many donors in the n-type region as 
acceptors in the p-type region and a maximum electric field of -13 kV/cm and a total depletion layer width 
of 1 µm. (assume εs/ ε0 = 12) 

a.  What is the applied voltage, Va? 
b.  What is the built-in potential of the diode? 
c.  What is the donor density in the n-type region and the acceptor density in the p-type region? 
d.  What is the intrinsic carrier density of the semiconductor if the temperature is 300 K ? 

7.  A silicon (nI = 1010 cm-3) p-n diode with Na = 1018 cm-3 has a capacitance of 10-8 F/cm2 at an applied 
voltage of 0.5 V. Find the donor density.
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8.  A silicon (ni = 1010 cm-3) p-n diode has a maximum electric field of -106 V/cm and a depletion layer width 
of 1 µm. The acceptor density in the p-type region is four times larger than the donor density in the n-
type region. Calculate both doping densities.

9.  Consider a symmetric silicon p-n diode (Na = Nd)
a.  Calculate the built-in potential if Na = 1013, 1015 and 1017 cm-3. Also, calculate the doping 

densities corresponding to a built-in potential of 0.7 V.
b.  For the same as in part a), calculate the total depletion layer widths, the capacitance per unit area 

and the maximum electric field in thermal equilibrium.
c.  For the same as in part a), calculate the total depletion layer widths, the capacitance per unit area 

and the maximum electric field in thermal equilibrium.
d.  Repeat part a) and b) with Na = 3 Nd. 

10.  A one-sided silicon diode has a breakdown voltage of 1000 V for which the maximum electric field at 
breakdown is 100 kV/cm. What is the maximum possible doping density in the low doped region, the 
built-in potential, the depletion layer width and the capacitance per unit area? Assume that bulk potential 
of the highly doped region is Eg/2 (= 0.56 V).

11.  A silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 cm-3) is biased with Va = 0.6 V. Calculate the 
ideal diode current assuming that the n-type region is much smaller than the diffusion length with wn' = 1 
µm and assuming a "long" p-type region. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The minority 
carrier lifetime is 10 µs and the diode area is 100 µm by 100 µm.

12.  Derive equation 4.4.24.

13.  Calculate the relative error when using the "short diode" approximation if Ln = 2 wp' and Lp = 2 wn'.

14.  A silicon p-n junction (Na = 1015 cm-3, wp = 1 µm and Nd = 4 x 1016 cm-3, wn = 1 µm) is biased with Va = 
0.5 V. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. The minority carrier lifetime is 10 µs and the diode 
area is 100 µm by 100 µm.

a.  Calculate the built-in potential of the diode. 
b.  Calculate the depletion layer widths, xn and xp, and the widths of the quasi-neutral regions. 
c.  Compare the width of the quasi-neutral regions with the minority-carrier diffusion-lengths and 

decide whether to use the "long" or "short" diode approximation. Calculate the current through the 
diode. 

d.  Compare the result of part c) with the current obtained by using the general solution (equation 
4.4.24) 

e.  Using the approximation chosen in part c) calculate the ratio of the electron current to the hole 
current traversing the depletion region. 

15.  An abrupt silicon p-n diode consists of a p-type region containing 1018 cm-3 acceptors and an n-type 
region containing 1015 cm-3 donors.

a.  Calculate the breakdown field in the n-type region. 
b.  Using the breakdown field from part a), calculate the breakdown voltage of the diode. 
c.  What is the depletion layer width at breakdown? 
d.  Discuss edge effects and specify the minimum junction depth needed to avoid these effects. 
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16.  A 1 cm2 solar cell consists of a p-type region containing 1018 cm-3 acceptors and an n-type region 
containing 1015 cm-3 donors. wp' = 0.1 µm and wn >> Lp. Use µn = 1000 cm2/V-s and µp = 300 cm2/V-s. . 
The minority carrier lifetime is 10 µs . The diode is illuminated with sun light, yielding a photocurrent 
density of 30 mA/cm2.

a.  Calculate the open circuit voltage and short-circuit current of the solar cell. 
b.  Calculate the maximum power generated by the call and the corresponding voltage and current. 
c.  Calculate the fill factor of the solar cell. 
d.  Calculate the fill factor for the same cell when it is illuminated by a concentrator so that the 

photocurrent density equals 300 A/cm2. 

17.  same as 3
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Chapter 4: p-n Junctions

Review Questions  

1.  What is a flatband diagram? 

2.  Discuss the motion of electrons and holes in a p-n junction in thermal equilibrium. 

3.  Define the built-in potential. Also provide an equation and state the implicit assumption(s). 

4.  How does the energy band diagram of a p-n junction change under forward and reverse bias? 

5.  What is the full depletion approximation? Why do we need the full depletion approximation? 

6.  Derive equation (4.3.17) from (4.3.13), (4.3.14) and (4.3.16). 

7.  Explain why the capacitance of a p-n junction (4.3.22) equals that of a parallel plate capacitor. How does 
the capacitance differ from a parallel plate capacitor? 

8.  How do you extract the doping profile shown in Fig. 4.3.4 from the capacitance shown in Fig. 4.3.3?

9.  What mechanism(s) cause(s) current in a p-n junction? 

10.  How does one calculate the current in a p-n junction? 

11.  How does one solve the diffusion equation in the quasi-neutral regions? 

12.  What is the difference between the "long" and "short" diode analysis? 

13.  When can the recombination/generation current in the depletion region be ignored? 

14.  Which saturation current is voltage dependent, that for the "long" diode or the one for the "short" diode? 

15.  Why does one need to include edge effects when calculating the breakdown voltage of a diode? 

16.  Name two breakdown mechanisms and discuss the temperature dependence of the resulting breakdown 
voltage. 

17.  Describe the avalanche breakdown mechanism. 

18.  Describe tunneling. 

19.  Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. Indicate 
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the photo-generated carriers and their direction of motion. 

20.  Why is the photocurrent negative compared to the forward bias current through the same diode? 

21.  What limits the quantum efficiency of a photodiode? 

22.  What is the difference between a solar cell and a photodiode? 

23.  Why would solar cells be more efficient if the sun where a laser rather than a black body radiator? 

24.  What limits the power conversion efficiency of a solar cell? 

25.  Using equation 4.6.1 show that the open-circuit voltage increases as the photocurrent increases. Use 
this result to prove that the power conversion efficiency of a solar increases when using a concentrator 
which increases the incident power density. 

26.  Why is silicon not used to fabricated LEDs or laser diodes? 

27.  Why are planar LEDs so inefficient? How can the efficiency of an LED be improved beyond that of a 
planar LED? 

28.  How does the light emitted by an LED differ from that emitted by a laser diode? 

29.  What is stimulated emission? 

30.  Why does a laser diode need a waveguide? 

31.  Explain the lasing condition in words. 

32.  Describe the power versus current characteristic of a laser diode.
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Chapter 5: Bipolar Junction Transistors

5.1. Introduction

The bipolar junction transistor was the first solid-state amplifier element and started the solid-state electronics 
revolution. Bardeen, Brattain and Shockley at the Bell Laboratories invented it in 1948 as part of a post-war 
effort to replace vacuum tubes with solid-state devices. Solid-state rectifiers were already in use at the time and 
were preferred over vacuum diodes because of their smaller size, lower weight and higher reliability. A solid-
state replacement for a vacuum triode was expected to yield similar advantages. The work at Bell Laboratories 
was highly successful and culminated in Bardeen, Brattain and Shockley receiving the Nobel Prize in 1956.
Their work led them first to the point-contact transistor and then to the bipolar junction transistor. They used 
germanium as the semiconductor of choice because it was possible to obtain high purity material. The 
extraordinarily large diffusion length of minority carriers in germanium provided functional structures despite the 
large dimensions of the early devices.
Since then, the technology has progressed rapidly. The development of a planar process yielded the first 
circuits on a chip and for a decade, bipolar transistor operational amplifiers, like the 741, and digital TTL circuits 
were the workhorses of any circuit designer.
The spectacular rise of the MOSFET market share during the last decade has completely removed the bipolar 
transistor from center stage. Almost all logic circuits, microprocessor and memory chips contain exclusively 
MOSFETs.
Nevertheless, bipolar transistors remain important devices for ultra-high-speed discrete logic circuits such as 
emitter coupled logic (ECL), power-switching applications and in microwave power amplifiers.
In this chapter we first present the structure of the bipolar transistor and show how a three-layer structure with 
alternating n-type and p-type regions can provide current and voltage amplification. We then present the ideal 
transistor model and derive an expression for the current gain in the forward active mode of operation. Next, we 
discuss the non-ideal effects, the modulation of the base width and recombination in the depletion region of the 
base-emitter junction.
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Chapter 5: Bipolar Junction Transistors

5.2. Structure and principle of operation

A bipolar junction transistor consists of two back-to-back p-n junctions, who share a thin common region with 
width, wB. Contacts are made to all three regions, the two outer regions called the emitter and collector and the 
middle region called the base. The structure of an NPN bipolar transistor is shown in Figure 5.2.1 (a). The 
device is called "bipolar" since its operation involves both types of mobile carriers, electrons and holes.

Figure 5.2.1.: (a) Structure and sign convention of a NPN bipolar junction transistor. (b) Electron and hole 
flow under forward active bias, VBE > 0 and VBC = 0.
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Since the device consists of two back-to-back diodes, there are depletion regions between the quasi-neutral 
regions. The width of the quasi neutral regions in the emitter, base and collector are indicated with the symbols 
wE', wB' and wC' and are calculated from

(5.2.1)

(5.2.2)

(5.2.3)

where the depletion region widths are given by:

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

with

(5.2.8)

(5.2.9)

The sign convention of the currents and voltage is indicated on Figure 5.2.1(a). The base and collector current 
are positive if a positive current goes into the base or collector contact. The emitter current is positive for a 
current coming out of the emitter contact. This also implies the emitter current, IE, equals the sum of the base 
current, IB, and the collector current, IC:

(5.2.10)

The base-emitter voltage and the base-collector voltage are positive if a positive voltage is applied to the base 
contact relative to the emitter and collector respectively. 
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The operation of the device is illustrated with Figure 5.2.1 (b). We consider here only the forward active bias 
mode of operation, obtained by forward biasing the base-emitter junction and reverse biasing the base-collector 
junction. To simplify the discussion further, we also set VCE = 0. The corresponding energy band diagram is 
shown in Figure 5.2.2. Electrons diffuse from the emitter into the base and holes diffuse from the base into the 
emitter. This carrier diffusion is identical to that in a p-n junction. However, what is different is that the electrons 
can diffuse as minority carriers through the quasi-neutral region in the base. Once the electrons arrive at the 
base-collector depletion region, they are swept through the depletion layer due to the electric field. These 
electrons contribute to the collector current. In addition, there are two more currents, the base recombination 
current, indicated on Figure 5.2.2 by the vertical arrow, and the base-emitter depletion layer recombination 
current (not shown). 

Figure 5.2.2. : Energy band diagram of a bipolar transistor biased in the forward active mode.
The total emitter current is the sum of the electron diffusion current, IE,n, the hole diffusion current, IE,p and the 
base-emitter depletion layer recombination current, Ir,d.

(5.2.11)

The total collector current is the electron diffusion current, IE,n, minus the base recombination current, Ir,B.

(5.2.12)

The base current is the sum of the hole diffusion current, IE,p, the base recombination current, Ir,B and the base-
emitter depletion layer recombination current, Ir,d.

(5.2.13)

The transport factor, α, is defined as the ratio of the collector and emitter current:

(5.2.14)
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Using Kirchoff's current law and the sign convention shown in Figure 5.2.1(a), we find that the base current 
equals the difference between the emitter and collector current. The current gain, β, is defined as the ratio of 
the collector and base current and equals:

(5.2.15)

This explains how a bipolar junction transistor can provide current amplification. If the collector current is almost 
equal to the emitter current, the transport factor, α, approaches one. The current gain, β, can therefore become 
much larger than one. 

To facilitate further analysis, we now rewrite the transport factor, α, as the product of the emitter efficiency, γE, 
the base transport factor, αT, and the depletion layer recombination factor, δr.

(5.2.16)

The emitter efficiency, γE, is defined as the ratio of the electron current in the emitter, IE,n, to the sum of the 
electron and hole current diffusing across the base-emitter junction, IE,n + IE,p.

(5.2.17)

The base transport factor, αT, equals the ratio of the current due to electrons injected in the collector, to the 
current due to electrons injected in the base.

(5.2.18)

Recombination in the depletion-region of the base-emitter junction further reduces the current gain, as it 
increases the emitter current without increasing the collector current. The depletion layer recombination factor, 
δr, equals the ratio of the current due to electron and hole diffusion across the base-emitter junction to the total 
emitter current:

(5.2.19)

Example 5.1 A bipolar transistor with an emitter current of 1 mA has an emitter efficiency of 0.99, a base 
transport factor of 0.995 and a depletion layer recombination factor of 0.998. Calculate the 
base current, the collector current, the transport factor and the current gain of the transistor. 
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Solution The transport factor and current gain are:

and

The collector current then equals

And the base current is obtained from:
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5.3. Ideal transistor model
5.3.1. Forward active mode of operation
5.3.2. General bias modes of a bipolar transistor
5.3.3. The Ebers-Moll model
5.3.4. Saturation.

The ideal transistor model is based on the ideal p-n diode model and provides a first-order calculation of the dc 
parameters of a bipolar junction transistor. To further simplify this model, we will assume that all quasi-neutral 
regions in the device are much smaller than the minority-carrier diffusion lengths in these regions, so that the 
"short" diode expressions apply. The use of the ideal p-n diode model implies that no recombination within the 
depletion regions is taken into account. Such recombination current will be discussed in section 5.4.3. 

The discussion of the ideal transistor starts with a discussion of the forward active mode of operation, followed 
by a general description of the four different bias modes, the corresponding Ebers-Moll model and a calculation 
of the collector-emitter voltage when the device is biased in saturation.

5.3.1.. Forward active mode of operation
 

The forward active mode is obtained by forward-biasing the base-emitter junction. In addition we eliminate the 
base-collector junction current by setting VBC = 0. The minority-carrier distribution in the quasi-neutral regions 
of the bipolar transistor, as shown in Figure 5.3.1, is used to analyze this situation in more detail.
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Figure 5.3.1. : Minority-carrier distribution in the quasi-neutral regions of a bipolar transistor (a) Forward 
active bias mode. (b) Saturation mode.

The values of the minority carrier densities at the edges of the depletion regions are indicated on the Figure 
5.3.1. The carrier densities vary linearly between the boundary values as expected when using the assumption 
that no significant recombination takes place in the quasi-neutral regions. The minority carrier densities on both 
sides of the base-collector depletion region equal the thermal equilibrium values since VBC was set to zero. 
While this boundary condition is mathematically equivalent to that of an ideal contact, there is an important 
difference. The minority carriers arriving at x = wB - xp,C do not recombine. Instead, they drift through the base-
collector depletion region and end up as majority carriers in the collector region.
The emitter current due to electrons and holes are obtained using the "short" diode expressions derived in 
section 4.4.2.5, yielding:

(5.3.1)

and

(5.3.2)

It is convenient to rewrite the emitter current due to electrons, IE,n, as a function of the total excess minority 
charge in the base, ∆Qn,B. This charge is proportional to the triangular area in the quasi-neutral base as shown 
in Figure 5.3.1 a) and is calculated from:
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(5.3.3)

which for a "short" diode becomes:

(5.3.4)

And the emitter current due to electrons, IE,n, simplifies to:

(5.3.5)

where tr is the average time the minority carriers spend in the base layer, i.e. the transit time. The emitter 
current therefore equals the excess minority carrier charge present in the base region, divided by the time this 
charge spends in the base. This and other similar relations will be used to construct the charge control model of 
the bipolar junction transistor in section 5.5.2. 

A combination of equations (5.3.1), (5.3.4) and (5.3.5) yields the transit time as a function of the quasi-neutral 
layer width, wB', and the electron diffusion constant in the base, Dn,B.

(5.3.6)

We now turn our attention to the recombination current in the quasi-neutral base and obtain it from the 
continuity equation:

(5.3.7)

In steady state and applied to the quasi-neutral region in the base, the continuity equation yields the base 
recombination current, Ir,B:

(5.3.8)

which in turn can be written as a function of the excess minority carrier charge, ∆Qn,B, using equation (5.3.3). 

(5.3.9)

Next, we need to find the emitter efficiency and base transport factor. The emitter efficiency defined by 
equation (5.2.17), becomes:
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(5.3.10)

It is typically the emitter efficiency, which limits the current gain in transistors made of silicon or germanium. 
The long minority-carrier lifetime and the long diffusion lengths in those materials justify the exclusion of 
recombination in the base or the depletion layer. The resulting current gain, under such conditions, is:

(5.3.11)

From this equation, we conclude that the current gain can be larger than one if the emitter doping is much 
larger than the base doping. A typical current gain for a silicon bipolar transistor is 50 - 150.
The base transport factor, as defined in equation (5.2.18), equals:

(5.3.12)

This expression is only valid if the base transport factor is very close to one, since it was derived using the 
"short-diode" carrier distribution. This base transport factor can also be expressed in function of the diffusion 
length in the base:

(5.3.13)

Example 5.2 Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 and base doping of 1017 cm-
3. The quasi-neutral region width in the emitter is 1 µm and 0.2 µm in the base. Use µn = 1000 
cm2/V-s and µp = 300 cm2/V-s . The minority carrier lifetime in the base is 10 ns.Calculate the 
emitter efficiency, the base transport factor, and the current gain of the transistor biased in the 
forward active mode. Assume there is no recombination in the depletion region.

Solution The emitter efficiency is obtained from:

The base transport factor equals:

The current gain then becomes:
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where the transport factor, α, was calculated as the product of the emitter efficiency and the 
base transport factor:

5.3.2.. General bias modes of a bipolar transistor
 

While the forward active mode of operation is the most useful bias mode when using a bipolar junction 
transistor as an amplifier, one cannot ignore the other bias modes especially when using the device as a digital 
switch. All possible bias modes are illustrated with Figure 5.3.2. They are the forward active mode of operation, 
the reverse active mode of operation, the saturation mode and the cut-off mode. 

Figure 5.3.2.: Possible bias modes of operation of a bipolar junction transistor.
The forward active mode is the one where we forward bias the base-emitter junction, VBE > 0 and reverse bias 
the base-collector junction, VBC < 0. This mode, as discussed in section 5.3.1, is the one used in bipolar 
transistor amplifiers. In bipolar transistor logic circuits, one frequently switches the transistor from the "off" state 
to the low resistance "on" state. This "off" state is the cut-off mode and the "on" state is the saturation mode. In 
the cut-off mode, both junctions are reversed biased, VBE < 0 and VBC < 0, so that very little current goes 
through the device. This corresponds to the "off" state of the device. In the saturation mode, both junctions are 
forward biased, VBE > 0 and VCB > 0. This corresponds to the low resistance "on" state of the transistor.
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Finally, there is the reverse active mode of operation. In the reverse active mode, we reverse the function of the 
emitter and the collector. We reverse bias the base-emitter junction and forward bias the base-collector 
junction, or VBE < 0 and VBC > 0. In this mode, the transistor has an emitter efficiency and base transport factor 
as described by equations ((5.3.10) and (5.3.12), where we replace the emitter parameters by the collector 
parameters. Most transistors, however, have poor emitter efficiency under reverse active bias since the 
collector doping density is typically much less than the base doping density to ensure high base-collector 
breakdown voltages. In addition, the collector-base area is typically larger than the emitter-base area, so that 
even fewer electrons make it from the collector into the emitter.
Having described the forward active mode of operation, there remains the saturation mode, which needs 
further discussion. Cut-off requires little further analysis, while the reverse active mode of operation is 
analogous to the forward active mode with the added complication that the areas of the base-emitter and base-
collector junction, AE and AC, differ. The Ebers-Moll model describes all of these bias modes.

5.3.3.. The Ebers-Moll model
 

The Ebers-Moll model is an ideal model for a bipolar transistor, which can be used, in the forward active mode 
of operation, in the reverse active mode, in saturation and in cut-off. This model is the predecessor of today's 
computer simulation models and contains only the "ideal" diode currents.
The model contains two diodes and two current sources as shown in Figure 5.3.3. The two diodes represent 
the base-emitter and base-collector diodes. The current sources quantify the transport of minority carriers 
through the base region. These are current sources depend on the current through each diode. The 
parameters IE,s, IC,s, αF and αR are the saturation currents of the base-emitter and base collector diode and the 
forward and reverse transport factors. 

Figure 5.3.3 : Equivalent circuit for the Ebers-Moll model of an NPN bipolar junction transistor
Using the parameters identified in Figure 5.3.3, we can relate the emitter, base and collector current to the 
forward and reverse currents and transport factors, yielding:
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(5.3.14)

(5.3.15)

(5.3.16)

The Ebers-Moll parameters are related by the following equation:

(5.3.17)

This relation ship is also referred as the reciprocity relation and can be derived by examining the minority 
carrier current through the base. For the specific case where the base-emitter and base-collector voltage are 
the same and the base doping is uniform, there can be no minority carrier diffusion in the base so that:

(5.3.18)

from which the reciprocity relation is obtained.
The forward- and reverse-bias transport factors are obtained by measuring the current gain in the forward 
active and reverse active mode of operation. The saturation currents IE,s and IC,s are obtained by measuring 
the base-emitter (base-collector) diode saturation current while shorting the base-collector (base-emitter) diode. 

5.3.4.. Saturation.
 

In the low resistance "on" state of a bipolar transistor, one finds that the voltage between the collector and 
emitter is less than the forward bias voltage of the base-emitter junction. Typically the "on" state voltage of a 
silicon BJT is 100 mV and the forward bias voltage is 700 mV. Therefore, the base-collector junction is forward 
biased. Using the Ebers-Moll model, we can calculate the "on" voltage from:

(5.3.19)

and using equations (5.3.15), (5.3.16) and the reciprocity relation (5.3.17), one obtains:

(5.3.20)
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Saturation also implies that a large amount of minority carrier charge is accumulated in the base region. As a 
transistor is switched from saturation to cut-off, this charge initially remains in the base and a collector current 
will remain until this charge is removed by recombination. This causes an additional delay before the transistor 
is turned off. Since the carrier lifetime can be significantly longer than the base transit time, the turn-off delay 
causes a large and undesirable asymmetry between turn-on and turn-off time. Saturation is therefore avoided 
in high-speed bipolar logic circuits. Two techniques are used to reduce the turn-off delay: 1) adding a Schottky 
diode in parallel to the base-collector junction and 2) using an emitter-coupled circuit configuration. Both 
approaches avoid biasing the transistor in the saturation mode. The Schottky diode clamps the base-collector 
voltage at a value, which is slightly lower than the turn-on voltage of the base-collector diode. An emitter-
coupled circuit is biased with a current source, which can be designed so that the collector voltage cannot be 
less than the base voltage.
Example 5.3 Calculate the saturation voltage of a bipolar transistor biased with a base current of 1 mA and 

a collector current of 10 mA. Use αR = 0.993 and αF = 0.2.

Solution The saturation voltage equals:
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5.4. Non-ideal effects
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5.4.4. Base spreading resistance and emitter current crowding
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A variety of effects occur in bipolar transistors, which are not included in the ideal transistor model. These 
include the base-width modulation effects and the current due to recombination in the depletion layers. Both 
are described next.

5.4.1.. Base-width modulation
 

As the voltages applied to the base-emitter and base-collector junctions are changed, the depletion layer 
widths and the quasi-neutral regions vary as well. This causes the collector current to vary with the collector-
emitter voltage as illustrated in Figure 5.4.1.

Figure 5.4.1. : Variation of the minority-carrier distribution in the base quasi-neutral region due to a variation 
of the base-collector voltage.
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A variation of the base-collector voltage results in a variation of the quasi-neutral width in the base. The 
gradient of the minority-carrier density in the base therefore changes, yielding an increased collector current as 
the collector-base current is increased. This effect is referred to as the Early effect. The Early effect is observed 
as an increase in the collector current with increasing collector-emitter voltage as illustrated with Figure 5.4.2. 
The Early voltage, VA, is obtained by drawing a line tangential to the transistor I-V characteristic at the point of 
interest. The Early voltage equals the horizontal distance between the point chosen on the I-V characteristics 
and the intersection between the tangential line and the horizontal axis. It is indicated on the figure by the 
horizontal arrow.

Figure 5.4.2. : Collector current increase with an increase of the collector-emitter voltage due to the Early 
effect. The Early voltage, VA, is also indicated on the figure.

The change of the collector current when changing the collector-emitter voltage is primarily due to the variation 
of the base-collector voltage, since the base-emitter junction is forward biased and a constant base current is 
applied. The collector current depends on the base-collector voltage since the base-collector depletion layer 
width varies, which also causes the quasi-neutral width, wB', in the base to vary. This variation can be 
calculated for a piece-wise uniformly-doped transistor using the ideal transistor mode as described by 
equations (5.2.10) and (5.3.1):

(5.4.1)

This variation can be expressed by the Early voltage, VA, which quantifies what voltage variation would result in 
zero collector current. 

http://ece-www.colorado.edu/~bart/book/book/chapter5/ch5_4.htm (2 of 7)11/10/2004 17:00:54



Bipolar Junction Transistors

(5.4.2)

It can be shown that the Early voltage also equals the majority carrier charge in the base, QB, divided by the 
base-collector junction capacitance, Cj,BC:

(5.4.3)

In addition to the Early effect, there is a less pronounced effect due to the variation of the base-emitter voltage, 
which changes the ideality factor of the collector current. However, the effect at the base-emitter junction is 
much smaller since the base-emitter junction capacitance is larger and the base-emitter voltage variation is 
very limited since the junction in forward biased. The effect does lead to a variation of the ideality factor, n, 
given by:

(5.4.4)

Example 5.4 Consider a bipolar transistor with a base doping of 1017 cm-3 and a quasi-neutral base width of 
0.2 µm. Calculate the Early voltage and collector current ideality factor given that the base-
emitter capacitance and the base-collector capacitance are 0.2 nF and 0.2 pF. The collector 
area equals 10-4 cm-2.

Solution The Early voltage equals:

The saturation voltage equals:

An extreme case of base-width modulation is punchthrough. As the collector-emitter voltage is increased, the 
quasi-neutral width of the base decreases, so that eventually it becomes zero. The collector current becomes 
very large and no longer depends on the voltage applied to the base. This mode of operation is undesirable 
since most performance characteristics degrade as one approaches punchthrough. The rapid increase of the 
collector current at the punchthrough voltage can cause the destruction of the transistor due to excessive 
power dissipation. Punchthrough is therefore one of the possible breakdown modes of a bipolar transistor.
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5.4.2.. Recombination in the depletion region
 

So far, we have ignored the recombination in the depletion region. As in a p-n diode, the recombination in the 
depletion region causes an additional diode current. We can identify this contribution to the current because of 
the different voltage dependence as described in section 4.4.4. An example is shown in Figure 5.4.3. Shown 
are the collector and base current of a silicon bipolar transistor, biased in the forward active mode of operation 
with VBC = -12 V, as a function of the base-emitter voltage. This type of plot is also called a Gummel plot.

Figure 5.4.3 : Gummel plot: Collector current (top curve) and base current (bottom curve) of a silicon bipolar 
transistor versus the base-emitter voltage.

The current due to recombination in the depletion region can be observed as an additional base current 
between VBE = 0.2 and 0.4 V. The collector current does not include this additional current, since 
recombination in the depletion region does not affect the flow of electrons through the base.

5.4.3. High injection effects
 

High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.7)
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High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.8)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.9)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.10)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

5.4.4. Base spreading resistance and emitter current crowding
 

High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.11)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.12)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.13)
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High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.14)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

5.4.5. Temperature dependent effects in bipolar transistors
 

High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

5.4.6. Recombination in the depletion region
 

High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
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High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.15)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.16)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

(5.4.17)
High injection effects occur in a bipolar junction transistor, just like in a p-n diode. Since under forward active 
bias condition only the base-emitter diode is forward biased, one only has to explore the high-injection effects 
of the base-emitter diode. Again is it the lower doped side of the p-n diode where high injection will occur first 
so that we examine the high-injection condition in the base region. The onset of high injection is therefore 
expected if the collector current is equal or larger than: 

5.4.6. Breakdown mechanisms in BJTs
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Chapter 5: Bipolar Junction Transistors

5.5. Base and collector transit time effects
5.5.1. Collector transit time through the base-collector depletion region
5.5.2. Base transit time in the presence of a built-in field
5.5.3. Base transit time under high injection
5.5.4. Kirk effect

The transit time of electrons diffusing through the quasi-neutral region of the base was already introduced in 
section 5.3 and is given by:

(5.5.1)

This transit time corresponds to the average time the minority carriers need to traverse the quasi-neutral region 
in the base. Since the carriers move through this region by diffusion, it is the thermal energy, which causes the 
carrier motion. As a result, one occasionally finds that the base transit time decreases with increasing 
temperature. The junction temperature of BJTs in integrated circuits can therefore be significantly above room 
temperature without dramatically reducing the current gain, β, or the transit frequency, fT. The higher junction 
temperature also facilitates the heat transport from the collector - where most of the heat is generated - to the 
external heat sink.
It is also of interest to note that the transit time is the same as the drift time of a majority carrier across a region 
of the same width if the applied voltage equals twice the thermal voltage.
This simple transit time model must now be further refined to include the drift through the base-collector 
depletion region. High injection, built-in fields and high current densities are known to further affect the total 
transit time through the device.

5.5.1. Collector transit time through the base-collector depletion 
region

 

The transit time, tC, through the base-collector depletion region can be calculated by integrating the velocity 
across the depletion region, yielding:

(5.5.2)
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In principle, one could calculate the carrier velocity from the mobility and electric field in the depletion region. 
However, the full depletion approximation is no longer valid, since the zero field at the edge of the depletion 
region as described in section 4.3.3 causes an infinite transit time. The reality is that there is always a small 
field even at the edge of the depletion region and that a combination of drift and diffusion occurs. The 
calculation would therefore require an integration of the velocity as obtained through numeric simulation. A 
common approximation, which can be usually justified unider high field conditions, is that the carrier velocity 
approaches the saturation velocity throughout the depletion region. The transit time for a single electron 
traversing the depletion region, then becomes:

(5.5.3)

The collector transit time, tC, in a bipolar transistor is the average delay of all carriers present in the depletion 
region relative to the point where they entered the base-collector depletion region. It is obtained from the 
integral of the conduction current including a frequency dependent phase across the depletion region divided 
by the depletion layer width. If the velocity is constant throughout the depletion region, the average delay is half 
of the transit time through the depletion region, or:

(5.5.4)

5.5.2. Base transit time in the presence of a built-in field
 

Varying the doping density throughout the base region can further reduce the transit time through the base 
region. By decreasing the doping density from a maximum value, NB,MAX, on the emitter end, to a minimum 
value, NB,MIN, on the collector end, one obtains a built-in field in the base region. This built-in field increases 
the average velocity of the carriers and therefore shortens the base transit time. We assume that the base 
doping decreases exponentially with position as illustrated with Figure 5.5.1a), or:

(5.5.5)

This results in a constant built-in electric field as indicated by Figure 5.5.1b). The base transit time is then 
obtained by solving the time-independent continuity equation including the built-in field. Such analysis results in 
a modified base transport time:

(5.5.6)

with

(5.5.7)

The built-in field in turn is calculated from the doping densities as:

(5.5.8)
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For instance by grading the base doping from 1018 cm-3 to 1017 cm-3, Ebi/E0 = 1.15 so that the base transit 
time is reduced by 55 %. Such graded base is typically obtained when the base region is formed by diffusion or 
implantation of the dopants into the base. While the transit time reduction can clearly be observed, this effect 
cannot be used to significantly reduce the base transit time. From the equation for the built-in field one finds 
that it depends only logarithmically on the minimum base doping, NB,MIN, while the collector doping imposes a 
lower limit on its value.

