Nonnegative matrix factorization
From Wikimization
(Difference between revisions)
(6 intermediate revisions not shown.) | |||
Line 4: | Line 4: | ||
<math>X=\!\left[\!\begin{array}{ccc}17&28&42\\ | <math>X=\!\left[\!\begin{array}{ccc}17&28&42\\ | ||
16&47&51\\ | 16&47&51\\ | ||
- | + | 17&82&72\end{array}\!\right],</math> | |
- | + | ||
find a nonnegative factorization | find a nonnegative factorization | ||
<math> X=WH\,</math> | <math> X=WH\,</math> | ||
by solving | by solving | ||
- | <math>\begin{array}{cl} | + | <math>\begin{array}{cl}{\text find}_{A\in\mathbb{S}^3,\,B\in\mathbb{S}^3,\,W\in\mathbb{R}^{3\times2},\,H\in\mathbb{R}^{2\times3}}&W\,,\,H\\ |
- | + | {\text subject to}&Z=\left[\begin{array}{ccc}I&W^{\rm T}&H\\W&A&X \\H^{\rm T}&X^{\rm T}&B\end{array}\right]\succeq0\\ | |
&W\geq0\\ | &W\geq0\\ | ||
&H\geq0\\ | &H\geq0\\ | ||
- | & | + | &{\text rank}\,Z\leq2\end{array}</math> |
which follows from the fact, at optimality, | which follows from the fact, at optimality, | ||
- | <math> Z^ | + | <math> Z^*=\left[\!\begin{array}{c}I\\W\\H^{\rm T}\end{array}\!\right]\begin{array}{c}\textbf{[}\,I~~W^{\rm T}~H\,\textbf{]} |
\end{array}</math> | \end{array}</math> | ||
Use the known closed-form solution for a direction vector <math>Y\,</math> to regulate rank (rank constraint is replaced) by [[Convex Iteration]]; | Use the known closed-form solution for a direction vector <math>Y\,</math> to regulate rank (rank constraint is replaced) by [[Convex Iteration]]; | ||
- | set <math>_{}Z^ | + | set <math>_{}Z^*\!=Q\Lambda Q^{\rm T}\!\in\mathbb{S}^{\mathbf{8}}</math> to a nonincreasingly ordered diagonalization and |
- | <math>_{}U^ | + | <math>_{}U^*\!=_{\!}Q(:\,,_{^{}}3:8)\!\in_{\!}\mathbb{R}^{\mathbf{8}\times\mathbf{6}}</math>, |
- | then <math>Y\!=U^ | + | then <math>Y\!=U^* U^{*\rm T}.</math> |
<br> | <br> | ||
Line 31: | Line 30: | ||
<math>\begin{array}{cl}\mbox{minimize}_{A\in\mathbb{S}^3,\,B\in\mathbb{S}^3,\,W\in\mathbb{R}^{3\times2},\,H\in\mathbb{R}^{2\times3}}&\langle Z\,,Y\rangle\\ | <math>\begin{array}{cl}\mbox{minimize}_{A\in\mathbb{S}^3,\,B\in\mathbb{S}^3,\,W\in\mathbb{R}^{3\times2},\,H\in\mathbb{R}^{2\times3}}&\langle Z\,,Y\rangle\\ | ||
- | \mbox{subject to}&Z=\left[\begin{array}{ccc}I&W^{\rm T}&H\\W&A&X\\H^{\rm T}&X^{\rm T}&B\end{array}\right]\succeq0\\ | + | \mbox{subject to}&Z=\left[\begin{array}{ccc}I&W^{\rm T}&H\\W&A&X \\H^{\rm T}&X^{\rm T}&B\end{array}\right]\succeq0\\ |
&W\geq0\\ | &W\geq0\\ | ||
&H\geq0\end{array}</math> | &H\geq0\end{array}</math> | ||
Line 37: | Line 36: | ||
with | with | ||
- | <math>Y\!=U^ | + | <math>Y\!=U^* U^{*\rm T}.</math> |
Global convergence occurs, in this example, in only a few iterations. | Global convergence occurs, in this example, in only a few iterations. |
Current revision
Exercise from Convex Optimization & Euclidean Distance Geometry, ch.4:
Given rank-2 nonnegative matrix
find a nonnegative factorization
by solving
which follows from the fact, at optimality,
Use the known closed-form solution for a direction vector to regulate rank (rank constraint is replaced) by Convex Iteration;
set to a nonincreasingly ordered diagonalization and
,
then
In summary, initialize then alternate solution of
with
Global convergence occurs, in this example, in only a few iterations.