YALL1-Group: A solver for group/joint sparse reconstruction

From Wikimization

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
YALL1-Group is a MATLAB software package for group/joint sparse reconstruction, written by Wei Deng, [http://www.caam.rice.edu/~wy1/google_site/www.wotaoyin.com/ Wotao Yin] and [http://www.caam.rice.edu/~zhang/ Yin Zhang] at Rice University. [[http://yall1.blogs.rice.edu/ Download]]
+
YALL1-Group is a MATLAB software package for group/joint sparse reconstruction, written by Wei Deng, [http://www.caam.rice.edu/~wy1/google_site/www.wotaoyin.com/ Wotao Yin] and [http://www.caam.rice.edu/~zhang/ Yin Zhang] at Rice University. [http://yall1.blogs.rice.edu/ Download]
----
----
Line 46: Line 46:
| ''''GrpWeights'''' || nonnegetive n-vector || Weights for the groups/rows.
| ''''GrpWeights'''' || nonnegetive n-vector || Weights for the groups/rows.
|-
|-
-
| ''''nonorthA'''' || 0 or 1 || Specify if matrix A has non-orthonormal rows (1) or orthonormal rows (0).
+
| ''''nonorthA'''' || true or false || Specify if matrix A has non-orthonormal rows (true) or orthonormal rows (false).
|-
|-
-
| ''''ExactLinSolve'''' || 0 or 1 || Specify if linear systems are to be solve exactly (1) or approximately by taking a gradient descent step (0).
+
| ''''ExactLinSolve'''' || true or false || Specify if linear systems are to be solve exactly (true) or approximately by taking a gradient descent step (false).
|-
|-
| ''''QuadPenaltyPar'''' || nonnegative 2-vector for primal solver or nonnegative scalar for dual solver || Penalty parameters.
| ''''QuadPenaltyPar'''' || nonnegative 2-vector for primal solver or nonnegative scalar for dual solver || Penalty parameters.
Line 60: Line 60:
| ''''Solver'''' || 1 or 2 || Specify which solver to use: 1 for primal solver; 2 for dual solver.
| ''''Solver'''' || 1 or 2 || Specify which solver to use: 1 for primal solver; 2 for dual solver.
|-
|-
-
| ''''Continuation'''' || 0 or 1 || Specify if continuation on the penalty parameters is to be used (1) or not (0). The continuation scheme is as follows: multiply the penalty parameters by a factor <math>c\,(c\,>\,1)</math> if <math>\|R\|_2 > \alpha\|Rp\|_2</math>, where 0< <math>\alpha</math> <1 is a parameter, <math>R</math> and <math>Rp</math> denote the constraint violations at the current and previous iterations, respectively.
+
| ''''Continuation'''' || true or false || Specify if continuation on the penalty parameters is to be used (true) or not (false). The continuation scheme is as follows: multiply the penalty parameters by a factor <math>c\,(c\,>\,1)</math> if <math>\|R\|_2 > \alpha\|Rp\|_2</math>, where 0< <math>\alpha</math> <1 is a parameter, <math>R</math> and <math>Rp</math> denote the constraint violations at the current and previous iterations, respectively. Continuation allows small initial penalty parameters for
 +
constraint violations, which lead to faster initial convergence, and it increases those parameters whenever the violation reduction slows down. It leads to overall speedups in most cases.
|-
|-
| ''''ContParameter'''' || scalar between 0 and 1 || The parameter <math>\alpha</math> (0 < <math>\alpha</math> <1) in the continuation scheme.
| ''''ContParameter'''' || scalar between 0 and 1 || The parameter <math>\alpha</math> (0 < <math>\alpha</math> <1) in the continuation scheme.
Line 66: Line 67:
| ''''ContFactor'''' || scalar greater than 1 || The factor <math>c\,(c\,>\,1)</math> in the continuation scheme.
| ''''ContFactor'''' || scalar greater than 1 || The factor <math>c\,(c\,>\,1)</math> in the continuation scheme.
|}
|}
-
Note: the parameter names are not case-sensitive.
+
*'''Note''': the parameter names are not case-sensitive.
== Output Arguments ==
== Output Arguments ==
*'''x''': last iterate (hopefully an approximate solution).
*'''x''': last iterate (hopefully an approximate solution).
*'''Out''': a structure with fields:
*'''Out''': a structure with fields:
-
**Out.status -- exit information;
+
**Out.status—exit information;
-
**Out.iter -- number of iterations taken;
+
**Out.iter—number of iterations taken;
-
**Out.cputime -- solver CPU time.
+
**Out.cputime—solver CPU time.
== Examples ==
== Examples ==

