# Talk:Chromosome structure via Euclidean Distance Matrices

(Difference between revisions)
 Revision as of 23:17, 6 August 2008 (edit) (→E.coli realization)← Previous diff Revision as of 17:33, 7 August 2008 (edit) (undo)Next diff → Line 19: Line 19: clear D Vn clear D Vn - [evec evals flag] = eigs(VDV, [], 20, 'LR'); + [evec evals flag] = eigs(VDV, [], 20, 'LA'); if flag, disp('convergence problem'), return, end; if flag, disp('convergence problem'), return, end;

## Revision as of 17:33, 7 August 2008

```%%% Ronan Fleming, E.coli molecule data
%%% -Jon Dattorro, August 2008
clear all

frame = 4;                                          % 1 through 12
G = her49imfs12movfull(frame).cdata;                % uint8
G = (double(G)-128)/128;                            % Gram matrix
N = size(G,1);

D = diag(G)*ones(N,1)' + ones(N,1)*diag(G)' - 2*G;  % EDM D

clear her49imfs12movfull G;

Vn = [-ones(1,N-1); speye(N-1)];
VDV = (-Vn'*D*Vn)/2;

clear D Vn

[evec evals flag] = eigs(VDV, [], 20, 'LA');
if flag, disp('convergence problem'), return, end;

close all

Xs = sqrt(real(evals(1:3,1:3)))*real(evec(:,1:3))'; % Projection of -VDV on PSD cone rank 3
plot3(Xs(1,:), Xs(2,:), Xs(3,:), '.')
```

## E.coli realization

I regard the autocorrelation data you provided as a Gram matrix.

Then conversion to an EDM is straightforward - Chapter 5.4.2 of Convex Optimization & Distance Geometry.

The program calculates only the first 20 eigenvalues of the projection of the EDM on a positive semidefinite (PSD) cone.

You can see at runtime that there are many significant eigenvalues; which means, the Euclidean body (the molecule) lives in a space higher than dimension 3, assuming I have interpreted the E.coli data correctly.

To get a picture corresponding to physical reality, we project the EDM on that PSD cone, rank 3 subset; this means, precisely, we truncate eigenvalues.

It is unlikely that this picture is an accurate representation unless the number of eigenvalues of the EDM projection approaches 3 to begin with.

Matlab Figures allow 3D rotation in real time, so you can get a good idea of the body's shape.

I include a low-resolution figure here (frame 4) for reference.