# Jensen's inequality

### From Wikimization

Line 20: | Line 20: | ||

that <math>\,f\,</math> is simple. (This limiting argument is a missing detail to this proof...) | that <math>\,f\,</math> is simple. (This limiting argument is a missing detail to this proof...) | ||

<br>That is, <math>\,X\,</math> is the disjoint union of <math>\,X_1 \,\ldots\, X_n\,</math> | <br>That is, <math>\,X\,</math> is the disjoint union of <math>\,X_1 \,\ldots\, X_n\,</math> | ||

- | and <math>\,f\,</math> is constant on each <math>\,X_j\,</math>. | + | and <math>\,f\,</math> is constant on each <math>\,X_j\,</math> . |

Say <math>\,t_j=\mu(X_j)\,</math> and <math>\,a_j\,</math> is the value of <math>\,f\,</math> on <math>\,X_j\,</math>. | Say <math>\,t_j=\mu(X_j)\,</math> and <math>\,a_j\,</math> is the value of <math>\,f\,</math> on <math>\,X_j\,</math>. | ||

Line 42: | Line 42: | ||

<math>\,L(t) = \phi(a) + m(t-a)\,</math> | <math>\,L(t) = \phi(a) + m(t-a)\,</math> | ||

- | The | + | The bullets above say <math>\,\phi(t)\geq L(t)\,</math> for |

- | all <math>\,t\,</math> in the domain of <math>\,\phi\,</math>. So | + | all <math>\,t\,</math> in the domain of <math>\,\phi\,</math> . So |

<math>\begin{array}{rl}\int \phi \circ f &\geq \int L \circ f\\ | <math>\begin{array}{rl}\int \phi \circ f &\geq \int L \circ f\\ |

## Revision as of 11:59, 26 July 2008

By definition is convex if and only if

whenever and are in the domain of .

It follows by induction on that if for then

(1)

Jensen's inequality says this:

If is a probability
measure on ,

is a real-valued function on ,

is integrable, and

is convex on the range
of then

(2)

**Proof 1:** By some limiting argument we can assume
that is simple. (This limiting argument is a missing detail to this proof...)

That is, is the disjoint union of
and is constant on each .

Say and is the value of on . Then (1) and (2) say exactly the same thing. QED.

**Proof 2:**

Lemma. If and then

The lemma shows:

- has a right-hand derivative at every point, and
- the graph of lies above the "tangent" line through any point on the graph with slope equal to the right derivative.

Say

Let be the right derivative of at , and let

The bullets above say for all in the domain of . So

D. Ullrich