Accumulator Error Feedback

From Wikimization

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
]]
]]
<pre>
<pre>
-
function s_hat = csum(x)
+
function s = csum(x)
% CSUM Sum of elements using a compensated summation algorithm.
% CSUM Sum of elements using a compensated summation algorithm.
%
%
Line 24: Line 24:
% end
% end
-
s_hat=0; e=0;
+
s=0; e=0;
for i=1:numel(x)
for i=1:numel(x)
-
s_hat_old = s_hat;
+
s_old = s;
y = x(i) + e;
y = x(i) + e;
-
s_hat = s_hat + y;
+
s = s + y;
-
e = y - (s_hat - s_hat_old);
+
e = y - (s - s_old);
end
end
return
return
Line 37: Line 37:
<tt>ones(1,n)*v</tt>&nbsp; and &nbsp;<tt>sum(v)</tt>&nbsp; produce different results in Matlab 2017b with vectors having only a few hundred entries.
<tt>ones(1,n)*v</tt>&nbsp; and &nbsp;<tt>sum(v)</tt>&nbsp; produce different results in Matlab 2017b with vectors having only a few hundred entries.
-
Matlab's variable precision arithmetic (VPA), <b>(</b>vpa(), sym()<b>)</b> from Mathworks' Symbolic Math Toolbox, cannot accurately sum a few hundred entries in quadruple precision. Error creeps up above |2e-16| for sequences with high condition number <b>(</b>heavy cancellation defined as large sum|<i>x</i>|/|sum <i>x</i>|<b>)</b>.
+
Matlab's VPA <b>(</b>variable precision arithmetic, <tt>vpa()</tt>, <tt>sym()</tt><b>)</b>, from Mathworks' Symbolic Math Toolbox, cannot accurately sum a few hundred entries in quadruple precision. Error creeps up above |2e-16| for sequences with high condition number <b>(</b>heavy cancellation defined as large sum|<i>x</i>|/|sum <i>x</i>|<b>)</b>.
Use
Use
[https://www.advanpix.com Advanpix Multiprecision Computing Toolbox]
[https://www.advanpix.com Advanpix Multiprecision Computing Toolbox]
Line 58: Line 58:
Kahan later proposed appending final error to the sum (after input has vanished). This makes sense from a perspective of DSP because the marginally stable recursive system illustrated has persistent zero-input response (ZIR). The modified Kahan algorithm becomes:
Kahan later proposed appending final error to the sum (after input has vanished). This makes sense from a perspective of DSP because the marginally stable recursive system illustrated has persistent zero-input response (ZIR). The modified Kahan algorithm becomes:
<pre>
<pre>
-
function s = csum(x)
+
function s = ksum(x)
[~, idx] = sort(abs(x),'descend');
[~, idx] = sort(abs(x),'descend');
x = x(idx);
x = x(idx);

Revision as of 14:52, 25 February 2018

csum() in Digital Signal Processing terms:  z-1 is a unit delay,Q is a 64-bit floating-point quantizer.
csum() in Digital Signal Processing terms: z-1 is a unit delay,
Q is a 64-bit floating-point quantizer.
function s = csum(x)
% CSUM Sum of elements using a compensated summation algorithm.
%
% This Matlab code implements 
% Kahan's compensated summation algorithm (1964) 
%
% Example:
% clear all; clc
% csumv=0;  rsumv=0;
% n = 100e6;
% t = ones(n,1);
% while csumv <= rsumv
%    v = randn(n,1);
%
%    rsumv = abs((t'*v - t'*v(end:-1:1))/sum(v));
%    disp(['rsumv = ' num2str(rsumv,'%1.16f')]);
%
%    csumv = abs((csum(v) - csum(v(end:-1:1)))/sum(v));
%    disp(['csumv = ' num2str(csumv,'%1.16e')]);
% end

s=0; e=0;
for i=1:numel(x)
   s_old = s; 
   y = x(i) + e; 
   s = s + y; 
   e = y - (s - s_old); 
end
return

Contents

summing

ones(1,n)*v  and  sum(v)  produce different results in Matlab 2017b with vectors having only a few hundred entries.

Matlab's VPA (variable precision arithmetic, vpa(), sym()), from Mathworks' Symbolic Math Toolbox, cannot accurately sum a few hundred entries in quadruple precision. Error creeps up above |2e-16| for sequences with high condition number (heavy cancellation defined as large sum|x|/|sum x|). Use Advanpix Multiprecision Computing Toolbox for MATLAB, preferentially. Advanpix is hundreds of times faster than Matlab VPA. Higham measures speed here: https://nickhigham.wordpress.com/2017/08/31/how-fast-is-quadruple-precision-arithmetic

sorting

Floating-point compensated-summation accuracy is data dependent. Substituting a unit sinusoid at arbitrary frequency, instead of a random number sequence input, can make compensated summation fail to produce more accurate results than a simple sum.

Input sorting, in descending order of absolute value, achieves more accurate summation whereas ascending order reliably fails. Sorting is not integral to Kahan's algorithm above because it would defeat input sequence reversal in the commented example. Sorting later became integral to modifications of Kahan's algorithm, such as Priest's (Higham Algorithm 4.3), but the same accuracy dependence on input data prevails.

refining

Kahan later proposed appending final error to the sum (after input has vanished). This makes sense from a perspective of DSP because the marginally stable recursive system illustrated has persistent zero-input response (ZIR). The modified Kahan algorithm becomes:

function s = ksum(x)
[~, idx] = sort(abs(x),'descend'); 
x = x(idx);
s=0; e=0;
for i=1:numel(x)
   s_old = s; 
   s = s + x(i); 
   e = e + x(i) - (s - s_old);  
end
s = s + e;
return

Error e becomes superfluous in the loop. Input sorting is now integral. This algorithm always succeeds, even on sequences with high cancellation; data dependency has been eliminated. Use the Advanpix Multiprecision Computing Toolbox to compare results.

references

Accuracy and Stability of Numerical Algorithms 2e, ch.4.3, Nicholas J. Higham, 2002

Further Remarks on Reducing Truncation Errors, William Kahan, 1964

XSum() Matlab program - Fast Sum with Error Compensation, Jan Simon, 2014

For fixed-point multiplier error feedback, see:

Implementation of Recursive Digital Filters for High-Fidelity Audio

Comments on Implementation of Recursive Digital Filters for High-Fidelity Audio

Personal tools