Figure 5.5.1. : a) Graded base doping with an exponential dependence, and b) Corresponding energy band 
diagram.

5.5.3. Base transit time under high injection
 

High injection occurs when the minority carrier density in the base is equal or larger than the base doping 
density. Any further increase in the minority carrier density will then result in an almost equal increase in the 
majority carrier density, in order to maintain quasi-neutrality in the base. This then causes a gradient of the 
majority carriers equal to the gradient of the minority carrier density. This gradient causes a built-in electric 
field, which in turn reduces the transit time by a factor 2 resulting in:

(5.5.9)

This effect is referred to as the Webster effect.

5.5.4. Kirk effect
 

http://ece-www.colorado.edu/~bart/book/book/chapter5/ch5_5.htm (3 of 4)11/10/2004 17:01:14



Bipolar Junction Transistors

The Kirk effect occurs at high current densities and causes a dramatic increase in the transit time of a bipolar 
transistor. The effect is due to the charge density associated with the current passing through the base-
collector region. As this charge density exceeds the charge density in the depletion region the depletion region 
ceases to exist. Instead, there will be a build-up of majority carriers from the base in the base-collector 
depletion region. The dipole formed by the positively and negatively charged ionized donors and acceptors is 
pushed into the collector and replaced by positively charged ionized donors and a negatively charged electron 
accumulation layer, which is referred to as base pushout. This effect occurs if the charge density associated 
with the current is larger than the ionized impurity density in the base-collector depletion region. Assuming full 
ionization, this translates into the following condition on the collector current density.

(5.5.10)

The effective width of the base layer then equals the width of the base and collector layer, which increases the 
transit time substantially. The increased transit time reduces the current gain and the transit frequency. 
Increasing the collector doping can easily eliminate the Kirk effect. However, this also increases the base-
collector capacitance and decreases the collector-base breakdown voltage. As a results, the Kirk effect affects 
both RF and power devices. A proper trade-off between these factors is part of any device design and 
optimization.
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5.6. BJT circuit models
5.6.1. Small signal model (hybrid pi model)
5.6.2. Large signal model (Charge control model)
5.6.3. SPICE model

A large variety of bipolar junction transistor models have been developed. One distinguishes between small 
signal and large signal models. We will discuss here first the hybrid pi model, a small signal model, which lends 
itself well to small signal design and analysis. The next model is the charge control model, which is particularly 
well suited to analyze the large-signal transient behavior of a bipolar transistor. And we conclude with the 
derivation of the SPICE model parameters. 

5.6.1. Small signal model (hybrid pi model)
 

The hybrid pi model of a BJT is a small signal model, named after the “p”-like equivalent circuit for a bipolar 
junction transistor. The model is shown in Figure 5.6.1. It consists of an input impedance, rp, an output 
impedance r0, and a voltage controlled current source described by the transconductance, gm. In addition it 
contains the base-emitter capacitances, the junction capacitance, Cj,BE, and the diffusion capacitance, Cd,BE, 
and the base-collector junction capacitance, Cj,BC, also referred to as the Miller capacitance. 

Figure 5.6.1. : Small signal model (hybrid pi model) of a bipolar junction transistor.
The transconductance, gm, of a bipolar transistor is defined as the change in the collector current divided by 
the change of the base-emitter voltage. Using (5.4.6) one obtains:

(5.6.1)

The base input resistance, rp, is defined as the change of the emitter-base voltage divided by the change of the 
base current.

(5.6.2)
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The output resistance, ro, is defined as:

(5.6.3)

The base-emitter and base-collector junction capacitances are given by:

(5.6.4)

(5.6.5)

for the case where the base-emitter and base-collector junctions are abrupt. Since the base-emitter is strongly 
forward biased in the forward active mode of operation, one has to also include the diffusion capacitance of the 
base:

(5.6.6)

Based on this small signal model shown in Figure 5.6.1, we can now calculate the small signal current gain of, 
hfe, of a BJT biased in the forward active mode and connected in a common emitter configuration as a function 
of frequency. The maximum current gain is calculated while shorting the output, resulting in:

(5.6.7)

The unity gain frequency, fT, also called the transit frequency is obtained by setting the small signal current 
gain, hfe, equals to one, resulting in:

(5.6.8)

This transit frequency can be expressed as a function of the transit time, t:

(5.6.9)

Where the transit time, t, equals:

(5.6.10)

The circuit model therefore includes the charging time of the base-emitter capacitance, tE, as well as the base 
transit time, tB, but not the transit time of the carriers through the base-collector depletion region, tC. 
The collector transit time was presented in Section 5.5.1. and described by equation (5.5.4), which is repeated 
here:

(5.6.11)

The total transit time then becomes: 
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(5.6.12)

The corresponding transit frequency, fT, can still be calculated using (5.6.9).
While the unity gain frequency, fT, is an important figure of merit of a bipolar transistor, another even more 
important figure of merit is the maximum oscillation frequency, fMAX. This figure of merit predicts the unity 
power gain frequency and as a result indicates the maximum frequency at which useful power gain can be 
expected from a device. The maximum oscillation frequency, fMAX, is linked to the transit frequency, fT, and is 
obtained from:

(5.6.13)

Where RB is the total base resistance and Cj,BC is the base-collector capacitance. The total base resistance 
consists of the series connection of metal-semiconductor contact resistance, the resistance between the base 
contact metal and the emitter and the intrinsic base resistance. Assuming a base contact, which is longer than 
the penetration depth this base resistance equals

(5.6.14)

for a one-sided base contact, where Rs,c, Rs,BE and Rs are the sheet resistances under the base contact, 
between the base contact and the emitter and underneath the emitter respectively. Ls,E is the emitter stripe 
length of the emitter, Ws,E is the emitter stripe width of the emitter and DL is the alignment distance between 
the base contact and emitter. For a double-sided base contact, the total base resistance equals

(5.6.15)

The base-collector capacitance equals:

(5.6.16)

Where AC is the base-collector area.

5.6.2. Large signal model (Charge control model)
 

(5.6.17)
(5.6.18)
(5.6.19)
(5.6.20)
(5.6.21)
(5.6.22)
(5.6.23)
(5.6.24)
(5.6.25)
(5.6.26)
(5.6.27)
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(5.6.28)

5.6.3. SPICE model
 

The SPICE model of a bipolar transistor includes a variety of parasitic circuit elements and some process 
related parameters in addition to the elements previously discussed in this chapter. The syntax of a bipolar 
transistor incorporates the parameters a circuit designer can change as shown below:
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5.7. Heterojunction Bipolar Transistors 
Heterojunction bipolar transistors are bipolar junction transistors, which are composed of at least 
two different semiconductors. As a result, the energy bandgap as well as all other material 
properties can be different in the emitter, base and collector. Moreover, a gradual change also 
called grading of the material is possible within each region. 

Heterojunction bipolar transistors are not just an added complication. On the contrary, the use of 
heterojunctions provides an additional degree of freedom, which can result in vastly improved 
devices compared to the homojunction counterparts. 

 

Figure 5.7.1.  a) Flatband energy band diagram and b) Energy band diagram under forward 
active bias Variation of the minority-carrier distribution in the base quasi-neutral 
region due to a variation of the base-collector voltage. 

The analysis of the device starts with the calculation of the DC current gain. To this end we 
recall the equations for the electron and hole current in the base-emitter junction (5.3.1) and 
(5.3.2), namely: 
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where the fact that the intrinsic carrier density in the emitter, ni,E, and base, ni,B, are different, is 
indicated explicitly by the additional subscript. 

The emitter efficiency of the transistor is still calculated from the electron current relative to the 
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If we now assume that the effective density of states for electrons and holes are the same in the 
emitter and base, we find that the maximum current gain equals: 
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Where ∆Eg is the difference between the bandgap energy in the emitter and the bandgap energy 
in the base. The current gain depends exponentially on this difference in bandgap energy. As a 
result one can obtain a very large current gain in a heterojunction bipolar transistor, even if the 
base doping density, NB, is significantly larger that the emitter doping density, NE. Therefore, the 
emitter of a typical heterojunction bipolar transistor has a wider bandgap than its base. This 
difference should be around 0.2 - 0.4 V for optimum performance. A smaller difference provides 
only a marginal improvement over homojunction devices. A larger difference causes the gain to 
be strongly temperature dependent, might require exotic material combinations and creates a 
distinct spike in the energy diagram, which in turn limits the current.  

The advantages of HBTs are not restricted to its DC performance. Microwave devices can also 
be improved dramatically by using an appropriate heterojunction material system. To illustrate 
this point we now recall the equations for the transit frequency, fT, and the maximum oscillation 
frequency, fMAX:  
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Where the total transit time equals:  
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and 
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Since a heterojunction transistor can have large current gain, even if the base doping density is 
higher than the emitter doping density, the base can be much thinner even for the same 
punchthrough voltage. As a result one can reduce the base transit time without increasing the 
emitter charging time, while maintaining the same emitter current density. The transit frequency 
can be further improved by using materials with a higher mobility for the base layer and higher 



saturation velocity for the collector layer.  

An HBT can be further improved by grading the composition of the base layer such that the 
bandgap energy of the material is gradually reduced throughout the base as shown in Figure 
5.7.2a) and b). The grading causes an electric field, which in turn reduces the transit time as 
discussed in section 5.5.2 and calculated from equation (5.5.4): 
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 Where Eg,MAX and Eg,MIN are the maximum and minimum energy bandgap at x’ = 0 and x’ = xB
’. 

A linear variation was assumed in between. 

a) b) 

 Figure 5.7.2.  a) Energy band diagram of an undoped and composition-graded semiconductor, 
and b) Energy band diagram of the p-type graded base region in a HBT. 

The maximum oscillation frequency can also be further improved. The improved transit 
frequency immediately increases the transit frequency. The higher base doping also provides a 
lower base resistance and a further improvement of fMAX. As in the case of a homojunction BJT, 
the collector doping can be adjusted to trade off a lower the collector transit time for a lower 
base-collector capacitance. The fundamental restriction of heterojunction structures still applies, 
namely that the materials must have a similar lattice constant so that they can be grown without 
reducing the quality of the material. 
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5.8. BJT Technology 

5.8.1. First germanium BJT 

The very first bipolar junction transistors were fabricated from a bar of germanium with two 
closely spaced alloyed contacts. Germanium was used since it could easily be purified to the 
extend that the minority carrier diffusion length was comparable to the distance between the two 
alloyed contacts. Starting with p-type germanium and using indium to form the alloyed junctions 
a discrete transistor was easily made. The germanium bar formed the base while the alloyed n-
type regions formed the emitter and collector. Other implementations consisted of alloyed 
junctions on either side of a thin slice of germanium, with the emitter junction being smaller than 
the collector junction on the opposite side to ensure a high minority carrier collection efficiency 
on the collector side. 

5.8.2. First silicon IC technology 

This approach was soon abandoned and replaced by a double diffusion process, where the base 
and emitter region were formed by diffusion of dopants into the wafer. A low-doped collector 
region was epitaxially grown on the buried collector contact layer and isolation was obtained 
with a diffusion of opposite type. As similar process was also used to fabricate the first RTL 
(Resistor Transistor Logic) gates. It consists of the following steps: 

 

Figure 5.8.1.  Diffusion isolated bipolar junction transistor with load resistor 

1. Grow low doped epilayer (p-type) 
2. Diffuse collector contact layer (n-type) 
3. Grow low doped collector layer (n-type) 
4. Diffuse base region (p-type) 
5. Diffuse emitter region (n-type) 
6. Diffuse collector contact (n-type) 
7. Diffuse device isolation (p-type) 
8. Open via holes 
9. Deposit contacts and wiring  

This process yields n-p-n bipolar transistors. Resistors were formed using the p-type base 
diffusion. Resistor Transistor Logic (RTL) gates can thus be formed with this technology. The 
circuit and corresponding transfer characteristics are shown in Figure 5.8.2. 
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Figure 5.8.2.  RTL inverter circuit and transfer characteristic 

A lateral p-n-p transistor can also be fabricated with the same process. The device crosssection is 
shown in Figure 5.8.3.  

 

Figure 5.8.3.  Lateral p-n-p bipolar junction transistor 
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5.9. Bipolar Power Devices 
Power devices can be classified into bipolar-based devices, MOSFET-based devices and devices 
such as the IGBT that combine a bipolar transistor with a MOSFET.  

Bipolar power devices are the traditional power devices because of their capability to provide 
high currents and high blocking voltages. The bipolar-based power devices include high-power 
bipolar transistors, Darlington transistors consisting of two transistors with a common collector, 
thyristors – also called silicon controlled rectifiers (SRCs) and triacs, a complementary thyristor 
structure suitable to control AC power. 

Power MOSFETs and power devices that combine MOSFETs and bipolar transistors are covered 
in chapter 7.  

5.9.1. Power BJTs 

High power bipolar transistors are conceptually the same as the bipolar transistors described in 
chapter 8. The main difference is that the active area of the device is distinctly higher, resulting 
in a much higher current handling capability. Power BJTs also have a thick and low-doped 
collector region. Such collector regions result in a large blocking voltage. Extremely low doping 
densities, down to 1013 cm-3, are use to obtain blocking voltages as large as x000 V. As a result, 
one finds that the structure needs to be redesigned to a) effectively manage the power dissipation 
and b) avoid the Kirk effect.  

The power dissipation is managed by minimizing the power dissipation and spreading the 
resulting heat dissipation onto a large area. The Kirk effect is normally avoided by increasing the 
collector doping density. However, for devices with a very high blocking voltage, this may not 
be an option.  Power BJTs therefore are operated at rather low current density of 100 A/cm2 
since the lower current density reduces the power dissipation per unit area and eliminates the 
Kirk effect. Large currents – up to 1000 A – are obtained by making a large area device. Silicon 
BJTs dominate the power device market, in part because of the low cost of large area silicon 
devices and the high thermal conductivity of silicon compared to GaAs. Silicon carbide (SiC) 
has been hailed as the perfect material for high-power BJTs. The higher thermal conductivity 
(3x) and breakdown field (10x) compared to silicon give it a clear performance advantage. The 
high saturation velocity (3x compared to silicon) also shifts the onset of the Kirk effect to higher 
current densities. The proliferation of its use will heavily depend on the material cost and quality 
of the SiC wafers. 

5.9.2. Darlington Transistors 

Darlington transistors contain two transistors connected in an emitter-follower configuration, 
while sharing the same collector contact. This structure can be fabricated with the same 
technology as a single BJT as shown in Figure 5.9.1. The key advantage of the Darlington 
configuration is that the total current gain of the circuit equals the product of the current gain of 
the two devices. The disadvantage is the larger saturation voltage. Since the two devices share 
the same collector, the saturation voltage of the Darlington pair equals the forward bias voltage 
of transistor Q2 plus the saturation voltage of transistor Q1. Since the forward bias voltage is 
much larger than the saturation voltage, the saturation voltage of the Darlington pair is also 
significantly larger. This larger voltage results in a larger on-state power dissipation in the 
device.  



    

 a) b) 

Figure 5.9.1.  Darlington transistor structure a) equivalent circuit b) device crosssection. 

5.9.3. Silicon Controlled Rectifier (SRC) or Thyristor 

The silicon controlled rectifier is 4-layer device with alternating n-type and p-type layers as 
shown in Figure 5.9.2. This devices is also referred to as a pnpn structure or Thyristor. Such 
device can in principle be made using any semiconductor. However, silicon thyristors are the 
most common thyristors. The advantage of the structure is that it provides a high power handling 
capability, high blocking voltage and high gain with a very low on-state resistance.  

The operation of the device is best explained by considering the equivalent circuit, shown in 
Figure 5.9.2. It consists of two bipolar transistors, a n-p-n transistors, Q1, and a p-n-p transistor, 
Q2. Both transistors share a p-type and n-type layer. For instance, the p-type base layer of 
transistor Q1 is also the collector layer of transistor Q2, while the n-type base of transistor Q2 is 
also the collector of transistor Q1. The Thyristor is controlled by the gate electrode, which is the 
gate of Q1. By applying a current to the gate one forward biases the base-emitter junction of Q1, 
which leads to a collector current in Q1, which in turn provides a base current to Q2. Since Q2 is 
a complementary p-n-p transistor, this negative current also forward biases the base-emitter 
junction of transistor Q2, resulting in collector current which forms an additional base current 
into the base of transistor Q1. The applied current to the gate of the Thyristor therefore causes an 
additional current into Q1, which can be large enough that both transistors remain in turned on 
even if the original gate current is removed. This latching behavior is not unlike that of a flip-
flop, where the inputs of two devices are connected to the output as shown in Figxxx. This self-
sustaining effect will occur if the product of the current gain of both transistors equals unity, 
while one of the transistors can have a current gain less than unity. As a result one has 
considerable flexibility to choose the doping density and thickness of each of the layers to obtain 
a high blocking voltage and high Early voltage for each transistor, while maintaining sufficient 
current gain.  

The Thyristor has a lower on-state voltage than the Darlington pair and typically requires an 
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even smaller turn-on current, which only needs to be applied temporarily because of the internal 
positive feedback between the two transistors of the equivalent circuit.  

This latter property is also the main disadvantage of the Thyristor: since the device latches into 
the on-state once sufficient gate current is supplied, the device can not be turned off by removing 
the gate current. Instead one has to disconnect the power supply to turn off the device. 
Furthermore, since both transistors are in saturtion in the on-state, a significant amount of 
minority carriers are accumulated in the base region of each transistor. These minority carriers 
must be remove prior to reconnecting the power supply since these carriers would temporarily 
lead to a base current in each device and trigger the turn-o of the Thyristor. Finally, one has to 
slowly ramp up the power supply voltage to avoid the so-called dV/dt effect. Since a rapid 
increase of the applied voltage with time causes a displacement current proportional to the 
capacitance of the junctions, this displacement current could again provide a temporary base 
current in Q1 and Q2, which is large enough to trigger the Thyristor. 

 

Figure 5.9.2.  Thyristor structure: a) circuit symbol, b) device cross-section and c) equivalent 
circuit. 

A very attractive feature of a Thyristor is that it can be scaled easily to very large area devices 
even if that causes a significant lateral resistance though the thin and lowly-doped base and 
collector regions. As one applies a current to the gate electrode, the Thyristor would be triggered 
locally. The turned-on region would then spread laterally thoughout the structure without a need 
for an additional gate current. The local triggering also exists in the light-controlled Thyristor. 
This structure does not contain a gate electrode. Instead the p-n-p-n structure is locally 
illuminated with photons whose energy exceeds the bandgap energy of the semiconductor. The 
photogenerated current then acts as the gate current, which triggers the Thyristor. 

Gate turn-off Thyristor (GTO) 

 

5.9.4. DIode and TRiode AC Switch (DIAC and TRIAC) 

The diode AC switch and the triode AC switch are very similar to the thyristors, since they both 
are latching multi-layer device structures. Both are meant to be used in AC powered systems and 
therefore respond similarly to positive and negative applied voltages. The circuit symbols and 
layer structures are shown for both devices in Figure 5.9.3. The diode AC switch also referred to 
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as DIAC consists of a gate-less pnpn structure connected in parallel to a gate-less npnp structure. 
This device therefore acts like an open circuit until the threshold voltage is reached - either 
positive or negative – after which the device acts as a short. To achieve this function one starts 
with a pnp structure. An n+ region is added to the front and the back to yield the DIAC structure.  

The triode AC switch (TRIAC) also contains the same vertical structure as a DIAC. In addition a 
contact is made to the p-type gate of the npnp structure as well as the n-type gate of the pnpn 
structure. This additional gate contact allows lowering the threshold for latching for both positive 
and negative applied voltages applied between terminal 1 and terminal 2. 

 

 

Figure 5.9.3.  Circuit symbol and device cross-section of a) a Diode AC switch (DIAC) and b) a 
Triode AC switch (TRIAC). 
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Chapter 5: Bipolar Junction Transistors

Examples

Example 5.1  A bipolar transistor with an emitter current of 1 mA has an emitter efficiency of 0.99, a base 
transport factor of 0.995 and a depletion layer recombination factor of 0.998. Calculate the 
base current, the collector current, the transport factor and the current gain of the 
transistor. 

Example 5.2  Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 and base doping of 1017 
cm-3. The quasi-neutral region width in the emitter is 1 µm and 0.2 µm in the base. Use µn 
= 1000 cm2/V-s and µp = 300 cm2/V-s . The minority carrier lifetime in the base is 10 ns.
Calculate the emitter efficiency, the base transport factor, and the current gain of the 
transistor biased in the forward active mode. Assume there is no recombination in the 
depletion region.

Example 5.3  Calculate the saturation voltage of a bipolar transistor biased with a base current of 1 mA 
and a collector current of 10 mA. Use αR = 0.993 and αF = 0.2.

Example 5.4  Consider a bipolar transistor with a base doping of 1017 cm-3 and a quasi-neutral base 
width of 0.2 µm. Calculate the Early voltage and collector current ideality factor given that 
the base-emitter capacitance and the base-collector capacitance are 0.2 nF and 0.2 pF. 
The collector area equals 10-4 cm-2.
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Example 5.1 A bipolar transistor with an emitter current of 1 mA has an emitter 
efficiency of 0.99, a base transport factor of 0.995 and a depletion 
layer recombination factor of 0.998. Calculate the base current, the 
collector current, the transport factor and the current gain of the 
transistor.  

Solution The transport factor and current gain are: 
983.0998.0995.099.0 =××== rTE δαγα  

and 

1.58
1

=
−

=
α

α
β  

 
The collector current then equals 

mA 0.983== EC II α  
And the base current is obtained from: 

µA 17=−= CEB III  
 



Example 5.2 Consider a pnp bipolar transistor with emitter doping of 1018 cm-3 

and base doping of 1017 cm-3. The quasi-neutral region width in 
the emitter is 1 µm and 0.2 µm in the base. Use µn = 1000 cm2/V-s 
and µp = 300 cm2/V-s . The minority carrier lifetime in the base is 
10 ns. 
Calculate the emitter efficiency, the base transport factor, and the 
current gain of the transistor biased in the forward active mode. 
Assume there is no recombination in the depletion region. 

Solution The emitter efficiency is obtained from: 
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The current gain then becomes: 

5.147
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−

=
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β  

where the transport factor, α, was calculated as the product of the 
emitter efficiency and the base transport factor: 

993.09992.0994.0 =×== TE αγα  
 



Example 5.3 Calculate the saturation voltage of a bipolar transistor biased with 
a base current of 1 mA and a collector current of 10 mA. Use αR = 
0.993 and αF = 0.2. 

Solution The saturation voltage equals: 
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Example 5.4 Consider a bipolar transistor with a base doping of 1017 cm-3 and a 
quasi-neutral base width of 0.2 µm. Calculate the Early voltage 
and collector current ideality factor given that the base-emitter 
capacitance and the base-collector capacitance are 0.2 nF and 0.2 
pF. The collector area equals 10-4 cm-2. 

Solution The Early voltage equals: 
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The saturation voltage equals: 
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Chapter 5: Bipolar Junction Transistors

Problems  

1.  A silicon npn bipolar transistor with NE = 1018 cm-3, NB = 1017 cm-3 and NC = 1016 cm-3, wE = 1 µm, wB 
= 0.5 µm , and wC = 4 µm is biased with VBE = 0.6 V and VCB = 0 V. Use µn = 1000 cm2/V-s, µp = 300 
cm2/V-s and τn = τp = 100 ns. The emitter area equals 10-4 cm2.

a.  Calculate the width of the quasi-neutral regions in the emitter, base and collector. 
b.  

Calculate the minority-carrier diffusion lengths in the emitter, base and collector. Calculate the 
ratio of the minority-carrier diffusion length and the quasi-neutral region width in each region. 

c.  
Calculate the excess-minority-carrier charge density per unit area in the emitter, base and 
collector. 

d.  
Calculate the emitter current while ignoring the recombination in the depletion region. 

e.  
Calculate the base transit time and the current due to recombination of electrons in the base. 

f.  
Calculate the emitter efficiency and the base transport factor. 

g.  
Calculate the emitter efficiency and the base transport factor. 

h.  
Calculate the transport factor and the current gain assuming there is no recombination in the 
depletion regions. 

i.  
Calculate the collector capacitance, the majority-carrier charge density in the base and the Early 
voltage. 

●     A silicon npn bipolar transistor has an emitter doping, NE = 2 x1018 cm-3, an emitter width wE = 1 µm, and a 
base doping of 2 x 1017 cm-3. A current gain of 100 and an early voltage of 100 V is desired. Using µn = 1000 
cm2/V-s, µp = 300 cm2/V-s and τn = τp = 100 ns, find the corresponding base width and base doping. The 
emitter area equals 10-4 cm2.
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Chapter 5: Bipolar Junction Transistors

Review Questions  

1.  Describe the motion of electrons and holes in a pnp bipolar transistor biased in the forward active mode 
with VBC = 0. 

2.  What is the definition of the emitter efficiency? Explain in words and provide the corresponding equation. 

3.  What is the definition of the base transport factor? Explain in words and provide the corresponding 
equation. 

4.  Derive the relation between the current gain and the transport factor. 

5.  How does recombination in the quasi-neutral base region affect the emitter, base and collector current? 

6.  How does recombination in the base-emitter depletion region affect the emitter, base and collector 
current? 

7.  Explain the four different bias modes of a bipolar transistor. 

8.  Explain why a transistor can have a current gain larger than one in the common emitter mode. Provide 
the necessary and sufficient conditions needed to obtain a current gain larger than one. 

9.  What is the Early effect and how does it affect the transistor characteristics?
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Chapter 6: MOS Capacitors

6.1. Introduction

The primary reason to study the Metal-Oxide-Silicon (MOS) capacitor is to understand the principle of operation 
as well as the detailed analysis of the Metal-Oxide-Silicon Field Effect Transistor (MOSFET). In this chapter, we 
introduce the MOS structure and its four different modes of operation, namely accumulation, flatband, depletion 
and inversion. We then consider the flatband voltage in more detail and present the MOS analysis based on 
the full depletion approximation. Finally, we analyze and discuss the MOS capacitance.
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Chapter 6: MOS Capacitors

6.2. Structure and principle of operation
6.2.1. Flatband diagram 
6.2.2. Accumulation
6.2.3. Depletion
6.2.4. Inversion

The MOS capacitor consists of a Metal-Oxide-Semiconductor structure as illustrated by Figure 6.2.1. Shown is 
the semiconductor substrate with a thin oxide layer and a top metal contact, also referred to as the gate. A 
second metal layer forms an Ohmic contact to the back of the semiconductor, also referred to as the bulk. The 
structure shown has a p-type substrate. We will refer to this as an n-type MOS capacitor since the inversion 
layer as discussed below contains electrons 

Figure 6.2.1: MOS capacitance structure
To understand the different bias modes of an MOS capacitor we now consider three different bias voltages. 
One below the flatband voltage, VFB, a second between the flatband voltage and the threshold voltage, VT, and 
finally one larger than the threshold voltage. These bias regimes are called the accumulation, depletion and 
inversion mode of operation. These three modes as well as the charge distributions associated with each of 
them are shown in Figure 6.2.2. 
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MOS Capacitors

Figure 6.2.2.: Charges in a Metal-Oxide-Semiconductor structure under accumulation, depletion and 
inversion conditions 

Accumulation occurs typically for negative voltages where the negative charge on the gate attracts holes from 
the substrate to the oxide-semiconductor interface. Depletion occurs for positive voltages. The positive charge 
on the gate pushes the mobile holes into the substrate. Therefore, the semiconductor is depleted of mobile 
carriers at the interface and a negative charge, due to the ionized acceptor ions, is left in the space charge 
region. The voltage separating the accumulation and depletion regime is referred to as the flatband voltage, 
VFB. Inversion occurs at voltages beyond the threshold voltage. In inversion, there exists a negatively charged 
inversion layer at the oxide-semiconductor interface in addition to the depletion-layer. This inversion layer is 
due to minority carriers, which are attracted to the interface by the positive gate voltage.
The energy band diagram of an n-MOS capacitor biased in inversion is shown in Figure 6.2.3. The oxide is 
characterized as a semiconductor with a very large bandgap, which blocks any flow of carriers between the 
semiconductor and the gate metal. The band-bending in the semiconductor is consistent with the presence of a 
depletion layer. At the semiconductor-oxide interface, the Fermi energy is close to the conduction band edge as 
expected when a high density of electrons is present. An interesting point to note is that as the oxide behaves 
as an ideal insulator, the semiconductor is in thermal equilibrium even when a voltage is applied to the gate. 
The presence of an electric field does not automatically lead to a non-equilibrium condition, as was also the 
case for a p-n diode with zero bias.
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Figure 6.2.3: Energy band diagram of an MOS structure biased in inversion.
We will discuss in the next sections the four modes of operation of an MOS structure: Flatband, Depletion, 
Inversion and Accumulation. Flatband conditions exist when no charge is present in the semiconductor so that 
the silicon energy band is flat. Initially we will assume that this occurs at zero gate bias. Later we will consider 
the actual flat band voltage in more detail. Surface depletion occurs when the holes in the substrate are pushed 
away by a positive gate voltage. A more positive voltage also attracts electrons (the minority carriers) to the 
surface, which form the so-called inversion layer. Under negative gate bias, one attracts holes from the p-type 
substrate to the surface, yielding accumulation. 

6.2.1. Flatband diagram 
 

The flatband diagram is by far the easiest energy band diagram. The term flatband refers to fact that the energy 
band diagram of the semiconductor is flat, which implies that no charge exists in the semiconductor. The 
flatband diagram of an aluminum-silicon dioxide-silicon MOS structure is shown in Figure 6.2.4. Note that a 
voltage, VFB, must be applied to obtain this flat band diagram. Indicated on the figure is also the work function 
of the aluminum gate, ΦM, the electron affinity of the oxide, χoxide, and that of silicon, χ, as well as the bandgap 
energy of silicon, Eg. The bandgap energy of the oxide is quoted in the literature to be between 8 and 9 
electron volt. The reader should also realize that the oxide is an amorphous material and the use of 
semiconductor parameters for such material can justifiably be questioned. 
The flat band voltage is obtained when the applied gate voltage equals the workfunction difference between the 
gate metal and the semiconductor. If there is also a fixed charge in the oxide and/or at the oxide-silicon 
interface, the expression for the flatband voltage must be modified accordingly.
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Figure 6.2.4: Flatband energy diagram of a metal-oxide-semiconductor (MOS) structure consisting of an 
aluminum metal, silicon dioxide and silicon.

6.2.2. Accumulation
 

Accumulation occurs when one applies a voltage, which is less than the flatband voltage. The negative charge 
on the gate attracts holes from the substrate to the oxide-semiconductor interface. Only a small amount of band 
bending is needed to build up the accumulation charge so that almost all of the potential variation is within the 
oxide.

6.2.3. Depletion
 

As a more positive voltage than the flatband voltage is applied, a negative charge builds up in the 
semiconductor. Initially this charge is due to the depletion of the semiconductor starting from the oxide-
semiconductor interface. The depletion layer width further increases with increasing gate voltage. 

6.2.4. Inversion
 

As the potential across the semiconductor increases beyond twice the bulk potential, another type of negative 
charge emerges at the oxide-semiconductor interface: this charge is due to minority carriers, which form a so-
called inversion layer. As one further increases the gate voltage, the depletion layer width barely increases 
further since the charge in the inversion layer increases exponentially with the surface potential.
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Chapter 6: MOS Capacitors

6.3. MOS analysis
6.3.1. Flatband voltage calculation
6.3.2. Inversion layer charge
6.3.3. Full depletion analysis
6.3.4. MOS Capacitance

6.3.1. Flatband voltage calculation
 

If there is no charge present in the oxide or at the oxide-semiconductor interface, the flat band voltage simply 
equals the difference between the gate metal workfunction, ΦM, and the semiconductor workfunction, ΦS. 

