# YALL1-Group: A solver for group/joint sparse reconstruction

(Difference between revisions)
 Revision as of 20:57, 20 June 2011 (edit)← Previous diff Revision as of 18:05, 28 June 2011 (edit) (undo)Next diff → Line 4: Line 4: == Model == == Model == - (1) Group-sparse basis pursuit model: + (1) Group-sparse basis pursuit model with or without nonnegativity constraint: Minimize $\|x\|_{w,2,1}:=\sum_{i=1}^s w_i\|x_{g_i}\|_2,$ Minimize $\|x\|_{w,2,1}:=\sum_{i=1}^s w_i\|x_{g_i}\|_2,$ - subject to $Ax=b,$ + subject to $Ax=b$, + $x\geq0$ (optional), where [itex]A\in \mathbb{R}^{m\times n}\,(m

## Revision as of 18:05, 28 June 2011

YALL1-Group is a MATLAB software package for group/joint sparse reconstruction, written by Wei Deng, Wotao Yin and Yin Zhang at Rice University. Download

## Model

(1) Group-sparse basis pursuit model with or without nonnegativity constraint:

                  Minimize     $LaTeX: \|x\|_{w,2,1}:=\sum_{i=1}^s w_i\|x_{g_i}\|_2,$

subject to   $LaTeX: Ax=b$,
$LaTeX: x\geq0$ (optional),


where $LaTeX: A\in \mathbb{R}^{m\times n}\,(m, $LaTeX: b\in \mathbb{R}^m$, $LaTeX: g_i$ denotes the index set of the $LaTeX: i$-th group, and $LaTeX: w_i\geq0$ is the weight for the $LaTeX: i$-th group.

(2) Joint-sparse basis pursuit model with or without nonnegativity constraint:

                  Minimize     $LaTeX: \|X\|_{w,2,1}:=\sum_{i=1}^n w_i\|x^i\|_2,$
subject to   $LaTeX: AX=B,$
$LaTeX: X\geq0$ (optional),


where $LaTeX: A\in \mathbb{R}^{m\times n}\,(m, $LaTeX: B\in \mathbb{R}^{m\times l}$, $LaTeX: x^i$ denotes the $LaTeX: i$-th row of matrix $LaTeX: X$, and $LaTeX: w_i\geq0$ is the weight for the $LaTeX: i$-th row.

## Syntax

[x,Out] = YALL1_group(A,b,groups,'param1',value1,'param2',value2,...);

## Input Arguments

• A: an m-by-n matrix with m < n, or a structure with the following fields:
1) A.times (required): a function handle for $LaTeX: A*x$;
2) A.trans (required): a function handle for $LaTeX: A^T*x$;
3) A.invIpAAt: a function handle for $LaTeX: (\beta_1I_m+\beta_2AA^T)^{-1}*x$;
4) A.invAAt: a function handle for $LaTeX: (AA^T)^{-1}*x$.

Note: Field A.invIpAAt is only required when (a) primal solver is to be used, and b) A is non-orthonormal, and (c) exact linear system solving is to be performed. Field A.invAAt is only required when (a) dual solver is to be used, and b) A is non-orthonormal, and (c) exact linear system solving is to be performed.

• b: an m-vector for the group-sparse model or an m-by-l matrix for the joint-sparse model.
• groups: an n-vector containing the group number of the corresponding component of $LaTeX: x$ for the group-sparse model, or [] for the joint-sparse model.
• Optional input arguments:
Parameter Name Value Description
'StopTolerance' positive scalar Stopping tolerance value.
'GrpWeights' nonnegetive n-vector Weights for the groups/rows.
'Nonnegative' true or false True for imposing nonnegativity constraints.
'nonorthA' true or false Specify if matrix A has non-orthonormal rows (true) or orthonormal rows (false).
'ExactLinSolve' true or false Specify if linear systems are to be solve exactly (true) or approximately by taking a gradient descent step (false).
'QuadPenaltyPar' nonnegative 2-vector for primal solver or nonnegative scalar for dual solver Penalty parameters.
'StepLength' nonnegative 2-vector for primal solver or nonnegative scalar for dual solver Step lengths for updating the multipliers.
'maxIter' positive integer Maximum number of iterations allowed.
'xInitial' an n-vector for group-sparse model or an n-by-l matrix for joint-sparse model An initial estimate of the solution.
'Solver' 1 or 2 Specify which solver to use: 1 for primal solver; 2 for dual solver.
'Continuation' true or false Specify if continuation on the penalty parameters is to be used (true) or not (false). The continuation scheme is as follows: multiply the penalty parameters by a factor $LaTeX: c\,(c\,>\,1)$ if $LaTeX: \|R\|_2 > \alpha\|Rp\|_2$, where 0< $LaTeX: \alpha$ <1 is a parameter, $LaTeX: R$ and $LaTeX: Rp$ denote the constraint violations at the current and previous iterations, respectively. Continuation allows small initial penalty parameters for

constraint violations, which lead to faster initial convergence, and it increases those parameters whenever the violation reduction slows down. It leads to overall speedups in most cases.

'ContParameter' scalar between 0 and 1 The parameter $LaTeX: \alpha$ (0 < $LaTeX: \alpha$ <1) in the continuation scheme.
'ContFactor' scalar greater than 1 The factor $LaTeX: c\,(c\,>\,1)$ in the continuation scheme.
• Note: the parameter names are not case-sensitive.

## Output Arguments

• x: last iterate (hopefully an approximate solution).
• Out: a structure with fields:
• Out.status—exit information;
• Out.iter—number of iterations taken;
• Out.cputime—solver CPU time.