Systems Optimization Laboratory
Stanford, CA 94305-4121 USA
|
User guide for QPOPT:
Fortran package for constrained linear least-squares
and convex quadratic programming
QPOPT is a set of Fortran 77 subroutines for minimizing a general quadratic
function subject to linear constraints and simple upper and lower
bounds. QPOPT may also be used for linear programming and for
finding a feasible point for a set of linear equalities and inequalities.
If the quadratic function is convex
(i.e., the Hessian is positive definite or positive semidefinite),
the solution obtained will be a global minimizer.
If the quadratic is non-convex (i.e., the Hessian is indefinite),
the solution obtained will be a local minimizer or a dead-point.
A two-phase active-set method is used.
The first phase minimizes the sum of infeasibilities.
The second phase minimizes the quadratic function within the feasible region,
using a reduced Hessian to obtain search directions.
The method is most efficient when many constraints or bounds are active
at the solution.
QPOPT is not intended for large sparse problems,
but there is no fixed limit on problem size.
P. E. Gill, W. Murray, and M. A. Saunders (1995),
QPOPT 1.0 User's Guide.
|