(6.3.1)

The workfunction is the voltage required to extract an electron from the Fermi energy to the vacuum level. This 
voltage is between three and five Volt for most metals. It should be noted that the actual value of the 
workfunction of a metal deposited onto silicon dioxide is not exactly the same as that of the metal in vacuum. 
Figure 6.3.1 provides experimental values for the workfunction of different metals as obtained from a 
measurement of a MOS capacitor as a function of the measured workfunction in vacuum. The same data is 
also listed in Table 6.3.1.

Figure 6.3.1.: Workfunction of Magnesium (Mg), Aluminum (Al), Copper (Cu), Silver (Ag), Nickel (Ni) and 
Gold (Au) obtained from I-V and C-V measurements on MOS structures as a function of the 
workfunction of those metals measured in vacuum.
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Table 6.3.1: Workfunction of selected metals as measured in vacuum and as obtained from a C-V 
measurement on an MOS structure.

The workfunction of a semiconductor, ΦS, requires some more thought since the Fermi energy varies with the 
doping type as well as with the doping concentration. This workfunction equals the sum of the electron affinity 
in the semiconductor, χ, the difference between the conduction band energy and the intrinsic energy divided by 
the electronic charge and the bulk potential as expressed by the following equation: 

(6.3.2)

For MOS structures with a highly doped poly-silicon gate one must also calculate the workfunction of the gate 
based on the bulk potential of the poly-silicon. 

(6.3.3)

Where Na,poly and Nd,poly are the acceptor and donor density of the p-type and n-type poly-silicon gate 
respectively. 
The flatband voltage of real MOS structures is further affected by the presence of charge in the oxide or at the 
oxide-semiconductor interface. The flatband voltage still corresponds to the voltage, which, when applied to the 
gate electrode, yields a flat energy band in the semiconductor. The charge in the oxide or at the interface 
changes this flatband voltage. For a charge, Qi, located at the interface between the oxide and the 
semiconductor, and a charge density, ρox, distributed within the oxide, the flatband voltage is given by: 

(6.3.4)

where the second term is the voltage across the oxide due to the charge at the oxide-semiconductor interface 
and the third term is due to the charge density in the oxide. 
The actual calculation of the flatband voltage is further complicated by the fact that charge can move within the 
oxide. The charge at the oxide-semiconductor interface due to surface states also depends on the position of 
the Fermi energy. 
Since any additional charge affects the flatband voltage and thereby the threshold voltage, great care has to be 
taken during fabrication to avoid the incorporation of charged ions as well as creation of surface states. 
Example 6.1 Calculate the flatband voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 

cm-3 and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the oxide or at 
the oxide-silicon interface.
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Solution The flatband voltage equals the work function difference since there is no charge in the oxide 
or at the oxide-semiconductor interface.

The flatband voltages for nMOS and pMOS capacitors with an aluminum or a poly-silicon gate 
are listed in the table below.

6.3.2. Inversion layer charge
 

The basis assumption as needed for the derivation of the MOSFET models is that the inversion layer charge is 
proportional with the applied voltage. In addition, the inversion layer charge is zero at and below the threshold 
voltage as described by:

(6.3.5)

The linear proportionality can be explained by the fact that a gate voltage variation causes a charge variation in 
the inversion layer. The proportionality constant between the charge and the applied voltage is therefore 
expected to be the gate oxide capacitance. This assumption also implies that the inversion layer charge is 
located exactly at the oxide-semiconductor interface.
Because of the energy band gap of the semiconductor separating the electrons from the holes, the electrons 
can only exist if the p-type semiconductor is first depleted. The voltage at which the electron inversion-layer 
forms is referred to as the threshold voltage. 
To justify this assumption we now examine a comparison of a numeric solution with equation (6.3.4) as shown 
in Figure 6.3.2. 
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Figure 6.3.2.: Charge density due to electrons in the inversion layer of an MOS capacitor. Compared are the 
analytic solution (solid line) and equation (6.3.5) (dotted line) for Na = 1017 cm-3 and tox = 20 
nm. 

While there is a clear difference between the curves, the difference is small. We will therefore use our basic 
assumption when deriving the different MOSFET models since it dramatically simplifies the derivation, be it 
while losing some accuracy.

6.3.3. Full depletion analysis
 

We now derive the MOS parameters at threshold with the aid of Figure 6.3.3. To simplify the analysis we make 
the following assumptions: 1) we assume that we can use the full depletion approximation and 2) we assume 
that the inversion layer charge is zero below the threshold voltage. Beyond the threshold voltage we assume 
that the inversion layer charge changes linearly with the applied gate voltage. 
The derivation starts by examining the charge per unit area in the depletion layer, Qd. As can be seen in Figure 
6.3.3 (a), this charge is given by: 

(6.3.6)

Where xd is the depletion layer width and Na is the acceptor density in the substrate. Integration of the charge 
density then yields the electric field distribution shown in Figure 6.3.3 (b). The electric field in the semiconductor 
at the interface, s, and the field in the oxide equal, ox:

(6.3.7)
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The electric field changes abruptly at the oxide-semiconductor interface due to the difference in the dielectric 
constant. At a silicon/SiO2 interface the field in the oxide is about three times larger since the dielectric constant 
of the oxide (εox = 3.9 ε0) is about one third that of silicon (εs = 11.9 ε0). The electric field in the semiconductor 
changes linearly due to the constant doping density and is zero at the edge of the depletion region.
The potential shown in Figure 6.3.3 (c) is obtained by integrating the electric field. The potential at the surface, 
φs, equals:

(6.3.8)

Figure 6.3.3: Electrostatic analysis of an MOS structure. Shown are (a) the charge density, (b) the electric 
field, (c) the potential and (d) the energy band diagram for an n-MOS structure biased in 
depletion.

The calculated field and potential is only valid in depletion. In accumulation, there is no depletion region and the 
full depletion approximation does not apply. In inversion, there is an additional charge in the inversion layer, 
Qinv. This charge increases gradually as the gate voltage is increased. However, this charge is only significant 
once the electron density at the surface exceeds the hole density in the substrate, Na. We therefore define the 
threshold voltage as the gate voltage for which the electron density at the surface equals Na. This corresponds 
to the situation where the total potential across the surface equals twice the bulk potential, φF. 

(6.3.9)
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The depletion layer in depletion is therefore restricted to this potential range:

(6.3.10)

For a surface potential larger than twice the bulk potential, the inversion layer charge change increases 
exponentially with the surface potential. Consequently, an increased gate voltage yields an increased voltage 
across the oxide while the surface potential remains almost constant. We will therefore assume that the surface 
potential and the depletion layer width at threshold equal those in inversion. The corresponding expressions for 
the depletion layer charge at threshold, Qd,T, and the depletion layer width at threshold, xd,T, are: 

(6.3.11)

(6.3.12)

Beyond threshold, the total charge in the semiconductor has to balance the charge on the gate electrode, QM, 
or: 

(6.3.13)

where we define the charge in the inversion layer as a quantity which needs to determined but should be 
consistent with our basic assumption. This leads to the following expression for the gate voltage, VG: 

(6.3.14)

In depletion, the inversion layer charge is zero so that the gate voltage becomes: 

(6.3.15)

while in inversion this expression becomes: 

(6.3.16)

the third term in (6.3.16) states our basic assumption, namely that any change in gate voltage beyond the 
threshold requires a change of the inversion layer charge. From the second equality in equation (6.3.16), we 
then obtain the threshold voltage or: 

(6.3.17)

Example 6.2 Calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping Na = 1017 
cm-3, a 20 nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is 
no fixed charge in the oxide or at the oxide-silicon interface.
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Solution The threshold voltage equals:

Where the flatband voltage was already calculated in example 6.1. The threshold voltage 
voltages for nMOS and pMOS capacitors with an aluminum or a poly-silicon gate are listed in 
the table below.

6.3.4. MOS Capacitance
 

6.3.4.1. Simple capacitance model
6.3.4.2. Calculation of the flat band capacitance
6.3.4.3. Deep depletion capacitance
6.3.4.4. Experimental results and comparison with theory
6.3.4.5. Non-Ideal effects in MOS capacitors

Capacitance voltage measurements of MOS capacitors provide a wealth of information about the structure, 
which is of direct interest when one evaluates an MOS process. Since the MOS structure is simple to fabricate, 
the technique is widely used. 
To understand capacitance-voltage measurements one must first be familiar with the frequency dependence of 
the measurement. This frequency dependence occurs primarily in inversion since a certain time is needed to 
generate the minority carriers in the inversion layer. Thermal equilibrium is therefore not immediately obtained. 
The low frequency or quasi-static measurement maintains thermal equilibrium at all times. This capacitance is 
the ration of the change in charge to the change in gate voltage, measured while the capacitor is in equilibrium. 
A typical measurement is performed with an electrometer, which measured the charge added per unit time as 
one slowly varies the applied gate voltage. 
The high frequency capacitance is obtained from a small-signal capacitance measurement at high frequency. 
The bias voltage on the gate is varied slowly to obtain the capacitance versus voltage. Under such conditions, 
one finds that the charge in the inversion layer does not change from the equilibrium value corresponding to the 
applied DC voltage. The high frequency capacitance therefore reflects only the charge variation in the depletion 
layer and the (rather small) movement of the inversion layer charge. 
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In this section, we first derive the simple capacitance model, which is based on the full depletion approximation 
and our basic assumption. The comparison with the exact low frequency capacitance will reveal that the largest 
error occurs at the flatband voltage. We therefore derive the exact flatband capacitance using the linearized 
Poisson's equation. Then we discuss the full exact analysis followed by a discussion of deep depletion as well 
as the non-ideal effects in MOS capacitors. 

6.3.4.1. Simple capacitance model

The capacitance of an MOS capacitor is obtained using the same assumptions as those listed in section 6.3.3. 
The MOS structure is treated as a series connection of two capacitors: the capacitance of the oxide and the 
capacitance of the depletion layer. 
In accumulation, there is no depletion layer. The remaining capacitor is the oxide capacitance, so that the 
capacitance equals: 

(6.3.18)

In depletion, the MOS capacitance is obtained from the series connection of the oxide capacitance and the 
capacitance of the depletion layer, or: 

(6.3.19)

where xd is the variable depletion layer width which is calculated from: 

(6.3.20)

In order to find the capacitance corresponding to a specific value of the gate voltage we also need to use the 
relation between the potential across the depletion region and the gate voltage, given by: 

(6.3.15)

In inversion, the capacitance becomes independent of the gate voltage. The low frequency capacitance equals 
the oxide capacitance since charge is added to and removed from the inversion layer. The high frequency 
capacitance is obtained from the series connection of the oxide capacitance and the capacitance of the 
depletion layer having its maximum width, xd,T. The capacitances are given by: 

(6.3.21)

The capacitance of an MOS capacitor as calculated using the simple model is shown in Figure 6.3.4. The 
dotted lines represent the simple model while the solid line corresponds to the low frequency capacitance as 
obtained from the exact analysis. 
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Figure 6.3.4 : Low frequency capacitance of an nMOS capacitor. Shown are the exact solution for the low 
frequency capacitance (solid line) and the low and high frequency capacitance obtained with 
the simple model (dotted lines). Na = 1017 cm-3 and tox = 20 nm. 

6.3.4.2. Calculation of the flat band capacitance

The simple model predicts that the flatband capacitance equals the oxide capacitance. However, the 
comparison with the exact solution of the low frequency capacitance as shown in Figure 6.3.4 reveals that the 
error can be substantial. The reason for this is that we have ignored any charge variation in the semiconductor. 
We will therefore now derive the exact flatband capacitance. 
To derive the flatband capacitance including the charge variation in the semiconductor, we first linearize 
Poisson's equation. Since the potential across the semiconductor at flatband is zero, we expect the potential to 
be small as we vary the gate voltage around the flatband voltage. Poisson's equation can then be simplified to: 

(6.3.22)

Charge due to ionized donors or electrons were eliminated, since neither are present in a p-type semiconductor 
around flatband. The linearization is obtained by replacing the exponential function by the first two terms of its 
Taylor series expansion. The solution to this equation is: 

(6.3.23)

Where fs is the potential at the surface of the semiconductor and LD is called the Debye length. The solution of 
the potential enables the derivation of the capacitance of the semiconductor under flatband conditions, or: 

(6.3.24)
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The flatband capacitance of the MOS structure at flatband is obtained by calculating the series connection of 
the oxide capacitance and the capacitance of the semiconductor, yielding: 

(6.3.25)

Example 6.3 Calculate the oxide capacitance, the flatband capacitance and the high frequency capacitance 
in inversion of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-3, a 20 nm thick 
oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 

Solution The oxide capacitance equals:

The flatband capacitance equals:

where the Debye length is obtained from:

The high frequency capacitance in inversion equals:

and the depletion layer width at threshold equals:
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The bulk potential, φF, was already calculated in example 6.1

6.3.4.3. Deep depletion capacitance

Deep depletion occurs in an MOS capacitor when measuring the high-frequency capacitance while sweeping 
the gate voltage "quickly". Quickly means that the gate voltage must be changed fast enough so that the 
structure is not in thermal equilibrium. One then observes that, when ramping the voltage from flatband to 
threshold and beyond, the inversion layer is not or only partially formed. This occurs since the generation of 
minority carriers can not keep up with the amount needed to form the inversion layer. The depletion layer 
therefore keeps increasing beyond its maximum thermal equilibrium value, xd,T resulting in a capacitance which 
further decreases with voltage. 
The time required to reach thermal equilibrium can be estimated by taking the ratio of the total charge in the 
inversion layer to the thermal generation rate of minority carriers. A complete analysis should include both the 
surface generation rate as well as generation in the depletion layer and the quasi-neutral region. A good 
approximation is obtained by considering only the generation rate in the depletion region in deep depletion, xd,

dd. This yields the following equation: 

(6.3.26)

where the generation in the depletion layer was assumed to be constant. The rate of change required to 
observe deep depletion is then obtained from: 

(6.3.27)

This equation predicts that deep depletion is less likely at higher ambient temperature, since the intrinsic carrier 
density ni increases exponentially with temperature. The intrinsic density also decreases exponentially with the 
energy bandgap. Therefore, MOS structures made with wide bandgap materials (for instance 6H-SiC for which 
Eg = 3 eV), have an extremely pronounced deep depletion effect. 

In silicon MOS capacitors, one finds that the occurrence of deep depletion can be linked to the minority carrier 
lifetime. Structures with a long (0.1 ms) lifetime require a few seconds to reach thermal equilibrium which 
results in a pronounced deep depletion effect at room temperature, structures with a short (1 ms) lifetime do not 
show this effect. 
Carrier generation due to light will increase the generation rate beyond the thermal generation rate, which we 
assumed above and reduce the time needed to reach equilibrium. Deep depletion measurements are therefore 
done in the dark. 

6.3.4.4. Experimental results and comparison with theory
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As an example, we show below the measured low frequency (quasi-static) and high frequency capacitance-
voltage curves of an MOS capacitor. The capacitance was measured in the presence of ambient light as well 
as in the dark as explained in Figure 6.3.5. 

Figure 6.3.5 : Low frequency (quasi-static) and high frequency capacitance measurement of a pMOS 
capacitor. Shown are, from top to bottom, the low frequency capacitance measured in the 
presence of ambient light (top curve), the low frequency capacitance measured in the dark, the 
high frequency capacitance measured in the presence of ambient light and the high frequency 
capacitance measured in the dark (bottom curve). All curves were measured from left to right. 
The MOS parameters are Na - Nd = 4 x 1015 cm-3 and tox = 80 nm. The device area is 0.0007 
cm2.

Figure 6.3.5 illustrates some of the issues when measuring the capacitance of an MOS capacitance. First, one 
should measure the devices in the dark. The presence of light causes carrier generation in the semiconductor, 
which affects the measured capacitance. In addition, one must avoid the deep depletion effects such as the 
initial linearly varying capacitance of the high frequency capacitance measured in the dark on the above figure 
(bottom curve). The larger the carrier lifetime, the slower the voltage is to be changed to avoid deep depletion. 
The low frequency measured is compared to the theoretical value in Figure 6.3.6. The high frequency 
capacitance measured in the presence of light is also shown on the figure. The figure illustrates the agreement 
between experiment and theory. A comparison of the experimental low (rather than high) frequency 
capacitance with theory is somewhat easier to carry out. The low frequency capacitance is easier to calculate 
while the measurement tends to be less sensitive to deep depletion effects. 
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Figure 6.3.6: Comparison of the theoretical low frequency capacitance (solid line) and the experimental data 
(open squares) obtained in the dark. Fitting parameters are Na - Nd = 3.95 x 1015 cm-3 and tox 
= 80 nm.

6.3.4.5. Non-Ideal effects in MOS capacitors

Non-ideal effects in MOS capacitors include fixed charge, mobile charge and charge in surface states. All three 
types of charge can be identified by performing a capacitance-voltage measurement. 
Fixed charge in the oxide simply shifts the measured curve. A positive fixed charge at the oxide-semiconductor 
interface shifts the flatband voltage by an amount, which equals the charge divided by the oxide capacitance. 
The shift reduces linearly as one reduces the position of the charge relative to the gate electrode and becomes 
zero if the charge is located at the metal-oxide interface. A fixed charge is caused by ions, which are 
incorporated in the oxide during growth or deposition. 
The flatband voltage shift due to mobile charge is described by the same equation as that due to fixed charge. 
However, the measured curves differ since a positive gate voltage causes any negative mobile charge to move 
away from the gate electrode, while a negative voltage attracts the charge towards the gate. This causes the 
curve to shift towards the applied voltage. One can recognize mobile charge by the hysteresis in the high 
frequency capacitance curve when sweeping the gate voltage back and forth. Sodium ions incorporated in the 
oxide of silicon MOS capacitors are known to yield mobile charges. It is because of the high sensitivity of MOS 
structures to a variety of impurities that the industry carefully controls the purity of the water and the chemicals 
used. 
Charge due to electrons occupying surface states also yields a shift in flatband voltage. However as the applied 
voltage is varied, the Fermi energy at the oxide-semiconductor interface changes also and affects the 
occupancy of the surface states. The interface states cause the transition in the capacitance measurement to 
be less abrupt. The combination of the low frequency and high frequency capacitance allows calculating the 
surface state density. This method provides the surface state density over a limited (but highly relevant) range 
of energies within the bandgap. Measurements on n-type and p-type capacitors at different temperatures 
provide the surface state density throughout the bandgap.
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The fabrication of the oxide of an MOS structure is one of the critical steps when fabricating MOSFETs. This is 
in part due to the need for an ideal oxide-semiconductor interface with low surface-state density but also 
because of the extremely thin oxides that are currently used for sub-micron MOSFETs. Two techniques are 
commonly used to form silicon dioxide. One involves the oxidation of the silicon yielding a thermal oxide. The 
other technique relies on the deposition of SiO2 using a chemical vapor-deposition (CVD) process.

The thermal oxidation of silicon is obtained by heating the wafer in an oxygen or water vapor ambient. Typical 
temperatures range from 800 to 1200°C. The oxidation of a silicon surface also occurs at room temperature but 
the resulting 3 nm layer of oxide limits any further oxidation. At high temperatures, oxygen or water molecules 
can diffuse through the oxide so that further oxidation takes place. The oxidation in oxygen ambient is called a 
dry oxidation. The one in water vapor is a wet oxidation. The thermal oxidation provides a high quality interface 
and oxide. It is used less these days because of the high process temperatures.
The deposition of SiO2 using a CDV process is one where two gases, silane and oxygen, react to form silicon 
dioxide, which then sublimes onto any solid surface. The wafers are heated to 200 - 400°C yielding high quality 
oxides. The lower process temperature and the quality of the deposited layers make CVD deposition the 
preferred method to fabricate MOS oxides.
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6.5. Exact MOS analysis 

6.5.1. Introduction 

An exact analytic solution can be obtained for the MOS capacitance as long as surface electron 
concentration is not degenerate. Poisson’s equation can then be solved yielding first the electric 
field as a function of the potential in the semiconductor. A solution for the electric field and/or 
the potential as a function of the position cannot be obtained analytically. This requires a 
numeric integration. Combining the electrical field and the surface potential yields the gate 
voltage, since the field in the semiconductor and that in the oxide are related by their respective 
dielectric constants. The same approach also yields a good approximation for the charge in the 
depletion layer, the inversion layer or the accumulation layer. The derivative of the charge with 
the applied voltage equals the capacitance of the MOS structure. The calculation of the low 
frequency or quasi-static capacitance is relative straight forward, while the calculation of the 
high-frequency capacitance requires an additional numeric integration. A detailed derivation of 
the items mentioned above as well as the deep depletion capacitance and an approximate 
expression for the high-frequency capacitance can be found in the full derivation.  

6.5.2. Electric field versus surface potential 

The solution for the electric field is obtained by solving Poisson's equation while including the 
charge due to electrons, holes and the ionized donors and acceptors. This solution provides the 
relation between the electric field at the surface of the semiconductor and the surface potential. 
The absolute value of the field is shown in the figure below. This figure was obtained for a 
substrate with an acceptor concentration, Na = 1017 cm-3, and an oxide thickness, tox = 20 nm.  

Figure 6.5.1 Electric field at the surface of the semiconductor as a function of the potential 
across the semiconductor. Shown is the electric field (solid line) and the field due 
to the inversion layer charge only (black dotted line) The red vertical line 
indicates the threshold voltage. Na = 1017 cm-3 and tox = 20 nm.  

When applying a positive potential (which can be done by applying a positive gate voltage) the 
surface of the silicon is first depleted. This causes an electric field, which varies as the square 



    

root of the surface potential. At higher positive potential the surface inverts which results in a 
sharp rise of the electric field since the inversion layer charge increases exponentially with the 
surface potential. The vertical dotted line on the figure indicates the threshold voltage or the 
onset of strong inversion. The other dotted line represents the fraction of the surface field, which 
is due to the electrons in the inversion layer. It is calculated from the ratio of the inversion layer 
charge and the dielectric constant of the semiconductor.  

When applying a negative surface potential, the holes accumulate at the surface, yielding an 
exponential rise of the electric field with decreasing potential.  

An MOS structure with a n-type substrate can also be analyzed by entering a negative doping 
density.  

6.5.3. Charge in the inversion layer 

The total charge in the inversion layer can also be calculated with this method. It is obtained by 
subtracting the charge in the depletion layer from the total charge for the same surface potential. 
The details can be found in the full derivation. The gate voltage is obtained by adding the flat 
band voltage, the surface potential and the voltage across the oxide. The resulting charge density 
is plotted versus the gate voltage in the figure below. This figure was calculated for an oxide 
thickness of 20 nm. The doping density is also 1017 cm-3 as before.  

Figure 6.5.2 Charge density due to electrons in the inversion layer of an MOS capacitor. 
Compared are the analytic solution (solid line) and our basic assumption (dotted 
line). Na = 1017 cm-3 and tox = 20 nm.  

The dotted line on the figure represents the standard approximation for the inversion layer 
charge: it implies that the charge is simply proportional to the gate oxide capacitance and the 
gate voltage minus the threshold voltage. For voltages below the threshold voltage, there is no 
inversion layer and therefore no inversion layer charge. While not exact, the standard 
approximation is very good.  



6.5.4. Low frequency capacitance 

The low frequency or quasi-static capacitance can be obtained by taking the derivative of the 
charge in the semiconductor with respect to the potential across the semiconductor. Since this 
derivative represents the change between two thermal equilibrium situations, this capacitance is 
also to be measured while maintaining equilibrium conditions at all times. The low frequency or 
quasi-static measurement is typically obtained by measuring the current with a sensitive 
electrometer while varying the applied gate voltage. 

The expected behavior of such measurement is shown in the figure below: The capacitance is 
close to the oxide capacitance except for a gate voltage between the flat band voltage and the 
threshold voltage, as charge is then added deeper into the semiconductor at the edge of the 
depletion layer, rather than at the oxide-silicon interface. This results in the characteristic dip in 
the capacitance curve. 

Figure 6.5.3 Low frequency capacitance of an MOS capacitor. Shown is the exact solution for 
the low frequency capacitance (solid line) and the low and high frequency 
capacitance obtained with the simple model (dotted lines). The red square 
indicates the flatband voltage and capacitance, while the green square indicates 
the threshold voltage and capacitance. Na = 1017 cm-3 and tox = 20 nm. 

This figure was calculated using an oxide thickness of 20 nm and an acceptor concentration of 
1017 cm-3. The dotted lines indicate the high- and low-frequency capacitance as obtained using 
the full depletion approximation. It is clear from the figure that the approximation is rather crude 
when it comes to describing the full behavior, but it is sufficient to extract the oxide thickness 
and substrate doping concentration from a measured curve. 



    

6.5.5. Derivation of the exact solution 

We now derive the exact solution of the MOS capacitor. Whereas most of the derivation is 
applicable for n-type and p-type substrates, the equations are written in a form, which is more 
convenient for p-type substrates, but can be rewritten for n-type substrates. 

The total charge density, ρ, in the semiconductor is given by: 

 )( −+ −−+= ad NnNpqρ  (6.5.1) 

Under thermal equilibrium, the hole and electron densities, p and n, can be expressed as a 
function of the potential, φ, and a reference potential, φF. 
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far away from the oxide-semiconductor interface, the charge density is zero and we define the 
potential, φ, to be zero there also, so that 
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Poisson's equation then takes the following form: 
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multiplying both sides of the equation with 2 dφ/dx and integrating while replacing -dφ/dx by the 
electric field E, one obtains:  
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the constant K can be determined from the boundary condition at x = ∞ where φ = E = 0 yielding 
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The electric field has the same sign as the potential as described with the sign function. 

The relation between the field and the potential at the surface under thermal equilibrium is then: 
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The gate voltage can be expressed as a function of the flatband voltage, the voltage across the 
oxide and the potential across the semiconductor: 
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6.5.5.1.Low frequency capacitance 

The low frequency capacitance of the MOS structure per unit area can then be calculated from: 
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where Cox = εox/tox and 
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This result is often referred to as the low frequency capacitance of a MOS capacitor since we 
calculated the change in charge between two equilibrium situations. The result can be interpreted 
as a series connection of the oxide capacitance and the low frequency capacitance of the 
semiconductor Cs,LF. By starting from a series of values for φs, one can use the above equations 
to first calculate the electric field, the gate voltage and the capacitance. This enables to plot the 
low frequency capacitance as a function of the gate voltage as shown in Figure 6.5.4. 
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Figure 6.5.4 Capacitance versus voltage for a MOS structure with Na = 1015 cm-3 and tox = 
0.1 µm. The curves from top to bottom are: The low frequency capacitance, the 
approximate high frequency capacitance, the exact high frequency capacitance 
and the capacitance under deep depletion conditions. The dotted line indicates 
Cmin, the capacitance at the onset of strong inversion calculated using the full 
depletion approximation.  

Under flat-band conditions, where 0 = |φs| < Vt, the capacitance reduces to 
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where LD is the extrinsic Debye length in the semiconductor with doping |Na - Nd|: 
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6.5.5.2.Deep depletion capacitance 

If the gate voltage is changed faster than electrons can be generated at the oxide-semiconductor 
interface to obtain the equilibrium density, no inversion layer is generated. In this case the gate 
voltage will cause the depletion layer in the semiconductor to exceed the maximum depletion 
layer width as defined at the onset of strong inversion. A typical measurement starts from an 



equilibrium situation where no inversion layer is present and the gate voltage is swept rapidly 
while creating a depletion layer in the semiconductor. The capacitance is measured as the change 
in charge flowing into the structure for a given voltage change. For a p-type substrate, this 
situation can be modeled by eliminating the charge term due to electrons in Poisson's equation:   
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Using the same procedure as above the relation between surface field and surface potential can 
be found: 
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and the capacitance of the semiconductor becomes: 
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and the corresponding gate voltage is: 
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Using a similar procedure as for the low frequency capacitance we can also plot the capacitance 
under deep depletion conditions. 

6.5.5.3.High frequency capacitance 

The high frequency capacitance of an MOS capacitor is measured by applying a small ac voltage 
in addition to the DC gate voltage. The capacitance is defined as the ratio of the out-of-phase 
component of the ac current divided by the amplitude of the ac voltage times the radial 
frequency. An approximate expression can be obtained by ignoring the change in charge in the 
inversion layer yielding the expression for the capacitance under deep depletion conditions. 
However since the gate voltage is changed slowly while measuring the capacitance versus 
voltage, the gate voltage is calculated from the surface potential including the charge in the 
inversion layer under thermal equilibrium. The capacitance is then given by: 
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with the electric field, Es,dd, obtained under deep depletion conditions (6.5.16). 

This is the same expression as for the capacitance under deep depletion conditions. However, the 
corresponding gate voltage is different, namely: 
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where the electric field, Es,eq, is the thermal equilibrium field 

The corresponding capacitance is also included in Figure 6.5.4 together with the expected 
minimum capacitance based on the full depletion approximation corrected for the thermal 
voltage: 
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It should be stressed that this is only an approximate solution. The redistribution of the inversion 
layer charge with applied gate voltage is ignored in the approximate solution even though it does 
affect the depletion layer width and with it the capacitance. This approximation therefore 
introduces an error which was found to be less than 6% at the onset of strong inversion and 
which increases almost linearly with increasing surface potential.  

The exact expression for the high frequency capacitance1 used in Figure 6.5.4 is: 
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Where ∆ for a p-type substrate is: 

 0=∆  for φs < 0 and φF > 0 (6.5.23) 
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The expression with ∆ = 0 for all possible surface potentials equals the low frequency 
capacitance. The function F is related to the equilibrium electric field by: 
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and the normalized parameters U, Us and UF are defined as: 

 U = φ/Vt, Us = φs/Vt,UF = φF/Vt (6.5.26) 

Where the gate voltage is still given by: 

                                                 

1A derivation of this expression can be found in "MOS (Metal Oxide Semiconductor) Physics and Technology", E. 
H. Nicollian and J. R. Brews, Wiley and Sons, 1982, p 157. 
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and the electric field, Es,eq, is the thermal equilibrium field at the surface. 

As illustrated with Fig.A6.2, the high frequency capacitance at the onset of strong inversion 
(φs=2φF) and beyond is found to be almost constant. Assuming φF >> Vt one finds 
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this result could also be obtained by calculating the depletion region width in the semiconductor 
assuming the maximum potential at the surface to be 2φF and using the full depletion 
approximation. The low frequency capacitance at φs = 2φF, assuming  φF >> Vt  is then: 
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also yielding the following relation between both: 
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6.6. p-MOS and general equations 

6.6.1.  p-MOS equations 

p-MOS capacitors have an n-type substrate, a positive charge in the depletion layer and a 
positive charge in the inversion layer. Since the Fermi energy is a distance qφF above the midgap 
energy level, the work function difference is given by:  
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with  
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The expression for the depletion layer width is similar to that of n-MOS capacitors, namely: 
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while the threshold is typically negative due to the positive charge in the depletion layer width.  

 

ox

dFs
FFBT C

qN
VV

φε
φ

22
2 −−= , n-substrate 

(6.6.4) 

Note that the relation between the flatband voltage and the workfunction difference still applies:  
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6.6.2. General equations 

General equations, which are valid for n-MOS and p-MOS capacitors are provided below. The 
type is directly linked to the net doping density of the substrate, Na - Nd, which is positive for a p-
type substrate (n-MOS capacitor) and negative for an n-type substrate (p-MOS capacitor). The 
workfunction difference is then given by:  
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where the built-in potential is positive for p-type substrates and negative for n-type substrates 
and is given by:  
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The depletion layer width at threshold is then:  
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and the threshold voltage is given by:  

  (6.6.9) 

These equations are of interest when parameters of n-MOS as well as p-MOS capacitors are to be 
calculated. The equations eliminate the problem of the variable signs and possible mistakes and 
confusion, at the expense of the added complexity. These equations have been implemented in 
the active figures.  

