Euclidean distance matrix completion via semidefinite facial reduction

From Wikimization

(Difference between revisions)
Jump to: navigation, search
(Properties of <math>\mathcal K </math> [http://orion.math.uwaterloo.ca/~hwolkowi/henry/reports/edmapr04.pdf])
(Properties of <math>\mathcal K </math> [http://orion.math.uwaterloo.ca/~hwolkowi/henry/reports/edmapr04.pdf])
Line 44: Line 44:
<center><math>\mathcal K^\dagger(D) = -\frac 12 J \operatorname{offDiag} (D) J,</math></center>
<center><math>\mathcal K^\dagger(D) = -\frac 12 J \operatorname{offDiag} (D) J,</math></center>
-
where the matrix <math>J:=I-\frac 1n ee^T, \operatorname{offDiag}(D):=D-\operatorname{Diag}\operatornam{diag}(D)<\math>.
+
where the matrix <math>J:=I-\frac 1n ee^T, \operatorname{offDiag}(D):=D-\operatorname{Diag}\operatorname{diag}(D)<\math>.
== Semidefinite programming relaxation of the low-dimensional Euclidean distance matrix completion problem ==
== Semidefinite programming relaxation of the low-dimensional Euclidean distance matrix completion problem ==

Revision as of 13:15, 3 January 2011

Nathan Krislock

Henry Wolkowicz

Euclidean distance matrix completions (EDMC), background

EDMC is a fundamental problem of distance geometry, (FPDG). Let LaTeX: \mathcal S^n be the vector space of symmetric matrices equipped with the trace inner product, LaTeX: \langle S, T \rangle = \mathrm{trace}(ST) ; let LaTeX: D \in \mathcal E^n, the set of LaTeX: n \times n Euclidean distance matrices, i.e. LaTeX: D_{ij}=|| p_i-p_j||^2, for points LaTeX: p_i\in \mathbb R^r, i=1,...n, with embedding dimension LaTeX: r; and, let LaTeX: \mathcal S^n_+ be the set (convex cone) of (symmetric) positive semidefinite matrices. Defining LaTeX: \mathcal K : \mathcal S^n \rightarrow \mathcal S^n by

LaTeX: \mathcal K(Y)_{ij} := Y_{ii} + Y_{jj} - 2Y_{ij} ~~\mbox{for all}~ i,j = 1, \ldots, n,

we have that LaTeX:  \mathcal K(\mathcal S^n_+) = \mathcal E^n. Note that LaTeX: \mathcal K is a one-one linear transformation between the centered symmetric matrices, LaTeX: S \in \mathcal S_c, and the hollow matrices LaTeX: \mathcal S_H, where centered means row (and column) sums are all zero, and hollow means that the diagonal is zero.

A matrix LaTeX: D \in \mathcal S^n is a Euclidean distance matrix with embedding dimension LaTeX: r\, if and only if there exists LaTeX: P \in \mathbb R^{n \times r} such that LaTeX: D = \mathcal K(PP^T). Suppose LaTeX: D\, is a partial Euclidean distance matrix with embedding dimension LaTeX: r\,. The low-dimensional Euclidean distance matrix completion problem is

LaTeX: \begin{array}{rl}\mbox{find}&P \in \mathbb R^{n \times r} \\ \mbox{s.t.}&H \circ \mathcal K(PP^T) = H \circ D \\ & P^Te = 0, \end{array}

where LaTeX: e \in \mathbb R^n is the vector of all ones, and LaTeX: H\, is the adjacency matrix of the graph LaTeX: G = (V,E)\, associated with the partial Euclidean distance matrix LaTeX: D.

Properties of LaTeX: \mathcal K [1]

Let LaTeX: 
\mathcal D_e(Y):=\operatorname{diag} (Y)e^T+e\operatorname{diag}(Y)^T
, where diag denotes the diagonal of the argument. Then alternatively, we can write

LaTeX: \mathcal K(Y) = \mathcal D_e(Y) -2Y.

The adjoints of these linear transformations are


LaTeX: 
<p>\mathcal D^*(D) = 2 \operatorname Diag (De),
\qquad 
\mathcal K^*(D) = 2 (\operatorname Diag (De) -D),
</p>

where Diag is the diagonal matrix formed from its argument and is the adjoint of diag. The Moore-Penrose generalized inverse is


LaTeX: \mathcal K^\dagger(D) = -\frac 12 J \operatorname{offDiag} (D) J,

where the matrix LaTeX: J:=I-\frac 1n ee^T, \operatorname{offDiag}(D):=D-\operatorname{Diag}\operatorname{diag}(D)<\math>.
</p><p>== Semidefinite programming relaxation of the low-dimensional Euclidean distance matrix completion problem ==
</p><p>Using the substitution <math>Y = PP^T\,, and relaxing the (NP-hard) condition that LaTeX: \mathrm{rank}(Y) = r\,, we obtain the semidefinite programming relaxation

LaTeX: \begin{array}{rl}\mbox{find}& Y \in \mathcal S^n_+ \\ \mbox{s.t.}& H \circ \mathcal K(Y) = H \circ D \\ & Ye = 0. \end{array}

Single Clique Facial Reduction Theorem [2]

Let LaTeX: C \subseteq V be a clique in the graph LaTeX: G\, such that the embedding dimension of LaTeX: D[C]\, is LaTeX: r\,. Then there exists LaTeX: U \in \mathbb R^{n \times (n-|C|+r)} such that

LaTeX:  \mathbf{face} \left\{ Y \in \mathcal S^n_+ : \mathcal{K}(Y[C]) = D[C], Ye = 0 \right\} = U \mathcal S^{n-|C|+r}_+ U^T.

Personal tools