Ax=b
From Wikimization
(Difference between revisions)
Line 1: | Line 1: | ||
- | ==Seven ways Matlab can solve thin | + | ==Seven ways Matlab can optimally solve normal equations given thin <math>A</math>== |
- | For <math>b\notin\mathcal{R}(A)</math> | + | For <math>b\notin\mathcal{R}(A)\,,\,</math> find best fit <math>x</math> such that <math>A_{}x\approx b\,</math>: |
<pre> | <pre> | ||
%test backslash timing | %test backslash timing |
Revision as of 18:24, 17 December 2017
Seven ways Matlab can optimally solve normal equations given thin 
For find best fit
such that
:
%test backslash timing clc %clear all; close all; fclose all; slow execution by order of magnitude m=1e6; n=52; A = randn(m,n); xact = randn(n,1); b = A*xact; opt.SYM = true; opt.POSDEF = true; opt1.LT = true; opt2.UT = true; AA = zeros(n,n); bb = zeros(n,1); %form A'A for accuracy, precision, and symmetry for i=1:n for j=1:i AA(i,j) = csum(A(:,i).*A(:,j)); AA(j,i) = AA(i,j); end bb(i) = csum(A(:,i).*b); end % AA = A'*A; % AA = (AA + AA')/2; spAA = sparse(AA); % spA = sparse(A); for i=1:3 %Manually disable unnecessary OS processes. Runs faster on subsequent loops. if i > 1, disp(' ');disp(' '); end % disp(' backslash on A') % tic % x1a = A\b; % toc % disp(['error = ' num2str(norm(x1a - xact)/norm(xact))]) disp(' backslash on A''A') tic x1 = AA\bb; toc disp(['error = ' num2str(norm(x1 - xact)/norm(xact))]) % disp(' pinv on A') % tic % x2a = pinv(A)*b; % toc % disp(['error = ' num2str(norm(x2a - xact)/norm(xact))]) disp(' pinv on A''A') tic x2 = pinv(AA)*bb; toc disp(['error = ' num2str(norm(x2 - xact)/norm(xact))]) % disp(' QR on A') % tic % [c,R] = qr(spA,b,0); % x3a = R\c; % toc % disp(['error = ' num2str(norm(x3a - xact)/norm(xact))]) disp(' QR on A''A') tic [c,R] = qr(spAA,bb,0); x3 = R\c; toc disp(['error = ' num2str(norm(x3 - xact)/norm(xact))]) disp(' U\(U''\A''*b) on U=chol(A''A)') tic; U = chol(AA); x4 = U\(U'\bb); toc disp(['error = ' num2str(norm(x4 - xact)/norm(xact))]) disp(' linsolve on chol(A''A)') %winner on Dec.14 2017 tic U = chol(AA); x5 = linsolve(U, linsolve(U',bb,opt1), opt2); toc disp(['error = ' num2str(norm(x5 - xact)/norm(xact))]) % disp(' linsolve on A') % tic % x6a = linsolve(A,b); % toc % disp(['error = ' num2str(norm(x6a - xact)/norm(xact))]) disp(' linsolve on A''A') tic x6 = linsolve(AA,bb,opt); toc disp(['error = ' num2str(norm(x6 - xact)/norm(xact))]) % disp(' lscov on A') % tic % x7a = lscov(A,b); % toc % disp(['error = ' num2str(norm(x7a - xact)/norm(xact))]) disp(' lscov on A''A') tic x7 = lscov(AA,bb); toc disp(['error = ' num2str(norm(x7 - xact)/norm(xact))]) end
csum() routine (with presorting) can increase precision by orders of magnitude.