In a MOSFET structure it is possible to apply a voltage to the channel, VC relative to the voltage 
at the bulk contact to the substrate, VB. This affects the width of the depletion layer width at 
threshold:  
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as well as the threshold voltage itself:  
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This expression will be needed to derive the variable depletion layer model of the MOSFET. 
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6.7. Charge coupled devices 
Application of MOS capacitors 

Serial memory – delay line – analog signal processor – camera focal plane array 

6.7.1. Structure and principle of operation 

Charge coupled devices (CCDs) consist of a series of closely spaced MOS capacitors 

Capacitors operate in deep depletion 

3-phase clock 

1 bit per 3 capacitors 

charge moves to lowest 

Diffusion time is given by 
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Example: 

Consider a silicon CCD array with 5 µm wide electrodes. Calculate the diffusion time. Use an 
electron mobility of  400 cm2/V-s. 

Solution 

The diffusion time equals 

n
d D

L
2

24
π

τ = =10 ns 

6.7.2. Buried channel CCD/improvements/variations 

6.7.2.1.Buried channel CCD 

Contain an n-type layer typically added by ion implantation. 

Intention is to separate the charge from the substrate for higher mobility and minority carrier 
lifetime. Smith and Boyle 

6.7.2.2.Overlapping electrodes 

6.7.3. CCD cameras 

Combination of detectors with CCD readout 

Color filters to get color image 



    

6.7.4. Derivation of the diffusion time 

Diffusion time is given by 
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Derivation starts from the time dependent continuity equation 
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Simplify by eliminating any generation or recombination and diffusion only, resulting in the time 
dependent diffusion equation: 
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A general solution to this partial differential equation can be obtained by assuming that the 
carrier density can be written as the product of a function T(t), which only depends on time and a 
function X(x), which only depends on position. Substitution into the diffusion equation and 
rearrangment resuots in two parts, one a function of t only and one a function of x only. Since 
both have to equal each other they must equal a constant. The unit of the constant is s-1 and one 
would expect the desired solution to decrease with time so that the equation can be rewritten as: 
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The general solution is therefore 
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Where the constants A and B must be determined. At x = 0, there is no current since the potential 
barrier caused by the lower voltage applied to the electrode to the left block any carrier flow. 
Since the diffusion current depends on the gradient of the current, the derivative of the carrier 
density must be zero, which eliminates the sine function as a possible solution. The solution 
therefore reduces to: 
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Where n(0,0) is the initial carrier density at x = t = 0 

The boundary condition at x = L is obtained by assuming that the electric field between two 
adjacent capacitors will immediately remove any carriers that arrive so that the carrier density is 
zero at any time, t, so that n(L,t) = 0. The argument of the cosine function should therefore equal 



π/2. From this one then finds the diffusion time constant, τd. 
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Examples

Example 6.1  Calculate the flatband voltage of a silicon nMOS capacitor with a substrate doping Na = 
1017 cm-3 and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge in the 
oxide or at the oxide-silicon interface.

Example 6.2  Calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping Na = 
1017 cm-3, a 20 nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume 
there is no fixed charge in the oxide or at the oxide-silicon interface.

Example 6.3  Calculate the oxide capacitance, the flatband capacitance and the high frequency 
capacitance in inversion of a silicon nMOS capacitor with a substrate doping Na = 1017 cm-

3, a 20 nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 
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Example 6.1 Calculate the flatband voltage of a silicon nMOS capacitor with 
a substrate doping Na = 1017 cm-3 and an aluminum gate (ΦM = 
4.1 V). Assume there is no fixed charge in the oxide or at the 
oxide-silicon interface. 

Solution The flatband voltage equals the work function difference since 
there is no charge in the oxide or at the oxide-semiconductor 
interface. 
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The flatband voltages for nMOS and pMOS capacitors with an 
aluminum or a poly-silicon gate are listed in the table below. 
 Aluminum p+ poly n+ poly 
nMOS -0.93 V 0.14 V -0.98 V 

 

pMOS -0.09 V 0.98 V -0.14 V 
 



Example 6.2 Calculate the threshold voltage of a silicon nMOS capacitor with 
a substrate doping Na = 1017 cm-3, a 20 nm thick oxide (εox = 3.9 
ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no 
fixed charge in the oxide or at the oxide-silicon interface. 

Solution The threshold voltage equals: 
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Where the flatband voltage was already calculated in example 
6.1. The threshold voltage voltages for nMOS and pMOS 
capacitors with an aluminum or a poly-silicon gate are listed in 
the table below. 
 Aluminum p+ poly n+ poly 
nMOS -0.09 V 0.98 V -0.14 V 

 

pMOS -0.93 V 0.14 V -0.98 V 
 



Example 6.3 Calculate the oxide capacitance, the flatband capacitance and the 
high frequency capacitance in inversion of a silicon nMOS 
capacitor with a substrate doping Na = 1017 cm-3, a 20 nm thick 
oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V).  

Solution The oxide capacitance equals: 
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The flatband capacitance equals: 
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where the Debye length is obtained from: 
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The high frequency capacitance in inversion equals: 
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and the depletion layer width at threshold equals: 
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The bulk potential, φF, was already calculated in example 6.1 
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Problems  

1.  Consider an aluminum-SiO2-silicon MOS capacitor (ΦM = 4.1 V, εox/ε0 = 3.9, χ = 4.05 V and Na = 1017 
cm-3) MOS capacitor with tox = 5 nm.

a.  Calculate the flatband voltage and threshold voltage. 
b.  

Repeat for an n-type silicon substrate with Nd= 1016cm-3. 
c.  

Repeat with a surface charge of 10-7C/cm2

d.  
Repeat with a charge density in the oxide of 10-1C/cm3

●     A high-frequency capacitance voltage measurement of a silicon MOS structure was fitted by the following 
expression: 

C(VG) = 6 pF + 12 pF/(1 + exp(VG))

a.  Calculate the oxide capacitance per unit area and the oxide thickness. The area of the capacitor is 100 x 
100 micron and the relative dielectric constant equals 3.9. 

From the minimum capacitance, calculate the maximum depletion layer width and the substrate doping density. 
●     Calculate the bulk potential. 
●     Calculate the flatband capacitance and the flatband voltage. 
●     Calculate the threshold voltage.

●     An MOS capacitor with an oxide thickness of 20 nm has an oxide capacitance, which is three times larger 
than the minimum high-frequency capacitance in inversion. Find the substrate doping density. 

●     A CMOS gate requires n-type and p-type MOS capacitors with a threshold voltage of 2 and -2 Volt 
respectively. If the gate oxide is 50 nm what are the required substrate doping densities? Assume the gate 
electrode is aluminum. Repeat for a p+ poly-silicon gate. 

●     Consider a p-MOS capacitor (with an n-type substrate) and with an aluminum gate. Find the doping density 
for which the threshold voltage is 3 times larger than the flat band voltage. tox = 25 nm. Repeat for a capacitor 
with 1011 cm-2 electronic charges at the oxide-semiconductor interface.

●     A silicon p-MOS capacitor . (Nd = 4 x 1016 cm-3, tox = 40 nm) is biased halfway between the flatband and 
threshold voltage. Calculate the applied voltage and the corresponding capacitance 
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Chapter 6: MOS Capacitors

Review Questions  

1.  Draw an MOS flatband diagram. Indicate the workfunction of the metal and the semiconductor as well as 
the flatband voltage. Draw it approximately to scale using ΦM = 4.1 V, χ = 4.05 V, Eg = 1.12 eV (silicon) 
and Na = 1016 cm-3. 

2.  Derive the metal-semiconductor workfunction for n-type and p-type poly-silicon gate structures. (equation 
6.3.2) 

3.  Explain why the flatband voltage depends on the charge in the oxide or at the oxide-semiconductor 
interface. 

4.  Name the three bias regimes of an MOS capacitor and explain what happens in the semiconductor in 
each of these bias modes. 

5.  What is the basic assumption regarding the charge in the inversion layer? 

6.  What are the assumptions of the MOS capacitor analysis? 

7.  What is the difference between the high frequency and quasi-static capacitance? 

8.  Why is the high frequency capacitance constant in inversion? 

9.  Why does the flatband capacitance not equal the oxide capacitance? 

10.  What is deep depletion? 

11.  Why does light illumination affect the capacitance of an MOS structure? 

12.  Name the non-ideal effects in MOS capacitors. What causes them and how do they affect the MOS 
characteristics?
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Equations  
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(6.3.3)
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7.1. Introduction

The n-type Metal-Oxide-Semiconductor Field-Effect-Transistor (nMOSFET) consists of a source and a drain, 
two highly conducting n-type semiconductor regions, which are isolated from the p-type substrate by reversed-
biased p-n diodes. A metal or poly-crystalline gate covers the region between source and drain. The gate is 
separated from the semiconductor by the gate oxide. The basic structure of an n-type MOSFET and the 
corresponding circuit symbol are shown in Figure 7.1.1. 

Figure 7.1.1 : Cross-section and circuit symbol of an n-type Metal-Oxide-Semiconductor-Field-Effect-
Transistor (MOSFET)

As can be seen on the figure the source and drain regions are identical. It is the applied voltages, which 
determine which n-type region provides the electrons and becomes the source, while the other n-type region 
collects the electrons and becomes the drain. The voltages applied to the drain and gate electrode as well as to 
the substrate by means of a back contact are referred to the source potential, as also indicated Figure 7.1.1. 

A conceptually similar structure was proposed and patented independently by Lilienfeld and Heil in 1930, but 
was not successfully demonstrated until 1960. The main technological problem was the control and reduction 
of the surface states at the interface between the oxide and the semiconductor. 
Initially it was only possible to deplete an existing n-type channel by applying a negative voltage to the gate. 
Such devices have a conducting channel between source and drain even when no gate voltage is applied and 
are called "depletion-mode" devices.
A reduction of the surface states enabled the fabrication of devices, which do not have a conducting channel 
unless a positive voltage is applied. Such devices are referred to as "enhancement-mode" devices. The 
electrons at the oxide-semiconductor interface are concentrated in a thin (~10 nm thick) "inversion" layer. By 
now, most MOSFETs are "enhancement-mode" devices. 
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While a minimum requirement for amplification of electrical signals is power gain, one finds that a device with 
both voltage and current gain is a highly desirable circuit element. The MOSFET provides current and voltage 
gain yielding an output current into an external load which exceeds the input current and an output voltage 
across that external load which exceeds the input voltage.
The current gain capability of a Field-Effect-Transistor (FET) is easily explained by the fact that no gate current 
is required to maintain the inversion layer and the resulting current between drain and source. The device has 
therefore an infinite current gain in DC. The current gain is inversely proportional to the signal frequency, 
reaching unity current gain at the transit frequency.
The voltage gain of the MOSFET is caused by the current saturation at higher drain-source voltages, so that a 
small drain-current variation can cause a large drain voltage variation.
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7.2. Structure and principle of operation

A top view of the same MOSFET is shown in Figure 7.2.1, where the gate length, L, and gate width, W, are 
identified. Note that the gate length does not equal the physical dimension of the gate, but rather the distance 
between the source and drain regions underneath the gate. The overlap between the gate and the source/drain 
region is required to ensure that the inversion layer forms a continuous conducting path between the source 
and drain region. Typically this overlap is made as small as possible in order to minimize its parasitic 
capacitance. 

Figure 7.2.1 : Top view of an n-type Metal-Oxide-Semiconductor- Field-Effect-Transistor (MOSFET)
The flow of electrons from the source to the drain is controlled by the voltage applied to the gate. A positive 
voltage applied to the gate attracts electrons to the interface between the gate dielectric and the 
semiconductor. These electrons form a conducting channel between the source and the drain called the 
inversion layer. No gate current is required to maintain the inversion layer at the interface since the gate oxide 
blocks any carrier flow. The net result is that the current between drain and source is controlled by the voltage, 
which is applied to the gate.
The typical current versus voltage (I-V) characteristics of a MOSFET are shown in Figure 7.2.2. 

Figure 7.2.2 : I-V characteristics of an n-type MOSFET with VG = 5 V (top curve), 4 V, 3 V and 2 V (bottom 
curve)

NOTE: We will primarily discuss the n-type or n-channel MOSFET in this chapter. This type of MOSFET is 
fabricated on a p-type semiconductor substrate. The complementary MOSFET is the p-type or p-channel 
MOSFET. It contains p-type source and drain regions in an n-type substrate. The inversion layer is formed 
when holes are attracted to the interface by a negative gate voltage. While the holes still flow from source to 
drain, they result in a negative drain current. CMOS circuits require both n-type and p-type devices.

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_2.htm11/10/2004 17:11:08



MOSFET analysis

Title Page         Table of Contents         Help         Copyright    B. Van Zeghbroeck, 2004

Chapter 7: MOS Field-Effect-Transistors

7.3. MOSFET analysis
7.3.1. The linear model
7.3.2. The quadratic model
7.3.3. The variable depletion layer model

In this section, we present three different models for the MOSFET, the linear model, the quadratic model and 
the variable depletion layer model. The linear model correctly predicts the MOSFET behavior for small drain-
source voltages, where the MOSFET acts as a variable resistor. The quadratic model includes the voltage 
variation along the channel between source and drain. This model is most commonly used despite the fact that 
the variation of the depletion layer charge is ignored. The variable depletion layer model is more complex as it 
does include the variation of the depletion layer along the channel.

7.3.1. The linear model
 

The linear model describes the behavior of a MOSFET biased with a small drain-to-source voltage. As the 
name suggests, the MOSFET, as described by the linear model, acts as a linear device, more specifically a 
linear resistor whose resistance can be modulated by changing the gate-to-source voltage. In this regime, the 
MOSFET can be used as a switch for analog signals or as an analog multiplier. 
The general expression for the drain current equals the total charge in the inversion layer divided by the time 
the carriers need to flow from the source to the drain: 

(7.3.1)

where Qinv is the inversion layer charge per unit area, W is the gate width, L is the gate length and tr is the 
transit time. If the velocity of the carriers is constant between source and drain, the transit time equals: 

(7.3.2)

where the velocity, v, equals the product of the mobility and the electric field: 

(7.3.3)

The constant velocity also implies a constant electric field so that the field equals the drain-source voltage 
divided by the gate length. This leads to the following expression for the drain current: 

(7.3.4)
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We now assume that the charge density in the inversion layer is constant between source and drain. We also 
assume that the basic assumption described in section 6.3.2 applies, namely that the charge density in the 
inversion layer is given by the product of the capacitance per unit area and the gate-to-source voltage minus 
the threshold voltage: 

(7.3.5)

The inversion layer charge is zero if the gate voltage is lower than the threshold voltage. Replacing the 
inversion layer charge density in the expression for the drain current yields the linear model: 

(7.3.6)

Note that the capacitance in the above equations is the gate oxide capacitance per unit area. Also note that the 
drain current is zero if the gate-to-source voltage is less than the threshold voltage. The linear model is only 
valid if the drain-to-source voltage is much smaller than the gate-to-source voltage minus the threshold voltage. 
This insures that the velocity, the electric field and the inversion layer charge density is indeed constant 
between the source and the drain. 

Figure 7.3.1 : Linear I-V characteristics of a MOSFET with VT = 1 V. (µn = 300 cm2/V-s, W/L = 5 and tox = 20 
nm). 

The figure illustrates the behavior of the device in the linear regime: While there is no drain current if the gate 
voltage is less than the threshold voltage, the current increases with gate voltage once it is larger than the 
threshold voltage. The slope of the curves equals the conductance of the device, which increases linearly with 
the applied gate voltage. The figure clearly illustrates the use of a MOSFET as a voltage-controlled resistor. 

7.3.2. The quadratic model
 

The quadratic model uses the same assumptions as the linear model except that the inversion layer charge 
density is allowed to vary in the channel between the source and the drain. 
The derivation is based on the fact that the current at each point in the channel is constant. The current can 
also be related to the local channel voltage. 
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Considering a small section within the device with width dy and channel voltage VC + VS one can still use the 
linear model described by equation (7.3.6), yielding: 

(7.3.7)

where the drain-source voltage is replaced by the change in channel voltage over a distance dy, namely dVC. 
Both sides of the equation can be integrated from the source to the drain, so that y varies from 0 to the gate 
length, L, and the channel voltage VC varies from 0 to the drain-source voltage, VDS. 

(7.3.8)

Using the fact that the DC drain current is constant throughout the device one obtains the following expression: 

(7.3.9)

The drain current first increases linearly with the applied drain-to-source voltage, but then reaches a maximum 
value. According to the above equation the current would even decrease and eventually become negative. The 
charge density at the drain end of the channel is zero at that maximum and changes sign as the drain current 
decreases. As explained in section 6.2, the change in the inversion layer does go to zero and reverses its sign 
as holes are accumulated at the interface. However, these holes cannot contribute to the drain current since 
the reversed-biased p-n diode between the drain and the substrate blocks any flow of holes into the drain. 
Instead the current reaches its maximum value and maintains that value for higher drain-to-source voltages. A 
depletion layer located at the drain end of the gate accommodates the additional drain-to-source voltage. This 
behavior is referred to as drain current saturation. 
Drain current saturation therefore occurs when the drain-to-source voltage equals the gate-to-source voltage 
minus the threshold voltage. The value of the drain current is then given by the following equation: 

(7.3.10)

The quadratic model explains the typical current-voltage characteristics of a MOSFET, which are normally 
plotted for different gate-to-source voltages. An example is shown in Figure 7.3.2. The saturation occurs to the 
right of the dotted line which is given by ID = µ Cox W/L VDS2. 
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Figure 7.3.2: Current-Voltage characteristics of an n-type MOSFET as obtained with the quadratic model. 
The dotted line separates the quadratic region of operation on the left from the saturation 
region on the right. 

The drain current is again zero if the gate voltage is less than the threshold voltage. 

(7.3.11)

For negative drain-source voltages, the transistor is in the quadratic regime and is described by equation 
(7.3.9). However, it is possible to forward bias the drain-bulk p-n junction. A complete circuit model should 
therefore also include the p-n diodes between the source, the drain and the substrate.
The quadratic model can be used to calculate some of the small signal parameters, namely the 
transconductance, gm and the output conductance, gd. 

The transconductance quantifies the drain current variation with a gate-source voltage variation while keeping 
the drain-source voltage constant, or: 

(7.3.12)

The transconductance in the quadratic region is given by: 

(7.3.13)

which is proportional to the drain-source voltage for VDS < VGS - VT. In saturation, the transconductance is 
constant and equals: 

(7.3.14)

The output conductance quantifies the drain current variation with a drain-source voltage variation while 
keeping the gate-source voltage constant, or: 

(7.3.15)
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The output conductance in the quadratic region decreases with increasing drain-source voltage: 

(7.3.16)

and becomes zero as the device is operated in the saturated region: 

(7.3.17)

Example 7.1 Calculate the drain current of a silicon nMOSFET with VT = 1 V, W = 10 µm, L = 1 µm and tox 
= 20 nm. The device is biased with VGS = 3 V and VDS = 5 V. Use the quadratic model, a 
surface mobility of 300 cm2/V-s and set VBS = 0 V.

Also calculate the transconductance at VGS = 3 V and VDS = 5 V and compare it to the output 
conductance at VGS = 3 V and VDS = 0 V.

Solution The MOSFET is biased in saturation since VDS > VGS - VT.

Therefore the drain current equals:

The transconductance equals:

and the output conductance equals:

The measured drain current in saturation is not constant as predicted by the quadratic model. Instead it 
increases with drain-source voltage due to channel length modulation, drain induced barrier lowering or two-
dimensional field distributions, as discussed in section 7.7.1. A simple empirical model, which considers these 
effects, is given by:

(7.3.18)

Where λ is a fitting parameter.
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7.3.3. The variable depletion layer model
 

The variable depletion layer model includes the variation of the charge in the depletion layer between the 
source and drain. This variation is caused by the voltage variation along the channel. The inversion layer 
charge is still given by: 

(7.3.19)

where we now include the implicit dependence of the threshold voltage on the charge in the depletion region, 
or: 

(7.3.20)

The voltage VC is the difference between the voltage within the channel and the source voltage. We can now 
apply the linear model to a small section at a distance y from the source and with a thickness dy. The voltage at 
that point equals VC + VS while the voltage across that section equals dVC. This results in the following 
expression for the drain current, ID:

(7.3.21)

Both sides of the equation can be integrated from the source to the drain with y varying from 0 to the gate 
length, L, and the channel voltage, VC varying from 0 to the drain-source voltage, VDS. 

(7.3.22)

Integration along the channel yields the following drain current: 

(7.3.23)

The current-voltage characteristics as obtained with the above equation are shown in Figure 7.3.3, together 
with those obtained with the quadratic model. Again, it was assumed that the drain current saturates at its 
maximum value, since a positive inversion layer charge can not exist in an n-type MOSFET. The drain voltage 
at which saturation occurs is given by: 

(7.3.24)
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Figure 7.3.3 : Comparison of the quadratic model (upper curves) and the variable depletion layer model 
(lower curves). 

The figure shows a clear difference between the two models: the quadratic model yields a larger drain current 
compared to the more accurate variable depletion layer charge model. The transconductance is still given by 
equation (7.3.13), which combined with the saturation voltage (equation (7.3.24)) yields:

(7.3.25)

This transconductance is almost linearly dependent on VGS, so that it can still be written in the form of equation 
(7.3.10) with a modified mobility µn*:

(7.3.26)

Where µn* equals:

(7.3.27)

The term under the square root depends on the ratio of the oxide capacitance to the depletion layer 
capacitance at the onset of inversion. Since this ratio is larger than one in most transistors, the modified 
mobility is 10% to 40% smaller than the actual mobility. This effective mobility can also be used with the 
quadratic model, yielding a simple but reasonably accurate model for the MOSFET.
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Example 7.2 Repeat example 7.1 using the variable depletion layer model. Use VFB = -0.807 V and Na = 
1017 cm-3.

Solution To find out whether the MOSFET is biased in saturation, one first calculates the saturation 
voltage, VD,sat:

The drain current is then obtained from:

The transconductance equals:

corresponding to a modified mobility µn* = 149 cm2/V-s.The output conductance at VDS = 0 V 
equals:

Which is the same as that of example 7.1 since the depletion layer width is constant for VDS = 
0.

http://ece-www.colorado.edu/~bart/book/book/chapter7/ch7_3.htm (8 of 8)11/10/2004 17:11:19



Threshold voltage

Title Page         Table of Contents         Help         Copyright    B. Van Zeghbroeck, 2004

Chapter 7: MOS Field-Effect-Transistors

7.4. Threshold voltage
7.4.1. Threshold voltage calculation
7.4.2. The substrate bias effect

In this section we summarize the calculation of the threshold voltage and discuss the dependence of the 
threshold voltage on the bias applied to the substrate, called the substrate bias effect.

7.4.1. Threshold voltage calculation
 

The threshold voltage equals the sum of the flatband voltage, twice the bulk potential and the voltage across 
the oxide due to the depletion layer charge, or: 

(7.4.1)

where the flatband voltage, VFB, is given by: 

(7.4.2)

With

(7.4.3)

and

(7.4.4)

The threshold voltage of a p-type MOSFET with an n-type substrate is obtained using the following equations:

(7.4.5)

where the flatband voltage, VFB, is given by: 

(7.4.6)

With

(7.4.7)
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and

(7.4.8)

The threshold voltage dependence on the doping density is illustrated with Figure 7.4.1 for both n-type and p-
type MOSFETs with an aluminum gate metal. 

Figure 7.4.1 : Threshold voltage of n-type (upper curve) and p-type (lower curve) MOSFETs versus 
substrate doping density. 

The threshold of both types of devices is slightly negative at low doping densities and differs by 4 times the 
absolute value of the bulk potential. The threshold of nMOSFETs increases with doping while the threshold of 
pMOSFETs decreases with doping in the same way. A variation of the flatband voltage due to oxide charge will 
cause a reduction of both thresholds if the charge is positive and an increase if the charge is negative.

7.4.2. The substrate bias effect
 

The voltage applied to the back contact affects the threshold voltage of a MOSFET. The voltage difference 
between the source and the bulk, VBS changes the width of the depletion layer and therefore also the voltage 
across the oxide due to the change of the charge in the depletion region. This results in a modified expression 
for the threshold voltage, as given by: 

(7.4.9)

The threshold difference due to an applied source-bulk voltage can therefore be expressed by:

(7.4.10)

Where γ is the body effect parameter given by:

(7.4.11)
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The variation of the threshold voltage with the applied bulk-to-source voltage can be observed by plotting the 
transfer curve for different bulk-to-source voltages. The expected characteristics, as calculated using the 
quadratic model and the variable depletion layer model, are shown in Figure 7.4.2. 

Figure 7.4.2 : Square root of ID versus the gate-source voltage as calculated using the quadratic model 
(upper curves) and the variable depletion layer model (lower curves). 

A first observation is that the threshold shift is the same for both models. When biasing the device at the 
threshold voltage, drain saturation is obtained at zero drain-to-source voltage so that the depletion layer width 
is constant along the channel. As the drain-source voltage at saturation is increased, there is an increasing 
difference between the drain current as calculated with each model. The difference however reduces as a more 
negative bulk-source voltage is applied. This is due to the larger depletion layer width, which reduces the 
relative variation of the depletion layer charge along the channel.
Example 7.3 Calculate the threshold voltage of a silicon nMOSFET when applying a substrate voltage, VBS 

= 0, -2.5, -5, -7.5 and -10 V. The capacitor has a substrate doping Na = 1017 cm-3, a 20 nm 
thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no fixed charge 
in the oxide or at the oxide-silicon interface.

Solution The threshold voltage at VBS = -2.5 V equals:

Where the flatband voltage without substrate bias, VT0, was already calculated in example 6.2. 
The body effect parameter was obtained from:
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The threshold voltages for the different substrate voltages are listed in the table below.
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7.5. MOSFET SPICE MODEL

The SPICE model of a MOSFET includes a variety of parasitic circuit elements and some process related 
parameters in addition to the elements previously discussed in this chapter. The syntax of a MOSFET 
incorporates the parameters a circuit designer can change as shown below:
MOSFET syntax
M <name> <drain node> <gate node> <source node> <bulk/substrate node>
+     [L=][W=][AD=][AS=]
+    [PD=][PS=][NRD=][NRS=]
+    [NRG=][NRB=]
where L is the gate length, W the gate width, AD the drain area, AS the source area
PD is the drain perimeter, PS is the source perimeter
Example:
M1 3 2 1 0 NMOS L=1u W=6u
.MODEL NFET NMOS (LEVEL=2 L=1u W=1u VTO=-1.44 KP=8.64E-6
+ NSUB=1E17 TOX=20n)
where M1 is one specific transistor in the circuit, while the transistor model "NFET" uses the built-in model 
NFET to specify the process and technology related parameters of the MOSFET. A list of SPICE parameters 
and their relation to the parameters discussed in this text is provided in Table 7.5.1.

Table 7.5.1: SPICE parameters and corresponding equations
In addition there are additional parameters, which can be specified to further enhance the accuracy of the 
model, such as:
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LD , lateral diffusion (length) 
RD, drain ohmic resistance 
RG, gate ohmic resistance 
IS, bulk p-n saturation current 
CBD, bulk-drain zero-bias p-n capacitance 
CGSO/CGDO, gate-source/drain overlap capacitance/channel width
XJ, metallurgical junction depth
WD, lateral diffusion (width)
RS, source ohmic resistance
RB, bulk ohmic resistance
JS, bulk p-n saturation current/area
CBS, bulk-source zero-bias p-n capacitance

The gate-source/drain overlap capacitance per channel width is obtained from:

Where ∆L is the overlap between the gate and the source/drain region. The corresponding equivalent circuit is 
provided in Figure 7.5.1.

Figure 7.5.1 : Large signal model of a MOSFET
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7.6. MOSFET Circuits and Technology
7.6.1. MOSFET fabrication process
7.6.2. Poly-silicon gate technology
7.6.3. CMOS
7.6.4. MOSFET Memory

MOSFET circuit technology has dramatically changed over the last three decades. Starting with a ten-micron 
pMOS process with an aluminum gate and a single metallization layer around 1970, the technology has 
evolved into a tenth-micron self-aligned-gate CMOS process with up to five metallization levels. The transition 
from dopant diffusion to ion implantation, from thermal oxidation to oxide deposition, from a metal gate to a poly-
silicon gate, from wet chemical etching to dry etching and more recently from aluminum (with 2% copper) wiring 
to copper wiring has provided vastly superior analog and digital CMOS circuits.

7.6.1. MOSFET fabrication process
 

The MOSFET fabrication process has evolved dramatically over the years. Around 1970, pMOS circuits with 
aluminum gate metal and wiring were dominant. The corresponding steps of a typical pMOSFET fabrication 
process steps are listed in Table 7.6.1.

Table 7.6.1: pMOS process steps
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The primary problem at the time was threshold voltage control. Positively charged ions in the oxide decreased 
the threshold voltage of the devices. p-type MOSFETs were therefore the device of choice despite the lower 
hole mobility, since they would still be enhancement-type devices even when charge was present. Circuits 
were still operational at somewhat higher power supply voltages.
Thermal oxidation of the silicon in an oxygen or water vapor atmosphere provided a quality gate oxide with 
easily controlled thickness. The same process was also used to provide a high-temperature mask for the 
diffusion process and a passivation and isolation layer. 
The oxide was easily removed in hydrofluoric acid (HF), without removing the underlying silicon.
Aluminum was evaporated over the whole wafer and then etched yielding both the gate metal and the metal 
wiring connecting the devices. A small amount of copper (~2%) was added to make the aluminum more 
resistant to electromigration. Electromigration is the movement of atoms due to the impact with the electrons 
carrying the current through the wire. This effect can cause open circuits and is therefore a well-known 
reliability problem. It typically occurs at points where the local current density is very high, in narrow wires, at 
corners or when crossing an oxide step. The addition of a small amount of copper provides a more rigid 
structure within the aluminum and eliminates the effect.
A metal anneal in nitrogen/hydrogen (N2/H2) ambient was used to improve the metal-semiconductor contact 
and to reduce the surface state density at the semiconductor/gate-oxide interface.
Since then the fabrication process has changed as illustrated with Table 7.6.2. Most changes were introduced 
to provide superior performance, better reliability and higher yield. The most important change has been the 
reduction of the gate length. A gate length reduction provides a shorter transit time and hence a faster device. 
In addition, a gate length reduction is typically linked to a reduction of the minimum feature size and therefore 
yields smaller transistors as well as a larger number of transistors on a chip with a given size. As the 
technology improved, it was also possible to make larger chips, so that the number of transistors per chip 
increased even faster. At the same time the wafer size was increased to accommodate the larger chips while 
reducing the loss due to partial chips at the wafer periphery and to reduce the cost per chip as more chips can 
be accommodated on a single wafer.
The other changes can be split into process improvements and circuit improvements. The distinction is at times 
artificial, as circuit improvements typically require new processes.
The key circuit improvement is the use of CMOS circuits, containing both nMOS and pMOS transistors. Early 
on, the pMOS devices were replaced with nMOS transistors because of the better electron mobility. 
Enhancement-mode loads were replaced for a while by resistor loads and then depletion-mode loads yielding 
faster logic circuits with larger operating margins. Analog circuits benefited in similar ways. The use of 
complementary circuits was first introduced by RCA but did not immediately catch on since the logic circuits 
were somewhat slower and larger than the then-dominant nMOS depletion logic. It was only when the number 
of transistors per chip became much larger that the inherent advantages of CMOS circuits, namely the lower 
power dissipation and larger operating margins became highly desirable. By now the CMOS technology is the 
dominant technology in the IC industry as the ten-fold reduction of power dissipation largely outweighs the 30%-
50% speed reduction and size increase.
The process improvements can in turn be split into those aimed at improving the circuit performance and those 
improving the manufacturability and reliability. Again the split is somewhat artificial but it is beneficial to 
understand what factors affect the process changes. The latter group includes CVD deposition, ion 
implantation, RIE etching, sputtering, planarization and deuterium annealing. The process changes, which 
improve the circuit performance, are the self-aligned poly-silicon gate process, the silicide gate cap, LOCOS 
isolation, multilevel wiring and copper wiring.
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The self-aligned poly-silicon gate process was introduced before CMOS and marked the beginning of modern 
day MOSFETs. The self-aligned structure, as further discussed in section 7.6.2, is obtained by using the gate 
as the mask for the source-drain implant. Since the crystal damage caused by the high-energy ions must be 
annealed at high temperature (~800 C), an aluminum gate could no longer be used. Doped poly-silicon was 
found to be a very convenient gate material as it withstands the high anneal temperature and can be oxidized 
just like silicon. The self-aligned process lowers the parasitic capacitance between gate and drain and therefore 
improves the high-frequency performance and switching time. The addition of a silicide layer on top of the gate 
reduces the gate resistance while still providing a quality implant mask. The self-aligned process also reduced 
the transistor size and hence increased the density. The field oxide was replaced by a local oxidation isolation 
structure (LOCOS), where a Si3N4 layer is used to prevent the oxidation in the MOSFET region. The oxide 
provides an implant mask and contact hole mask yielding an even more compact device. 
Multilevel wiring is a necessity when one increases the number of transistors per chip since the number of 
wires increases with the square of the number of transistors and the average wire length increase linearly with 
the chip size. While multilevel wiring simply consists of a series of metal wiring levels separated by insulators, 
the multilevel wiring has increasingly become a bottleneck in the fabrication of high-performance circuits. 
Planarization techniques, as discussed below, and the introduction of copper instead of aluminum-based 
metals have further increased the wiring density and lowered the wiring resistance. 

