Optimization Videos
From Wikimization
(→Randy Duensing & Feng Huang) |
|||
(74 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | == | + | ==Convex Optimization, MIT== |
- | === Emmanuel Candes === | + | ===Dimitri Bertsekas=== |
+ | [http://videolectures.net/dimitri_bertsekas Polyhedral Approximations in Convex Optimization] | ||
+ | |||
+ | <br> | ||
+ | ==Numerics of Convex Optimization, Stanford== | ||
+ | ===Gene Golub=== | ||
+ | [http://videolectures.net/mlws04_gene_nmsls Numerical Methods for Solving Least Squares Problems with Constraints] | ||
+ | |||
+ | <br> | ||
+ | ==Compressive Sampling and Frontiers in Signal Processing== | ||
+ | === Compressive Sampling, Compressed Sensing - Emmanuel Candes (California Institute of Technology) University of Minnesota, Summer 2007 === | ||
([http://www.real.com requires RealPlayer to watch]) | ([http://www.real.com requires RealPlayer to watch]) | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-4-07.ram June 4 2007] '''Sparsity | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-4-07.ram June 4 2007] '''Sparsity and the l1 norm'''==== |
+ | : Example of sparse signals in genomics (<math>\approx</math> 8 minutes into film). | ||
+ | : Example of sparse signals in genetics (<math>\approx</math> 11 min in). | ||
+ | : Example of sparse signals in audio/image processing (<math>\approx</math> 18 min in). | ||
+ | : Transform-domain image coding (<math>\approx</math> 27 min in). | ||
+ | : Primary visual cortex (<math>\approx</math> 53 min in). | ||
+ | : Efficient estimation (<math>\approx</math> 57 min in). | ||
+ | : Computational harmonic analysis (<math>\approx</math> 1:22 in). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-5-07.ram June 5 2007] (Audio begins 4 minutes into film.) | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-5-07.ram June 5 2007] '''Underdetermined Systems of Linear Equations'''==== |
+ | (Audio begins 4 minutes into film.) | ||
: Norms. | : Norms. | ||
: Early work by pioneers (<math>\approx</math> 16 minutes into film). | : Early work by pioneers (<math>\approx</math> 16 minutes into film). | ||
Line 16: | Line 34: | ||
: ''Barbara'', Jean-Luc Stark (<math>\approx</math> 1:15 hours in). | : ''Barbara'', Jean-Luc Stark (<math>\approx</math> 1:15 hours in). | ||
: Magnetic Resonance Imaging (MRI) (<math>\approx</math> 1:16 hours in). | : Magnetic Resonance Imaging (MRI) (<math>\approx</math> 1:16 hours in). | ||
+ | : High total variation in MRI Shepp-Logan phantom (<math>\approx</math> 1:25 hours in). | ||
: Sample rate (<math>\approx</math> 1:36 hours in). | : Sample rate (<math>\approx</math> 1:36 hours in). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-6-07.ram June 6 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-6-07.ram June 6 2007] '''Sparsity and Incoherence'''==== |
- | (If you only watch one Candes video, this is it.) | + | (If you only watch one Candes video, this is it.) |
: Recovery of Dirac comb, derivation of minimum sampling rate (<math>\approx</math> 11 minutes into film). | : Recovery of Dirac comb, derivation of minimum sampling rate (<math>\approx</math> 11 minutes into film). | ||
: 4:1 <i>sample to sparsity</i> rule (<math>\approx</math> 21 minutes into film). | : 4:1 <i>sample to sparsity</i> rule (<math>\approx</math> 21 minutes into film). | ||
Line 25: | Line 44: | ||
: Fundamental premises of Compressed Sensing: <i>sparsity</i> and <i>incoherence</i> (<math>\approx</math> 29 minutes in). | : Fundamental premises of Compressed Sensing: <i>sparsity</i> and <i>incoherence</i> (<math>\approx</math> 29 minutes in). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-7-07.ram June 7 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-7-07.ram June 7 2007] '''The Uniform Uncertainty Principle'''==== |
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-8-07.ram June 8 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-8-07.ram June 8 2007] '''The Role of Probability in Compressed Sensing'''==== |
