# Convex cones

(Difference between revisions)
 Revision as of 20:49, 28 August 2008 (edit)← Previous diff Revision as of 21:02, 28 August 2008 (edit) (undo)Next diff → Line 14: Line 14: ===proof=== ===proof=== + $\,d_v(x)\,$ is the optimal value of a conic program: + + $\,\begin{array}{rl}\mathrm{maximize}&t\\ + \mathrm{subject~to}&x-t^{}v\in\mathcal{K}\end{array}$

## Nonorthogonal projection on extreme directons of convex cone

### pseudo coordinates

Let $LaTeX: \mathcal{K}$ be a full-dimensional closed pointed convex cone in finite-dimensional Euclidean space $LaTeX: \mathbb{R}^n$.

For any vector $LaTeX: \,v\,$ and a point $LaTeX: \,x\!\in\!\mathcal{K}$, define $LaTeX: \,d_v(x)\,$ to be the largest number $LaTeX: \,t^\star$ such that $LaTeX: \,x-t^{}v\!\in\!\mathcal{K}\,$.

Suppose $LaTeX: \,x\,$ and $LaTeX: \,y\,$ are points in $LaTeX: \,\mathcal{K}\,$.

Further, suppose that $LaTeX: \,d_v(x)\!=_{\!}d_v(y)\,$ for every extreme direction $LaTeX: \,v\,$ of $LaTeX: \,\mathcal{K}\,$.

Then $LaTeX: \,x\,$ must be equal to $LaTeX: \,y\,$.

### proof $LaTeX: \,d_v(x)\,$ is the optimal value of a conic program: $LaTeX: \,\begin{array}{rl}\mathrm{maximize}&t\\ \mathrm{subject~to}&x-t^{}v\in\mathcal{K}\end{array}$