Filter design by convex iteration
From Wikimization
(New page: \begin{equation} H(\omega) = h(0) + h(1)e^{-j\omega} + \cdots + h(n-1)e^{-j(N-1)\omega} \end{equation} where $h \in \texttt{C}^\texttt{N}$ \vspace{5 mm} For low pass filter, the frequency...) |
|||
Line 2: | Line 2: | ||
H(\omega) = h(0) + h(1)e^{-j\omega} + \cdots + h(n-1)e^{-j(N-1)\omega} | H(\omega) = h(0) + h(1)e^{-j\omega} + \cdots + h(n-1)e^{-j(N-1)\omega} | ||
\end{equation} | \end{equation} | ||
- | where | + | where <math> h \in \texttt{C}^\texttt{N} </math> |
\vspace{5 mm} | \vspace{5 mm} | ||
Line 15: | Line 15: | ||
\vspace{5 mm} | \vspace{5 mm} | ||
- | To minimize the maximum magnitude of | + | To minimize the maximum magnitude of <math>h </math>, the problem becomes |
\begin{equation} | \begin{equation} | ||
\begin{array}{lll} | \begin{array}{lll} | ||
- | \hbox{min} | + | \hbox{min} <math> |h|_\infty </math> \\ |
\hbox{subject to} & \frac{1}{\delta_1}\leq|H(\omega)|\leq\delta_1, & \omega\in[0,\omega_p]\\ | \hbox{subject to} & \frac{1}{\delta_1}\leq|H(\omega)|\leq\delta_1, & \omega\in[0,\omega_p]\\ | ||
& |H(\omega)|\leq\delta_2, & \omega\in[\omega_s,\pi] | & |H(\omega)|\leq\delta_2, & \omega\in[\omega_s,\pi] | ||
Line 26: | Line 26: | ||
\vspace{5 mm} | \vspace{5 mm} | ||
- | A new vector | + | A new vector <math>g \in \texttt{C}^\texttt{N*N}$ is defined as concatenation of time-shifted versions of $h </math>, \emph{i.e.} |
\begin{equation} | \begin{equation} | ||
g = \left[ | g = \left[ | ||
Line 37: | Line 37: | ||
\right] | \right] | ||
\end{equation} | \end{equation} | ||
- | Then | + | Then <math>gg^\texttt{H} </math> is a positive semidefinite matrix of size <math>\texttt{N}^2 \times \texttt{N}^2 </math> with rank 1. Summing along each 2N-1 subdiagonals gives entries of the autocorrelation function of <math>h </math>. In particular, the main diagonal holds squared entries |
- | of | + | of <math>h </math>. Minimizing <math>|h|_\infty </math> is equivalent to minimizing the trace of <math>gg^\texttt{H} </math>. |
\vspace{5 mm} | \vspace{5 mm} |
Revision as of 15:18, 23 August 2010
\begin{equation}
H(\omega) = h(0) + h(1)e^{-j\omega} + \cdots + h(n-1)e^{-j(N-1)\omega}
\end{equation}
where
\vspace{5 mm}
For low pass filter, the frequency domain specifications are: \begin{equation} \begin{array}{ll} \frac{1}{\delta_1}\leq|H(\omega)|\leq\delta_1, & \omega\in[0,\omega_p]\\ |H(\omega)|\leq\delta_2, & \omega\in[\omega_s,\pi] \end{array} \end{equation}
\vspace{5 mm}
To minimize the maximum magnitude of , the problem becomes
\begin{equation}
\begin{array}{lll}
\hbox{min}
\\
\hbox{subject to} & \frac{1}{\delta_1}\leq|H(\omega)|\leq\delta_1, & \omega\in[0,\omega_p]\\
& |H(\omega)|\leq\delta_2, & \omega\in[\omega_s,\pi]
\end{array}
\end{equation}
\vspace{5 mm}
A new vector , \emph{i.e.}
\begin{equation}
g = \left[
\begin{array}{c} h(t) \\ h(t-1) \\ \vdots \\ h(t-N) \\ \end{array} \right]
\end{equation}
Then is a positive semidefinite matrix of size
with rank 1. Summing along each 2N-1 subdiagonals gives entries of the autocorrelation function of
. In particular, the main diagonal holds squared entries
of
. Minimizing
is equivalent to minimizing the trace of
.
\vspace{5 mm}
Using spectral factorization, an equivalent problem is \begin{equation} \begin{array}{lll} \hbox{min} & |r|_\infty & \\ \hbox{subject to} & \frac{1}{\delta_1^2}\leq R(\omega)\leq\delta_1^2, & \omega\in[0,\omega_p]\\ & R(\omega)\leq\delta_2^2, & \omega\in[\omega_s,\pi]\\ & R(\omega)\geq0, & \omega\in[0,\pi] \end{array} \end{equation}