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-11-07.ram June 11 2007] (Audio back at 17 minutes into film.) | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-11-07.ram June 11 2007] '''Part 1 - Robust Compressed Sensing and Connections with Statistics'''==== |
+ | (Audio back at 17 minutes into film.) | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-12-07.ram June 12 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-12-07.ram June 12 2007] '''Part 2 - Robust Compressed Sensing and Connections with Statistics'''==== |
: Matlab (<math>\approx</math> 1:15). | : Matlab (<math>\approx</math> 1:15). | ||
- | : MRI phantom with noise using Dantzig (<math>\approx</math> 1:28). | + | : MRI Shepp-Logan phantom with noise using Dantzig (<math>\approx</math> 1:28). |
: Imaging fuel cells (<math>\approx</math> 1:31). | : Imaging fuel cells (<math>\approx</math> 1:31). | ||
: Subsampling (<math>\approx</math> 1:36). | : Subsampling (<math>\approx</math> 1:36). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-13-07.ram June 13 2007] '''Connections with Information and Coding Theory''' | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-13-07.ram June 13 2007] '''Connections with Information and Coding Theory'''==== |
: error correction (since the beginning). | : error correction (since the beginning). | ||
: Matlab decode (<math>\approx</math> 20 min in). | : Matlab decode (<math>\approx</math> 20 min in). | ||
+ | : second error corruption model: gross error + quantization error (<math>\approx</math> 29 min in). | ||
+ | : Connection with the Sparse Recovery Problem (<math>\approx</math> 57 min in). | ||
+ | : Reed-Solomon code (<math>\approx</math> 1:08 min in). | ||
+ | : Matlab for Reed-Solomon code (<math>\approx</math> 1:26 min in). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-14-07.ram June 14 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-14-07.ram June 14 2007] '''Modern Convex Optimization'''==== |
+ | : Unconstrained Minimization (<math>\approx</math> 11 min in). | ||
+ | : Matlab example for Gradient Descent with exact Line Search (<math>\approx</math> 19 min in). | ||
+ | : Exact line search ''vs.'' Backtracking line search (<math>\approx</math> 22 min in). | ||
+ | : Newton Step (<math>\approx</math> 26 min in). | ||
+ | : Self Concordance (<math>\approx</math> 35 min in). | ||
+ | : Equality Constrained Minimization (<math>\approx</math> 43 min in). | ||
+ | : Barrier function (<math>\approx</math> 47 min in). | ||
+ | : Central path (<math>\approx</math> 53 min in). | ||
+ | : Complexity analysis (<math>\approx</math> 1:14). | ||
+ | : Matlab for log-barrier (<math>\approx</math> 1:25). | ||
+ | : Primal-dual interior point methods (<math>\approx</math> 1:29). | ||
- | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-15-07.ram June 15 2007] | + | ====[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-15-07.ram June 15 2007] '''Topics and Applications of Compressive Sampling'''==== |
+ | : Beyond L1 minimization (<math>\approx</math> 3 min in). | ||
+ | : Reweighted TV for MRI Shepp-Logan phantom: recover using m=1.2S (S is number of non zero gradient terms) (<math>\approx</math> 14 min in). | ||
+ | : Overcomplete representations (<math>\approx</math> 19 min in). | ||
+ | : Geometric separation: Cartoon + Texture (<math>\approx</math> 22 min in). | ||
+ | : L1 synthesis ''vs''. analysis for CS (<math>\approx</math> 28 min in). | ||
+ | : Pulse reconstruction using L1 synthesis, L1 analysis and reweighted L1 analysis(<math>\approx</math> 36 min). | ||
+ | : ADC: nonuniform sampler ''vs''. random pre-integrator (<math>\approx</math> 48 min). | ||
+ | : Universal encoder (<math>\approx</math> 1:16 min). | ||
+ | ===[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/discussion6-6-07.ram June 6, 2007] '''Discussion Session'''=== | ||
+ | |||
+ | <br> | ||
+ | == Introduction to Magnetic Resonance Imaging (MRI) == | ||
+ | === Leon Axel (New York University), Steen Moeller (University of Minnesota) === | ||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/axel-moeller6-5-07.ram June 5, 2007] | ||
+ | |||
+ | <br> | ||