Table 7.6.2: MOS process changes and improvements
Chemical vapor deposition (CDV) of insulating layers is now used instead of thermal oxidation since it does not 
consume the underlying silicon. Also because there is no limit to the obtainable thickness and since materials 
other than SiO2 (for instance Si3N4) can be deposited. CDV deposition is also frequently used to deposit 
refractory metals such as tungsten.
Ion implantation has replaced diffusion because of the superior control and uniformity. Dry etching including 
plasma etching, reactive ion etching (RIE) and ion beam etching has replaced wet chemical etching. These 
etch processes provide better etch rate uniformity and control as well as pronounced anisotropic etching. The 
high etch rate selectivity of wet chemical etching is not obtained with these dry etch techniques, but are well 
compensated by the better uniformity. 
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Sputtering of metals has completely replaced evaporation. Sputtering typically provides better adhesion and 
thickness control. It is also better suited to deposit refractory metals and silicides. 
Planarization is the process by which the top surface of the wafer is planarized after each step. The purpose of 
this planarization process is to provide a flat surface, so that fine-line lithography can be performed at all stages 
of the fabrication process. The planarization enables high-density multi-layer wiring levels. 
Deuterium anneal is a recent modification of the standard hydrogen anneal, which passivates the surface 
states. The change to deuterium was prompted because it is a heavier isotope of hydrogen. It chemically acts 
the same way but is less likely to be knocked out of place by the energetic carriers in the inversion layer. The 
use of deuterium therefore reduces the increase of the surface state density due to hot-electron impact. 

7.6.2. Poly-silicon gate technology
 

An early improvement of the technology was obtained by using a poly-silicon gate, yielding a self-aligned 
structure which is both compact and has better performance. The poly-silicon gate is used as a mask during 
the implantation so that the source and drain regions are self-aligned with respect to the gate. This self-
alignment structure reduces the device size. In addition, it eliminates the large overlap capacitance between 
gate and drain, while maintaining a continuous inversion layer between source and drain.
A further improvement of this technique is the use of a low-doped drain (LDD) structure. As an example we 
consider the structure shown in Figure 7.6.1. Here a first shallow implant is used to contact the inversion layer 
underneath the gate. The shallow implant causes only a small overlap between the gate and source/drain 
regions. After adding a sidewall to the gate a second deep implant is added to the first one. This deep implant 
has a low sheet resistance and adds a minimal series resistance. The combination of the two implants 
therefore yields a minimal overlap capacitance and low access resistance.
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Figure 7.6.1: Cross-sectional view of a self-aligned poly-silicon gate transistor with LOCOS isolation
Shown is also the local oxidation isolation (LOCOS). Typically, there would also be an additional field and 
channel implant. The field implant increases the doping density under the oxide and thereby increases the 
threshold voltage of the parasitic transistor formed by the metal wiring on top of the isolation oxide. The 
channel implant provides an adjustment of the threshold voltage of the transistors. The use of a poly-silicon 
gate has the disadvantage that the sheet resistance of the gate is much larger than that of a metal gate. This 
leads to high RC time-constants of long poly-silicon lines. These long RC time-constants are reduced by using 
silicides (WSi, TaSi, CoSi etc.) instead or on top of poly-silicon. Also by using the poly-silicon only as gate 
material and not as a wiring level one can further eliminated such RC time delays.

7.6.3. CMOS
 

Complementary Metal-Oxide-Silicon circuits require an nMOS and pMOS transistor technology on the same 
substrate. To this end, an n-type well is provided in the p-type substrate. Alternatively one can use a p-well or 
both an n-type and p-type well in a low-doped substrate. The gate oxide, poly-silicon gate and source-drain 
contact metal are typically shared between the pMOS and nMOS technology, while the source-drain implants 
must be done separately. Since CMOS circuits contain pMOS devices, which are affected by the lower hole 
mobility, CMOS circuits are not faster than their all-nMOS counter parts. Even when scaling the size of the 
pMOS devices so that they provide the same current, the larger pMOS device has a higher capacitance.
The CMOS advantage is that the output of a CMOS inverter can be as high as the power supply voltage and as 
low as ground. This large voltage swing and the steep transition between logic high and low yield large 
operation margins and therefore also a high circuit yield. In addition, there is no power dissipation in either logic 
state. Instead the power dissipation occurs only when a transition is made between logic states. CMOS circuits 
are therefore not faster than nMOS circuits but are more suited for very/ultra large-scale integration (VLSI/
ULSI).
CMOS circuits have one property, which is very undesirable, namely latchup. Latchup occurs when four 
alternating p and n-type regions are brought in close proximity. Together they form two bipolar transitors, one 
npn and one pnp transistor. The base of each transistor is connected to the collector of the other, forming a 
cross-coupled thyristor-like combination. As a current is applied to the base of one transistor, the current is 
amplified by the transistor and provided as the base current of the other one. If the product of the current gain 
of both transistors is larger than unity, the current through both devices increases until the series resistances of 
the circuit limits the current. Latchup therefore results in excessive power dissipation and faulty logic levels in 
the gates affected. In principle, this effect can be eliminated by separating n-type and p-type device. A more 
effective and less space-consuming solution is the use of trenches, which block the minority carrier flow. A 
deep and narrow trench is etched between all n-type and p-type wells, passivated and refilled with an insulating 
layer.

7.6.4. MOSFET Memory
 

MOSFET memory is an important application of MOSFETs. Memory chips contain the largest number of 
devices per unit area since the transistors are arranged in a very dense regular structure. The generic structure 
of a memory chip is shown in Figure 7.6.2.
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Figure 7.6.2: Arrangement of memory cells into an array
A two dimensional array of memory cells, which store a single bit, are connected through a series of word lines 
and bit lines. One row of cells is activated by changing the voltage on the corresponding word line. The 
information is then stored in the cell by applying voltages to the bit lines. During a read operation, the 
information is retrieved by sensing the voltage on the bit lines with a sense amplifier. A possible implementation 
of a static random access memory (SRAM) is shown in Figure 7.6.3. 

Figure 7.6.3: Static random access memory (SRAM) using a six-transistor cell.
The memory cell consists of a flip-flop and the cells are accessed through two pass transistors connected to 
the bit lines and controlled by the word line. Depletion mode transistors are shown here as load devices. A 
common alternate load is an amorphous silicon resistor.
A simpler cell leading to denser memory chips is the dynamic random access memory shown in Figure 7.6.4.
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Figure 7.6.4: Dynamic random access memory (DRAM) using a one-transistor cell.
The dynamic cell contains only a single transistor and capacitor. The cell is called dynamic since the 
information is stored as charge on the capacitor. This charge slowly leaks away so that the cell needs to be 
refreshed periodically. The reading process is also destructive since the storage capacitor is discharged as a 
voltage is applied to the word line. Therefore, one has to rewrite the information into all the cells of a given row 
after reading a single cell from that row. Despite these restrictions, dynamic memory chips represent the largest 
section of the memory market. The advantage of a higher storage density outweighs all other considerations. 
Process advances such as the use of a vertical trench, have further increased the density of dynamic memory 
chips.
As an example we now consider the dynamic memory cell shown in Figure 7.6.5. Shown are the top view and 
cross-sectional view. The figure illustrates how compact the cell can be by using the gate as the word line of 
the array and by using a trench capacitor. Also note that the drain of the transistor and one side of the capacitor 
are merged into one n-type region. The bit lines shown in the top view are placed next to the transistor for 
clarity. Actual memory cells have the bit lines on top of the transistors as shown in the cross-sectional view. 
More recent memory cells even have the transistor buried in the trench together with the capacitor.
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Figure 7.6.5: Dynamic random access memory (DRAM) using a one-transistor cell. (a) top view of four cells 
and (b) cross-sectional view of one cell.

A critical issue when scaling dynamic memory circuits is the capacitance of the storage capacitor. Scaling of all 
dimensions would yield a smaller value of the capacitor. However, larger arrays, made possible by scaling the 
device size, require a larger capacitance. After all, the critical operation in a dynamic memory is the read-out. 
During read-out, the memory capacitor is connected to the bit line and the charge is now distributed between 
the memory cell capacitance, the bit line capacitance and the parasitic capacitance of all the devices connected 
to the bit line. The remaining voltage on the bit line therefore depends on the ratio of the cell capacitance to that 
of the bit line and connected elements. In large memory chips the voltage would become unacceptably low if 
the memory capacitance would be scaled down with all other device dimensions. Instead the capacitance of 
the memory capacitor is kept almost constant from one generation to the next at a value around 1 fF. This 
value corresponds to the storage of 25,000 electrons at a voltage of 5 V and results in a bit line voltage of a few 
millivolts.
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7.7.1. Channel length modulation
 

Channel length modulation in a MOSFET is caused by the increase of the depletion layer width at the drain as 
the drain voltage is increased. This leads to a shorter channel length and an increased drain current. An 
example is shown in Figure 7.7.1. The channel-length-modulation effect typically increases in small devices 
with low-doped substrates. An extreme case of channel length modulation is punch through where the channel 
length reduces to zero. Proper scaling can reduce channel length modulation, namely by increasing the doping 
density as the gate length is reduces.

Figure 7.7.1: Current-Voltage characteristics of a MOSFET with and without channel length modulation. (Nd 
= 1017 cm-3, L = 1 µm) 
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7.7.2. Drain induced barrier lowering
 

Drain induced barrier lowering (DIBL) is the effect a voltage of the drain has on the output conductance and 
measured threshold voltage. This effect occurs in devices where only the gate length is reduced without 
properly scaling the other dimensions. It is observed as a variation of the measured threshold voltage with 
reduced gate length. The threshold variation is caused by the increased current with increased drain voltage as 
the applied drain voltage controls the inversion layer charge at the drain, thereby competing with the gate 
voltage. This effect is due to the two-dimensional field distribution at the drain end and can typically be 
eliminated by properly scaling the drain and source depths while increasing the substrate doping density.

7.7.3. Punch through
 

Punch through in a MOSFET is an extreme case of channel length modulation where the depletion layers 
around the drain and source regions merge into a single depletion region. The field underneath the gate then 
becomes strongly dependent on the drain-source voltage, as is the drain current. Punch through causes a 
rapidly increasing current with increasing drain-source voltage. This effect is undesirable as it increases the 
output conductance and limits the maximum operating voltage of the device

7.7.4. Sub-threshold current
 

The basic assumption of the MOS capacitor analysis in section 6.3.2 is that no inversion layer charge exists 
below the threshold voltage. This leads to zero current below threshold. The actual sub-threshold current is not 
zero but reduces exponentially below the threshold voltage as:

(7.7.1)

with

(7.7.2)

The sub-threshold behavior is critical for dynamic circuits since one needs to ensure that no charge leaks 
through transistors biased below threshold.

7.7.4.1. Derivation of the sub-threshold ideality factor

The charge density below threshold can be expressed as:

(7.7.3)

Where the surface potential, φs, is related to the gate voltage by:
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(7.7.4)

The gate voltage, VG, is therefore related to the surface potential, φs, by:

(7.7.5)

Where the surface potential below threshold was approximated to its value, 2 φF, at threshold. The sub-
threshold current therefore equals: 

(7.7.6)

7.7.5. Field dependent mobility
 

The mobility is the inversion layer is distinctly lower than in bulk material. This is due to the fact the electron 
wavefunction extends into the oxide and the carrier mobility is lowered due to the lower mobility in the oxide. 
Higher electric fields at the surface - as typically obtained in scaled down devices - push the electron 
wavefunction even more into the oxide yielding a field dependent mobility. The mobility at the surface, µsurface, 

varies with the electric field, , in the following way:

(7.7.7)

7.7.6. Avalanche breakdown and parasitic bipolar action
 

As the electric field in the channel is increased, avalanche breakdown occurs in the channel at the drain. This 
avalanche breakdown increases the current as in a p-n diode (see section 4.5.3 and 2.8). In addition, there is 
parasitic bipolar action taking place. Holes generated by the avalanche breakdown move from drain to source 
underneath the inversion layer. This hole current forward biases the source-bulk p-n diode so that now also 
electrons are injected as minority carriers into the p-type substrate underneath the inversion layer. These 
electrons arrive at the drain and again create more electron-hole pairs through avalanche multiplication. The 
positive feedback between the avalanche breakdown and the parasitic bipolar action results in breakdown at 
lower drain voltage.

7.7.7. Velocity saturation
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As devices are reduced in size, the electric field typically also increases and the carriers in the channel have an 
increased velocity. However at high fields there is no longer a linear relation between the electric field and the 
velocity as the velocity gradually saturates reaching the saturation velocity. This velocity saturation is caused 
by the increased scattering rate of highly energetic electrons, primarily due to optical phonon emission. This 
effect increases the transit time of carriers through the channel. In sub-micron MOSFETs one finds that the 
average electron velocity is larger than in bulk material so that velocity saturation is not quite as much of a 
restriction as initially thought.

7.7.8. Oxide Breakdown
 

As the gate-oxide is scaled down, breakdown of the oxide and oxide reliability becomes more of a concern. 
Higher fields in the oxide increase the tunneling of carriers from the channel into the oxide. These carriers 
slowly degrade the quality of the oxide and lead over time to failure of the oxide. This effect is referred to as 
time dependent destructive breakdown (TDDB).
A simple reduction of the power supply voltage has been used to eliminate this effect. However as gate oxides 
approach a thickness of 1.5 - 3 nm, carrier tunneling becomes less dependent on the applied electric field so 
that this problem will require more attention.
Oxides other than silicon dioxide have been considered as alternate oxides and are typically referred to as high-
k dielectrics. These oxides have a larger dielectric constant so that the same gate capacitance can be obtained 
with a thicker oxide. The challenge is to obtain the same stability, reliability and breakdown voltage as silicon 
dioxide. Oxides of interest include Al2O3, ZrO and TiO.

7.7.9. Scaling
 

The reduction of the dimensions of a MOSFET has been has dramatic during the last three decades. Starting 
at a minimum feature length of 10 µm in 1970 the gate length was gradually reduced to 0.15 µm minimum 
feature size in 2000, resulting in a 13% reduction per year. Proper scaling of MOSFET however requires not 
only a size reduction of the gate length and width. It also requires a reduction of all other dimensions including 
the gate/source and gate/drain alignment, the oxide thickness and the depletion layer widths. Scaling of the 
depletion layer widths also implies scaling of the substrate doping density.
Two types of scaling are common: constant field scaling and constant voltage scaling. Constant field scaling 
yields the largest reduction in the power delay product of a single transistor. However, it requires a reduction in 
the power supply voltage as one decreases the minimum feature size. Constant voltage scaling does not have 
this problem and is therefore the preferred scaling method since it provides voltage compatibility with older 
circuit technologies. The disadvantage of constant voltage scaling is that the electric field increases as the 
minimum feature length is reduced. This leads to velocity saturation, mobility degradation, increased leakage 
currents and lower breakdown voltages.
The scaling of MOSFET device parameters is illustrated by Table 7.7.1 where constant field, constant voltage 
and constant voltage scaling in the presence of velocity saturation are compared.
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Table 7.7.1 : Comparison of the effect of scaling on MOSFET device parameters. Compared are constant 
field scaling, constant voltage scaling and constant voltage scaling in the presence of velocity 
overshoot.
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7.8. Power MOSFETs 

7.8.1. LDMOS  

The Laterally Diffused MOSFET (LDMOS) is an asymmetric power MOSFET designed for low 
on-resistance and high blocking voltage. These features are obtained by creating a diffused p-
type channel region in a low-doped n-type drain region. The low doping on the drain side results 
in a large depletion layer with high blocking voltage. The channel region diffusion can be 
defined with the same mask as the source region, resulting in a short channel with high current 
handling capability. The relatively deep p-type diffusion causes a large radius of curvature at the 
edges, which eliminates the edge effects discussed in section 4.5.2. While the device’s name 
implies that the fabrication require a diffusion, the dopants can just as well be implanted and 
annealed. Diffusion can be used in addition to further increase the junction depth and radius of 
curvature. 

A typical structure is presented in Figure 7.8.1.  The device can be fabricated by diffusion as well 
as ion implantation. The p-type region is formed first, followed by shallow p+ and n+ regions. 
The n+ regions provide both source and drain contact regions. The p+-region contacts the p-type 
body, which is typically shorted to the source, thereby eliminating the body effect.  

Figure 7.8.1.  Cross-section of a Laterally Diffused MOSFET (LDMOS) structure. 

The LDMOS structure combines a short channel length with high breakdown voltage as desired 
for high power RF amplifiers in numerous applications. This device is currently the device of 
choice for RF power amplifiers in base stations of wireless communications systems as well as 
numerous UHF and L-band power amplifiers in broadcast, communication and radar systems. 

7.8.2. VMOS Transistors and UMOS 

The VMOS transistor named after the V-shaped groove, is a vertical MOSFET with high current 
handling capability as well as high blocking voltage. It consists of a double diffused n+/p layer, 
which is cut by a V-shaped groove as shown in Figure 7.8.2.a. The V-groove is easily fabricated 
by anisotropically etching a (100) silicon surface using a concentrated KOH solution. The V-
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groove is then coated with a gate oxide, followed by the gate electrode. As the V-groove cuts 
through the double diffused layer, it creates two vertical MOSFETs, one on each side of the 
groove. The combination of the V-groove with the double diffused layers results in a short 
gatelength, which is determined by the thickness of the p-type layer. The vertical structure allows 
the use of a low-doped drain region, which results in a high blocking voltage.  

Figure 7.8.2.  Cross-section of two vertical MOSFET structures: a) VMOS and b) UMOS. 

Another alternate structure is the UMOS structure. A vertical trench is etched though the double 
diffused layer, again resulting in two vertical MOSFETs. 

Either one of these vertical structures can further be combined with the HEXFET layout. This 
layout resembles a honeycomb structure in which the hexagonal areas are source areas, while the 
gate metal is located on the perimeters.  

7.8.3. Insulated Gate Bipolar Transistors (IGBTs) 

The Insulated Gate Bipolar Transistor or IGBT for short combines the high DC current gain of a 
MOSFET with the high current handling capability and high blocking voltage of a BJT in a 
surprisingly simple structure such as the one shown in Figure 7.8.3. At first glance the vertical 
structure looks like that of a regular bipolar transistor structure. However a closer look reveals a 
p+ substrate rather than an n+ substrate. To further analyze this structure we use the equivalent 
circuit, which contains the p-n-p BJT as formed by the bottom three layers as well as the n-
MOSFET underneath the gate electrode. One should note that the p-type collector of the p-n-p 
BJT and the n-type source of the n-MOSFET share the same metal contact. Also, that the drain 
region of the n-MOSFET is the buried n-type layer, which is the n-type base of the p-n-p BJT. 
The electrons originating from the n+ source flow laterally underneath the gate and then flow 
down in the buried n-type region, thereby supplying the gate current of the p-n-p BJT. Since the 
gate current is provided locally, the emitter current will be concentrated around the same area. 
Note that under typical operation the collector would be grounded while the positive voltage is 
applied to the emitter. Therefore this device can be connected in a switching circuit just like an 
n-p-n BJT with the important distinction that no gate current is required to maintain the on-state 
current. 
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Figure 7.8.3  Insulated Gate Bipolar Transistor (IGBT): a) equivalent circuit and b) device 
cross-section. 
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Examples

Example 7.1  Calculate the drain current of a silicon nMOSFET with VT = 1 V, W = 10 µm, L = 1 µm and 
tox = 20 nm. The device is biased with VGS = 3 V and VDS = 5 V. Use the quadratic model, 
a surface mobility of 300 cm2/V-s and set VBS = 0 V.

Also calculate the transconductance at VGS = 3 V and VDS = 5 V and compare it to the 
output conductance at VGS = 3 V and VDS = 0 V.

Example 7.2  Repeat example 7.1 using the variable depletion layer model. Use VFB = -0.807 V and Na = 
1017 cm-3.

Example 7.3  Calculate the threshold voltage of a silicon nMOSFET when applying a substrate voltage, 
VBS = 0, -2.5, -5, -7.5 and -10 V. The capacitor has a substrate doping Na = 1017 cm-3, a 
20 nm thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). Assume there is no 
fixed charge in the oxide or at the oxide-silicon interface.
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Example 7.1 Calculate the drain current of a silicon nMOSFET with VT = 1 V, 
W = 10 µm, L = 1 µm and tox = 20 nm. The device is biased with 
VGS = 3 V and VDS = 5 V. Use the quadratic model, a surface 
mobility of 300 cm2/V-s and set VBS = 0 V. 
Also calculate the transconductance at VGS = 3 V and VDS = 5 V 
and compare it to the output conductance at VGS = 3 V and VDS = 
0 V. 

Solution The MOSFET is biased in saturation since VDS > VGS - VT. 
Therefore the drain current equals: 
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The transconductance equals: 
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and the output conductance equals: 
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Example 7.2 Repeat example 7.1 using the variable depletion layer model. 
Use VFB = -0.807 V and Na = 1017 cm-3. 

Solution To find out whether the MOSFET is biased in saturation, one 
first calculates the saturation voltage, VD,sat: 

V 39.1            

}1)(21{               

2

2

2

,

=

−−+−

−−=

FBGB
sa

ox

ox

sa

FFBGSsatDS

VV
qN
C

C

qN

VVV

ε
ε

φ

 

The drain current is then obtained from: 
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The transconductance equals: 
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corresponding to a modified mobility µn
* = 149 cm2/V-s. 

The output conductance at VDS = 0 V equals: 

mS 04.1==
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D
d V

I
g

∂
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Which is the same as that of example 7.1 since the depletion 
layer width is constant for VDS = 0. 

 



Example 7.3 Calculate the threshold voltage of a silicon nMOSFET when 
applying a substrate voltage, VBS = 0, -2.5, -5,  -7.5 and -10 V. 
The capacitor has a substrate doping Na = 1017 cm-3, a 20 nm 
thick oxide (εox = 3.9 ε0) and an aluminum gate (ΦM = 4.1 V). 
Assume there is no fixed charge in the oxide or at the oxide-
silicon interface. 

Solution The threshold voltage at VBS = -2.5 V equals: 
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Where the flatband voltage without substrate bias, VT0, was 
already calculated in example 6.2. The body effect parameter 
was obtained from: 
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The threshold voltages for the different substrate voltages are 
listed in the table below. 
 VBS = -2.5 V -5 V -7.5 V -10 V  
VT 0.73 V 1.26 V 1.68 V 2.04 V 
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Appendix: 

Appendix 1: List of Symbols 

Symbol Description MKS 
Units 

A Area m2

c Speed of light in vacuum m/s
C Capacitance per unit area F/m2

CFB Flatband capacitance per unit area of a MOS structure F/m2

Cj Junction capacitance per unit area F/m2

Cox Oxide capacitance per unit area F/m2

Dn Electron diffusion constant m2/s
Dp Hole diffusion constant m2/s
E Energy Joule
E Electric field V/m
Ea Acceptor energy Joule
Ec Conduction band energy of a semiconductor Joule
Ed Donor energy Joule
EF Fermi energy (thermal equilibrium) Joule
Eg Energy bandgap of a semiconductor Joule
Ei Intrinsic Fermi energy Joule
Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacumm Joule
f(E) Distribution function (probability density function)  
Fn Quasi-Fermi energy of electrons Joule
Fp Quasi-Fermi energy of holes Joule

gc(E) Density of states in the conduction band per unit energy 
and per unit volume m-3J-1

gv(E) Density of states in the valence band per unit energy 
and per unit volume m-3J-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js
Reduced Plank's (= h /2π) Js

I Current A
J Current density A/m2

Jn Electron current density A/m2

Jp Hole current density A/m2
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k Boltzmann's constant J/K 
l Mean free path m
L Length m
Ln Electron diffusion length m
Lp Hole diffusion length m
m Mass kg
m0 Free electron mass kg
me* Effective mass of electrons kg
mh* Effective mass of holes kg
n Electron density m-3

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

N Doping density  
Na Acceptor doping density m-3

Na- Ionized acceptor density m-3

NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd+ Ionized donor density m-3

NE Emitter doping density m-3

Nv Effective density of states in the valence band m-3

p Hole density m-3

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

q electronic charge C
Q Charge C

Qd
Charge density per unit area in the depletion layer of an 
MOS structure C/m2

Qd,T
Charge density per unit area at threshold in the depletion 
layer of an MOS structure C/m2

Qi Interface charge density per unit area C/m2

R Resistance Ohm
Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

t Thickness m
tox Oxide thickness m
T Temperature Kelvin
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Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1

v Velocity m/s
vth Thermal velocity m/s
Va Applied voltage V
VB Base voltage V
VC Collector voltage V
VD Drain voltage V
VE Emitter voltage V
VFB Flatband voltage V
VG Gate voltage V
Vt Thermal voltage V
VT Threshold voltage of an MOS structure V
w Depletion layer width m
wB Base width m
wC Collector width m
wE Emitter width m
wn Width of an n-type region m
wp Width of a p-type region m
x Position m
xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m
xj Junction depth m
xn Depletion layer width in an n-type semiconductor m
xp Depletion layer width in a p-type semiconductor m

α Transport factor  
β Current gain  
γ Body effect parameter V1/2

γE Emitter efficiency  
δ n Excess electron density m-3

δ p Excess hole density m-3

∆Qn,B Excess electron charge density in the base C/m2

εox Dielectric constant of the oxide F/m
εs Dielectric constant of the semiconductor F/m
µn Electron mobility m2/V-s
µp Hole mobility m2/V-s

ρ
Charge density per unit volume

Resistivity 

C/m3

Ωm
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ρox Charge density per unit volume in the oxide C/m3

σ Conductivity Ω−1m-1

τn Electron lifetime s
τp Hole lifetime s
φ Potential V

φB Barrier height V
φF Bulk potential V
φi Built-in potential of a p-n diode or Schottky diode V
φs Potential at the semiconductor surface V

ΦM Workfunction of the metal V

ΦMS
Workfunction difference between the metal and the 
semiconductor V

ΦS Workfunction of the semiconductor V
χ Electron affinity of the semiconductor V
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Appendix

Appendix 1: Symbol Index by Name
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Description Symbol MKS 
Units 

- A - 
Acceptor doping density Na m-3

Acceptor energy Ea Joule
Applied voltage Va V
Area A m2

- B -

Barrier height φB V
Base doping density NB m-3

Base voltage VB V
Base width wB m
Body effect parameter γ V1/2

Boltzmann's constant k J/K 
Built-in potential of a p-n diode or Schottky diode φi V
Bulk potential φF V

- C -

Capacitance per unit area C F/m2

Charge Q C
Charge density per unit area at threshold in the depletion 
layer of an MOS structure 

Qd,T C/m2

Charge density per unit area in the depletion layer of an 
MOS structure 

Qd C/m2

Charge density per unit volume ρ C/m3

Charge density per unit volume in the oxide ρox C/m3

Collector doping density NC m-3

Collector voltage VC V
Collector width wC m
Conduction band energy of a semiconductor Ec Joule
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Conductivity σ Ω−1m-1

Current I A
Current density J A/m2

Current gain β  

- D -

Density of states in the conduction band per unit energy 
and per unit volume 

gc(E) m-3J-1

Density of states in the valence band per unit energy and 
per unit volume 

gv(E) m-3J-1

Depletion layer width w m
Depletion layer width in a p-type semiconductor xp m
Depletion layer width in an MOS structure xd m
Depletion layer width in an MOS structure at threshold xd,T m
Depletion layer width in an n-type semiconductor xn m
Dielectric constant of the oxide εox F/m
Dielectric constant of the semiconductor εs F/m
Distribution function (probability density function) f(E)  
Donor doping density Nd m-3

Donor energy Ed Joule
Doping density N  
Drain voltage VD V

- E -

Effective density of states in the conduction band Nc m-3

Effective density of states in the valence band Nv m-3

Effective mass of electrons me* kg
Effective mass of holes mh* kg
Electric field E V/m
Electron affinity of the semiconductor χ V
Electron current density Jn A/m2

Electron density n m-3

Electron density in thermal equilibrium n0 m-3

Electron density per unit energy and per unit volume n(E) m-3

Electron diffusion constant Dn m2/s
Electron diffusion length Ln m
Electron energy in vacumm Evacuum Joule
Electron generation rate Gn m-3s-1

Electron lifetime τn s
Electron mobility µn m2/V-s
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Electron recombination rate Rn m-3s-1

electronic charge q C
Emitter doping density NE m-3

Emitter efficiency γE  
Emitter voltage VE V
Emitter width wE m
Energy E Joule
Energy bandgap of a semiconductor Eg Joule
Excess electron charge density in the base ∆Qn,B C/m2

Excess electron density δ n m-3

Excess hole density δ p m-3

- F -

Fermi energy (thermal equilibrium) EF Joule
Flatband capacitance per unit area of a MOS structure CFB F/m2

Flatband voltage VFB V
Free electron mass m0 kg

- G -

Gate voltage VG V

- H -

Hole current density Jp A/m2

Hole density p m-3

Hole density in an n-type semiconductor pn m-3

Hole density in thermal equilibrium p0 m-3

Hole density per unit energy p(E) m-3

Hole diffusion constant Dp m2/s
Hole diffusion length Lp m
Hole generation rate Gp m-3s-1

Hole lifetime τp s
Hole mobility µp m2/V-s
Hole recombination rate Rp m-3s-1

- I -

Interface charge density per unit area QI C/m2

Intrinsic carrier density nI m-3

Intrinsic carrier density nI m-3
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Intrinsic Fermi energy EI Joule
Ionized acceptor density Na- m-3

Ionized donor density Nd+ m-3

- J -

Junction capacitance per unit area Cj F/m2

Junction depth xj m

- K -

- L -

Length L m

- M -

Mass m kg
Mean free path l m

- N -

Net recombination rate of electrons Un m-3s-1

Net recombination rate of holes Up m-3s-1

- O -

Oxide capacitance per unit area Cox F/m2

Oxide thickness tox m

- P -

Plank's constant h Js
Position x m
Potential φ V
Potential at the semiconductor surface φs V