Revision as of 20:57, 20 June 2011

YALL1-Group is a MATLAB software package for group/joint sparse reconstruction, written by Wei Deng, Wotao Yin and Yin Zhang at Rice University. Download


Contents

Model

(1) Group-sparse basis pursuit model:

                  Minimize     LaTeX: \|x\|_{w,2,1}:=\sum_{i=1}^s w_i\|x_{g_i}\|_2,
  
                  subject to   LaTeX: Ax=b,

where LaTeX: A\in \mathbb{R}^{m\times n}\,(m<n), LaTeX: b\in \mathbb{R}^m, LaTeX: g_i denotes the index set of the LaTeX: i-th group, and LaTeX: w_i\geq0 is the weight for the LaTeX: i-th group.

(2) Joint-sparse basis pursuit model:

                  Minimize     LaTeX: \|X\|_{w,2,1}:=\sum_{i=1}^n w_i\|x^i\|_2,
                  subject to   LaTeX: AX=B,

where LaTeX: A\in \mathbb{R}^{m\times n}\,(m<n), LaTeX: B\in \mathbb{R}^{m\times l}, LaTeX: x^i denotes the LaTeX: i-th row of matrix LaTeX: X, and LaTeX: w_i\geq0 is the weight for the LaTeX: i-th row.

Syntax

[x,Out] = YALL1_group(A,b,groups,'param1',value1,'param2',value2,...);

Input Arguments

  • A: an m-by-n matrix with m < n, or a structure with the following fields:
1) A.times (required): a function handle for LaTeX: A*x;
2) A.trans (required): a function handle for LaTeX: A^T*x;
3) A.invIpAAt: a function handle for LaTeX: (\beta_1I_m+\beta_2AA^T)^{-1}*x;
4) A.invAAt: a function handle for LaTeX: (AA^T)^{-1}*x.

Note: Field A.invIpAAt is only required when (a) primal solver is to be used, and b) A is non-orthonormal, and (c) exact linear system solving is to be performed. Field A.invAAt is only required when (a) dual solver is to be used, and b) A is non-orthonormal, and (c) exact linear system solving is to be performed.

  • b: an m-vector for the group-sparse model or an m-by-l matrix for the joint-sparse model.
  • groups: an n-vector containing the group number of the corresponding component of LaTeX: x for the group-sparse model, or [] for the joint-sparse model.
  • Optional input arguments:
Parameter Name Value Description
'StopTolerance' positive scalar Stopping tolerance value.
'GrpWeights' nonnegetive n-vector Weights for the groups/rows.
'nonorthA' true or false Specify if matrix A has non-orthonormal rows (true) or orthonormal rows (false).
'ExactLinSolve' true or false Specify if linear systems are to be solve exactly (true) or approximately by taking a gradient descent step (false).
'QuadPenaltyPar' nonnegative 2-vector for primal solver or nonnegative scalar for dual solver Penalty parameters.
'StepLength' nonnegative 2-vector for primal solver or nonnegative scalar for dual solver Step lengths for updating the multipliers.
'maxIter' positive integer Maximum number of iterations allowed.
'xInitial' an n-vector for group-sparse model or an n-by-l matrix for joint-sparse model An initial estimate of the solution.
'Solver' 1 or 2 Specify which solver to use: 1 for primal solver; 2 for dual solver.
'Continuation' true or false Specify if continuation on the penalty parameters is to be used (true) or not (false). The continuation scheme is as follows: multiply the penalty parameters by a factor LaTeX: c\,(c\,>\,1) if LaTeX: \|R\|_2 > \alpha\|Rp\|_2, where 0< LaTeX: \alpha <1 is a parameter, LaTeX: R and LaTeX: Rp denote the constraint violations at the current and previous iterations, respectively. Continuation allows small initial penalty parameters for

constraint violations, which lead to faster initial convergence, and it increases those parameters whenever the violation reduction slows down. It leads to overall speedups in most cases.

'ContParameter' scalar between 0 and 1 The parameter LaTeX: \alpha (0 < LaTeX: \alpha <1) in the continuation scheme.
'ContFactor' scalar greater than 1 The factor LaTeX: c\,(c\,>\,1) in the continuation scheme.
  • Note: the parameter names are not case-sensitive.

Output Arguments

  • x: last iterate (hopefully an approximate solution).
  • Out: a structure with fields:
    • Out.status—exit information;
    • Out.iter—number of iterations taken;
    • Out.cputime—solver CPU time.

Examples

Please see the demo files.

Technical Report

The description and theory of the YALL1-Group algorithm can be found in

Personal tools