+ | ==Compressive Sampling, Compressed Sensing== | ||
+ | === Richard Baraniuk (Rice University) Summer 2007 === | ||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/baraniuk2.6-11-07.ram June 11, 2007] '''Compressive sensing for time signals: Analog to information conversion''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/baraniuk1.6-12-07.ram June 12, 2007] '''Compressive sensing for detection and classification problems''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/baraniuk2.6-12-07.ram June 12, 2007] '''Multi-signal, distributed compressive sensing''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/baraniuk6-13-07.ram June 13, 2007] '''Compressive imaging with a single pixel camera''' | ||
+ | |||
+ | <br> | ||
+ | ==Compressive Sampling, Compressed Sensing== | ||
+ | === Ronald DeVore (University of South Carolina) Summer 2007 === | ||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-4-07.ram June 4, 2007] '''Signal encoding''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-5-07.ram June 5, 2007] '''Compression''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-6-07.ram June 6, 2007] '''Discrete compressed sensing''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-7-07.ram June 7, 2007] '''The Restricted Isometry Property''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-8-07.ram June 8, 2007] '''Construction of CS matrices with best Restricted Isometry Property''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-11-07.ram June 11, 2007] '''Performance of CS matrices revisited''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-12-07.ram June 12, 2007] '''Performance in probability''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-13-07.ram June 13, 2007] '''Decoders''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-14-07.ram June 14, 2007] '''Performance of iterated least squares''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/devore6-15-07.ram June 15, 2007] '''Open Problems''' | ||
+ | |||
+ | <br> | ||
+ | ==Compressive Sampling, Compressed Sensing== | ||
+ | === Anna Gilbert (University of Michigan) Summer 2007 === | ||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/gilbert6-7-07.ram June 7, 2007] '''Algorithms for Compressed Sensing, I''' | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/gilbert6-8-07.ram June 8, 2007] '''Algorithms for Compressed Sensing, II''' | ||
+ | |||
+ | <br> | ||
+ | ==Compressive Sampling, Compressed Sensing== | ||
+ | === Presentations by Participants, University of Minnesota, Summer 2007 === | ||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations6-4-07.ram June 4, 2007] (Audio begins 31 seconds into film.) | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations1.6-14-07.ram June 14, 2007] MRI | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations2.6-14-07.ram June 14, 2007] | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations3.6-14-07.ram June 14, 2007] | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations4.6-14-07.ram June 14, 2007] Dental Tomography | ||
+ | |||
+ | [http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/presentations5.6-14-07.ram June 14, 2007] Open Problems in Compressed Sensing | ||
+ | |||
+ | <br> | ||
== Chromosome structure, University of California, San Diego == | == Chromosome structure, University of California, San Diego == | ||
===Ronan Fleming=== | ===Ronan Fleming=== | ||
[http://www.convexoptimization.com/TOOLS/Multimodal_Empirical_Image_Correlation_Decomposition_Fleming.avi Auto-correlation coefficients (6MB video)] from [[Chromosome structure via Euclidean Distance Matrices]]. | [http://www.convexoptimization.com/TOOLS/Multimodal_Empirical_Image_Correlation_Decomposition_Fleming.avi Auto-correlation coefficients (6MB video)] from [[Chromosome structure via Euclidean Distance Matrices]]. | ||
+ | <br> | ||
== International Society for Magnetic Resonance in Medicine (ISMRM Toronto 2008) == <!-- Don't change title because an ebook links here. --> | == International Society for Magnetic Resonance in Medicine (ISMRM Toronto 2008) == <!-- Don't change title because an ebook links here. --> | ||
