Fifth Property of the Euclidean Metric
From Wikimization
(Difference between revisions)
m (Protected "Fifth Property of the Euclidean Metric" [edit=autoconfirmed:move=autoconfirmed]) |
|||
(3 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
For a list of points <math>\{x_\ell\in\mathbb{R}^n,\,\ell\!=\!1\ldots N\}</math> in Euclidean vector space, distance-square between points <math>\,x_i\,</math> and <math>\,x_j\,</math> is defined | For a list of points <math>\{x_\ell\in\mathbb{R}^n,\,\ell\!=\!1\ldots N\}</math> in Euclidean vector space, distance-square between points <math>\,x_i\,</math> and <math>\,x_j\,</math> is defined | ||
- | <math> | + | <math>d_{ij}=||x_i-x_j||^2 |
- | + | =(x_i-x_j)^{\rm T}(x_i-x_j)=||x_i||^2+||x_j||^2-2x^{\rm T}_ix_j\\\\ | |
- | + | =\left[x_i^{\rm T}\quad x_j^{\rm T}\right]\left[\begin{array}{rr}I&-I\\-I&I\end{array}\right] | |
- | + | \left[\begin{array}{cc}x_i\\x_j\end{array}\right]</math> | |
- | \left[ | + | |
- | + | ||
Euclidean distance between points must satisfy the defining requirements imposed upon any metric space: [[http://meboo.convexoptimization.com/BOOK/EuclideanDistanceMatrix.pdf Dattorro, ch.5.2]] | Euclidean distance between points must satisfy the defining requirements imposed upon any metric space: [[http://meboo.convexoptimization.com/BOOK/EuclideanDistanceMatrix.pdf Dattorro, ch.5.2]] | ||
namely, for Euclidean metric <math>\sqrt{d_{ij}}</math> in <math>\mathbb{R}^n</math> | namely, for Euclidean metric <math>\sqrt{d_{ij}}</math> in <math>\mathbb{R}^n</math> | ||
- | * <math>\sqrt{d_{ij}}\geq0\,,~~i\ | + | * <math>\sqrt{d_{ij}}\geq0\,,~~i\not= j</math> '''('''nonnegativity''')''' |
* <math>\sqrt{d_{ij}}=0~\Leftrightarrow~x_i=x_j</math> '''('''self-distance''')''' | * <math>\sqrt{d_{ij}}=0~\Leftrightarrow~x_i=x_j</math> '''('''self-distance''')''' | ||
* <math>\sqrt{d_{ij}}=\sqrt{d_{ji}}</math> '''('''symmetry''')''' | * <math>\sqrt{d_{ij}}=\sqrt{d_{ji}}</math> '''('''symmetry''')''' | ||
- | * <math>\sqrt{d_{ij}}\,\leq\,\sqrt{d_{ik_{}}}+\sqrt{d_{kj}}~,~~i\!\ | + | * <math>\sqrt{d_{ij}}\,\leq\,\sqrt{d_{ik_{}}}+\sqrt{d_{kj}}~,~~i\!\not=\!j\!\not=\!k</math> '''('''triangle inequality''')''' |
==Fifth property of the Euclidean metric '''('''relative-angle inequality''')'''== | ==Fifth property of the Euclidean metric '''('''relative-angle inequality''')'''== | ||
Augmenting the four fundamental Euclidean metric properties in <math>\mathbb{R}^n</math>, | Augmenting the four fundamental Euclidean metric properties in <math>\mathbb{R}^n</math>, | ||
- | for all <math>i_{},j_{},\ell\ | + | for all <math>i_{},j_{},\ell\not= k_{}\!\in\!\{1\ldots_{}N\}</math> , |
<math>i\!<\!j\!<\!\ell</math> , and for <math>N\!\geq_{\!}4</math> distinct points <math>\,\{x_k\}\,</math> , the inequalities | <math>i\!<\!j\!<\!\ell</math> , and for <math>N\!\geq_{\!}4</math> distinct points <math>\,\{x_k\}\,</math> , the inequalities | ||
Current revision
For a list of points in Euclidean vector space, distance-square between points
and
is defined
Euclidean distance between points must satisfy the defining requirements imposed upon any metric space: [Dattorro, ch.5.2]
namely, for Euclidean metric in
-
(nonnegativity)
-
(self-distance)
-
(symmetry)
-
(triangle inequality)
Fifth property of the Euclidean metric (relative-angle inequality)
Augmenting the four fundamental Euclidean metric properties in ,
for all
,
, and for
distinct points
, the inequalities
where is the angle between vectors at vertex
, must be satisfied at each point
regardless of affine dimension.
References
- Dattorro, Convex Optimization & Euclidean Distance Geometry, Meboo, 2005