Optimization Videos

From Wikimization

(Difference between revisions)
Jump to: navigation, search
Line 46: Line 46:
[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-14-07.ram June 14 2007]   '''Modern Convex Optimization'''
[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-14-07.ram June 14 2007]   '''Modern Convex Optimization'''
-
: Unconstrained Minization (<math>\approx</math> 11 min in).
+
: Unconstrained Minimization (<math>\approx</math> 11 min in).
: Matlab example for Gradient Descent with exact Line Search (<math>\approx</math> 19 min in).
: Matlab example for Gradient Descent with exact Line Search (<math>\approx</math> 19 min in).
: Exact line search ''vs.'' Backtracking line search (<math>\approx</math> 22 min in).
: Exact line search ''vs.'' Backtracking line search (<math>\approx</math> 22 min in).
: Newton Step (<math>\approx</math> 26 min in).
: Newton Step (<math>\approx</math> 26 min in).
: Self Concordance (<math>\approx</math> 35 min in).
: Self Concordance (<math>\approx</math> 35 min in).
 +
: Equality Constrained Minimization (<math>\approx</math> 43 min in).
[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-15-07.ram June 15 2007]
[http://www.ima.umn.edu/recordings/New_Directions_Short_Course/ND6.4-15.07/candes6-15-07.ram June 15 2007]

Revision as of 17:37, 26 August 2008

Contents

Compressive Sampling, Compressed Sensing, University Minnesota

Emmanuel Candes

(requires RealPlayer to watch)

June 4 2007  Sparsity.

June 5 2007  (Audio begins 4 minutes into film.)

Norms.
Early work by pioneers (LaTeX: \approx 16 minutes into film).
Deconvolution (LaTeX: \approx 30 minutes into film).
Lasso, Basis Pursuit (LaTeX: \approx 38 minutes in).
Wavelets, Curvelets, Ridgelets, sinusoids (LaTeX: \approx 55 minutes in).
Overcomplete Dictionary (LaTeX: \approx 57 minutes in).
Basis Pursuit (LaTeX: \approx 1:03 hours in).
Feature separation (LaTeX: \approx 1:12 hours in).
Barbara, Jean-Luc Stark (LaTeX: \approx 1:15 hours in).
Magnetic Resonance Imaging (MRI) (LaTeX: \approx 1:16 hours in).
Sample rate (LaTeX: \approx 1:36 hours in).

June 6 2007  (If you only watch one Candes video, this is it.)

Recovery of Dirac comb, derivation of minimum sampling rate (LaTeX: \approx 11 minutes into film).
4:1 sample to sparsity rule (LaTeX: \approx 21 minutes into film).
Candes' Matlab code (LaTeX: \approx 25 minutes in).
Fundamental premises of Compressed Sensing:  sparsity  and  incoherence  (LaTeX: \approx 29 minutes in).

June 7 2007

June 8 2007

June 11 2007  (Audio back at 17 minutes into film.)

June 12 2007

Matlab (LaTeX: \approx 1:15).
MRI phantom with noise using Dantzig (LaTeX: \approx 1:28).
Imaging fuel cells (LaTeX: \approx 1:31).
Subsampling (LaTeX: \approx 1:36).

June 13 2007   Connections with Information and Coding Theory

error correction (since the beginning).
Matlab decode (LaTeX: \approx 20 min in).
second error corruption model: gross error + quantization error (LaTeX: \approx 29 min in).
Connection with the Sparse Recovery Problem (LaTeX: \approx 57 min in).
Reed-Solomon code (LaTeX: \approx 1:08 min in).
Matlab for Reed-Solomon code (LaTeX: \approx 1:26 min in).

June 14 2007   Modern Convex Optimization

Unconstrained Minimization (LaTeX: \approx 11 min in).
Matlab example for Gradient Descent with exact Line Search (LaTeX: \approx 19 min in).
Exact line search vs. Backtracking line search (LaTeX: \approx 22 min in).
Newton Step (LaTeX: \approx 26 min in).
Self Concordance (LaTeX: \approx 35 min in).
Equality Constrained Minimization (LaTeX: \approx 43 min in).

June 15 2007

Chromosome structure, University of California, San Diego

Ronan Fleming

Auto-correlation coefficients (6MB video)  from Chromosome structure via Euclidean Distance Matrices.

International Society for Magnetic Resonance in Medicine (ISMRM Toronto 2008)

Randy Duensing & Feng Huang

(requires Adobe Flash Player)

Objective Comparison of Alternate Reconstruction Strategies: An Unmet Need

  • Username: 44141
  • Password: Law

Convex Optimization, Stanford University

Stephen Boyd

Tutorials for a graduate level course, 2008

Personal tools