===Randy Duensing & Feng Huang=== | ===Randy Duensing & Feng Huang=== | ||
'''('''requires [http://www.macromedia.com/go/getflashplayer Adobe Flash Player]''')''' | '''('''requires [http://www.macromedia.com/go/getflashplayer Adobe Flash Player]''')''' | ||
- | [http://cds.ismrm.org/protected/ | + | [http://cds.ismrm.org/protected/08PresentationsE/1350WSSUnsolved Objective Comparison of Alternate Reconstruction Strategies: An Unmet Need] |
* Username: 44141 | * Username: 44141 | ||
* Password: Law | * Password: Law | ||
+ | |||
+ | <br> | ||
== Convex Optimization, Stanford University== | == Convex Optimization, Stanford University== | ||
===Stephen Boyd=== | ===Stephen Boyd=== | ||
- | [http://www.stanford.edu/class/ee364a/videos.html | + | [http://www.stanford.edu/class/ee364a/videos.html Convex Optimization I] |
+ | |||
+ | [http://www.stanford.edu/class/ee364b/videos.html Convex Optimization II] | ||
+ | |||
+ | <br> | ||
+ | ==International Conference on Machine Learning (ICML July 2008)== | ||
+ | ===Yoram Singer=== | ||
+ | [http://videolectures.net/icml08_singer_ep Efficient Projections onto the L1-Ball for Learning in High Dimensions] | ||
+ | |||
+ | <br> | ||
+ | ==A Plenary Talk given at the SIAM Annual Meeting, Boston 2006== | ||
+ | ===Timothy A. Davis=== | ||
+ | [http://www.cise.ufl.edu/research/sparse/SIAM06/SIAM_2006_Davis.wmv Direct Methods for Sparse Linear Systems: The MATLAB sparse backslash]. | ||
+ | |||
+ | [http://www.cise.ufl.edu/research/sparse/SIAM06 University of Florida Department of Computer and Information Science and Engineering] | ||
+ | |||
+ | <br> | ||
+ | == Compressed Sensing Invited Lectures (March 2011), University of Cambridge== | ||
+ | ===Emmanuel Candes=== | ||
+ | [http://www.sms.cam.ac.uk/collection/1117766;jsessionid=E08892ABBCC13F860DD558D74C857595 8 lectures on Compressed Sensing] |
Current revision
Convex Optimization, MIT
Dimitri Bertsekas
Polyhedral Approximations in Convex Optimization
Numerics of Convex Optimization, Stanford
Gene Golub
Numerical Methods for Solving Least Squares Problems with Constraints
Compressive Sampling and Frontiers in Signal Processing
Compressive Sampling, Compressed Sensing - Emmanuel Candes (California Institute of Technology) University of Minnesota, Summer 2007
(requires RealPlayer to watch)
June 4 2007 Sparsity and the l1 norm
- Example of sparse signals in genomics (
8 minutes into film).
- Example of sparse signals in genetics (
11 min in).
- Example of sparse signals in audio/image processing (
18 min in).
- Transform-domain image coding (
27 min in).
- Primary visual cortex (
53 min in).
- Efficient estimation (
57 min in).
- Computational harmonic analysis (
1:22 in).
June 5 2007 Underdetermined Systems of Linear Equations
(Audio begins 4 minutes into film.)
- Norms.
- Early work by pioneers (
16 minutes into film).
- Deconvolution (
30 minutes into film).
- Lasso, Basis Pursuit (
38 minutes in).
- Wavelets, Curvelets, Ridgelets, sinusoids (
55 minutes in).
- Overcomplete Dictionary (
57 minutes in).
- Basis Pursuit (
1:03 hours in).
- Feature separation (
1:12 hours in).
- Barbara, Jean-Luc Stark (
1:15 hours in).
- Magnetic Resonance Imaging (MRI) (
1:16 hours in).
- High total variation in MRI Shepp-Logan phantom (
1:25 hours in).
- Sample rate (
1:36 hours in).
June 6 2007 Sparsity and Incoherence
(If you only watch one Candes video, this is it.)
- Recovery of Dirac comb, derivation of minimum sampling rate (
11 minutes into film).
- 4:1 sample to sparsity rule (
21 minutes into film).
- Candes' Matlab code (
25 minutes in).
- Fundamental premises of Compressed Sensing: sparsity and incoherence (
29 minutes in).
June 7 2007 The Uniform Uncertainty Principle
June 8 2007 The Role of Probability in Compressed Sensing
June 11 2007 Part 1 - Robust Compressed Sensing and Connections with Statistics
(Audio back at 17 minutes into film.)
June 12 2007 Part 2 - Robust Compressed Sensing and Connections with Statistics
- Matlab (
1:15).