- Q -

Quasi-Fermi energy of electrons Fn Joule
Quasi-Fermi energy of holes Fp Joule

- R -
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Reduced Plank's constant (= h /2π) Js
Resistance R Ohm
Resistivity ρ Ωm

- S -

Speed of light in vacuum c m/s

- T -

Temperature T Kelvin
Thermal velocity vth m/s
Thermal voltage Vt V
Thickness t m
Threshold voltage of an MOS structure VT V
Transport factor α  

- U -

- V -

Valence band energy of a semiconductor Ev Joule
Velocity v m/s

- W -

Width of a p-type region wp m
Width of an n-type region wn m
Workfunction difference between the metal and the 
semiconductor

ΦMS V

Workfunction of the metal ΦM V
Workfunction of the semiconductor ΦS V

- X -

- Y -

- Z -
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Appendix: 

Appendix 1a: Extended List of Symbols 
Symbol Description MKS Units 

a Acceleration m/s2

a0 Bohr radius m
A Area m2

A* Richardson constant m/s
AC Collector area m2

AE Emitter area m2

b Bimolecular recombination constant m3/s
c Speed of light in vacuum m/s
C Capacitance per unit area F/m2

CD Diffusion capacitance per unit area F/m2

CDS Drain-source capacitance F
CFB Flatband capacitance per unit area of a MOS structure F/m2

CG Gate capacitance F
CGS Gate-source capacitance F
CGD Gate-drain capacitance F

CHF
High-frequency capacitance per unit area of a MOS 
structure F/m2

Cj Junction capacitance per unit area F/m2

CLF
Low-frequency (quasi-static) capacitance per unit area 
of a MOS structure F/m2

CM Miller capacitance F
Cox Oxide capacitance per unit area F/m2

Cs Semiconductor capacitance per unit area F/m2

Dn Electron diffusion constant m2/s
Dp Hole diffusion constant m2/s
E Energy Joule
E Electric field V/m
E0 Lowest energy in a one-dimensional quantum well Joule
Ea Acceptor energy Joule
Ebr Breakdown field V/m
Ec Conduction band energy of a semiconductor Joule
Ed Donor energy Joule
EF Fermi energy (thermal equilibrium) Joule
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EF,n Fermi energy in an n-type semiconductor Joule
EF,p Fermi energy in a p-type semiconductor Joule
Eg Energy bandgap of a semiconductor Joule
Ei Intrinsic Fermi energy Joule
En nth quantized energy Joule
Eph Photon energy Joule
Et Trap energy Joule
Ev Valence band energy of a semiconductor Joule

Evacuum Electron energy in vacumm Joule
F(E) Distribution function (probability density function)  

fBE(E) Bose-Einstein distribution function  
fFD(E) Fermi-Dirac distribution function  
fMB(E) Maxwell-Boltzmann distribution function  

F Force Newton
Fn Quasi-Fermi energy of electrons Joule
Fp Quasi-Fermi energy of holes Joule
gE) Density of states per unit energy and per unit volume m-3J-1

g(E) Density of states in the conduction band per unit energy 
and per unit volume m-3J-1

g(E) Density of states in the valence band per unit energy 
and per unit volume m-3J-1

gd Output conductance of a MOSFET S
gm Transconductance of a MOSFET S
G Carrier generation rate m-3s-1

Gn Electron generation rate m-3s-1

Gp Hole generation rate m-3s-1

h Plank's constant Js
Reduced Plank's (= h /2π) Js

I Current A
IB Base current of a bipolar transistor A
IC Collector current of a bipolar transistor A
ID Drain current of a MOSFET A
IE Emitter current of a bipolar transistor A
IF Forward active current of a bipolar transistor A

ID,sat Drain current of a MOSFET in saturation A
Iph Photo current A
Ir Recombination current A
IR Reverse active current of a bipolar transistor A
Is Saturation current A
Isc Short circuit current of a solar cell A
J Current density A/m2
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Jn Electron current density A/m2

Jp Hole current density A/m2

k Boltzmann's constant 
wavenumber

J/K 
m-1

l Mean free path m
L Length m

LD Debye length m
Ln Electron diffusion length m
Lp Hole diffusion length m
Lx Hole diffusion length m
m Mass kg
m* Effective mass kg
mA Atomic mass kg
m0 Free electron mass kg
me* Effective mass of electrons kg
mh* Effective mass of holes kg

M Proton mass
Multiplication factor kg

n

Electron density
Integer
Refractive index
Ideality factor

m-3

 
 
 

ni Intrinsic carrier density m-3

n(E) Electron density per unit energy and per unit volume m-3

n0 Electron density in thermal equilibrium m-3

ni Intrinsic carrier density m-3

nn Electron density in an n-type semiconductor m-3

nn0
Thermal equilibrium electron density in an n-type 
semiconductor m-3

np Electron density in a p-type semiconductor m-3

np0
Thermal equilibrium electron density in a p-type 
semiconductor m-3

N Number of particles
Doping density  

Na Acceptor doping density m-3

Na- Ionized acceptor density m-3

NA Avogadro's number  
NB Base doping density m-3

Nc Effective density of states in the conduction band m-3

NC Collector doping density m-3

Nd Donor doping density m-3

Nd+ Ionized donor density m-3
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NE Emitter doping density m-3

Nss Surface state density m-2

Nt Recombination trap density m-2

Nv Effective density of states in the valence band m-3

p
Hole density
Particle momentum
Pressure

m-3

kgm/s
Nm-2

p(E) Hole density per unit energy m-3

p0 Hole density in thermal equilibrium m-3

pn Hole density in an n-type semiconductor m-3

pn0
Thermal equilibrium hole density in an n-type 
semiconductor m-3

pp Hole density in a p-type semiconductor m-3

pp0
Thermal equilibrium hole density in a p-type 
semiconductor m-3

q electronic charge C

Q Heat
Charge

Joule
C

QB Majority carrier charge density in the base C/m2

Qd
Charge density per unit area in the depletion layer of an 
MOS structure C/m2

Qd,T
Charge density per unit area at threshold in the 
depletion layer of an MOS structure C/m2

Qi Interface charge density per unit area C/m2

Qinv Inversion layer charge density per unit area C/m2

QM Charge density per unit area in a metal C/m2

Qn
Charge density per unit area in the depletion layer of an 
n-type region C/m2

Qp
Charge density per unit area in the depletion layer of a 
p-type region C/m2

Qss Surface state charge density per unit area C/m2

re Emitter resistance Ohm
r
π Base resistance Ohm

R The Rydberg constant
Resistance

J
Ohm

Rn Electron recombination rate m-3s-1

Rp Hole recombination rate m-3s-1

Rs Sheet resistance Ohm
s Spin  
S Entropy J/K
t Thickness m

tox Oxide thickness m
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T Temperature
Kinetic energy

Kelvin
Joule

u
ω Spectral density Jm-3s-1

U Total energy Joule
UA Auger recombination rate m-3s-1

Ub-b Band-to-band recombination rate m-3s-1

Un Net recombination rate of electrons m-3s-1

Up Net recombination rate of holes m-3s-1

USHR Shockley-Read-Hall recombination rate m-3s-1

v Velocity m/s
vR Richardson velocity m/s
vsat Saturation velocity m/s
vth Thermal velocity m/s

V Potential energy
Volume

Joule
m3

Va Applied voltage V
VA Early voltage V
Vbr Breakdown voltage V
VB Base voltage V
VBE Base-emitter voltage V
VBC Base-collector voltage V
VC Collector voltage V
VCE Collector-emitter voltage V
VD Drain voltage V
VDS Drain-source voltage V

VDS,sat Drain-source saturation voltage V
VE Emitter voltage V
VFB Flatband voltage V
VG Gate voltage V
VGS Gate-source voltage V
Voc Open circuit voltage of a solar cell V
Vt Thermal voltage V
VT Threshold voltage of an MOS structure V
w Depletion layer width m
wB Base width m
wC Collector width m
wE Emitter width m
wn Width of an n-type region m
wp Width of a p-type region m
W Work Joule
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x Position m
xd Depletion layer width in an MOS structure m

xd,T Depletion layer width in an MOS structure at threshold m
xj Junction depth m
xn Depletion layer width in an n-type semiconductor m
xp Depletion layer width in a p-type semiconductor m

α
Absorption coefficient
Transport factor m-1  

αF Forward active transport factor   
αn Ionization rate coefficient for electrons m-1  
αR Reverse active transport factor   
αT Base transport factor   
β Current gain   
γ Body effect parameter V1/2  

γE Emitter efficiency   
Γn Auger coefficient for electrons m6s-1  
Γp Auger coefficient for holes m6s-1  
δ n Excess electron density m-3  
δ p Excess hole density m-3  
δ R Depletion layer recombination factor   

∆Qn,B Excess electron charge density in the base C/m2  
ε Dielectric constant F/m  
ε0 Permittivity of vacuum F/m  
εox Dielectric constant of the oxide F/m  
εs Dielectric constant of the semiconductor F/m
µ0 Permeability of vacuum H/m  
Θ Tunnel probability   
λ Wavelength m  
µ Electro-chemical potential Joule  
µn Electron mobility m2/V-s  
µp Hole mobility m2/V-s  
ν Frequency Hz  

ρ
Charge density per unit volume
Resistivity 

C/m3

Ωm
 

ρox Charge density per unit volume in the oxide C/m3  
σ Conductivity Ω−1m-1  
τ Scattering time s  
τn Electron lifetime s  
τp Hole lifetime s  
φ Potential V  
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φB Barrier height V  
φF Bulk potential V  
φi Built-in potential of a p-n diode or Schottky diode V  
φs Potential at the semiconductor surface V  
Φ Flux m-2s-1  

ΦM Workfunction of the metal V  

ΦMS
Workfunction difference between the metal and the 
semiconductor V  

ΦS Workfunction of the semiconductor V  
χ Electron affinity of the semiconductor V  
Ψ Wavefunction   
ω Radial frequency rad/s  
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Appendix: 

Appendix 2: Physical Constants 

Avogadro's number NA 6.022 x 1023 atoms per mole

Bohr radius a0 52.9177 picometer

  0.529177 Angstrom

Boltzmann's constant k 1.38 x 10-23 Joule/Kelvin

  8.62 x 10-5 electron Volt/Kelvin

Electronic charge q 1.602 x 10-19 Coulomb

Free electron rest mass m0 9.11 x 10-31 kilogram

  5.69 x 10-16 eV s2 cm-2

Permeability of free space µ0 4π x 10-7 Henry/meter

Permittivity of free space ε0 8.854 x 10-12 Farad/meter

  8.854 x 10-14 Farad/centimeter

Planck's constant h 6.625 x 10-34 Joule second

  4.134 x 10-15 electron Volt second

Reduced Planck's constant 1.054 x 10-34 Joule second

Proton rest mass M 1.67 x 10-27 Kilogram

Rydberg constant R 2.17991 x 10-18 Joule

  13.6058 electron Volt

Speed of light in vacuum c 2.998 x 108 meter/second

  2.998 x 1010 centimeter/second

Thermal voltage (at T = 300 K) 25.86 milliVolt
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Appendix: 

Appendix 3: Material Parameters 

Name Symbol Germanium Silicon Gallium 
Arsenide

Bandgap energy at 300 K Eg (eV) 0.66 1.12 1.424

Breakdown Field Ebr (V/cm) 105 3 x 105 * 4 x 105

Density (g/cm3) 5.33 2.33 5.32

Effective density of states in the 
conduction band at 300 K

Nc (cm-3) 1.02 x 1019 2.82 x 1019 4.35 x 1017

Effective density of states in the 
valence band at 300 K

Nv (cm-3) 5.65 x 1018 1.83 x 1019 7.57 x 1018

Intrinsic concentration at 300 K ni (cm-3) 2.8 x 1013 1.0 x 1010 2.0 x 106

Effective mass for density of 
states calculations

    

Electrons me* / m0 0.55 1.08 0.067

Holes mh* / m0 0.37 0.81 0.45

Electron affinity χ (V) 4.0 4.05 4.07

Lattice constant a (pm) 564.613 543.095 565.33

Mobility at 300 K (undoped)     

Electrons µn (cm2/V-s) 3900 1400† 8800

Holes µp (cm2/V-s) 1900 450† 400

Relative dielectric constant εs/ ε0 16 11.9 13.1

Thermal conductivity at 300 K χ (W/cmK) 0.6 1.5 0.46
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Refractive index at 632.8 nm 
wavelength

n 5.441 

- i 0.785

3.875

- i 0.0181

3.856

- i 0.196

 

*See also section 4.5.1: Breakdown field in silicon at 300 K

†See also section 2.7.2: Mobility of doped silicon at 300 K
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Appendix: 

Appendix 4: Prefixes  

deci (d) 10-1 deka (da) 101

centi (c) 10-2 hecto (h) 102

milli (m) 10-3 kilo (k) 103

micro (m) 10-6 mega (M) 106

nano (n) 10-9 giga (G) 109

pico (p) 10-12 tera (T) 1012

femto (f) 10-15 peta (P) 1015

atto (a) 10-18 exa (X) 1018
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Appendix:

Appendix 5: Units 

MKS Units

Unit Symbol Variable Symbol MKSA units
Ampere A Current I fundamental MKSA unit
Coulomb C Charge Q Ampere second
Farad F Capacitance C Coulomb Volt-1 = Joule Volt-2

Henry H Inductance L Weber Ampere-1 = Tesla meter2 Ampere-1

Joule J Energy E Newton meter = kilogram meter2 second-2

Kelvin K Temperature T fundamental MKSA unit
kilogram kg Mass m fundamental MKSA unit
meter m Length L fundamental MKSA unit
Newton N Force F kilogram meter second-2

Ohm Ω Resistance R Volt Ampere-1 = Volt2 Joule-1 second-1

Pascal P Pressure P Newton meter-2

second s time t fundamental MKSA unit
Siemens S conductance G Ampere Volt-1 = Joule second Volt-2

Tesla T Magnetic field B
Newton Ampere-1 meter-1 = Joule Ampere-1 meter-
2 
= Volt second meter-2

Volt V potential φ Joule coulomb-1

Watt W Power P Joule second-1

Weber Wb Magnetic flux Φ Tesla meter2 = Volt second

non-MKS Units

Electron Volt (Unit of energy) = 1.602 x 10-19 Joule 

moles/liter (Unit of concentration) = 6.022 x 1020 cm-3

Degrees Centigrade (Unit of Temperature) = -273.16 + T(in Kelvin) 

Inch (Unit of Length) = 2.54 cm 

mil or milli inch (Unit of Length) = 25.4 micrometer 
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A or Angstrom (Unit of Length) = 0.1 nm
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Appendix: 

Appendix 6: The Greek Alphabet  

α Α alpha ν Ν nu
β Β beta ξ Ξ xi
γ Γ gamma ο Ο omicron
δ ∆ delta π Π pi
ε Ε epsilon ρ Ρ rho
ζ Ζ zeta σ Σ sigma
η Η eta τ Τ tau
θ Θ theta υ Υ upsilon
ι Ι iota φ Φ phi
κ Κ kappa ξ Ξ chi
λ Λ lambda ψ Ψ psi
µ Μ mu ω Ω omega
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Appendix: 

Appendix 8: Numeric answers to selected problems 
Spreadsheet with predefined physical constants and material parameters 

Chapter 1

1. 0.62 µm, 0.87 nm  
2. 1.55 eV, 375 THz, 4 x 1018  
3.  
4. 16.5 µm  
5.  
6. 3.88 nm  
7. -13.6 eV, -3.4 eV, -1.51 eV  
8.   
9.   
10. 0.11 eV, 0.56 eV and 0.79 eV  
11.   
12. 172 meV  
13. 138 meV  

Chapter 2

1. 52.36%, 68.02%, 74.05%, 34.01%  
2. 406.3°C  
3.  
4. 0.0099  
5. 6.29 x 10-5, 0.045, 484.7°C  
6. 1.02 x 1019, 5.65 x 1018; 2.82 x 1019, 1.83 x 1019; 4.37 x 1017, 7.57 x 1018 cm-3 
   1.42 x 1019, 7.83 x 1018; 3.91 x 1019, 2.54 x 1019; 6.04 x 1017, 1.05 x 1019 cm-3  
7. 2.16 x 1013, 8.81 x 109, 1.97 x 106; 3.67 x 1014, 8.55 x 1011, 6.04 x 108 cm-3  
8. -7.68 meV, -5.58 meV, 36.91 meV 
   -9.56 meV, -6.94 meV, 45.92 meV  
9. 2.24 x 1018, 1.48 x 108; 1.60 x 1015, 1.32 x 105; 2.23 x 1011, 18.4 cm-3 
   9.27 x 1013, 4.45 x 1012; 6.02 x 1014, 3.50 x 105; 3.97 x 1012, 1.04 cm-3  
10.  
11. 104 cm-3, 0.357 eV  
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12. 1012 cm-3, 108 cm-3  
13. 9.17 x 1014, 9.15 x 1014, 2.76 x 1015 cm-3  
14. 7.59 x 1016 cm-3  
15. 2.77 x 1019 cm-3s-1, 2.77 x 1015 cm-3, 2.77 x 1015 cm-3, 417 meV, -324 meV  
16. 1013 cm-3s-1, 10-3 s  
17. 2.96 x 10-6 cm/Ohm, 337 kOhm-cm  
18. 393 kOhm-cm, 5.67 x 109, 1.76 x 1010, 1.20 x 1010 cm-3  
19. 18, 42, 60 meV  
20. 2.42 nm  
21. 2.42 x 1021 cm-3eV-1  
22. 4.74 %, 95.26 %  
23.  
24. 1.39  
25. 30 kV/cm, 15 V, 16.7 ps  
26. 8.92 x 1014 cm-3, 6.94 x 1015 cm-3  
27. 0.455 mm  
28. 2111 cm2/V-s  
29. 1.05 cm-3J-1, 9.14 x 10-4  
30. 0.53 Ω-cm, 2.1 x 10-7, 0.22 Ω-cm, 123 meV  
31. 1016 cm-3, 104 cm-3, -357 meV 
     1015 cm-3, 105 cm-3, 298 meV  
32. 828 A/cm2  

Chapter 3

1. 1.84 x 1017cm-3, 75 nm, 737 kV/cm 

2. 

3. 6.24 x 10-7cm2

4. 154-269 MHz 

Chapter 4

1. 0.75 V, 785 nm, -95.5 kV/cm 

2. 104, 1016, 9 x 1016, 1.11 x 103cm-3; 0.771 V; 0.729 V; 

3. -12.4 kV/cm, 1.65 x 1016cm-3

4. 0.76 V; 0.35, 0.20, 0.72 micron; -43.8, -25.5, -90.8 kV/cm; 0.13, 0.04, 0.54 V; 

5. 1.71 x 1015cm-3, 0.76 V, 5.91 x 109cm-3

6. 2.84 x 1014cm-3

7. 3.27 x 1017cm-3, 8.22 x 1016cm-3, 0.86 V, -49 V 
8. 7.6 x 1015, 492 nm, 21.4 nF/cm2, 28 kV/cm

   4.4 x 1014, 1.3 x 1016, 528 nm, 20 nF/cm2, 26.5 kV/cm 
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9. 3.29 x 1013cm-3, 0.768 V, 0.02 cm and 52.6 pF/cm2

10. 

11. 

12. 

13. 0.208 mA, 260 

14. 3 x 105V/cm, 19.6 micron, -293 V 

15. 0.445 V, 12.6 mW, 80.9%, 85.5% 

16. 

17. 1016cm-3, 8.4 x 1014cm-3

18. 

19. 0.136 V 

20. 

Chapter 5

1. 0.99, 0.41, 3.70 µm; 8.81, 16.08, 8.81 µm; 8.86, 38.94, 2.38; 
     2.03 x 10-11, 8.42 x 10-11, 0 C/cm2; 0.259 mA; 33 ps, 84.2 nA; 0.9877, 0.9997; 
     0.9874, 78.19; 31.9 nF/cm2, 661 nC/cm2, 20.74;  
2. 0.33 µm, 9.69 x 1014 cm-3  

Chapter 6

1. -0.927, 0.149, -0.153, 0.632, -1.071, 0.005, -0.963, 0.113 V  
2. 180 nF/cm2, 19.2 nm, 117 nm, 7.8 x 1016 cm-3, 410 mV, 13 pF, -328 mV, 965 mV  
3. 7.2 x 1016 cm-3  
4. 7.62 x 1016, 2.31 x 1016, 1.49 x 1014, 7.51 x 1014 cm-3  
5. 1.38 x 1014, 7.69 x 1014 cm-3  
6. -1.11 V, 48.4 nF/cm2  

Chapter 7

1. 322 Ohm, 2.25 V  
2. 173 nF/cm2, 17.3 fF, 51.8 µA  
3. 154 µm  
4. 48.3 µm  
5. 0.62 Ohm  
6. 0.31 µm, 46.6 kV/cm  
7. 105 nm  
8. 158 nm  
9.  
10. 170 nm  
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Problem 3.1 Consider a gold-GaAs Schottky diode with a capacitance of 1 pF 
at -1 V. What is the doping density of the GaAs? Also calculate 
the depletion layer width at zero bias and the field at the surface 
of the semiconductor at -10 V. The area of the diode is 10-5 cm2.  

Solution The depletion layer width can be calculated from the capacitance 
yielding: 
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0.116 µm 

From this one can find the doping density: 
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Provided one knows the built-in potential 

=−=
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c
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N
V lnφφ
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171035.4
ln0259.007.48.4

×
−−  

Which in turn depends on the doping density. 
Starting with φi = 0.7 one finds Nd = 1.83 x 1017 cm-3 and the 
corresponding built-in potential φi = 0.708. Further iteration 
yields the result: Nd = 1.84 x 1017 cm-3. 
 
The depletion layer width at zero bias equals: 

=
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0.075 µm 

And the electric field at the surface for Va = -10 V equals: 
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737 kV/cm 

 



 
 
 
Problem 3.2 Using the work functions listed in table 3.2.1, predict which 

metal-semiconductor junctions are expected to be ohmic 
contacts. Use the ideal interface model.  
The barrier height on an n-type semiconductor is given by 

χφ −Φ= MB  
And on a p-type semiconductor by 

M
g

B q

E
Φ−+= χφ  

Using the metal workfunction from table 3.2.1 and the 
semiconductor electron affinity and bandgap from appendix 3 
one finds that only three combinations yield a negative barrier 
height as provided in the table below. One expects these metal-
semiconductor junctions to yield an ohmic contact. 
Au/p-Ge -0.14 V 

Pt/p-Ge -0.64 V 

Solution 

Pt/p-Si -0.13 V 

 



 
 
Problem 3.3 Design a platinum-silicon diode with a capacitance of 1 pF and a 

maximum electric field less than 104 V/cm at -10 V bias. 
Provide a possible doping density and area. Make sure the diode 
has an area between 10-5 and 10-7 cm2. Is it possible to satisfy all 
requirements if the doping density equals 1017 cm-3? What is the 
corresponding area? 

Solution From the capacitance and the area one finds the corresponding 
depletion layer width, namely: 

j

s
d C

x
ε

= = 105 nm and 1.05 nm 

corresponding to a diode area of 10-5 and 10-7 cm2 respectively. 
Note that the capacitance Cj is the capacitance per unit area. 
The corresponding doping density is obtain from: 

d

s
d qx

x
N

ε)0( =
=

E
= 6.24 x 1015 and 6.24 x 1017 cm-3 respectively 

Any other designs should have a doping density between those 
two values. Since the doping density of 1017 cm-3 is also between 
those two values it is a possible solution. The corresponding area 
is 6.24 x 10-7 cm2. 



 
Problem 3.4 A platinum-silicon diode (area  = 10-4 cm-2, Nd =1017 cm-3) is 

part of an LC tuning circuit containing a 100 nH inductance. The 
applied voltage must be less than 5 V. What is the tuning range 

of the circuit? The resonant frequency equals 
LCπ

ν
2

1
= , 

where L is the inductance and C is the diode capacitance. 
Solution The capacitance of the diode per unit area equals: 

)(2 ai

ds
j V

Nq
C

−
=

φ
ε

= 10.7 and 3.5 pF at 0 and –5 V respectively 

Where the built-in potential is calculated from: 

c

d
tBi N

N
V ln−= φφ = 732 mV 

The resonant frequency therefore can be tuned from 154 MHz to 
269 MHz. 

 



Problem 4.1 An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x 1016 
cm-3) is biased with Va = -3 V. Calculate the built-in potential, 
the depletion layer width and the maximum electric field of the 
junction.  

Solution The built-in potential is calculated from: 

2ln
i

ad
ti n

NN
V=φ = 0.75 V 

The depletion layer width equals 
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11
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NNq
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ε
= 0.785 µm 

And the maximum electric field equals 

d
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x
)(2

)0(
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E =  -95.5 kV/cm 

Note that mathematically the maximum field is zero since the 
field is negative. However, the sign indicates the direction of the 
field and depends merely on convention. 

 



 
 
Problem 4.3 For an abrupt p-n junction with a built-in potential of 0.62 V  

a. What is the potential across the depletion region at an 
applied voltage, Va, of 0, 0.5 and -2 Volt?  

b. If the depletion layer width is 1 micrometer at Va = 0 
Volt, find the maximum electric field in the depletion 
region.  

c. Assuming that the net doping density |Nd - Na| is the same 
in the n-type and p-type region of the diode, carefully 
sketch the electric field and the potential as a function of 
position throughout the depletion region. Add numeric 
values wherever possible.  

d. Calculate the doping density in the n-type and p-type 
region 

Solution a. The potential equals φi - Va = 0.62, 0.12 and 2.62 V. 
b. The maximum field at Va = 0 V equals 

d

ai

x
V

x
)(2

)0(
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E = - 12.4 kV/cm 

c. Since the doping density is the same in both regions, the 
electric field distribution resembles an isosceles triangle 
reaching the maximum field calculated in (b) at x = 0. The 
electric field is zero at the edges of the depletion layer and 
linear in each region. The potential is a piecewise parabolic 
curve with a value of 0 V at x = - xp, 0.31 V at x = 0 and 0.62 
V at x = xn.  

d. Since both doping densities are the same, the depletion layer 
width in each region equals xn = xp = 0.5 µm. 
The doping density is then obtained from 
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s

pa xNqxNq
x

εε
−=−== )0(E  

yielding: Na = Nd = 1.65 x 1015 cm-3 
 



 
Problem 4.4 An abrupt silicon (ni = 1010 cm-3) p-n junction consists of a p-

type region containing 1016 cm-3 acceptors and an n-type region 
containing 5 x 1016 cm-3 donors.  
a) Calculate the built-in potential of this p-n junction.  
b) Calculate the total width of the depletion region if the 

applied voltage Va equals 0, 0.5 and -2.5 V.  
c) Calculate maximum electric field in the depletion region at 

0, 0.5 and -2.5 V.  
d) Calculate the potential across the depletion region in the n-

type semiconductor at 0, 0.5 and -2.5 V.  
Solution The built-in potential equals: 
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The depletion layer width is calculated from: 
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Resulting in a depletion layer width of 0.35, 0.20 and 0.72 µm 
for an applied voltage of 0, 0.5 and –2.5 V. 
The corresponding electric field is obtained from: 
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Resulting in a field of -43.8, -25.5 and -90.8 kV/cm. The 
potential across the depletion region in the n-type semiconductor 
equals: 
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Resulting in 0.13, 0.04 and 0.54 V 
 

 



 
Problem 4.5 Consider an abrupt p-n diode - made of an unknown 

semiconductor - in thermal equilibrium with as many donors in 
the n-type region as acceptors in the p-type region and a 
maximum electric field of -13 kV/cm and a total depletion layer 
width of 1 µm. (assume εs/ ε0 = 12)  
a) What is the applied voltage, Va?  
b) What is the built-in potential of the diode?  
c) What are the donor density in the n-type region and the 

acceptor density in the p-type region?  
d) What is the intrinsic carrier density of the semiconductor if 

the temperature is 300 K ? 
Solution a) In thermal equilibrium the applied voltage is zero. 

b) The built-in potential is then calculated from 

2
)0( wx

Vai
=

−=
E

φ = 0.65 V 

c) To doping densities are easily obtained if one realizes that 
the depletion layer widths in each region are the same since 
the doping densities are the same. The doping densities are 
then obtained from: 
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1.71 x 1015 cm-3 

And the acceptor density, Na, equals the donor density. 
d) The intrinsic carrier density is calculated from the built-in 

potential, namely: 
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5.91 x 109 cm-3 

 



 
Problem 4.6 A silicon (ni = 1010 cm-3) p-n diode with Na = 1018 cm-3 has a 

junction capacitance of 10-8 F/cm2 at an applied voltage of 0.5 V. 
Find the donor density. 

Solution The depletion layer width equals: 

==
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ε
1.05 µm 

The sum of the inverses of the doping densities is then: 

)(2
11 2
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So that the donor density equals: 
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N  = 2.84 x 1014 cm-3 

While the built-in potential was calculated from: 

)ln(
2
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V=φ  = 741 mV 

The solution was obtained by starting with a built-in potential of 
0.7 V and repeatedly calculating the doping density and the 
built-in potential from it. 

 



 
Problem 4.7 A silicon (ni = 1010 cm-3) p-n diode has a maximum electric field 

of -106 V/cm and a depletion layer width of 1 µm. The acceptor 
density in the p-type region is four times larger than the donor 
density in the n-type region. Calculate both doping densities, the 
built-in potential and the applied voltage. 

Solution Since the acceptor density in the p-type region is four times 
larger than the donor density in the n-type region, the depletion 
layer width in the p-type region is four times smaller than the 
depletion region in the n-type region. Since the total depletion 
layer width is 1 µm, one finds: 

xp = xd/5 = 0.2 µm and xn = 4 xp = 0.8 µm 
The acceptor density is then obtained from: 
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= 3.29 x 1017 cm-3 

And the donor density is one quarter of this value or: 
Nd = Na/4 = 8.22 x 1016 cm-3 

The built-in potential equals 

2
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And the applied voltage is: 
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φ = 0.86 – 50 = -49.14 V 

 



 
 
Problem 4.8 Consider a symmetric silicon p-n diode (Na = Nd) 

a) Calculate the built-in potential if Na = 1013, 1015 and 1017 cm-

3. Also, calculate the doping densities corresponding to a 
built-in potential of 0.7 V. 

b) For the same as in part a), calculate the total depletion layer 
widths, the capacitance per unit area and the maximum 
electric field in thermal equilibrium. 

Repeat part a) and b) with Na = 3 Nd. 
Solution a) Since Na = Nd, the built-in potential equals 

i

a
ti n

N
V ln2=φ  = 0.36, 0.60, 0.83 V 

for Na = 1013, 1015, 1017 cm-3. 
for iφ  = 0.7 V, on finds Na = Nd = 7.6 x 1015 cm-3. 

b) Similarly, for Na = Nd, the depletion layer width equals 

a

is
d qN

x
φε4

= = 9.7, 1.25, 0.148 µm, 

and the junction capacitance equals 

d

s
j x

C
ε

=  1.09, 8.43, 71.2 nF/cm2 

for Na = 1013, 1015, 1017 cm-3 
The maximum electrical field in thermal equilibrium equals: 

d

i
x

x
φ2

)0( ==E = 736, 9536, 1.126 x 105 V/cm. 

for iφ  = 0.7 V, on finds xd = 492 nm, Cj = 21.4 nF/cm2 and 

)0( =xE  = 28 kV/cm. 
c) Repeat a) and b) with Na = 3Nd 

For Na = 1013, 1015, 1017 cm-3, one finds iφ  = 0.329, 0.567, 
0.805 V; xd = 13.2, 1.73, 0.206 µm; and Cj = 0.798, 6.09, 
51.1 nF/cm2; )0( =xE  = 498.5, 6550, 7.82 x 104 V/cm. 

for iφ  = 0.7 V, on obtains Na =1.3 x 1016 and Nd = 4.4 x 1015 

cm-3, xd = 528 nm, Cj = 20 nF/cm2 and )0( =xE  = 26.4 
kV/cm. 



