Linear matrix inequality
From Wikimization
In convex optimization, a linear matrix inequality (LMI) is an expression of the form
where
-
is a real vector,
-
are symmetric matrices in the subspace of
symmetric matrices
,
-
is a generalized inequality meaning
is a positive semidefinite matrix belonging to the positive semidefinite cone
in the subspace of symmetric matrices
.
This linear matrix inequality specifies a convex constraint on y.
Contents |
Convexity of the LMI constraint
is a convex constraint on y which means membership to a dual (convex) cone as we now explain: (Dattorro, Example 2.13.5.1.1)
Consider a peculiar vertex-description for a convex cone defined over the positive semidefinite cone
(instead of the more common nonnegative orthant, ):
for given
,
where
,
- symmetric vectorization svec is a stacking of columns defined in (Dattorro, ch.2.2.2.1),
is assumed without loss of generality.
is a convex cone because
since a nonnegatively weighted sum of positive semidefinite matrices must be positive semidefinite.
Now consider the (closed convex) dual cone:
that follows from Fejer's dual generalized inequalities for the positive semidefinite cone:
This leads directly to an equally peculiar halfspace-description
The summation inequality with respect to the positive semidefinite cone is known as a linear matrix inequality.
LMI Geometry
Although matrix is finite-dimensional,
is generally not a polyhedral cone
(unless
equals 1 or 2) simply because
Relative interior of may always be expressed
Provided the matrices are linearly independent, then
meaning, cone interior is nonempty; implying, dual cone
is pointed (Dattorro, ch.2).
If matrix has no nullspace, then
is an isomorphism in
between the positive semidefinite cone
and range
of matrix
That is sufficient for convex cone to be closed, and necessary to have relative boundary
Relative interior of the dual cone may always be expressed
When the matrices are linearly independent, function
is a linear bijection on
Inverse image of the positive semidefinite cone under
must therefore have dimension equal to
and relative boundary
When this dimension is , the dual cone interior is nonempty
and closure of convex cone is pointed.
Applications
There are efficient numerical methods to determine whether an LMI is feasible (i.e., whether there exists a vector such that
), or to solve a convex optimization problem with LMI constraints.
Many optimization problems in control theory, system identification, and signal processing can be formulated using LMIs. The prototypical primal and dual semidefinite program are optimizations of a real linear function respectively subject to the primal and dual convex cones governing this LMI.
External links
- S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory
- C. Scherer and S. Weiland, Course on Linear Matrix Inequalities in Control, Dutch Institute of Systems and Control (DISC).