- MRI Shepp-Logan phantom with noise using Dantzig (
1:28).
- Imaging fuel cells (
1:31).
- Subsampling (
1:36).
June 13 2007 Connections with Information and Coding Theory
- error correction (since the beginning).
- Matlab decode (
20 min in).
- second error corruption model: gross error + quantization error (
29 min in).
- Connection with the Sparse Recovery Problem (
57 min in).
- Reed-Solomon code (
1:08 min in).
- Matlab for Reed-Solomon code (
1:26 min in).
June 14 2007 Modern Convex Optimization
- Unconstrained Minimization (
11 min in).
- Matlab example for Gradient Descent with exact Line Search (
19 min in).
- Exact line search vs. Backtracking line search (
22 min in).
- Newton Step (
26 min in).
- Self Concordance (
35 min in).
- Equality Constrained Minimization (
43 min in).
- Barrier function (
47 min in).
- Central path (
53 min in).
- Complexity analysis (
1:14).
- Matlab for log-barrier (
1:25).
- Primal-dual interior point methods (
1:29).
June 15 2007 Topics and Applications of Compressive Sampling
- Beyond L1 minimization (
3 min in).
- Reweighted TV for MRI Shepp-Logan phantom: recover using m=1.2S (S is number of non zero gradient terms) (
14 min in).
- Overcomplete representations (
19 min in).
- Geometric separation: Cartoon + Texture (
22 min in).
- L1 synthesis vs. analysis for CS (
28 min in).
- Pulse reconstruction using L1 synthesis, L1 analysis and reweighted L1 analysis(
36 min).
- ADC: nonuniform sampler vs. random pre-integrator (
48 min).
- Universal encoder (
1:16 min).
June 6, 2007 Discussion Session
Introduction to Magnetic Resonance Imaging (MRI)
Leon Axel (New York University), Steen Moeller (University of Minnesota)
Compressive Sampling, Compressed Sensing
Richard Baraniuk (Rice University) Summer 2007
June 11, 2007 Compressive sensing for time signals: Analog to information conversion
June 12, 2007 Compressive sensing for detection and classification problems
June 12, 2007 Multi-signal, distributed compressive sensing
June 13, 2007 Compressive imaging with a single pixel camera
Compressive Sampling, Compressed Sensing
Ronald DeVore (University of South Carolina) Summer 2007
June 4, 2007 Signal encoding
June 5, 2007 Compression
June 6, 2007 Discrete compressed sensing
June 7, 2007 The Restricted Isometry Property
June 8, 2007 Construction of CS matrices with best Restricted Isometry Property
June 11, 2007 Performance of CS matrices revisited
June 12, 2007 Performance in probability
June 13, 2007 Decoders
June 14, 2007 Performance of iterated least squares
June 15, 2007 Open Problems
Compressive Sampling, Compressed Sensing
Anna Gilbert (University of Michigan) Summer 2007
June 7, 2007 Algorithms for Compressed Sensing, I
June 8, 2007 Algorithms for Compressed Sensing, II
Compressive Sampling, Compressed Sensing
Presentations by Participants, University of Minnesota, Summer 2007
June 4, 2007 (Audio begins 31 seconds into film.)
June 14, 2007 MRI
June 14, 2007 Dental Tomography
June 14, 2007 Open Problems in Compressed Sensing
Chromosome structure, University of California, San Diego
Ronan Fleming
Auto-correlation coefficients (6MB video) from Chromosome structure via Euclidean Distance Matrices.
International Society for Magnetic Resonance in Medicine (ISMRM Toronto 2008)
Randy Duensing & Feng Huang
(requires Adobe Flash Player)
Objective Comparison of Alternate Reconstruction Strategies: An Unmet Need
- Username: 44141
- Password: Law
Convex Optimization, Stanford University
Stephen Boyd
International Conference on Machine Learning (ICML July 2008)
Yoram Singer
Efficient Projections onto the L1-Ball for Learning in High Dimensions
A Plenary Talk given at the SIAM Annual Meeting, Boston 2006
Timothy A. Davis
Direct Methods for Sparse Linear Systems: The MATLAB sparse backslash.
University of Florida Department of Computer and Information Science and Engineering