 
Problem 4.9 A one-sided silicon diode has a breakdown voltage of 1000 V 

for which the maximum electric field at breakdown is 100 
kV/cm. What is the maximum possible doping density in the 
low-doped region, the built-in potential, the depletion layer 
width and the capacitance per unit area? Assume that bulk 
potential of the highly doped region is Eg/2 (= 0.56 V). 

Solution The doping density is obtained by solving the follow set of 
equations: 
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It was assumed that the highly doped region is p-type and has a 
bulk potential, φF. 
Starting with a built-in potential of 0.7 V one finds Nd and φi to 
be: 3.29 x 1013 cm-3, and 0.769 V. No further iteration is needed. 
The depletion layer width and capacitance per unit area are: 
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and 

br

s
j x

C
ε

= = 52.6 pF/cm2 

 



 
 
Problem 4.12 Calculate the relative error when using the "short diode" 

approximation if Ln = 2 wp
' and Lp = 2 wn

'. 
Solution The total current is given as equation (4.4.13)  

 
 
where the general expression for sI  is  
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“short” diode approximation. 
 
Thus we have 
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The relative error is  
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Problem 4.13 A silicon p-n junction (Na = 1015 cm-3, wp = 1 µm and Nd = 4 x 

1016 cm-3, wn = 1 µm) is biased with Va = 0.5 V. Use µn = 1000 
cm2/V-s and µp = 300 cm2/V-s. The minority carrier lifetime is 
10 µs and the diode area is 100 µm by 100 µm. 
a) Calculate the built-in potential of the diode.  
b) Calculate the depletion layer widths, xn and xp, and the 

widths of the quasi-neutral regions.  
c) Compare the width of the quasi-neutral regions with the 

minority-carrier diffusion-lengths and decide whether to use 
the "long" or "short" diode approximation. Calculate the 
current through the diode.  

Compare the result of part c) with the current obtained by using 
the general solution (equation 4.4.14) 

Solution a. The built-in potential is calculated from 

2ln
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NN
V=φ = 0.69 V 

b. The depletion layer width equals 
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NNq
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= 0.507 µm 

from which the individual depletion layer width are 
obtained: 
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a
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N
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+
= = 0.012 µm 
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d
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N
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+
= = 0.5 µm 

The quasi-neutral region width are then: 
wn' = wn - xn = 0.99 µm 
wp' = wp - xp = 0.51 µm 

c. The diffusion lengths are 

nntn VL τµ= = 161 µm 

pptnp VL τµ= = 88 µm 

Since the diffusion lengths are larger than the corresponding 
quasi-neutral region widths, Ln >> wp' and Lp >> wn', we 
choose the "short" diode expression for the current: 
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d. The general expression, 
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yields the same result. 
 
e. The ratio of the electron current relative to the hole current 

equals: 
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Problem 4.14 An abrupt silicon p-n diode consists of a p-type region 

containing 1018 cm-3 acceptors and an n-type region containing 
1015 cm-3 donors. 
a) Calculate the breakdown field in the n-type region.  
b) Using the breakdown field from part a), calculate the 

breakdown voltage of the diode.  
c) What is the depletion layer width at breakdown?  
d) Discuss edge effects and specify the minimum junction 

depth needed to avoid these effects. 
Solution a. The breakdown field equals: 

)10/log(1
104

16
3
1

5

N
x

br −
=E V/cm = 3 x 105 V/cm 

b. The breakdown voltage is then: 

d

sbr
ibr qN

V
2

2
ε

φ
E

−= = -293 Volt 

c. The depletion layer width equals 
 

d

sbr
br qN

x
εE

= = 0.2 mm 

d. Edge effect will occur if the junction depth is smaller than 
the depletion layer width. The junction depth should 
therefore be much larger than the depletion layer width to 
avoid these effects. 

 



 
 
Problem 4.15 A 1 cm2 solar cell consists of a p-type region containing 1018 cm-

3 acceptors and an n-type region containing 1015 cm-3 donors. wp
' 

= 0.1 µm and wn
’ >> Lp. Use µn = 1000 cm2/V-s and µp = 300 

cm2/V-s. The minority carrier lifetime is 10 µs. The diode is 
illuminated with sunlight, yielding a photocurrent density of 30 
mA/cm2.  

a. Calculate the open circuit voltage and short-circuit 
current of the solar cell.  

b. Calculate the maximum power generated by the call and 
the corresponding voltage and current.  

c. Calculate the fill factor of the solar cell.  
d. Calculate the fill factor for the same cell when it is 

illuminated by a concentrator so that the photocurrent 
density equals 300 A/cm2.  



Solution The saturation current of the solar cell is calculated from: 
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with 
Dn = µn Vt = 1000 x 0.0258 = 25.8 cm2/V-s 
DP = µP Vt = 300 x 0.0258 = 7.75 cm2/V-s 

np0 = ni
2/Na = 1020/1018 = 102 cm-3 

pn0 = ni
2/Nd = 1020/1016 =  104 cm-3 

=×== −51075.7ppp DL τ 88 µm 

yielding Is = 55.5 pA 
 
The maximum power is generated for: 
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where the voltage, Vm, is the voltage corresponding to the 
maximum power point. This voltage is obtained by solving the 
following transcendental equation: 
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Using iteration and a starting value of 0.5 V one obtains the 
following successive values for Vm: 

Vm = 0.5, 0.442, 0.445 V 
The diode current Im equals and the power Pm generated equals: 

Pm = Im x Vm = 12.6 mW 
The fill factor equals: 
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Repeating for Iph = 300 A yields: 
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Problem 4.16 A semiconductor device made of silicon has, under thermal 

equilibrium, an M-shaped electric field distribution as shown in 
the figure below. 

MAX

1

0.5

0 a/2

x

a-a -a/2  
 

a) Find Nd - Na  between x = -a and x = a, as a function 
of Emax 

b) Find the total potential across the semiconductor as a 
function of Emax with  a = 0.1 µm 

c) Find Emax and the built-in voltage φi  
d) Plot  Nd - Na for  -a  ≤ x ≤ a and indicate numeric 

values. Specify whether the different regions are p or 
n-type. 



Solution a) From poisson’s one dimension equation:  
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we get =maxε  0.661*105, =iφ  0.83 V, Nd - Na = 0.87*1017, -

0.435*1017, 0.435*1017, -0.87*1017 cm-3 for 
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Problem 4.17 Design an abrupt silicon p-n diode with a capacitance per unit 

area of 10 nF/cm2 in thermal equilibrium and a maximum 
electric field of 50 kV/cm at a reverse bias of 10 Volt. Provide 
values of the acceptor and donor density, the built-in potential 
and the depletion layer width in thermal equilibrium and at a 
reverse bias of 10 Volt. 

Solution The capacitance per unit area at thermal equilibrium is  
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where we can derive cmxd
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The xd at thermal equilibrium is also given as 
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So multiply Emax and xd, we have 
27.52max =×−×=× iaid VxE φφ , where 10−=aV V. 

We can solve the above equation and get 651.0=iφ V. 
 
From the above xd equation and the built-in potential equation 

)ln(
2
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ti n

NN
V=φ , we finally have 

1510993.9 ×=aN 3−cm , 1410376.8 ×=dN 3−cm , or  
1510993.9 ×=dN 3−cm , 1410376.8 ×=aN 3−cm . 

 
And the depletion layer width at thermal equilibrium is 

cmxd
410054.1 −×= , and at a reversed-biased 10V is 

cmxd
410261.4 −×= . 



 
 
Problem 4.18 A silicon p-n junction consists of a half-sphere with one-micron 

radius and a doping density of 1018 cm-3 embedded in an n-type 
substrate with a donor density of 1016 cm-3. Breakdown occurs in 
the diode when the maximum field reaches 6x105 V/cm. 
Calculate the breakdown voltage. Justify any assumptions you 
make. 

Solution Assuming a one-sided, abrupt junction, full ionization and using 
the full depletion approximation, the charge density equals: 

0)( =rρ , for r < r0 

dqNr =)(ρ , for r0 < r < r1 
0)( =rρ , for r1 < r 

The corresponding electric field equals 
0)( =rE , for r < r0 

s

d

r
rrqN

r
ε2

3
1

3

3
)(

)(
−

=Ε , for r0 < r < r1 

0)( =rE , for r1 < r 
So for maximum E(r), we have r = r0. Then 
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Problem 4.19 Calculate the built-in voltage for a silicon p-n junction with Na = 

Nd = 1015 cm-3 at T = 500 K. Do not assume the electron and 
hole concentration to equal the donor or acceptor concentration. 

Solution The intrinsic carrier density at T=500K can be calculated and 
find from Example 2.4.6 or Figure 2.6.3, as 

3141016.2)500( −×= cmKn i . 
 
Assume shallow donors and acceptors, where dd NN ≅+ , and 

aa NN ≅− .  
 
In n-type region ( 0==−

aa NN , 31510 −+ =≅ cmNN dd ), we can 

applied equation 2.6.34 to calculated the 0nn  and 0np  by 
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In p-type region ( 0==+

dd NN , 31510 −− =≅ cmNN aa ), we can 
applied equation 2.6.35 to calculated the 0nn  and 0np  by 
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Thus the built-in voltage iφ  is 
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Problem 4.20 Derive the minority electron density in a silicon p-n junction at 

the edge of the depletion region as a function of the acceptor 
density and the applied voltage. State the approximations made. 
Calculate the minority carrier density for Na = 1017 cm-3, Nd = 
1016 cm-3 and Va = -2 V. 

Solution 
In the deplete region without Va, 2ln
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V=φ , and dn Nn ≅0 , 

a

i
p N

n
n

2

0 = . So 
0

0ln
p

n
ti n

n
V=φ , or t

i

V
np enn

φ−

= 00 . Here we assume 

full depletion and shallow dopant. 
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For Na =1017 cm-3, Nd =1016 cm-3, and Va = -2 V, get np = 2.58 x 
10-31 cm-3. 

 



 
Problem 5.1 A silicon npn bipolar transistor with NE = 1018 cm-3, NB = 1017 

cm-3 and NC = 1016 cm-3, wE = 1 µm, wB = 0.5 µm , and wC = 4 
µm is biased with VBE = 0.6 V and VCB = 0 V. Use µn = 1000 
cm2/V-s, µp = 300 cm2/V-s and τn = τp = 100 ns. The emitter area 
equals 10-4 cm2. 
a) Calculate the width of the quasi-neutral regions in the 

emitter, base and collector.  
b) Calculate the minority-carrier diffusion lengths in the 

emitter, base and collector. Calculate the ratio of the 
minority-carrier diffusion length and the quasi-neutral region 
width in each region.  

c) Calculate the excess-minority-carrier charge density per unit 
area in the emitter, base and collector.  

d) Calculate the emitter current while ignoring the 
recombination in the depletion region.  

e) Calculate the base transit time and the current due to 
recombination of electrons in the base.  

f) Calculate the emitter efficiency and the base transport factor.  
g) Calculate the transport factor and the current gain assuming 

there is no recombination in the depletion regions.  
h) Calculate the collector capacitance, the majority-carrier 

charge density in the base and the Early voltage.  
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nnn DL τ= = 16.1 µm nnn DL τ= = 16.1 µm nnn DL τ= = 
16.1 µm 
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Problem 5.2 A silicon npn bipolar transistor has an emitter doping, NE = 2 x 

1018 cm-3, an emitter width wE
’ = 1 µm, and a base doping of 2 x 

1017 cm-3. A current gain of 100 and an Early voltage of 100 V is 
desired. Using µn = 1000 cm2/V-s, µp = 300 cm2/V-s and τn = τp 
= 100 ns, find the corresponding quasi-neutral base width and 
collector doping. The emitter area equals 10-4 cm2. 
 

Solution The quasi-neutral width of the base, wB
’, can be obtained from 

the current gain, β , which is given by: 

E
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Yielding wB’ = 0.335 µm 
Note that this implies that the base transport factor, aT, is very 
close to one and therefore that the diffusion length of electrons 
in the base must be much larger than the base width. The 
diffusion length equals: 

nnn DL τ= = 16.1 µm 
which is indeed much larger than the quasi-neutral base width 
 
The collector doping density is obtained from the Early voltage: 
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This equation allows to find first the width of the depletion 
region between the base and collector, namely: 

xp,BC + xn,BC = xd,BC = 0.987 µm 
And can then be used to find the doping density using 
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The resulting collector doping density equals 9.69 x 1014 cm-3. 
 



Problem 6.1 Consider an aluminum-SiO2-silicon MOS capacitor (ΦM = 4.1 
V, εox/ε0 = 3.9, χ = 4.05 V and Na = 1017 cm-3) MOS capacitor 
with tox = 5 nm. 
a) Calculate the flatband voltage and threshold voltage.  
b) Repeat for an n-type silicon substrate with Nd = 1016 cm-3. 
c) Repeat with a surface charge of 10-7 C/cm2

. 
d) Repeat with a charge density in the oxide of 10-1 C/cm3 . 
 



Solution The work function difference of the nMOS capacitor equals 
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g
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N
V

q

E
−−−Φ=Φ−Φ χ  

= 4.1 - 4.05 - 0.56 - 0.42 = -0.93 = VFB 
Since no charge is present in the oxide or at the interface, the flat 
band voltage equals the work function difference. 
The threshold voltage equals: 
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For the pMOS capacitor one finds similarly: 
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In the presence of 10-7 C/cm2 interface charge the flat band 
voltage of the nMOS capacitor becomes: 

ox

i
MSFB C

Q
V −Φ= = - 0.93 - 0.145 = - 1.07 

The threshold voltage shift by the same amount yielding: 
VT =  0.15 - 0.145 = - 0.005 

In the presence of 10-1 C/cm3 throughout the oxide the flat band 
voltage of the nMOS capacitor becomes: 

∫−Φ=
oxt

ox
ox

MSFB dxxxV
0

)(
1

ρ
ε

= - 0.93 - 0.03 = - 0.96 

The threshold voltage shift by the same amount yielding: 
VT = 0.149 - 0.036 = 0.113 V 

 



 
 
Problem 6.2 A high-frequency capacitance voltage measurement of a silicon 

MOS structure was fitted by the following expression:  
C(VG) = 6 pF + 12 pF/(1 + exp(VG)) 

a) Calculate the oxide capacitance per unit area and the oxide 
thickness. The area of the capacitor is 100 x 100 micron and 
the relative dielectric constant equals 3.9.  

b) From the minimum capacitance, calculate the maximum 
depletion layer width and the substrate doping density.  

c) Calculate the bulk potential. 
d) Calculate the flatband capacitance and the flatband voltage. 
e) Calculate the threshold voltage 



Solution (a) The oxide capacitance is when −∞∝GV , and from above 
equation, we have C(VG) = 18 pF, so  
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(b) The minimum capacitance is C(VG) = 6 pF when ∞∝GV ,   

Cmin = 8
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F/cm2 = 60 nF/cm2. 
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, we can derive xd,max = 117 nm. 
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N
V ln=φ , Na can be 

calculated by iteration as Na = 7.8 x 1016 cm-3. 
 
 
(c) The bulk potential 411.0)/ln( == iatF nNVφ  V. 
 
(d) For the capacitance under flat band voltage, 
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where LD is the Debye length given as: 

a
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D qN
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ε
=  = 1.478 x 10-6 cm. 

Plug CFB in the expression of the capacitance, we have the Flat 
band voltage VFB as: 

6=FBC pF + 12 pF/(1+exp(VFB)) 
where VFB = - 0.847 V. 
 
(e) The threshold voltage VT is equal to  

817.02411.0847.0
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0.792 V. 



 
Problem 6.3 An MOS capacitor with an oxide thickness of 20 nm has an 

oxide capacitance which is three times larger than the minimum 
high-frequency capacitance in inversion. Find the substrate 
doping density.  

Solution The high frequency capacitance in inversion equals: 
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from which one finds xd,T = 2 εs/Cox  
so that: 
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where the bulk potential, φF, also depends on the doping density, 
Na 

Iterating, starting with φF = 0.4, yields the following values for 
the doping density: 

Na = 7.06 x 1016, 7.20 x 1016 and 7.21 x 1016 cm-3 
 



 
 
Problem 6.4 A CMOS gate requires n-type and p-type MOS capacitors with a 

threshold voltage of 2 and -2 Volt respectively. If the gate oxide 
is 50 nm what are the required substrate doping densities? 
Assume the gate electrode is aluminum. Repeat for a p+ poly-
silicon gate. 

Solution For nMOS (with p-type Si substrate), we have  
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2
, and 
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V ln=φ , if we plug 

FBV  and Fφ  into the equation for TV =2V, and by using iteration, 
we have Na = 7.62 x 1016 cm-3. 
 
For pMOS (with n-type Si substrate), we have  
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where )
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E
V φχφ −+−= , and 

i

d
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V ln=φ , if we 

plug FBV  and Fφ  into the equation for TV  = - 2 V, and by using 
iteration, we have Nd = 2.31 x 1016 cm-3. 

 



 
 
Problem 6.5 Consider a p-MOS capacitor (with an n-type substrate) and with 

an aluminum gate. Find the doping density for which the 
threshold voltage is 3 times larger than the flat band voltage. tox 
= 25 nm. Repeat for a capacitor with 1011 cm-2 electronic 
charges at the oxide-semiconductor interface. 

Solution a) For p-MOS flat band voltage 
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VV 3
4
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φε

φ   

And flat band voltage equals 

)ln(
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d
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Here, )ln(
i

d
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N
V=φ . By using iteration way, one finds Nd = 

1.38 x 1014 cm-3. 
 
b) Repeat with Qi = 10 –7, one has  

ox

i
MSFB C

Q
V −Φ=  

Similarly using iteration, one obtains Nd = 5.3 x 1016 cm-3. 



 
Problem 6.6 A silicon p-MOS capacitor. (Nd = 4 x 1016 cm-3, tox = 40 nm) is 

biased halfway between the flatband and threshold voltage. 
Calculate the applied voltage and the corresponding capacitance 

Solution For the bias halfway between the flatband and threshold voltage, 
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We can equal (1) and (2), and get 
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where 
i

d
tF n

N
V ln=φ . From Nd = 4 x 1016 cm-3 we can get 

394.0=Fφ  V, and substitute Fφ  in equation (1) and (3) we have 
11.1−=GV  V and 28.0=sφ  V, where 
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a

ss
d qN

x
φε2

=  = 9.6 x 10-6 cm, and the 

total capacitance C = 
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C ε
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 = 48.2 nF/cm2. 

 
 
 



Problem 7.1 Consider an n-type MOSFET which consists of a 10 nm thick 
oxide (εr = 3.9) and has a gate length of 1 micron, a gate width 
of 20 micron and a threshold voltage of 1.5 Volt. Calculate the 
resistance of the MOSFET in the linear region as measured 
between source and drain when applying a gate-source voltage 
of 3 Volt. What should the gate-source voltage be to double the 
resistance? The surface mobility of the electrons is 300 cm2/V-
sec. 

Solution The resistance of a MOSFET in the linear region equals 

Ohm322
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To double the resistance one has to half VGS – VT so that VGS = 
2.25 V 

 



 
Problem 7.2 Consider an n-type MOSFET with an oxide thickness tox = 20 

nm (εr = 3.9) and a gate length, L = 1 micron, a gate width, W = 
10 micron and a threshold voltage, VT  = 1 Volt. Calculate the 
capacitance per unit area of the oxide, COX, and from it the 
capacitance of the gate, CG. Calculate the drain current, ID, at a 
gate-source voltage, VGS = 3 Volt and a drain-source voltage, 
VDS = 0.05 Volt. The surface mobility of the electrons µn = 300 
cm2/V-sec. Use the linear model of the MOSFET. 

Solution For n-type MOSFET, capacitance per unit area of the oxide is 
71073.1 −×==

ox

ox
ox t

C
ε

 F/cm2. 

And the capacitance of the gate is  
oxoxG LWCACC ==  = 17.3 fF. 

Drain current ID is given by 

9.1.5)( =−= DSTGSoxnD VVV
L

W
CI µ  uA. 

 
 



 
Problem 7.3 A n-type MOSFET (L = 1 µm, tox = 15 nm, VT = 1 V and µn = 

300 cm2/V-sec) must provide a current of 20 mA at a drain-
source voltage of 0.5 Volt and a gate-source voltage of 5 Volt. 
How wide should the gate be? 
 

Solution The MOSFET is not in saturation so that the gate width can be 
obtained from: 
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Problem 7.4 A MOSFET (L = 1 µm, tox = 10 nm, VT = 1 V and µn = 300 

cm2/V-sec) is to be used as 50 Ω terminating resistor when 
applying a gate-source voltage, VGS = 5 Volt. How wide should 
the gate be? 

Solution The linear model applies to linear devices (resistors) case here. 
One finds drain current 

R
V

VVV
L
W

CI DS
DSTGSoxnD =−= )(µ  

Then, the gate width can be found, yielding W = 48 um. 
 



 
Problem 7.5 The capacitance of an n-type silicon MOSFET is 1 pF. Provided 

that the oxide thickness is 50 nm and the gatelength is 1 micron, 
what is the resistance of the MOSFET in the linear regime when 
biased at a gate voltage, which is 5 Volt larger than the threshold 
voltage? Use a reasonable value for the surface mobility 
knowing that the bulk mobility equals 1400 cm2/V-sec. 

Solution The width of the gate is obtained from WLCC oxG =  
So that the width equals:  
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The resistance of the MOSFET then equals: 
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The mobility was chosen to be 400 cm2/V-s, which is about half 
the mobility in bulk material doped with 1017 cm-3 acceptors. 

 



 
 
Problem 7.6 Consider a p-channel silicon MOSFET with an aluminum gate. 

a) Draw the energy band diagram of the MOS structure for 
VG = VFB. Indicate the workfunction of the metal and the 
semiconductor, as well as the electron affinity.  

b) Draw the field distribution for VG = VT (onset of 
inversion).  

c) Calculate the depletion layer width and the field in the 
oxide at the onset of inversion. (Nd = 1016 cm-3, tox = 100 
nm, VFB = -0.5V) 

Solution c)   The depletion layer width equals 
 

307.0
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, ==
d

Fs
Td qN

x
φε

 µm. 

At the onset of inversion, Qinv = 0, so that the total charge per 
unit area equals: 

Tddd xqNQ ,= = εsEs = εoxEox 
So that:  
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ε

 V/cm. 



 
 
Problem 7.7 Calculate the depletion region width within a p-type bulk silicon 

MOS- capacitor with Nd = 1017 cm-3, at the onset of inversion. 
Solution 
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so at the onset of inversion when Fs φφ 2= , the depletion region 
width is 
 

=
⋅

=
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x Fs
d

φε 22
 101.1 nm. 



7.8. Power MOSFETs 

7.8.1. LDMOS  

The Laterally Diffused MOSFET (LDMOS) is an asymmetric power MOSFET designed for low 
on-resistance and high blocking voltage. These features are obtained by creating a diffused p-
type channel region in a low-doped n-type drain region. The low doping on the drain side results 
in a large depletion layer with high blocking voltage. The channel region diffusion can be 
defined with the same mask as the source region, resulting in a short channel with high current 
handling capability. The relatively deep p-type diffusion causes a large radius of curvature at the 
edges, which eliminates the edge effects discussed in section 4.5.2. While the device’s name 
implies that the fabrication require a diffusion, the dopants can just as well be implanted and 
annealed. Diffusion can be used in addition to further increase the junction depth and radius of 
curvature. 

A typical structure is presented in Figure 7.8.1.  The device can be fabricated by diffusion as well 
as ion implantation. The p-type region is formed first, followed by shallow p+ and n+ regions. 
The n+ regions provide both source and drain contact regions. The p+-region contacts the p-type 
body, which is typically shorted to the source, thereby eliminating the body effect.  

Figure 7.8.1.  Cross-section of a Laterally Diffused MOSFET (LDMOS) structure. 

The LDMOS structure combines a short channel length with high breakdown voltage as desired 
for high power RF amplifiers in numerous applications. This device is currently the device of 
choice for RF power amplifiers in base stations of wireless communications systems as well as 
numerous UHF and L-band power amplifiers in broadcast, communication and radar systems. 

7.8.2. VMOS Transistors and UMOS 

The VMOS transistor named after the V-shaped groove, is a vertical MOSFET with high current 
handling capability as well as high blocking voltage. It consists of a double diffused n+/p layer, 
which is cut by a V-shaped groove as shown in Figure 7.8.2.a. The V-groove is easily fabricated 
by anisotropically etching a (100) silicon surface using a concentrated KOH solution. The V-
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groove is then coated with a gate oxide, followed by the gate electrode. As the V-groove cuts 
through the double diffused layer, it creates two vertical MOSFETs, one on each side of the 
groove. The combination of the V-groove with the double diffused layers results in a short 
gatelength, which is determined by the thickness of the p-type layer. The vertical structure allows 
the use of a low-doped drain region, which results in a high blocking voltage.  

Figure 7.8.2.  Cross-section of two vertical MOSFET structures: a) VMOS and b) UMOS. 

Another alternate structure is the UMOS structure. A vertical trench is etched though the double 
diffused layer, again resulting in two vertical MOSFETs. 

Either one of these vertical structures can further be combined with the HEXFET layout. This 
layout resembles a honeycomb structure in which the hexagonal areas are source areas, while the 
gate metal is located on the perimeters.  

7.8.3. Insulated Gate Bipolar Transistors (IGBTs) 

The Insulated Gate Bipolar Transistor or IGBT for short combines the high DC current gain of a 
MOSFET with the high current handling capability and high blocking voltage of a BJT in a 
surprisingly simple structure such as the one shown in Figure 7.8.3. At first glance the vertical 
structure looks like that of a regular bipolar transistor structure. However a closer look reveals a 
p+ substrate rather than an n+ substrate. To further analyze this structure we use the equivalent 
circuit, which contains the p-n-p BJT as formed by the bottom three layers as well as the n-
MOSFET underneath the gate electrode. One should note that the p-type collector of the p-n-p 
BJT and the n-type source of the n-MOSFET share the same metal contact. Also, that the drain 
region of the n-MOSFET is the buried n-type layer, which is the n-type base of the p-n-p BJT. 
The electrons originating from the n+ source flow laterally underneath the gate and then flow 
down in the buried n-type region, thereby supplying the gate current of the p-n-p BJT. Since the 
gate current is provided locally, the emitter current will be concentrated around the same area. 
Note that under typical operation the collector would be grounded while the positive voltage is 
applied to the emitter. Therefore this device can be connected in a switching circuit just like an 
n-p-n BJT with the important distinction that no gate current is required to maintain the on-state 
current. 
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Figure 7.8.3  Insulated Gate Bipolar Transistor (IGBT): a) equivalent circuit and b) device 
cross-section. 
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Problem 7.9 A silicon MOSFET (ni = 1010 cm-3, εs/ε0 = 11.9 and εox/ε0 = 3.9) 

is scaled by reducing all dimensions by a factor of 2 and by 
increasing the doping density of the substrate by a factor of 4. 
Calculate the ratio of the following parameters of the scaled 
device relative to that of the original device: (make 
approximations if necessary) 
(a) The transconductance at VGS - VT = 1 V.  
(b) The gate capacitance 
(c) The transit frequency at VGS - VT = 1 V.  (Assume that CDS = 
0) 
(d) The threshold shift when increasing the reverse bias of the 
source-bulk diode from 1 Volt to 3 Volt. 
(e) The breakdown voltage of the oxide assuming the breakdown 
field to be constant. 
(f) The breakdown voltage of the drain-to-bulk p-n diode 
assuming the breakdown field to be constant. 

Solution 
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Problem 7.10 A silicon p-substrate (p ≅ Na = 1016 cm-3) MOSFET with tox = 

0.1 µm, εox/ε0 = 3.9 and VFB = -0.2 V, has a threshold voltage 
which is 1 Volt smaller than desired. By what value should one 
change the oxide thickness, tox, to obtain the desired threshold 
voltage? Should one increase or decrease the oxide thickness? 

Solution Similar to #7.8,   

ox
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qN
VV
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4
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1
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Then oxt∆  = 0.07 µm, and 2,oxt  should be increased to 0.17 µm 
or 170nm. 
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A10. Appendix 10: Maxwell’s Equations  
A10.1. Maxwell’s differential equations for free space 
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A10.2. Maxwell’s integral equations for free space 
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Appendix:

Appendix 11: Chemistry related issues 

The mass action law

The term Mass Action law refers to the equilibrium condition for chemical reactions. It states that the product of 
the concentrations of the reacting molecules or ions divided by the product of the concentrations of the reaction 
products equals a constant. For a reaction of the form: 

aA + bB ↔ cC 

where A, B and C are the molecules or ions and a, b and c are the integers needed to match the stochiometry 
requirement. The equilibrium condition is then given by: 

[A]a [B]b = k(T) [C]c

where the square brackets denote the concentrations of each molecule or ion. 

This equation simply states that the probability of a reaction taking place is proportional to the probability that 
each of the reacting elements are available which in turn is proportional to the concentration. In the case where 
more than one molecule of the same type is needed the concentration of that molecule is multiplied with itself as 
many times as this molecule is needed in the reaction.

Similarly one calculates the probability that a reaction takes place in the reverse direction. In equilibrium the ratio 
of both probabilities is a constant, named k(T) where the temperature dependence is added explicitely to 
indicate that this constant depends (rather strongly) on temperature. 

Example: dissociation of water

Applying the mass action law to the dissociation of water as described by the following chemical reaction: 

H+ + OH- = H2O

one obtains: 

[H+] [OH-] = kH2O [H2O]

Since the concentration of water is almost constant as the concentration of the ions is much smaller than the 
concentration of water molecules, this equation reduces at room temperature to: 

http://ece-www.colorado.edu/~bart/book/book/append/append11.htm (1 of 2)11/10/2004 17:23:33



Appendix 5

[H+] [OH-] = 10-14 (moles/liter)2

pH of aqueous solutions

The pH of an aqauous solution is given by the logarithm of the hydroxyl ion concentration in units of moles/liter. 

pH = -log10([H+])

To apply this equation to the dissociation of pure water one first has to find the concentration of the hydroxyl 
ions. Since a water molecule dissociates into one hydroxyl ion and one hydrogen ion the hydroxyl concentration 
equals the hydrogen concentration so that at room temperature both equal 10-7 moles/liter or 6.0 x 1013 cm-3 1. 
The pH of water at room temperature therefore equals 7. 

resistivity of pure water

The conductivity of pure water is due to the motion of the hydroxyl and hydrogen ions, while the neutral water 
molecules do not contribute. At room temperature (25°C) the conductivity is 1/(18.3 MΩcm). Assuming that the 
hydrogen ions have a much higher mobility (due to their smaller size) one find the mobility to be 5.7 x 10-3 cm2/
V-s. 

Analogy between semiconductors and aqueous solution

Based on the review above one finds that electrons and holes in semiconductors have a lot in common with 
hydroxyl and hydrogen ions in aqueous solutions: just like electron-hole pairs are generated in intrinsic 
semiconductors, hydroxyl and hydrogen ions are created in equal quantities in pure water. Adding a base 
increases the hydroxyl concentration which then forces the hydrogen concentration to go down to satisfy the 
equlibrium condition. The pH increases logarithmically with the hydroxyl density. This is analogous to adding 
donors to an intrinsic semiconductor which adds electrons and reduces the hole density. The Fermi energy 
increases with the logarithm of the electron density. Adding an acid to an aqueous solution is analogous to 
adding acceptors to a semiconductor. This explains why the term mass-action law is used to describe the 
relation between the electron and hole densities in thermal equilibrium. 

