Fifth Property of the Euclidean Metric

From Wikimization

(Difference between revisions)
Jump to: navigation, search
(Fifth property of the Euclidean metric '''('''relative-angle inequality''')''')
Line 20: Line 20:
Augmenting the four fundamental Euclidean metric properties in <math>\mathbb{R}^n</math>,
Augmenting the four fundamental Euclidean metric properties in <math>\mathbb{R}^n</math>,
-
for all <math>i_{},j_{},\ell\neq k_{}\!\in\!\{1\ldots_{}N\}</math> ,
+
&nbsp;for all &nbsp;<math>i_{},j_{},\ell\neq k_{}\!\in\!\{1\ldots_{}N\}</math> ,
-
<math>i\!<\!j\!<\!\ell</math> , and for <math>N\!\geq_{\!}4</math> distinct points <math>\{x_k\}</math> ,
+
&nbsp;<math>i\!<\!j\!<\!\ell</math> , &nbsp;and for &nbsp;<math>N\!\geq_{\!}4</math>&nbsp; distinct points &nbsp;<math>\{x_k\}</math> , &nbsp;the inequalities
-
the inequalities
+
<math>\begin{array}{cc}
<math>\begin{array}{cc}
Line 30: Line 29:
\end{array}</math>
\end{array}</math>
-
where <math>\theta_{ikj}\!=_{}\!\theta_{jki}</math> is the angle between vectors at vertex <math>x_k</math> , must be satisfied at each point <math>x_k</math> regardless of affine dimension.
+
where &nbsp;<math>\theta_{ikj}\!=_{}\!\theta_{jki}</math>&nbsp; is the angle between vectors at vertex &nbsp;<math>x_k</math> &nbsp;, &nbsp;&nbsp;must be satisfied at each point &nbsp;<math>x_k</math>&nbsp; regardless of affine dimension.
== References ==
== References ==
* Dattorro, [http://www.convexoptimization.com Convex Optimization & Euclidean Distance Geometry], Meboo, 2007
* Dattorro, [http://www.convexoptimization.com Convex Optimization & Euclidean Distance Geometry], Meboo, 2007

Revision as of 01:17, 31 October 2007

For a list of points LaTeX: \{x_\ell\in\mathbb{R}^n,\,\ell\!=\!1\ldots N\} in Euclidean vector space, distance-square between points LaTeX: x_i and LaTeX: x_j is defined

LaTeX: \begin{array}{rl}d_{ij}
\!\!&=\,\|x_i-_{}x_j\|^2
~=~(x_i-_{}x_j)^T(x_i-_{}x_j)~=~\|x_i\|^2+\|x_j\|^2-2_{}x^T_i\!x_j\\\\
&=\,\left[x_i^T\quad x_j^T\right]\left[\begin{array}{*{20}r}\!I&-I\\\!-I&I\end{array}\right]
\left[\!\!\begin{array}{*{20}c}x_i\\x_j\end{array}\!\!\right]
\end{array}

Euclidean distance between points must satisfy the defining requirements imposed upon any metric space: [Dattorro, ch.5.2]

namely, for Euclidean metric LaTeX: \sqrt{d_{ij}} in LaTeX: \mathbb{R}^n

  • LaTeX: \sqrt{d_{ij}}\geq0\,,~~i\neq j                                       (nonnegativity)
  • LaTeX: \sqrt{d_{ij}}=0\,,~~i=j                                       (self-distance)
  • LaTeX: \sqrt{d_{ij}}=\sqrt{d_{ji}}                                                  (symmetry)
  • LaTeX: \sqrt{d_{ij}}\,\leq\,\sqrt{d_{ik_{}}}+\sqrt{d_{kj}}~,~~i\!\neq\!j\!\neq\!k    (triangle inequality)


Fifth property of the Euclidean metric (relative-angle inequality)

Augmenting the four fundamental Euclidean metric properties in LaTeX: \mathbb{R}^n,  for all  LaTeX: i_{},j_{},\ell\neq k_{}\!\in\!\{1\ldots_{}N\} ,  LaTeX: i\!<\!j\!<\!\ell ,  and for  LaTeX: N\!\geq_{\!}4  distinct points  LaTeX: \{x_k\} ,  the inequalities

LaTeX: \begin{array}{cc}
|\theta_{ik\ell}-\theta_{\ell kj}|~\leq~\theta_{ikj\!}~\leq~\theta_{ik\ell}+\theta_{\ell kj}\\
\theta_{ik\ell}+\theta_{\ell kj}+\theta_{ikj\!}\,\leq\,2\pi\\
0\leq\theta_{ik\ell\,},\theta_{\ell kj\,},\theta_{ikj}\leq\pi
\end{array}

where  LaTeX: \theta_{ikj}\!=_{}\!\theta_{jki}  is the angle between vectors at vertex  LaTeX: x_k  ,   must be satisfied at each point  LaTeX: x_k  regardless of affine dimension.

References

Personal tools