1 1 mole/liter contains 6.022 x 1023 atoms/liter which corresponds to a density of 6.0 x 1020 cm-3 
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Appendix 12: Vector Calculus  
The del operator 
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The divergence 
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The gradient 
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The Laplacian 
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The Laplacian  in cylindrical coordinates 
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The Laplacian  in spherical coordinates 
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The vector product 

 

z
xy

y
xz

x
yz

zyx

zyx

yxzxzy

zyx
x

e )(e )(e )(

eee

rrr

rrr

rr

∂
∂

−
∂

∂
+

∂
∂

−
∂

∂
+

∂

∂
−

∂
∂

=

∂
∂

∂
∂

∂
∂

=∇

EEEEEE

EEE

E
 

(A12.5) 

 



   

A13-1 

Appendix 13: Hyperbolic Functions  
A13.1. General 

Exponential, trigonometric and hyperbolic functions are all solutions to the following differential 
equation:  

 
ay

dx
yd

=
2

2

, with a2 = 1 
(A13.1.1) 

Properties of these functions and relations between them are provided in Table A13.1:  

 

Exponential Function Trigonometric Functions Hyperbolic Functions 

Solution to: y' = y 

 (a = 1) 

Solution to: y" = -y 

(a = -1) 

Solution to: y" = y 

(a = 1) 
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eix = cos x + i sin x cos ix = cosh x 
sin ix = i sinh x 

cosh ix = cos x 
sinh ix = i sin x 

Table A13.1 Properties of and relations between the exponential function, trigonometric 
functions and hyperbolic functions 
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A13.2. Series Expansions 
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Appendix 14: Stirling Approximation  
Factorials can be approximated for large values of n using the Stirling approximation which is 
given by:  
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An alternate form, which is of particular interest if the logarithm of n! must be calculated is 
given by: 
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(A14.2) 

The exact and approximate values for n = 1, 2, ... 20 and the relative error as calculated using 
(A14.1) and (A14.2) are provided in the Table A14.1. 

  

n n! Equation (A14.1) Relative
Error 

Equation (A14.2) Relative
Error 

1 1 1.00 5.01E-04 1.00 2.27E-03 
2 2 2.00 2.10E-05 2.00 3.26E-04 
3 6 6.00 3.00E-06 6.00 9.99E-05 
4 24 24.00 7.33E-07 24.00 4.27E-05 
5 120 120.00 2.44E-07 120.00 2.20E-05 
6 720 720.00 9.89E-08 720.01 1.28E-05 
7 5040 5040.00 4.60E-08 5040.04 8.05E-06 
8 40320 40320.00 2.37E-08 40320.22 5.40E-06 
9 362880 362880.00 1.32E-08 362881.38 3.80E-06 
10 3628800 3628799.97 7.79E-09 3628810.05 2.77E-06 
11 39916800 39916799.81 4.84E-09 39916883.11 2.08E-06 
12 479001600 479001598.50 3.14E-09 479002368.48 1.60E-06 
13 6227020800 6227020786.90 2.10E-09 6227028659.89 1.26E-06 
14 87178291200 87178291073.35 1.45E-09 87178379323.32 1.01E-06 
15 1307674368000 1307674366653.88 1.03E-09 1307675442913.47 8.22E-07 
16 20922789888000 20922789872396.30 7.46E-10 20922804061389.80 6.77E-07 
17 355687428096000 355687427900040.00 5.51E-10 355687629001078.00 5.65E-07 
18 6402373705728000 6402373703076830.00 4.14E-10 6402376752492220.00 4.76E-07 
19 121645100408832000 121645100370383000.00 3.16E-10 121645149634119000.00 4.05E-07 
20 2432902008176640000 2432902007581510000.00 2.45E-10 2432902852332160000.00 3.47E-07 

 

Table A14.1 Value and relative accuracy of n! as calculated using (A14.1) and (A14.2) 
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It is of interest to further examine the accuracy as a function of the number of terms. Figure 
A14.1 presents the relative error for n ranging from 1 to 100 as calculated using the first, 2, 3, 4 
and 5 terms of (A14.1) as well as equation (A14.2). 

Figure A14.1 Relative accuracy of n! as a function of n. Compared are the accuracy when using 
1, 2, 3, 4, or 5 terms of (A14.1) and (A14.2)  

From the figure one finds that there is a significant improvement in accuracy between using only 
the first term versus using the first two terms of the approximation. The first term results in an 
accuracy better than 1%, while two or more terms provide an accuracy better than 10-6 for 
integers larger than 15. Surprisingly there is little improvement when adding the third term. 
Adding the fourth and fifth term does further improve the accuracy. For most applications one 
will find that two terms of (A14.1) or (A14.2) will provide sufficient accuracy. 

If the natural logarithm of n! is of interest it can be obtained from (A14.2), yielding: 
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A15. Appendix 15: Optics  
A15.1. Transmission and reflection at dielectric interfaces 

The transmission and reflection of an electromagnetic wave at a dielectric interface with 
refractive index n0 and n1, can be obtained by requiring both continuity of the field at the 
interface (this assumes a transverse polarized wave which is incident normal to the interface) and 
conservation of power flow: 

 22 EE cn
c

P r
rr

== ε
εµ

 
(A15.1.1) 

This leads to the following relations between the incident, reflected and transmitted field 
components (all in the plane of the interface)1: 

 TRI EEE =− or tr =−1  (A15.1.2) 
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2
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2
0 TRI nnn EEE += or 2
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121 t
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n

r =−  
(A15.1.3) 

Where the reflection and transmission coefficients, r and t are given by: 

 

I

Rr
E
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=  and 
I
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E
E

=  
(A15.1.4) 

The individual electric field components are shown in Figure A15.1. The incident wave is 
assumed to travel from left to right. 

 

                                                 

1Equation (A15.1.2) also applies also to multi-layer structures without gain or absorption. It can be shown that the 
following relations exist between r = r01, r' = r10, t = t01 and t' = t10: r = - r' and 1 = tt' - rr' 
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Figure  A15.1:  Incident, reflected and transmitted wave at a dielectric interface. 

These equations can be solved yielding the transmission and reflection coefficients, t01 and r01. 
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where the subscripts 0 and 1 are used to indicate that the incident wave travels from the material 
with index n0 towards the material with index n1. The fraction of the power reflected, R, and 
transmitted, T, are given by: 
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This result can be extended for any angle of incidence φ0, yielding 
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with 

 
0011 sinsin φφ nn =   (A15.1.12) 

where φ0 is the angle of the transmitted wave with respect to the normal to the interface as shown 
in the figure below: 
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Figure  A15.2: Incident, reflected and transmitted wave at a dielectric interface. 

RTE is the reflectivity if the electric field is parallel to the interface while RTM is the reflectivity if 
the magnetic field is parallel to the interface. An example of the reflection as a function of the 
incident angle is shown in Figure A15.3. 
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Figure A15.3 Reflectivity at an air-GaAs interface (n0 = 1, n1 = 3.5) as a function of the incident 
angle for both polarizations (TE and TM) of the incident wave. The reflectivity, 
RTM goes to zero if the incident angle equals tan-1 (n1/n0) 

A15.2. Transmission and reflection of a multi-layer dielectric 
structure 

In order to calculate the reflection and transmission of a multi-layer structure, we first define the 
electric field components left and right of the first interface: two field components corresponding 
to the forward propagating waves, E0,f and E’1,f and two field components corresponding to the 
backward propagating waves, E0,b and E’1,b. All field components are assumed to be parallel to 
the plane of the interface.  
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Figure A15.4 Forward and backward propagating waves at a dielectric interface. 

Using the result for a single interface and applying superposition in the case of two waves 
incident on the dielectric interface, one from each side, one finds the following relation between 
the field components: 

 '
,10110 brt EEE f0,

'
f1, +=   (A15.2.1) 
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from which a relation can be obtained between the field components, just before the next 
interface: 
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with 
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The matrix Φ1 accounts for the phase shift through the layer with index n1 and thickness d1. Note 
that that A01A10 should equal a unity matrix so that A10

-1 = A01. 

This result can easily be extended to a set of N interfaces for which 
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15.2.1. Example: a Distributed Bragg Reflector (DBR) 

Consider a DBR structure consisting of N periods of two quarter-wavelength layers with 
alternating index n1 and n2, between layers with index n0 and n3. The relation between the field 
components just after the last interface and those just before the first interface is given by: 
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The subscripts refer to the index of refraction left and right of the interface. The matrix A12 was 
added to cancel the last matrix A21 of the Nth product. The Nth power of the matrices 
characterizing one period of the DBR is given by: 
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assuming Φ1 and Φ2 to equal 
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0
, as is the case for quarter-wavelength layers, yielding: 
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The total reflectivity of the structure can be obtained by requiring Eb to be zero so that 
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15.2.2. Spreadsheet solution to an arbitrary layer structure 

The matrix for an arbitrary layer with index n1 and thickness d1 following a layer with index n0 
can be written as a function of the real and imaginary components of the fields: 

 Re(E1f) = cosφ1 (a11Re(E0f) + a12Re(E0b)) 

                -sinφ1 (a11Im(E0f) + a12Im(E0b)) 

Im(E1f) = sinφ1 (a11Re(E0f) + a12Re(E 0b))  

             + cosφ1 (a11Im(E0f) + a12Im(E0b)) 

Re(E1b) = cosφ1 (a12Re(E0f) + a11Re(E0b))  

              + sinφ1 (a12Im(E0f) + a11Im(E0b)) 

Im(E1b) = - sinφ1 (a12Re(E0f) + a11Re(E0b))  

               + cosφ1 (a12Im(E0f) + a11Im(E0b))   

with φ1 = k1d1 and a11= 
1

01

2n
nn +

 a12 = 
1

01

2n
nn −

 

(A15.2.10) 

This set of equations can also be interpreted as a recursion relation between the fields at the end 
of the current layer and the fields at the end of the previous layer. The field within a given layer 
is obtained by dividing this layer into different section with the same index of refraction and a 
combined thickness, which equals the layer thickness. Implementation into a spreadsheet 
provides the actual fields throughout the structure. An example is shown in Figure A15.5: 
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Figure  A15.5 Refractive index as well as real part, imaginary part and amplitude of the total 
field due to the forward and backward propagating waves. The incident wave is a 
forward propagating wave with unity amplitude and zero phase at x = 0 

15.2.3. Reflection and transmission through multiple layers 

The calculation of the reflection and transmission through multiple layers can in general be 
obtained by using equation (A15.2.5), assuming that no incident wave is present after the Nth 
interface or ENb = 0, as was used to calculate the reflection of a distributed Bragg reflector in 
section A15.2.1 For the general case this requires inverting the matrix linking the incident fields 
E0f and E0b to the fields on the other side of the structure, ENf and ENb. This procedure can be 
avoided by using the time reversal principle, which applies in the absence of magnetic fields, so 
that setting the incident fields equal to: 

 10 =fE and 00 =bE  (A15.2.11) 

one finds the reflection, R, and transmission, T, through the structure from: 
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These expressions can even be applied to the case where some or even all the layers are 
absorbing or have gain, by using the complex conjugate of the refractive indices: As the waves 
travel through the structure in the reverse direction, one finds that absorbing regions provide gain 
while regions with gain become absorbing. Inverting the sign of the imaginary part of the 
refractive index for each region therefore provides the correct absorption/gain when reversing 
time. An example for the case of a thin silver layer is shown in Figure A15.6. 
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Figure  A15.6 Reflection, R, transmission, T, and absorption, A, versus wavelength of a 10 nm 
silver layer in air. The refractive index of the silver was assumed to be n = 0.102 
+ i 6.22.  

A15.3. Fabry-Perot cavity 
Consider a structure consisting of two reflecting interfaces with reflection coefficients r01 and r12, 
transmission coefficients t01 and t12. The two reflecting surfaces are separated by a medium with 
thickness d, refractive index n and absorption coefficient α. The reflection and transmission 
amplitudes are given by2: 
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(A15.3.1) 

                                                 

2See Yariv, "Optical Electronics", Fourth edition, Holt Reinhart and Winston, Inc, 1991, p 112-115. 
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For a symmetric structure with r01 = - r12 and t01 = t12 one obtains the following reflection, 
transmission and absorption intensities.  
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(A15.3.2) 

 
Transmission = 

22

2

*

*

cos21
)1(

ARRA
RA

AA
AA

I
I

II

TT

I

T

+−
−

==
δ

 
(A15.3.3) 

 
Absorption = 

22

22

cos21
))1()1(cos2(

ARRA
RARRA

+−
−−+−

δ
δ

  
(A15.3.4) 

with  
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These equations enable to calculate reflection, transmission and absorption as a function of 

cavity length or as a function of photon energy, Eph [eV] = 
λq

hc
. Examples are shown in the 

following figures: 
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Figure A15.7 Reflection, Transmission and Absorption versus cavity length of a GaAs Fabry-
Perot cavity at 830 nm under normal incidence. 
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Figure A15.8 Reflection and transmission versus photon energy of a 100 µm GaAs Fabry-Perot 
cavity under transparency conditions (i.e. α = 0) 

A15.4. Ellipsometer Equations 
An ellipsometer enables to measure the refractive index and the thickness of semi-transparent 
thin films. The instrument relies on the fact that reflection at a dielectric interface depends on the 
polarization of the light. It consists of a laser whose state of polarization can be modified with a 
polarizer. The beam is reflected off the layer of interest and then analyzed with a polarizer. The 
operator changes the angle of the polarizer and analyzer until a minimal signal is detected. The 
angles are then related to the reflections for both polarizations in the following way: 

 ∆Ψ= i

TE

TM

r
r

etan   
(A15.4.1) 

The angles Ψ and ∆ are related to the measured angles, P1, A1, P2 and A2 in the following way: 
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The minimal signal is obtained when both polarization incident on the analyzer are in phase. This 
can be obtained for two different positions of the polarizer, hence the two values P1 and P2. In 
principle one could measure either one. In practice both values are measured to eliminate any 
possible misalignment of the instrument thereby yielding a more accurate result.  

A theoretical analysis of the Ψ−∆ curves is obtained by combining the expressions for the 
reflectivities at both dielectric interfaces (A15.1.9) and (A15.1.10) with the expression for the 
asymmetric Fabry-Perot cavity (A15.3.1). An example of such curves as obtained for silicon 
dioxide layers (n1 = 1.455) on silicon (n2 = 3.875 – i 0.018) using a helium-neon laser (λ = 
0.6328 µm) is in Figure A15.9. 



   

A15-13 

Psi

D
el

ta

60

120

180

240

300

0 10 20 30 40 50 60 70 80 90

 

Figure A15.9 Ψ-∆ curves for silicon dioxide on silicon. Thickness increases counter clock wise 
from 0 (square marker on the left) in steps of 10 nm (black diamonds) and in steps 
of 100 nm (squares). Incident angle of the laser beam is 70 degrees. 

Since the silicon dioxide was assumed to be transparent one finds the values for both Ψ and ∆ to 

be identical for layers which differ in thickness by 
11 cos2 φ

λ
n

 = 0.284 µm. The corresponding 

curves for the measured values P1, A1, P2 and A2 are also shown in Figure A15.10: 
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Figure A15.10A1-P1 and A2-P2 curves for silicon dioxide on silicon. Thickness increases counter 
clock wise from 0 (at the square marker on the left) for A1 versus P1 and counter 
clock wise from 0 (square marker on the right) for A2 versus P2, both in steps of 
10 nm (black diamonds) and in steps of 100nm (squares). Incident angle of the 
laser beam is 70 degrees from the normal to the surface. 
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A15.5. Interference colors of thin transparent films 
Transparent thin films often have strikingly bright colors, which vary rapidly with thickness. 
These colors are caused by interference of the light reflected at the front and back interface of the 
film and vary depending on the refractive index of the film as well as that of the substrate. The 
analysis is simply based on the general expressions for the Fabry-Perot cavity (A15.3.1), which 
can be further manipulated to yield the total reflectivity as a function of the wavelength. 
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With 

 

λ
φπ

δ 11 cos4 dn
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(A15.5.2) 

The reflection can then be calculated as a function of the wavelength corresponding to the 
primary colors red, green and blue. A useful way to eliminate one of the primary colors in the 
determination of the observed color is by determining the intensity of white light as an equal 
amount of red, green and blue light. The actual colors observed for each thickness depend on the 
relative intensities of the remaining primary colors. An example is shown in the figure below for 
silicon dioxide on a silicon substrate.  

 

Figure A15.11 Relative intensities of the colors reflected off a silicon dioxide layer on a silicon 
substrate.  

Table A15.1 lists the color as a function of the thickness for some different materials. 
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 air/ water/ air 

n0 / n1 / n2 

1 / 1.33 / 1 

 air / water / glass 

n0 / n1 / n2 

1 / 1.33 / 1.5 

< 10 nm black < 10 nm White 

100nm white 100 nm Black 

150 nm brownish-yellow 150 nm Blue 

200 nm violet 210 nm White 

250 nm blue 230 nm Yellow 

300 nm light green 270 nm Red 

330 nm orange 360 nm Blue 

400 nm pink 400 nm Green 

450 nm light blue 450 nm Yellow 

500 nm dark green 500 nm Red 

600 nm red 530 nm Pink 

650 nm turquoise 610 nm Green 

 

Table A15.1: Expected color versus thickness for thin layers of water in air or on a glass surface 
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A16. Appendix 16: Equation Sheet  

Chapter 1: Review of Modern Physics 

1.2. Quantum mechanics 
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Chapter 2: Semiconductor Fundamentals 

2.3. Energy bands 
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Chapter 3: Metal-Semiconductor Junctions 

3.2. Structure and principle of operation 
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Chapter 4: p-n Junctions 

4.2. Structure and principle of operation 
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4.5. Reverse bias breakdown 
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Chapter 5: Bipolar Junction Transistors 

5.2. Structure and principle of operation 

BEnEE xww ,
' −=  BCpBEpBB xxww ,,

' −−=  

BCnCC xww ,
' −=  









+

−
=

EBE

BBEBEis
BEn NNN

N
q

V
x

1)(2 ,
,

φε
 








+

−
=

EBB

EBEBEis
BEp NNN

N
q

V
x

1)(2 ,
,

φε
 









+

−
=

CBB

CBCBCis
BCp NNN

N
q

V
x

1)(2 ,
,

φε
 








+

−
=

CBC

BBCBCis
BCn NNN

N
q

V
x

1)(2 ,
,

φε
 

2, ln
i

EB
tBEi n

NN
V=φ  2, ln

i

CB
tBCi n

NN
V=φ  

BCE III +=  drpEnEE IIII ,,, ++=  

BrnEC III ,, −=  drBrpEB IIII ,,, ++=  

E

C
I
I

=α  
α

α
β

−
==

1B

C
I
I

 

rET δγαα =  
pEnE

nE
E II

I

,,

.
+

=γ  

nI

II

E

BrnE
T ,

,, −
=α  

E

drE
r I

II ,−
=δ  



 

     

A16-12 

5.3. Ideal transistor model 
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Chapter 6: MOS Capacitors 

6.3 MOS analysis 
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Chapter 7: MOS Field Effect Transistors 

7.3. MOSFET analysis 
Linear model 
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Channel length modulation 
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Appendix:

Comprehensive Glossary

Name

- A - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Abrupt p-n junction p-n junction with a step function doping profile 

Acceptor An atom which is likely to take on one or more electrons 
when placed in a crystal 

Accumulation Accumulation of free carriers in a semiconductor
Applied bias Voltage applied to the structure 

Avalanche breakdown Breakdown mechanism caused by impact ionization 
leading to avalanching due to carrier multiplication 

- B - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Bandgap The range of energies between existing energy bands 
where no energy levels exist 

Blackbody radiation Radiation from an object due to thermal energy

Body Effect
The variation of the threshold voltage of an FET due to a 
variation of the substrate or bulk voltage. See also Body 
Effect 

Bohr model Model for the hydrogen atom as proposed by Niels Bohr

Bohr radius
Radius of the electron orbit in a hydrogen atom 
corresponding to the lowest energy energy solution of the 
Bohr model

Breakdown field Electric field at breakdown

Built-in potential
Potential across a structure in thermal equilibrium. The 
built-in potential equals the difference in work function of 
the two outer regions. 

Built-in potential Potential across a p-n diode in thermal equilibrium. 

Bulk Back contact of a MOSFET also referred to as the 
substrate contact.

- C - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Capacitance Charge per unit voltage

Channel implant Ion implantation in the channel region used to adjust the 
threshold voltage of a MOSFET.

http://ece-www.colorado.edu/~bart/book/book/append/glossary.htm (1 of 8)11/10/2004 17:24:41
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Channel length modulation
Variation of the channel due to an increase of the 
depletion region when increasing the drain voltage. A 
reduction of the channel yields a higher current.

CMOS Complementary metal oxide silicon (transistor)
Compensation The process of adding donors and acceptor to a crystal 
Conduction band Lowest empty or partially filled band in a semiconductor 
Conductivity The ratio of the current density to the applied electric field 

Continuity equation Equation which states that the rate of change of a density 
of particles equals the net flux of particles coming in

Crystal A solid which consists of atoms placed in a periodic 
arrangment 

Crystalline Made of one or multiple crystals
C-V measurement Capacitance versus voltage measurement 

- D - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

de Broglie wavelength Wavelength of a particle λ = h/p

Debye length Characteristic length over which the carrier density in a 
semiconductor changes by a factor e

Density of states The density of electronic states per unit energy and per 
unit volume 

Depletion Removal of free carriers in a semiconductor

Depletion layer width Width of the region close to the p-n junction without free 
carriers

Depletion mode FET Transistor, which is normally on if the gate is connected to 
the source

Depletion region of a p-n diode Region close to the p-n junction without free carriers
DIBL Drain induced barrier lowering
Diffusion Motion of particles caused by thermal energy 

Diffusion length Average distance minority carriers travel in a quasi-neutral 
region before they recombine

Donor An atom which is likely to give off one or more electrons 
when placed in a crystal 

Drain Contact region of a MOSFET to which the electrons in the 
channel flow

DRAM Dynamic random access memory
Drift Motion of carriers caused by an electric field 

- E - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

EAPROM Electrically alterable programmable read only memory
Edge effects
EEPROM Erasable electrically programmable read only memory
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Electron Particle with spin 1/2 and carrying a single negative charge 
(1.6 x 10-19 Coulomb) 

Energy band A collection of closely spaced energy levels 
Energy level The energy which an electron can have 

Enhancement FET Transistor, which is normally off if the gate is connected to 
the source.

Entropy Heat divided by absolute temperature

Epitaxial layer Thin layer of a single crystalline semiconductor grown on a 
substrate 

EPROM Electrically programmable read only memory

- F - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

FAMOS Floating gate Avalanche injection Metal Oxide Silicon 
(transistor)

Fermi energy

The average energy per particle when adding particles to a 
distribution but without changing the entropy or the 
volume. Chemists refer to this quantity as being the electro-
chemical potential 

Fermions Particles with half-integer spin 
FET Field Effect Transistor 

Field implant
Doped region under the thick field oxide, which is obtained 
by ion implantation with the intend to eliminate the effect of 
the parasitic field oxide transistor.

Flash memory

Flat band
Bias conditions of an MOS capacitor for which the energy 
band diagram of the silicon is flat. The corresponding 
voltage is called the Flat band voltage

Flatband diagram Energy band diagram of a M-S junction containing no net 
charge

Flatband diagram Energy band diagram of a p-n diode containing no net 
charge

Flatband diagram Energy band diagram of a MOS capacitor containing no 
net charge in the semiconductor

Forward bias High current bias mode of a rectifying contact 

Full-depletion approximation

A common approximation which simplifies the electrostatic 
analysis of semiconductor devices. Assumed is that the 
depletion region(s) is(are) fully depleted, with abrupt 
transitions to the adjacent quasi-neutral regions

- G - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Gate Electrode of an FET, which controls the charge in the 
channel
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Gauss' law
One of Maxwell's equations, stating that the gradient of the 
electric field equals the charge density, divided by the 
dielectric constant. 

Generation Process by which electron-hole pairs are generated 

- H - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Heat Thermal energy

High Injection

High injection occurs by definition when, while forward 
biasing a p-n diode, the minority carrier density equals or 
exceeds the doping concentration in the semiconductor. 
See also High-Current Analysis. 

Hole Particle associated with an empty electron level in an 
almost filled band 

Hydrogen atom An atom consisting of a proton and an electron

- I - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Ideal diode analysis p-n diode analysis based on recombination currents in the 
quasi-neutral regions 

Ideal ohmic contact Metal-semiconductor contact with zero resistance 

Ideality factor

A number which characterizes the slope of a current-
voltage plot as measured on a semi-logarithmic scale. A 
slope of a factor e per thermal voltage (or 1 decade/59 mV 
at room temperature) is considered ideal and is assigned 
an ideality factor of 1. A lower slope corresponds to a 
higher ideality factor. 

Ideality factor
Impurity A foreign atom in a crystal 
Interface Boundary between two materials 

Intrinsic carrier density The density of electrons and holes in an intrinsic 
semiconductor 

Intrinsic semiconductor A semiconductors free of defects or impurities 

Inversion
Change of carrier type in a semiconductor obtained by 
applying an external voltage. In a MOSFET, inversion 
creates the free carriers, which cause the drain current. 

Inversion layer The layer of free carriers of opposite type at the 
semiconductor-oxide interface of a MOSFET 

Ionization The process of adding or removing an electron to/from an 
atom thereby creating a charged atom (i.e. ion) 

I-V characteristics Current-Voltage characteristics
I-V characteristics
I-V measurement Current versus voltage measurement 

- J - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
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Laser diode p-n diode with an optical cavity, which emits coherent light 
when forward biased

Latchup High current state of a CMOS circuit caused by the 
parasitic bipolar transistors

LDD structure Low doped drain transistor structure
Light emitting diode (LED) p-n diode which emits light when forward biased
LOCOS Local oxidation used to isolate two adjacent devices.

Long diode p-n diode with a long quasi-neutral region as compared to 
the minority carrier diffusion length in that region

- M - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Majority Carrier Density
The larger density of the two carrier types (electrons and 
holes). The majority carrier density is frequently - but not 
always - equal to the doping density. 

Mass action law The law which describes the relation between the densities 
of species involved in a chemical reaction 

Minority Carrier Density

The lower density of the two carrier types (electrons and 
holes). The minority carrier density is typically orders of 
magnitude lower than the majority carrier density, yet plays 
an important role in p-n diodes and bipolar transistors. 

Mobility The ratio of the carrier velocity to the applied electric field 
momentum Mass times velocity

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor. See 
also MOSFET 

- N - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

n+ semiconductor n-type semiconductor with high donor density (< 1018 cm-
3) 

n- semiconductor n-type semiconductor with low donor density (< 1016 cm-3) 

- O - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Ohmic contact Metal-semiconductor contact with a linear current-voltage 
characteristic and low resistance 

One-sided p-n junction Junction with a very large doping density on one side and 
a very low density of the other side. 

Output conductance Ratio of output current variation to the output voltage 
variation 

Overlap capacitance Capacitance between the gate and the source/drain due to 
the overlap between the gate and the source/drain regions.
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p+ semiconductor p-type semiconductor with high donor density (< 1018 cm-3) 

p- semiconductor p-type semiconductor with low donor density (< 1016 cm-3) 

Particle-wave duality Quantum mechanical concept, which states that particles 
can behave as waves and waves can behave as particles

Photodiode A p-n junction which can be exposed to light, thereby 
yielding a photocurrent

Photoelectric effect
Emission of electrons from a metal when applying light 
with photon energy larger than the workfunction of the 
metal

Photon Quantum of electromagnetic radiation
p-n junction A junction between an n-type and a p-type semiconductor 

Poisson's equation Second order differential equation which relates the 
potential, φ, to the charge density, ρ.

Poisson's equation
Poly-silicon Poly-crystalline silicon. Sometimes referred to as poly.
PROM Programmable read only memory

Punch through Breakdown mechanism caused by the overlap between 
the source and drain depletion regions

- Q - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Quantum mechanics Theory which describes particles by a wavefunction

Quasi-neutral region Doped semiconductor region containing free carriers and 
being almost neutral 

Quasi-neutral region

- R - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

RAM Random access memory
Recombination Process by which electron-hole pairs are removed 

Recombination-generation current in a p-n diode Current due to recombination of carriers in the depletion 
region of a p-n diode

Recombination-generation current in a p-n diode Current due to band-to-band recombination of carriers in 
the depletion region of a p-n diode

Recombination-generation current in a p-n diode see Shockley-Hall-Read

Recombination-generation current in a p-n diode Current due to Shockley-Hall-Read recombination of 
carriers in the depletion region of a p-n diode

Rectifier Device which converts an AC signal into a DC signal.
Resistivity The ratio of the applied voltage to the current 
Reverse bias Low current bias mode of a rectifying contact 
Reverse bias
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Richardson constant Material constant which affects the thermionic emission 
current in a metal-semiconductor junction 

Richardson velocity Average thermal velocity of carriers moving in a specific 
direction

ROM Read only memory
Rydberg Unit of atomic energy = 13.6 eV

- S - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Saturation Velocity Maximum velocity which can be obtained in a specific 
semiconductor 

Schottky barrier Barrier between a metal and semiconductor as seen by an 
electron or hole at the Fermi energy in the metal 

Schottky barrier diode Metal-semiconductor junction with a depletion region under 
the metal 

Schottky barrier lowering Lowering of the Schottky barrier height due to image 
forces (only used in current calculations) 

Series resistance

Shell Atomic states which are associated with one principle 
quantum number 

Short channel effects Deviations from the one-dimensional transistor model as 
observed in short channel transistors

Short diode p-n diode with a short quasi-neutral region as compared to 
the minority carrier diffusion length in that region

Solar cell A p-n diode, which converts optical power into electrical 
power

Source Contact region of a MOSFET from which the electrons in 
the channel originate

State A single solution to Schrödinger's equation defined by a 
unique set of quantum numbers 

Strong Inversion
Strong inversion is obtained when the carrier density in an 
inversion layer equals or exceeds the carrier density in the 
substrate. 

Substrate The material in which a device is embedded or on to of 
which a device is fabricated 

Subthreshold current Transistor current when biased below threshold

Surface state Midgap state caused by the termination of the lattice at the 
surface of a semiconductor 

- T - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Thermal energy Energy associated with the temperature of an object

Thermal equilibrium A system is in thermal equilibrium if every ongoing process 
is exactly balanced by its inverse.

Threshold Voltage The gate-source voltage at which a transistor starts to 
conduct. 
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Transconductance Ratio of output current variation to the input voltage 
variation

Transfer characteristic Output voltage of a device plotted as a function of the input 
voltage

Transistor Contraction of transresistance, a term used to describe a 
resistance which is controlled by a voltage at another node.

Tunnel contact Ohmic contact in which carriers tunnel through a thin 
barrier layer 

Tunneling Quantum mechanical process by which a particle can pass 
through a barrier rather than having to go over the barrier 

- U - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
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Valence band Highest filled or almost filled band in a semiconductor 
Valence electrons Electrons in the outer shell of an atom 

Variable Depletion Layer Model A MOSFET model which includes the variable depletion 
layer width between the inversion layer and the substrate 

- W - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Wave number Number of zero crossings per unit length times π
Wave packet Wave description of a localized particle

Well Doped region of opposite doping type used in a CMOS 
process

Work Mechanical energy

Work function Potential an electron at the Fermi energy needs to gain to 
escape from a solid

- X - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
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Zener breakdown Breakdown mechanism caused by tunneling of carriers 
through the energy bandgap 
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